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Is climate variability subversive for agricultural total factor productivity growth?  

Long-run evidence from sub-Saharan Africa 

Frank Bannor1, Johane Dikgang and Dambala Gelo2 

Abstract 

It is expected that production in the agricultural sector will be significantly affected by climate 

change. Therefore, it is projected that countries with extreme climatic conditions will suffer a long-

term decline in agricultural productivity beyond the short-term loss of production. Given the gross 

domestic product (GDP) value of agriculture in many sub-Saharan African (SSA) countries, the 

effects of climate change on agriculture are likely to permeate their economies. The long- and 

short-run effects of climate variability on agricultural total factor productivity (TFP) growth in 14 

SSA countries are examined using panel data from 1995 to 2016. We employ a twofold approach. 

First, we use the Data Envelopment Approach (DEA) to calculate the Malmquist Index of Maize 

Productivity growth. Second, we apply a fully modified ordinary least square estimator and the 

Granger causality test in heterogeneous mixed panels to evaluate the long- and short-run impacts 

of climate variability on agricultural TFP development. The empirical results from the long-run 

analysis show that maize agricultural TFP is negatively associated with climate variability for only 

five countries. In the short run, our empirical estimation indicates no evidence of causality effect. 

To mitigate the negative long-run effects – and given that spending on R&D is found to produce 

negative effects in some of those five countries – policymakers should take immediate action to 

provide farmers with adequate and expeditious irrigation facilities, including the construction of 

dams to harvest and store rainfall water for future use. 

Key Words: total factor productivity; climate variability; data envelope approach; fully modified 

ordinary least square; heterogeneous mixed panel. 
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1.  Introduction 

The productivity of weather-dependent sectors, such as agriculture, is anticipated to be greatly 

impacted by climate change (Antle, 2010; Sachs et al., 1999). It is projected that countries with 

extreme climatic conditions, such as prolonged droughts, will suffer a long-term decline in 

agricultural productivity, beyond the short-term loss of production. In light of this, in countries 

with broad agriculture sectors – especially in the tropics and subtropics, where agricultural 

production is meteorologically sensitive and adaptation potential is limited – the adverse effects 

of climate change are likely to be the most extreme. Since rain is a direct input into agricultural 

production, the agricultural sector is projected to be hit the hardest (Barnwall & Kotani, 2013; 

Deschenes & Greenstone, 2007). The agriculture sector is therefore considered the most 

susceptible to climate change, of all the sectors of the global economy (Deressa et al., 2005). Since 

the agricultural enclave is a sector that generates employment, provides food security, and supplies 

raw materials to the industrial sector, a decrease in productivity has a significant effect on any 

country's economy.  

Empirical evidence indicates that climate change will continue to have far-reaching effects on 

agriculture while disproportionately affecting the poor and vulnerable, especially in sub-Saharan 

Africa (SSA), where agriculture is the primary source of income (Zougmoré et al., 2016). More 

specifically, climate change would affect food security and food crop farmers' income. Moreover, 

the four pillars of food security, namely food production, distribution, usage, and stability, could 

be influenced by climate change. To begin with, extreme weather conditions limit income and 

ultimately place budget restrictions on farmers’ ability to invest in modern methods of farming, 

leading to a reduction in productivity. Also, because of the nature of agriculture and farming 

activities, agricultural production is highly affected by the long-term climatic conditions 

anticipated by farmers. For example, perceptions of potential changes in precipitation will 

contribute to changes in agricultural practices, and thus affect productivity. In addition, unexpected 

fluctuations in rainfall and temperature may expose farmers to production risks, resulting in a 

negative productivity effect (Sivakumar et al., 2005; Kumar et al., 2004). An interesting argument 

is made that the poor in SSA, especially smallholder farmers, will be more severely impacted by 

climate change, as their options for diversifying their resources and incomes are limited (Gohar & 

Cashman, 2016).  
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Given the importance of agriculture to the GDP, employment, and livelihoods of many SSA 

countries, the effects of climate change on their agriculture are likely to reverberate across their 

economies. It is expected that indirect impacts will be felt not only in the related sectors and in the 

production and selling of agricultural products, but also many other sectors of the economy, 

because of the effects on income and demand (Bezabih et al., 2011). Campbell et al. (2014) observe 

that agricultural productivity also relies on the farmer's capacity to take action and develop 

adaptive techniques, to effectively manage the risks associated with increased variability in 

climate. However, this cannot be said of smallholder farmers in SSA, as their adaptive capacity is 

usually low. 

Generally speaking, overall improvement in agricultural productivity is determined by the total 

productivity factor (TFP), which can simultaneously represent both production growth and cost 

reduction. TFP can be used to identify the causative factors for improvements in the productivity 

of agriculture for these characteristics (Kunimitsu et al., 2014). An increasing body of evidence 

from cross-country and panel data studies suggests that extreme climatic shocks may have a major 

effect on long-term agricultural productivity development (Letta & Tol, 2019; Blanc, 2012; 

Schlenker & Lobell, 2010). On the other hand, these studies implicitly assume that the effects of 

climate change on agricultural TFP are uniform for all countries. Therefore, the substantial 

differences in the climate change-agricultural TFP growth relationship between countries can lead 

to highly misleading results. In light of this, we took a different approach to examine the long- and 

short-term effects of climate variability on agricultural TFP development. Climate variability is 

used instead of climate change since the literature shows that it is a dominant potential source of 

risk in most parts of SSA for rainfed smallholder agriculture (Zimmerman & Carter, 2003; Dercon, 

2002). 

We have added to the current literature in the following respects: First, we analyzed the data 

country by country, to monitor climate variability heterogeneity and the cross-sectional 

dependence-agricultural TFP growth nexus for 14 SSA countries. Second, using the four-way 

decomposition method, we applied Data Envelopment Analysis (DEA) to the Malmquist 

Productivity Index (MPI) to capture changes in maize agricultural TFP growth. Third, we applied 

a fully modified ordinary least square estimator and the Granger causality test in heterogeneous 

mixed panels to determine the long- and short-run impact of climate variability on agricultural 
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TFP growth in SSA. Specifically, employing heterogeneous mixed panels by Emirmahmutoğlu 

and Kose (2011), we use the idea of a completely adjusted ordinary least square (FMOLS) 

estimator advanced by Pedroni (2000), and the Granger causality test, by allowing for both long- 

and short-run relationships between climate variability and agricultural TFP in levels and first 

differencing. Fourth, we use the cointegration tests of Zivot and Andrews (1992) and Gregory and 

Hansen (1996) to account for a possible structural split in the cointegration relationship. For those 

countries where climate variability cointegrates with agricultural TFP, we estimate the coefficients 

of the long-run relationships using the FMOLS approach, subject to the existence of cointegration. 

We look at the course of short-run causality in countries where there are no long-run relationships. 

The rest of the paper is structured as follows. A literature review is presented in Section 2. The 

technique used is presented in Section 3. The empirical analysis of the results is discussed in 

Section 4. Section 5 includes the concluding remarks. 

2. Literature Review 

In the literature, the economic impacts of climate change have traditionally been shown as 

estimations of reduction in production due to the effects of changes in average temperature and 

precipitation. For instance, Dell et al. (2012) showed that temperatures that are one degree Celsius 

warmer in a given year lead to a decrease in per capita income of about 1.4 percent, but only in 

poor countries. Letta and Tor (2019) delivered some outstanding discussions on climate changes’ 

acute and immoderate impacts on TFP. They showed that a negative association occurs only in 

poor countries, where an annual temperature rise of 1°C reduces TFP growth rates by between 1.1 

and 1.8%, while the effect in rich countries is negligible. In other fields of research, Blanc (2012) 

estimated the effect of climate change on SSA crop productivity. Under alternative climate-change 

scenarios, yield changes by the year 2100 will be close to zero for cassava, but range from -19% 

to +6% for maize, -38% to -13% for millet, and -47% to -7% for sorghum. Schlenker and Lobell 

(2010) showed that by the mid-21st century, mean figures for aggregate changes in agriculture 

productivity in SSA due to climate change would be -22%, -17%, -17%, -18%, and -8% for maize, 

sorghum, millet, groundnut, and cassava respectively. Except for cassava, there is a 95% likelihood 

that losses will reach 7% and a 5% chance that they will exceed 27%, in all cases. According to 

Etwire et al. (2018), extreme climate change will result in a major reduction in average net maize 

revenue per hectare; maize accounts for more than half of the current food output in Ghana. There 
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is also likely to be widespread substitution of heat-tolerant millet for maize and a decrease in other-

crop cultivation, according to a variety of climate-change scenarios used in the analysis. In certain 

climate-change models, the results also suggest a substantial decrease in the aggregate value of 

agricultural production. 

3. Methodology 

3.1 Estimating agriculture total factor productivity (TFP) 

The growth accounting methodology has generally been employed to obtain data on TFP. This 

method is most widely used in the estimation of TFP data at the macro-economic level of research 

(Hall & Jones, 1999; Kalio et al., 2012; Bilgic-Alpaslan, 2015; Algarini, 2017; Saad 2017; Espoir 

& Ngepah, 2020). In these studies, TFP was calculated as a basic Solow residual (Solow, 1956), 

and a traditional Cobb-Douglas framework model was specified, along the lines of the Solow-

Swan model. However, a fundamental limitation in the growth accounting methodology is that it 

does not take into account possible inefficiency which could obstruct farmers from reaching the 

production frontier. To overcome this limitation, therefore, we employed the four-way Malmquist 

Productivity Index (MPI) which accounts for efficiency change, technological change, pure 

efficiency changes, and scale efficiency change. In addition, the MPI technique has the property 

that it does not require the inclusion of details on input and production costs, or any other relevant 

assumptions about economic activity (for example, expense or revenue maximization). This aspect 

makes the index sufficiently versatile and relevant in the context of the developing world, 

specifically, SSA, where in many cases market price information for commodity products is 

inaccessible or insufficiently widely published. 

MPI requires the measurement of the output-or input-oriented distance of observation (𝑥𝑘𝑡, 𝑦𝑘𝑡 ) 

in two consecutive cycles (say, base period 𝑡 = 0 and reference period 𝑡 = 1) at the boundary of 

the Constant Return to Scale (CRS) benchmark technology. To follow homogeneous conditions 

that ensure that the MPI is proportionally characteristic (see Balk & Zofío, 2018), the imposition 

of CRS is necessary to achieve the distance function. Therefore, in general, there is a disparity 

between reference technology and real technology. The cone technology of a certain time 𝑡, 𝑆t, is 

popularly taken as a benchmark. The function of its output distance is defined by 𝐷0𝑡(𝑥𝑡, 𝑦𝑡  ) = Inf 

(δ/δ>0, 𝑥𝑡, 𝑦𝑡/δ) ∈ 𝑆t. 



6 

 

Operationally, this can be determined within the DEA framework by estimating the program 𝐷0𝑡(𝑥𝑡, 𝑦𝑡  )-1 = maxɸλ{ɸ|𝑥≥𝑋tλ, λ≥0}. Then (𝑥𝑡 , 𝑦𝑡|𝐷0𝑡(𝑥𝑡 , 𝑦𝑡 ) is the point on the frontier of the 𝑡 

cone technology duration that is obtained by keeping the vector 𝑥 input quantity constant while 

radially extending the vector 𝑦 output quantity. The distance function of the input is thus specified 

as 𝐷0𝑡(𝑥𝑡, 𝑦𝑡  ) = sup{δ|δ>0, (𝛿, 𝑦) ∈ 𝑆t} which can be computed by estimating the program  𝐷1𝑡(𝑥𝑡, 𝑦𝑡  )-1 = minθ,λ{θ≥𝑋tλ, 𝑦 ≤ 𝑌tλ, λ≥0}. Then {𝑥/𝐷1𝑡 (𝑥𝑡, 𝑦𝑡 ), 𝑦} is the point on the frontier 

of the 𝑡 cone technology duration that is obtained by keeping the vector y output quantity constant 

while radially contracting the vector 𝑥 input quantity. For a certain Decision-Making Unit (DMU), 

the output-oriented MPI – conditional on the t-cone technology – is defined by: 

𝑀0𝑡 (𝑥1, 𝑦1, 𝑥0, 𝑦0)= 
𝐷0𝑡(𝑥1, 𝑦1)𝐷0𝑡(𝑥0,𝑦0)        (1) 

The selection of the base time cone technology then leads to 𝑀00 (𝑥1, 𝑦1, 𝑥0, 𝑦0), and the selection 

of the cone technology reference period leads to 𝑀01 (𝑥1, 𝑦1, 𝑥0, 𝑦0). The TFP toolbox measures 

both reference periods in addition to their geometric mean. The first expanded decomposition of 

the base-period-output-oriented MPI (called 'Path A') is specified by following Balk and Zofío 

(2018); thus, we provide meaningful theoretical explanations for the various variables as follows: 𝑀00 (𝑥1, 𝑦1, 𝑥0, 𝑦0)=EC0(𝑥1, 𝑦1, 𝑥0, 𝑦0) x TC0
1,0((𝑥1, 𝑦1) x SEC0

0(𝑥1, 𝑥0, 𝑦0) x PEC0(𝑥1, 𝑦1, 𝑦0) 

(2) 

From Equation (2), there are four mutually independent variables with the following 

interpretation: 

Efficiency change: EC0(𝑥1, 𝑦1, 𝑥0, 𝑦0)= 𝐷01(𝑥1, 𝑦1)𝐷00(𝑥0,𝑦0)               (3) 

Equation (3) reflects the shift in the DMU’s technical efficiency, also known as the catch-up 

effect. 

Technological change: TC0
1,0((𝑥1, 𝑦1)= 𝐷00(𝑥0, 𝑦0)𝐷01(𝑥1,𝑦1)                (4) 

Equation (4) captures the transition in technological change, often referred to as the frontier-

change effect. 
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Scale efficiency change: SEC0
0(𝑥1, 𝑥0, 𝑦0)=〔 𝐷00(𝑥1, 𝑦0)𝐷00(𝑥1,𝑦0)〕 x 〔

𝐷00(𝑥0, 𝑦0)𝐷00(𝑥0,𝑦0)〕 (5) 

Equation (5) refers to the related gains in scale performance associated with radial increases in 

input quantities, and the additional impact of changes in the combination of input quantities. 

Pure efficiency change: PEC0(𝑥1, 𝑦1, 𝑦0)=〔
𝐷00(𝑥1, 𝑦1)𝐷00(𝑥1,𝑦1)〕 x 〔

𝐷00(𝑥1, 𝑦0)𝐷00(𝑥1,𝑦0)〕 (6) 

Equation (6) displays the counterparty effects associated with shifts in the combination of output 

quantities. 

An alternate base-period-output-oriented MPI decomposition reverses the order in which inputs 

and output space shifts occur in the last two expression factors in equation (2). This yields the 

following: 𝑀00 (𝑥1, 𝑦1, 𝑥0, 𝑦0) = 

EC0(𝑥1, 𝑦1, 𝑥0, 𝑦0) x TC0
1,0((𝑥1, 𝑦1) x SEC0

0(𝑥1, 𝑥0, 𝑦1) x PEC0(𝑥0, 𝑦1, 𝑦0) (7) 

Equation (7) is referred to as Path B. The variations between equation (2) and the decomposition 

in equation (7) are slight but notable. The elements that capture technical efficiency and 

technological change are similar. The radial scale effect factor and input mix effect, however, 

depend on 𝑦0 in expression (2), but on 𝑦1 in expression (7). The inverse occurs with the effect of 

the output mix; in expression (2), this impact is conditional on 𝑥1, and in expression (7), on 𝑥0. 

Following Färe et al. (1994), we estimate each of the distance function terms in equation (7) using 

a linear programming-based Data Envelopment Analysis (DEA) technique, and combine the four 

components to form the complete Malmquist Index. 

3.2 Standard Model 

While estimating a bivariate long-run relationship is typical in panel cointegration studies, it would 

be irrational to conclude that long-run changes in agricultural TFP are driven primarily by changes 

in rainfall. However, it is fair to assume that labor, resources, literacy, and R&D spending all play 

a role in agricultural TFP over time. Thus, we consider a standard type of model:  

log(TFPit) = αi + δit + β1itCvarit + β2it log(Capitalit) + β3it log(R&Dit ) + β4it log(laborit) + β5it 

log(Literacyit) + εit       (8) 
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where 𝛼i and 𝛿it are country-specific fixed effects and time patterns respectively, to account for 

any excluded country-specificd variables that are either relatively constant over time or change 

smoothly over time. The vector log (𝑇𝐹𝑃)it is the log of agricultural TFP overtime periods 𝑡 =1, 2, … , 𝑇 and countries 𝑖 = 1, 2, … , 𝑁, log (𝐶𝑎𝑝𝑖𝑡𝑎𝑙)it is the log of gross capital creation, log (𝑅&𝐷)it is the log of research and development investment, log (𝑙𝑎𝑏𝑜𝑟)it is the log of labor 

calculated as the total number of agricultural employments, and Cvarit is climate variability 

proxied by rainfall. Furthermore, for a regression composed of cointegrated variables, there is a 

stationary error term 𝜀it, which means that no suitable integrated variables are omitted; any omitted 

non-stationary variable that is part of the cointegrated relationship will enter the error term, 

resulting in non-stationary residuals and leading to the observed cointegration failure.  

In extended vector space, the same stationary relationship also happens if on the other hand there 

is cointegration between several variables (Johansen, 2000). The absence of missing incorporated 

variables in the cointegrating vector is a major consequence of estimating cointegration. 

Cointegration estimators are thus robust (under cointegration) in such a way that variables that do 

not form part of the relationship with cointegration are omitted. This not only justifies a reduced 

form (if cointegrated) model but also describes the main variables that should be used in our 

research to estimate the long-term effect of climate variability on agricultural TFP. 

4. Data sources and description 

For the period 1995-2016, the FAO database (FAO, 2020) and the ILOSTAT database provide 

panel data for agricultural production and traditional agricultural inputs (capital and labor) for 14 

countries in SSA: Benin, Botswana, Burkina Faso, Ivory Coast, Ethiopia, Ghana, Kenya, Malawi, 

Mali, Niger, Nigeria, South Africa, Togo, and Zambia. The selection of countries is mainly based 

on data availability. Maize yield data is measured as thousands of tonnes per hectare; labor is 

measured by the total number of agricultural jobs; capital is measured by gross agricultural fixed 

capital formation; the proportion of the adult population who are literate is estimated using data 

from the World Development Indicators database. Rainfall (climate proxy) is the average monthly 

rainfall in millimeters and is collected from the Climate Change Information Portal of the World 

Bank.  
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Data from agricultural research and development (R&D) valued at millions of US dollars can be 

found in the IFPRI Agricultural Science and Technology Metrics database hosted by the 

International Food Policy Research Institute. Our panel data consists of 294 observations, each 

covering maize production, labor, capital, literacy, rainfall, and R&D expenditure. The average 

maize yield is about 16 740 tonnes per hectare. The average labor employed in agriculture in 

agriculture is 6.102689 million. At the same time, the average percentage of the population that is 

literate is 55%, with an average gross capital formation of about US$466m. The average rainfall 

for the study period is approximately 68mm, and the average spending on R&D is about US$48m. 

Maize was selected because of its nutritional value as well as its economic significance. According 

to Badu-Apraku and Fakorede (2017), maize is the most widely grown food crop in SSA, 

accounting for more than 40% of total cereal consumption. In SSA, maize provides about 20% of 

the population's caloric intake. It is also an essential source of protein for the majority of the 

population and is high in starch. A summary and explanation of the data are presented in Table 1 

below. 

Table 1. Data description  

Variable Mean SD Min Max 

Maize 16 740.22 8 436.57 849 53009 

Labour 6 102 689 6 102 689 76914.7 3.30e+07 

Capital  

Rainfall 

Literacy 

R&D  

465.87 

68.46 

54.67 

48.46 

805.02 

30.39 

21.51 

66.71 

2.32 

11.36 

12.85 

0.00 

4875.11 

144.89 

94.37 

276.9 

Table 1 shows that rainfall variability (a proxy for climate variability) is one of our key variables 

of concern. We follow the previous literature to derive rainfall variability (see Trong-Anh, 2019; 

Amare et al., 2018) and assess climate variability during the agricultural development season as 

the deviation of past rainfall from its historical average (21 years). The use of past rainfall is based 

on the hypothesis that rainfall variability is exogenous to the current decisions of farmers, as seen 

in the literature (see Amare et al., 2018; Dercon & Christiansen, 2011; Alem et al., 2010), and 

which is reflected in their choice of inputs for agricultural production. Our climate variability 

estimate is thus expressed as follows: 
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Climate variability (Cvar)it =log(
�̅�𝑖𝑡 − 𝑥𝑖𝑡−1𝑥𝑆𝐷 )      (9) 

where �̅�𝑖𝑡 represents the 21-year historical average of rainfall in country ί at a time (t), 𝑥𝑖𝑡−1indicate 

past rainfall, and 𝑥𝑆𝐷 shows the standard deviation from the mean rainfall.  

5. Results and Discussion 

5.1 Total factor productivity and its decomposition 

The improvements in the overall productivity indices and their respective components for the study 

period are listed in Table 2. Through applying the DEA technique, the EC, TC, SEC, and PEC 

estimates are derived. Growth in TFP is measured by the overall output of technical efficiency, 

technological progress, scale efficiency, and pure efficiency change. Considering the TFP indices, 

where the values are greater than one for either productivity or all of its components, the results 

suggest an increase in overall productivity and its components. However, the less-than-one values 

reflect a deterioration in TFP, which means that given the same amount of inputs, the country is 

not able to generate as much output as before. Estimates for the MPI indicate that overall, between 

1996 and 2016, there was a negative increase of around 8.3% in production per year in agriculture. 

This poor growth shows a deflation in agricultural productivity among the 14 countries over the 

study span. The results in Table 2 below also show that though TFP is driven by technical 

efficiency among the 14 countries, the increasing trend could potentially stem from increasing 

gross capital formation to the agricultural sector by our sample countries. Though many African 

governments have pledged to raise their annual agricultural spending to 10% of their total national 

expenditure, as reported in the African Union's declaration in Malabo in 2003, it can be seen from 

Table 2 below that there are still inefficiencies in the agricultural production of maize during the 

sample period. Efficiency changes cause negative growth rates in productivity growth; notable 

among these was 2009 when the rate was -32.3%. On average, efficiency change improves TFP 

growth by a rate of 0.1% per year. For example, contrary to previous studies, Alene (2010) and 

Fulginiti et al. (2004) observed that technological progress is the key driver of agricultural 

productivity in Africa, compared to technical efficiency.  
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Table 2. Annual productivity growth, efficiency change, technical change, pure efficiency 

changes and scale efficiency change 

Year EC TC PEC SEC TFP 

1996 0.335 2.286 0.883 0.379 0.765 

1997 2.134 0.267 0.907 2.353 0.571 

1998 1.322 0.958 1.222 1.082 1.266 

1999 1.072 0.534 1.038 1.033 0.572 

2000 0.981 1.271 0.978 1.003 1.247 

2001 0.925 0.589 0.936 0.988 0.545 

2002 0.731 1.211 1.014 0.721 0.885 

2003 1.515 0.988 1.070 1.416 1.496 

2004 0.971 0.838 0.989 0.982 0.814 

2005 0.880 0.832 0.928 0.948 0.732 

2006 0.838 3.188 0.805 1.041 2.672 

2007 1.373 0.946 1.356 1.012 1.299 

2008 0.814 0.890 0.822 0.990 0.724 

2009 0.677 1.484 0.767 0.884 1.005 

2010 1.251 0.485 1.424 0.878 0.607 

2011 1.374 0.224 1.084 1.267 0.308 

2012 0.966 1.653 0.976 0.990 1.597 

2013 0.998 2.911 0.968 1.031 2.906 

2014 1.120 0.754 1.113 1.006 0.845 

2015 0.867 1.036 0.918 0.945 0.899 

2016 1.152 0.501 1.069 1.079 0.578 

Mean 1.001 0.916 1.001 1.000 0.917 

Our findings show further that both technical efficiency and technological progress are significant 

for the overall growth of maize productivity in the 14 selected SSA countries. The overall technical 

change was approximately -8.4% per year; however, technical change contributed significantly to 

TFP growth – notably in 2006, by about 218.8%. Pure efficiency changes (average annual growth 

rate: 0.1%) also made a significant contribution to TFP growth, though on occasion a negative 
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growth rate was recorded; significant among them was 2009 when it tumbled by approximately 

23.3%. On the other hand, no growth was recorded for scale efficiency change in our sample 

period. Also, TFP growth rates were slightly lower than in studies such as Adetutu and Ajayi 

(2020). This is because we adopted a non-parametric DEA approach, as opposed to the parametric 

method used in their study. Heady et al. (2010) confirmed this slight difference in TFP indices, 

reporting that frontier-based estimates of SSA agriculture productivity yield much higher TFP 

growth than DEA-based estimates. 

5.2 Cointegration Results 

We analyze the long-term effects of climate variability on agricultural TFP. In particular, we used 

heterogeneous panel cointegration techniques that are robust, with omitted variables, slope 

heterogeneity, and endogenous regressors. We begin by examining the cross-section dependency 

and unit root test for our panel data. Then we look for a long-term or co-integrating partnership 

between TFP, climate variability, R&D, capital, labor, and literacy. We measure this relationship 

among our variables and determine how the robustness of this relationship. 

5.3 Cross-section dependency and unit root test 

We analyze for cross-dependencies in our panel dataset before running the module unit root test. 

This is significant because the orthodox literature on cross-sectional and time-series data suggests 

cross-section-independent errors may occur. There are some explanations for why cross-

sectionally-based errors occur in panel data; cross-sectional dependence can occur due to the 

omission of variables that can affect agricultural TFP. If the dependency on the non-observable 

variables is ignored, if the errors 𝜀i,t is still not independent across units, obviously this could lead 

to spurious estimates (Herzer & Vollmer, 2012). The literature suggests a large range of tests for 

the analysis of cross-sectional dependence. We applied one of the most widely used, the Pesaran 

(2004) cross-sectional dependency (CD) test. It is worth noting that the application of the Pesaran 

CD test, as well as its results, must follow certain key conditions. First, for any variable, the null 

hypothesis of cross-sectional independence must be tested. Second, for single or multiple breaks 

in slope coefficients, the researcher must test for robustness; and third, the Pesaran CD test must 

be performed before the root panel test, because the use of a particular root unit panel test depends 

on whether or not there is cross-sectional dependency (Alam et al., 2018). Table 3 below 
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summarises the outcomes of the Pesaran CD test. It clearly shows a heavy cross-sectional 

dependence effect, except for the R&D variable. However, given that our main variables of interest 

– TFP and climate variability – show evidence of cross-sectional dependency, we perform the unit 

root test for our model.  

 Table 3. Cross-section dependence test 

       
Pesaran CD TFP Cvar R&D Capital Literacy Labour 
       
Statistic   21.55*** 6.19*** -0.58 35.26*** 13.08*** 12.77 

Note: Null hypothesis: No cross-section dependence. Levels of significance: * p < 0.1, ** p < 0.05, *** p < 0.01. 

To evaluate the unit root properties, we use the Pesaran (2007) cross-sectional augmented IPS or 

CIPS panel unit root test of log(TFPit), log(R&Dit), log(Capitalit), log(labourit), log(Literacyit), and 

Cvarit. This test allows cross-sectional dependency to be accomplished by increasing the normal 

ADF regression of cross-sectional averages of lagging levels and first-series discrepancies. It 

requires the measurement of separate cross-sectionally enhanced ADF (CADF) regressions for 

each region, allowing various autoregressive parameters for each panel member. Formally, the 

CADF regression model is given by: 

Δyit = yitγi + рi yit-1 + ∑ 𝜑𝑘𝑖𝑗=1 ij Δyit-j + αi𝑦it-1 + ∑ 𝜂𝑘𝑖𝑗=0 ij Δ𝑦t-j + 𝜈it   (10) 

where 𝑦t is the mean cross-section of 𝑦it, 𝑦t=N-1∑ 𝑦𝑁𝑖=1 it. The null hypothesis is that each series 

comprises a root unit, H0: рi=0 for all 𝑖, while the alternative hypothesis is that there is trend or 

stationarity in at least one of the individual series in the panel, H1:рi<0 for at least one 𝑖. The CIPS 

statistic is determined as the average of the individual CADF statistics to test the null hypothesis 

against the alternate hypothesis: 

CIPS = N-1∑ 𝑡𝑁𝑖𝑖=1 i         (11) 

In the above CADF regression, 𝑡i is the OLS t-ratio of 𝜌i. Pesaran (2007) tabulates critical values. 

The test results for the variables in levels and first differences are shown in Table 4 below. 
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Table 4. Pesaran-2007 CIPS panel unit root test 

At Level  At First Difference 

Variables Constant Constant with trend  Constant Constant with trend 
TFP -5.117*** -5.129***  -5.981*** -6.114*** 
Cvar -4.239*** -4.661***  -5.619*** -5.597*** 
R&D -2.868*** -3.064***  -4.725*** -4.766*** 
Capital -2.070*** -2.241  -4.075*** -4.454*** 
Literacy -1.594 -2.101  -2.689*** -3.218*** 
Labor 1.146 -2.666  -3.743*** -4.232*** 

Note: ***’ ** Rejection of null hypothesis of non-stationary at the 1% and 5% level of significance, respectively. 

The null hypothesis that log(TFPit), log(R&Dit), log(Capitalit), log(laborit), log(Literacyit), and 

Cvarit have a unit root in levels is not refuted by the CIPS test statistics. Since the unit root 

hypothesis can be ruled out for the first difference, it is fair to say that the variables are of order 

1, I(1). Therefore, the next step in our study was examining whether our panel data have 

structural breaks. 

5.4 Test for Structural Breaks and Robustness 

Seasonal rainfall variability is inevitably reflected in highly variable production levels in systems 

that rely on rainfall as the sole source of moisture for crop development. While seasonal 

precipitation levels and their variations are important in and of themselves, the nature of 'in-season 

fluctuations can have major effects on crop productivity (Cooper et al., 2008). Visual observation 

of rainfall variability and agricultural TFP for the 14 SSA countries (depicted in Figure 1 below) 

provides some evidence that kinks exist, most notably in 2006 and 2014 for this study. Figure 1 

below shows the annual agricultural TFP growth rate and rainfall variability from 1996 to 2016.  
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Figure 1. Annual rainfall variability and TFP growth rate in 14 SSA countries, 1996-2016 

From Figure 1 above, it is evident that most of the time, when rainfall variability is lower (positive), 

agricultural TFP growth tends to be positive; but not when rainfall variability increases (e.g. in 

1998 and 2014). Agricultural TFP growth tended to decrease in those periods. Therefore, we 

provide the econometric methodology suggested by Zivot and Andrews (1992) to confirm the 

structural breaks portrayed in Figure 1 above. The common issue with traditional unit root checks, 

such as the Pesaran Test in Table 4 above, is that they do not accept the likelihood of a structural 

break. As an example of an exogenous phenomenon, Perron (1989) revealed that the capacity to 

reject a unit root decreases when the stationary alternative is valid and a structural split is ignored. 

Supporting this, Zivot and Andrews (1992) proposed a modification of Perron's (1989) original 

test in which the exact time of the breakpoint is considered unknown. Instead, to determine the 

breakpoints, a data-dependent algorithm is used to proxy Perron's (1989) arbitrary method.  

Zivot and Andrews began to analyze for a unit root with three models following Perron's 

understanding of the structural break form: (1) Model A, which allows a one-time shift in the 

sequence level; (2) Model B, which allows for a one-time shift in the trend function slope; and (3) 

Model C, which integrates one-time changes in the trend function level and trend function slope. 
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Zivot and Andrews (1992) used the following regression equations relating to these three models 

to calculate the root unit against the alternative of a one-time structural split. 

Δyt = z + ɸyt-1 + βt + γDUt + ∑ 𝑑𝑘𝑗=1 jΔyt-j + 𝜀t    (Model A) 

Δyt = z + ɸyt-1 + βt + δDTt + ∑ 𝑑𝑘𝑗=1 jΔyt-j + 𝜀t    (Model B) 

Δyt = z + ɸyt-1 + βt + δDUt + γDTt + ∑ 𝑑𝑘𝑗=1 jΔyt-j + 𝜀t   (Model C) 

where DUt is the mean shift predictor variable occurring at each potential break-date (TB), and 

DTt is the associated pattern shift variable. Hence, we obtain the following:  

DUt={1, 𝑖𝑓 𝑡 < 𝑇𝐵0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  and 

DTt={𝑡 − 𝑇𝐵, 𝑖𝑓 𝑡 < 𝑇𝐵0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  and 

The null hypothesis in all three models is α=0, which implies that the series 𝑦t contains a unit root 

with a drift that avoids any structural break; whereas the alternative hypothesis 𝛼<0 means that the 

sequence is a trend-stationary process that occurs with a one-time break at an arbitrary point in 

time. Each point is seen by the Zivot and Andrews approach as a potential break date (TB) and 

regresses sequentially with every potential break date. As a break date (TB), the procedure selects 

from all available breakpoints (𝑇𝐵̅̅ ̅̅ ). For testing �̂�(= α −1) =1, the date minimizes the one-sided t-

statistic. The presence of the endpoints causes the asymptotic distribution of the statistics to 

diverge into infinity, as noted by Zivot and Andrews (1992). In addition, it is also necessary to 

select a certain region in such a way that the sample endpoints are not used. Zivot and Andrews 

(1992) suggest that the 'trimming area' be defined as (0.15T, 0.85 T), which we follow in this study. 

Table 5 displays the results of the Zivot and Andrew unit root tests for our two main variables of 

interest: agricultural TFP and climate variability (as determined by rainfall variability). These 

findings indicate that after first differentiation, we can reject the null unit root for TFP in 12 

countries at 1% and 5% significance stages, although we do not reject the unit root hypothesis for 

the remaining two countries (i.e. Ethiopia and Togo). 
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Table 5. Zivot-Andrews unit root test 

TFP  Cvar 
                         At Level At First Difference  At level  At First Difference  

 
Country 

 
Statistic 

Level sign 
1%(5%) 

 
Statistic 

Level sign 
1%(5%) 

 
Break year 

 
Statistic 

Level sign 
1%(5%) 

 
Statistic 

 Level sign 
1%(5%) 

Break year 

Benin -4.100 -4.93(-4.42) -4.918** -4.93(-4.42) 2004              -3.712 -4.93(-4.42)  -7.045*** -4.93(-4.42) 2009 
Botswana -3.451 -4.93(-4.42) -6.172*** -4.93(-4.42) 2007       -4.922** -4.93(-4.42)  -6.704*** -4.93(-4.42) 2012 
Burkina Faso -4.157 -4.93(-4.42) -6.247*** -4.93(-4.42) 2007       -6.360*** -4.93(-4.42)  -5.763*** -4.93(-4.42) 2010 
Ivory Coast -4.525** -4.93(-4.42) -7.034*** -4.93(-4.42) 2007       -6.602*** -4.93(-4.42)  -4.960*** -4.93(-4.42) 2011 
Ethiopia -4.780** -4.93(-4.42) -4.053 -4.93(-4.42) 2005       -4.495** -4.93(-4.42)  -5.742*** -4.93(-4.42) 2003 
Ghana -6.388*** -4.93(-4.42) -10.411*** -4.93(-4.42) 2007       -5.621*** -4.93(-4.42)  -8.239*** -4.93(-4.42) 2010 
Kenya -9.793*** -4.93(-4.42) -5.800*** -4.93(-4.42) 2000       -7.164*** -4.93(-4.42)  -6.280*** -4.93(-4.42) 2006 
Malawi 
Mali 
Niger 
Nigeria 
South Africa 
Togo 
Zambia 

-5.698*** 
-8.828*** 
-6.232*** 
-5.658*** 
-5.903*** 
-3.942 
-3.779 

-4.93(-4.42) 
-4.93(-4.42) 

-4.93(-4.42) 

-4.93(-4.42) 

-4.93(-4.42) 

-4.93(-4.42) 

-6.449*** 
-7.764*** 
-11.701*** 
-6.991*** 
-5.725*** 
-4.216 
-5.454*** 

-4.93(-4.42) 
-4.93(-4.42) 

-4.93(-4.42) 

-4.93(-4.42) 

-4.93(-4.42) 

-4.93(-4.42) 

1999 
2008 
1999 
2013 
2013 
2011 
2011 

      -5.738*** 
      -5.238*** 
      -4.890** 
      -7.218*** 
      -4.711** 
      -4.148 
      -5.867*** 

-4.93(-4.42) 
-4.93(-4.42) 
-4.93(-4.42) 
-4.93(-4.42) 
-4.93(-4.42) 
-4.93(-4.42) 
-4.93(-4.42) 

 -5.824*** 
-5.320*** 
-5.395*** 
-4.806** 
-6.861*** 
-5.620*** 
-6.588*** 

-4.93(-4.42) 
-4.93(-4.42) 
-4.93(-4.42) 
-4.93(-4.42) 
-4.93(-4.42) 
-4.93(-4.42) 
-4.93(-4.42) 

1999 
2003 
2003 
2009 
2013 
2011 
2013 

Note: Levels of significance: ** p < 0.05, *** p < 0.01. 

At the same time, for each of the variables employed in this analysis the test endogenously 

determines the point of the single most important structural break (𝑇𝐵̅̅ ̅̅ ). Table 5 below shows the 

break year for each element. Furthermore, in addition to cross-sectional dependence, unit root, and 

structural break tests, we use the Westerlund (2007) method as a robustness check for 

cointegration. Four panel-based statistics test the null hypothesis of no cointegration by inferencing 

the Westerlund (2007) approach if the conditional panel VECM error-correction model is equal to 

zero (Persyn & Westerlund, 2008). More specifically, the Westerlund test specifies whether error 

correction occurs for individual panel units or the entire system. It consists of two categories of 

statistics, with each group having two statistics. In the first category, the two statistics are referred 

to as panel statistics (Pt, Pa). Both are obtained by pooling information along the panel's cross-

sectional dimension corresponding to the error correction term. The two statistics in the second 

group are also known as the group mean statistics (Gt, Ga). Table 6 below shows the results of the 

Westerlund test. 
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Table 6. Westerlund ECM Panel cointegration test 

Test Statistic Value Probability value 

Gt 

Ga 

Pt 

Pa 

    -4.514*** 

-10.618 

      -15.807***                  

-10.992* 

0.000 

0.705 

0.000 

0.082 

Note – Alternative: the panel is cointegrated as a whole for G-tests, at least one unit is cointegrated for P-tests. 

Levels of significance: ** p < 0.05, *** p < 0.01. 

Table 6 above shows the findings of the Westerlund Cointegration Test. Three of four measures 

dismiss the null hypothesis based on bootstrapped critical values of 1% and 10%, thereby 

supporting the existence of cointegration in our panel.  

5.5 Testing for cointegration: the Gregory-Hansen approach 

While the existence of cointegration in our panel is confirmed by previous tests, one should also 

be careful to reject the null hypothesis of no cointegration. We use the Gregory-Hansen (1996) 

cointegration approach for a further robustness check, which also accommodates potential 

systemic breaks and thus applies to those countries (i.e. Ethiopia and Togo) for which we were 

unable to find cointegration using the Zivot and Andrews (1992) process. We adopt the single-

equation approach of Gregory and Hansen (1996) following Herzer et al. (2006) and not the 

system-based approach, since structural breaks can be more clearly modelled using single 

equations. Furthermore, while system-based approaches usually require prior knowledge of the 

breaking point, the Gregory-Hansen cointegration technique allows for an unknown structural 

break. The following models are suggested by Gregory and Hansen (1996): 

The level shift model (C): 𝑦1t =μ1 + μ2φtτ + α1
Ty2t + εt        (12) 

The slope change model (C/T) : 𝑦1t =μ1 + μ2φtτ + βt + α1
Ty2t + εt       (13) 

And the regime shift model (C/S): 𝑦1t =μ1 + μ2φtτ + βt + α2
Ty2tφtτ + εt       (14) 
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where 𝑦1t represents TFP, 𝑦2t indicates climate variability, μ1 and α1 are intercepts and slope 

coefficients before the shift, and μ2 and α2 denote changes to the intercept and slope coefficients 

at the time of the shift. The dummy variable φtτ is defined by: 

φtτ ={0, 𝑖𝑓 𝑡 ≤ [𝜂𝜏]1, 𝑖𝑓 𝑡 > [𝜂𝜏] 
where the unknown parameter τ ∈ (0, 1) denotes the relative timing of the break, and the integer 

part is denoted by [  ]. The breakpoint is estimated by calculating the models in the data set for 

each potential break date, saving the estimated residuals from each iteration, and choosing τ as the 

value for the estimated residuals that minimizes the unit root test statistics. If the absolute value of 

ADF is greater than the critical values stated by Gregory and Hansen (1996), we reject the null 

hypothesis of no cointegration. Table 7 below presents the results of the Gregory-Hansen 

cointegration test.  

  Table 7. Gregory-Hansen cointegration test results 

 Level shift model 

 

 Slope change model   Regime shift model 

Country  ADF 1%(5%)   ADF 1%(5%)    ADF 1%(5%) 

Benin -6.42**[0] -6.05(-5.56) -7.77[0]*** -7.31(-6.84) -4.96[1] -6.92(-6.41) 

Botswana -4.99[0] -6.05(-5.56) -8.57[1]*** -7.31(-6.84) -5.49[1] -6.92(-6.41) 

Burkina Faso -4.41[1] -6.05(-5.56) -6.34[0] -7.31(-6.84) -4.91[1] -6.92(-6.41) 

Ivory Coast -5.32[0] -6.05(-5.56) -5.89[0] -7.31(-6.84) -5.86[1] -6.92(-6.41) 

Ethiopia -5.76[0]** -6.05(-5.56) -8.32[0]*** -7.31(-6.84) -5.77[1] -6.92(-6.41) 

Ghana -8.35[1]*** -6.05(-5.56) -12.53[1]*** -7.31(-6.84) -12.46[1]*** -6.92(-6.41) 

Kenya 6.30[1]*** -6.05(-5.56) -8.95[2]*** -7.31(-6.84) -6.65[1]** -6.92(-6.41) 

Malawi -6.16[1]*** -6.05(-5.56) -6.91[0] -7.31(-6.84) -5.66[1] -6.92(-6.41) 

Mali -9.42[0]*** -6.05(-5.56) -11.37[0]*** -7.31(-6.84) -5.43[1] -6.92(-6.41) 

Niger -7.02[0]*** -6.05(-5.56) -8.54[0]*** -7.31(-6.84) -5.55[1] -6.92(-6.41) 

Nigeria -6.64[0]*** -6.05(-5.56) -7.95[0]*** -7.31(-6.84) -5.87[1] -6.92(-6.41) 

South Africa -6.27[0]*** -6.05(-5.56) -6.93[0]** -7.31(-6.84) -6.26[1] -6.92(-6.41) 

Togo -5.10[2] -6.05(-5.56) -6.84[2]** -7.31(-6.84) -4.62[1] -6.92(-6.41) 

Zambia -6.57[0]*** -6.05(-5.56) -7.76[0]*** -7.31(-6.84) -6.73[1]** -6.92(-6.41) 

Numbers in brackets indicate the number of lags. *** (**) indicates a rejection of the null of no cointegration at the 

1% (5%) level. 
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As can be seen, for Benin, Ethiopia, Ghana, Kenya, Malawi, Mali, Niger, South Africa, and 

Zambia, the Gregory-Hansen test rejects the null hypothesis of no cointegration at 1% and 5% 

significance levels in the level shift model. When we look at the slope shift model, however, we 

see that cointegration was found in Benin, Botswana, Ethiopia, Ghana, Kenya, Mali, Niger, 

Nigeria, South Africa, Togo, and Zambia. In 11 countries, except for Ghana, Kenya, and Zambia, 

the regime-change model rejected the null hypothesis of no cointegration. What is consistent with 

the results in Table 6 above is that two countries (i.e. Burkina Faso and Ivory Coast) showed no 

cointegration in any of the three models. We, therefore, estimated our long-run relationships using 

all countries except Burkina Faso and Ivory Coast.  

5.6 Estimating the long-run relationships 

After discovering that TFP and climate variability are cointegrated in Benin, Botswana, Ethiopia, 

Ghana, Kenya, Malawi, Mali, Niger, Nigeria, South Africa, Togo, and Zambia, the next step in 

our study was to estimate the long-run relationship between these variables. To do so, we employed 

Pedroni’s (2000) fully modified ordinary least squares (FMOLS) technique. This approach 

accommodates considerable heterogeneity across each sampling unit and addresses the 

endogeneity and serial correlation problem of the fitting errors. The methodology is also robust 

for the exclusion of factors (omitted variables) not used in the relationship of cointegration. We 

began by defining the standard form of the pooled OLS panel estimator before defining the 

FMOLS model, to be calculated as follows: 

Yi,t = φi + λXi,t + εi,t         (15) 

where 𝑌i,t, which represents our dependent variable TFP, is a matrix (1,1), λ represents a coefficient 

vector of (k,1), φi,t indicates a vector of cross-unit factor heterogeneity, and εi,t is a stationary 

idiosyncratic error term vector. Furthermore, Xi,t – a vector of our independent variables – is 

presumed to be a first-order integrated process for all units (𝑖), with Xi,t given as Xi,t = Xi,t-1 + μi,t. 

Hence, as Phillip (1995) observed, by correcting the OLS estimator for endogeneity in addition to 

serial correlation, the FMOLS estimator is constructed. The FMOLS equation is thus defined as: �̂�FM =∑N
i=1∑T

i=1(Xi,t - �̅�i,t)( Xi,t - �̅�i,t)1]-1[∑N
i=1(∑T

t=1(Xi,t - �̅�i)Yi,t
* + T𝛿̅*ECT)] (16) 
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where the transformed vector of Yi,t, is Yi,t
*. This transition is performed to accomplish the 

correction of endogeneity, and the term 𝛿̅*ECT helps the predicted errors to be corrected for the 

serial correlation. The results for the FMOLS estimates for the coefficients for agricultural TFP 

and other explanatory variables are presented below in Tables 8 and 9. Table 8 demonstrates the 

existence of a statistically significant long-run cointegrating relationship between TFP and climate 

variability. 

Table 8. Long-run relationships: FMOLS for the 14 countries 

logTFP                             Coef. Probability value 

Cvar                                 -0.008(0.003) 

R&D                                -1.563(0.026) 

Capital                               0.904(0.027) 

Labor                               -0.102(0.027) 

Literacy                             0.894(0.065) 

Constant                          -1.795(0.513) 

0.011 

0.000 

0.000 

0.000 

0.000 

0.000 

Note: Standard errors in parentheses (), *** p<0.01, ** p<0.05, * p<0.1 

However, these results implicitly assume that the relationship between TFP growth and climate 

variability is identical across all 14 countries. That is, a 10% increase in climate variability, all 

things being equal, reduces agricultural TFP growth across all 14 countries by about 0.08%. As a 

result, substantial differences between countries in the relationship between agricultural TFP 

growth and climate variability can lead to highly misleading results, as shown in Table 8 above. 

To avoid this trend seen in the literature, we estimated the country-specific relationships, and the 

results are presented in Table 9 below. 
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Table 9. Long-run relationships: FMOLS based on cointegration test results. 

   Dependent Variable: logTFP   

Country                Cvar R&D   Capital Labor Literacy 

Benin 0.022(0.000)*** -3.279(0.001)*** 0.174(0.000)*** 4.773(0.002)*** -1.462(0.001)*** 

Botswana 0.199(0.000)*** 0.969(0.001)*** -0.023(0.000)*** 0.302(0.001)*** -2.592(0.007)*** 

Ethiopia -0.040(0.000)*** -0.891(0.004)*** -0.375(0.000)*** 4.987(0.000)*** -1.529(0.008)*** 

Ghana 0.039(0.000)*** -0.718(0.000)*** 1.139(0.000)*** 5.953(0.000)*** -8.723(0.008)*** 

Kenya 0.165(0.000)*** -0.229(0.000)*** 0.116(0.000)*** 1.126(0.000)*** -2.408(0.001)*** 

Malawi 0.322(0.000)*** 0.496(0.000)*** -1.826(0.000)*** 2.468(0.000)*** -3.605(0.014)*** 

Mali -0.226(0.000)*** 0.829(0.000)*** -2.209(0.000)*** 5.288(0.000)*** -3.143(0.000)*** 

Niger -0.207(0.000)*** 0.701(0.000)*** 0.186(0.000)*** -2.726(0.000)*** 1.219(0.000)*** 

Nigeria 0.042(0.000)*** 0.102(0.000)*** 0.188(0.000)*** 1.453(0.000)*** 0.178(0.000)*** 

South Africa -0.083(0.000)*** 0.920(0.000)*** 0.818(0.000)*** 1.920(0.000)*** 9.016(0.000)*** 

Togo 0.259(0.000)*** -1.667(0.000)*** -1.202(0.000)*** 2.990(0.000)*** -4.541(0.000)*** 

Zambia -0.141(0.000)*** -0.478(0.000)*** 1.078(0.000)*** -10.004(0.000)*** -5.065(0.000)*** 

Note: Standard errors in parentheses (), *** p<0.01, ** p<0.05, * p<0.1 

These results indicate that the coefficient of climate variability is statistically significant and 

negatively associated with agricultural TFP in the long run for five countries, namely Ethiopia, 

Mali, Niger, South Africa, and Zambia. That is, all things being equal, a 10% increase in climate 

variability will reduce agricultural TFP by 2.26% in Mali, 2.07% in Niger, 1.41% in Zambia, 

0.83% in South Africa, and 0.4% in Ethiopia. However, the long-run relationship between climate 

variability and agricultural TFP was positive and statistically significant in seven countries, namely 

Benin, Botswana, Ghana, Kenya, Malawi, Nigeria, and Togo. In particular, a 10% increase in 

climate variability, all things being equal, is expected to increase agricultural TFP by 3.22% in 

Malawi, 2.59% in Togo, 1.99% in Botswana, 1.65% in Kenya, 0.42% in Nigeria, 0.39% in Ghana, 

and 0.22% in Burkina Faso. The significant differences between countries, regarding the long-

term impact of climate variability and agricultural TFP growth nexus, indicate how misleading our 

results in Table 7 above can be. Climate variability aside, the results indicate that there also exists 

a long-run relationship between agricultural TFP and the control variables (i.e. capital, labor, 

R&D, and literacy) employed in our study. In particular, spending on R&D was found to reduce 

agricultural TFP by the elasticity of 3.279 in Benin, 0.891 in Ethiopia, 0.718 in Ghana, 0.229 in 

Kenya, 1.667 in Togo, and 0.478 in Zambia. At the same time, the variable was found to increase 

agricultural TFP by the elasticity of 0.969 in Botswana, 0.496 in Malawi, 0.892 in Mali, 0.701 in 

Niger, 0.102 in Nigeria, and 0.920 in South Africa.  
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From Table A2 in the Appendix, we include the two countries (Burkina Faso and Ivory Coast) that 

were found to show no long-run relationship in any of our three models in the Gregory-Hansen 

test; but this still does not change the coefficients of our key variables in Table 9 above. Our 

findings confirm those of such as Exenberger and Pondorfer (2011), who showed that climate 

change has harmed agricultural development in SSA. In a fixed-effects model, rainfall has a major 

positive and necessary impact when traditional (labor, soil, and livestock), as well as modern 

(capital and fertiliser) inputs, are considered. However, Exenberger and Pondorfer (2011) observed 

that different relationships between the standard factors can be revealed by dividing countries into 

low and MedTech zones (in terms of modern inputs). At the same time, Barrios et al. (2008) 

demonstrated that overall, climate change is a major determinant of SSA agricultural production. 

However, Barrios et al. (2008) did so using sub-regional aggregation in their study, rather than a 

comparison between countries. They observed that this could be problematic, as the cross-country 

aggregation modeling technique has the shortcoming of not capturing within-country variations. 

Therefore, country-specific characteristics are reduced to regional means. Our findings shed light 

on this shortcoming in the literature, as countries within the same region were observed to witness 

the varying impact of climate variability on agricultural productivity in the long run, given that 

country-specific characteristics are not uniform. Next, we focused on estimating short-run 

causality (as practiced in the literature) between agricultural TFP and climate variability. 

5.7       Short-run causality test 

For short-run causality, we use the Emirmahmutoğlu and Kose (2011) Granger causality test in 

heterogeneous mixed panels to estimate the direction of the short-run causality between 

agricultural TFP and climate variability. This test is the panel variant for the well-known Toda and 

Yamamoto (1995) Granger time-series causality test. By taking into account cross-sectional 

variability, the test makes it possible to determine panel causality between two variables without 

having to analyze whether the time series of units in the panel is non-stationary or cointegrated 

(Espoir and Ngepah, 2021). In addition, cross-sectional dependency is taken into account in this 

system, and Monte Carlo simulations are used to compute the critical values of panel statistics. 

Thus, a level Vector Autoregressive (VAR) model with 𝑓i + 𝑑maxi is defined to test for Granger 

causality in heterogeneous mixed and cross-sectional based panels, as follows: 

Xi,t = γi
x + ∑ 𝐶𝑓𝑖+𝑑𝑚𝑎𝑥𝑗=1 11,ijXi,t-j + ∑ 𝐶𝑓𝑖+𝑑𝑚𝑎𝑥𝑗=1 12,ijyi,t-j + εx

i,t    (17)  
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Yi,t = γi
y + ∑ 𝐶𝑓𝑖+𝑑𝑚𝑎𝑥𝑗=1 21,ijXi,t-j + ∑ 𝐶𝑓𝑖+𝑑𝑚𝑎𝑥𝑗=1 22,ijyi,t-j + εy

i,t    (18) 

where for each 𝑖, 𝑑max is the highest order of integration assumed to occur in the system. In simple 

terms, we concentrate on checking causality in Equation (14) above from y to x, that is from 

climate variability to agricultural TFP; and the causality of 𝑥 to 𝑦, that is from agricultural TFP to 

climate variability in Equation (15) above, by using the same related technique. As shown in 

Emirmahmutoğlu and Kose (2011), to evaluate the maximum order of integration (𝑑maxi) of the 

two variables of interest in the VAR method for each country, we used the standard Dickey and 

Fuller (1981) unit root test. The findings of this test for the panel, as well as the 𝑑maxi values for 

agricultural TFP and climate variability, are presented in Table 10 below. The Augmented Dickey-

Fuller (ADF) p-values are reported for the series levels and first differences. In the VAR system, 

the cumulative order of integration (𝑑maxi) is determined as 1 for six countries in our panel, and 

2 for the remaining countries, depending on whether significance was attained in level or in first 

differencing for TFP and climate variability. 
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    Table 10. Results of ADF unit root test (model with intercept)a 

  lnTFP                     Cvar                         lnR&D     lnCapital     lnLabor      lnLiteracy  

Country    Level       1st Diff            Level    1st Diff   Level   1st Diff  Level  1st Diff Level    1st Diff        Level   1st Diff      𝑑 𝑚𝑎𝑥𝑖 
Benin    0.030C         -    0.036C       -   0.230    0.000b     0.061C    -   0.627   0.000b      0.964   0.483 1 

Botswana    0.031C         -    0.098        -   0.750    0.000b     0.076C    -   0.236   0.023b      0.001b          - 2 

Burkina Faso 

Ivory Coast 

Ethiopia 

   0.007b          - 

   0.040C         - 

   0.007b         -              

   0.032C      - 

   0.397       - 

   0.136       - 

  0.627    0.000b 

  0.004b     - 

  0.350    0.004b 

    0.859     0.000b 

    0.229     0.000b 

    0.135     0.028C 

  0.389   0.333 

  0.483   0.000b 

  0.941   0.000b 

     0.060C          - 

     0.059C       - 

     0.771   0.015b 

1 

2 

2 

Ghana    0.000b              -    0.366       -   0.038C      -     0.536     0.174   0.063C    -      0.005b        - 2 

Kenya    0.000b         -    0.001b         -   0.170    0.002b     0.829     0.000b   0.827   0.469      0.596   0.376 1 

Malawi    0.000b         -    0.008b         -   0.897    0.002b     0.814     0.028b   0.924   0.007b      0.145   0.014b 1 

Mali    0.028C        -    0.032C     -   0.066C     -     0.179     0.000b   0.600   0.234      0.425   0.089C 1 

Niger    0.007C        -    0.003b     -   0.554    0.000b     0.956     0.024b   0.029b     -      0.985   0.180 1 

Nigeria    0.047C        -    0.190   0.000b   1.000    0.000b     0.975     0.045C   0.696   0.009b      0.714   0.071C 2 

South Africa    0.052C        -    0.135   0.000b   0.321    0.030C     0.367     0.717   0.927   0.000b      0.995   0.950 2 

Togo    0.028C        -    0.129   0.000b   0.089    0.000b     0.187     0.003b   0.451   0.000b      0.526   0.467 2 

Zambia    0.014b          -    0.224   0.000b   0.297    0.001b     0.989     0.080C   0.619   0.284       0.315   0.212 2 

         a The values in the Table are MacKinnon's (1996) one-sided p-value. b Rejects the null hypothesis of unit root at 5%. c Rejects the null hypothesis of unit root at 10%  
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Furthermore, Emirmahmutoğlu and Kose (2011) demonstrated that a slight transformation of 

equations (14) and (15) is sufficient for a robust test of no causality in the null hypothesis. For 

example, OLS under the null hypothesis of no causality (C21,ij=…=C22,ij=0) in equation (15) can 

be rewritten, and the estimation of the residuals for each unit can be determined as follows: 𝛿y
i,t = yi,t - 𝛿y

i - ∑ �̂�𝑓𝑖+𝑑𝑚𝑎𝑥𝑓𝑖+1 21,ijXi,t-j - ∑ �̂�𝑓𝑖+𝑑𝑚𝑎𝑥𝑗=1 22,ijyi,t-j    (19) 

In addition, following Stine (1987), the residuals in equation (16) are centered as follows: 𝛿t = 𝛿t – (T- q – h – 2)-1∑ 𝛿𝑇𝑡=𝑞+ℎ+2 t       (20) 

where 𝛿t = (𝛿1, 𝛿2 … 𝛿NT)1, q=maxqi and h=max 𝑑maxi. Therefore, to test the null hypothesis, a 

bootstrapping sample of the following is constructed: 

yi,t
* = 𝛿y

i - ∑ �̂�𝑓𝑖+𝑑𝑚𝑎𝑥𝑗=𝑓𝑖+1 21,ijXi,t-j - ∑ �̂�𝑓𝑖+𝑑𝑚𝑎𝑥𝑗=1 22,ijy*
i,t-j + 𝜀̂*i,t    (21) 

where 𝛿y
i, �̂�21, ij and �̂�22, ij are estimates from Equation (16), and 𝜀̂*i,t are residuals from the 

bootstrap. Therefore, to test the null hypothesis of Granger no causality against an alternative of 

Granger causality, cross-country Wald statistics were computed. The findings regarding short-run 

causalities for the 14 countries are presented in Table 11 below. In this table, for each country, 𝑘i 

represents the number of acceptable lag orders in level VAR systems. 
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Table 11. Emirmahmutoğlu and Kose (2011) Granger causality test 

Country                   𝑘𝑖                       Cvar                  TFP 

                                                              𝑊𝑖                 𝑝𝑖                     
 

Benin                        1                        0.001            0.971 

Botswana                  1        0.143            0.705 

Burkina Faso            1        0.104            0.747 

Ivory Coast               1        0.003            0.955 

Ethiopia                    1        0.011            0.916 

Ghana                       1                        0.033           0.856 

Kenya                       1        0.010          0.922 

Malawi                   1        0.343          0.558 

Mali                 1        2.533          0.772 

Niger                    2        0.150          1.000 

Nigeria                 1        1.313          0.934 

South Africa            1        0.067          0.795 

Togo                        1        0.009          0.923 

Zambia                1        0.000          0.997 

 

Fisher test statistic (𝜆):                      4.527   

 

Country                         𝑘𝑖             TFP                         Cvar 

                                                          𝑊𝑖                         𝑝𝑖                     
 

Benin                            1                 0.001                  0.970 

Botswana                      1     0.135                  0.713 

Burkina Faso                1                 0.007                  0.934 

Ivory coast                    1     0.001                   0.978 

Ethiopia                        1                0.016                   0.898 

Ghana                           1                0.042                   0.838 

Kenya                           2                0.000                   0.990 

Malawi                         1                0.319                   0.572 

Mali                              1                0.234                   0.999 

Niger                            1                7.170                   0.208 

Nigeria                         1                4.287                   0.509 

South Africa                 1                0.067                   0.796 

Togo                             1                0.025                   0.874      

Zambia                         2    0.001                   0.981 

 

Fisher test statistic (𝜆):                  7.877 

Table 11 above shows that both the null hypothesis of Granger no causality from climate variability 

to agricultural TFP and Granger no causality from agricultural TFP to climate variability cannot 

be dismissed for all 14 nations, even at the 10% significance level. In other words, climate 

variability tends to have no major effect on agricultural TFP in all the 14 countries in the short run; 

and at the same time, agricultural TFP does not affect climate variability in any of the 14 countries. 

6. Conclusions and policy implications 

The long- and short-run climate variability-agricultural TFP growth nexus for 14 SSA countries 

was explored in this report. As opposed to the growth accounting methodology, we used the 

Malmquist Productivity Index (MPI) to produce agricultural Maize TFP indices, because it 

accounts for technical performance, technological innovation, changes in pure efficiency, and 

changes in scale efficiency. As suggested by Pedroni (2000), we then used a completely updated 

FMOLS estimator and the Granger causality test of Emirmahmutoğlu and Kose (2011) in 

heterogeneous mixed panels to assess the long- and short-term effects of climate variability on the 

growth of agricultural TFP. To allow for a possible structural break in the cointegration 

relationship, we used cointegration tests proposed by Zivot and Andrews (1992) and Gregory and 
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Hansen (1996). We estimated the coefficients of the long- and short-run relationships in the 

presence of cointegration.  

Our findings show that climate variability for five nations – namely Ethiopia, Mali, Niger, South 

Africa, and Zambia – is statistically important and negatively correlated with agricultural TFP 

growth in the long run. That is, a 10% rise in climate variability decreases agricultural TFP by 

2.26% in Mali, 2.07% in Niger, 1.41% in Zambia, 0.83% in South Africa, and 0.4% in Ethiopia, 

all things being equal. However, at the same time, our findings reveal that climate variability has 

a positive and statistically significant effect on agricultural TFP growth in seven countries, namely 

Benin, Botswana, Ghana, Kenya, Malawi, Nigeria, and Togo. In particular, a 10% rise in climate 

variability, all things being equal, is projected to increase agricultural TFP by 3.22% in Malawi, 

2.59% in Togo, 1.99% in Botswana, 1.65% in Kenya, 0.42% in Nigeria, 0.39% in Ghana, and 

0.22% in Burkina Faso. The significant differences between countries regarding the long-term 

impact of the climate variability-agricultural TFP growth nexus indicate misleading results from 

previous studies which implicitly assumed that the relationship between TFP growth and climate 

variability is identical across countries. 

Our empirical findings may serve as a guide for governments and agricultural development policy 

practitioners in SSA, in the robust design and implementation of resilient climate adaption 

strategies among farmers. In light of this, urgent and appropriate steps are required to improve the 

sustainability of food crop cultivation, by taking into account the actual and expected impacts of 

climate change. Based on the empirical results, this study recommends critical adaptation measures 

to be considered by public and private partners to resolve the threats that farmers are expected to 

face because of climate change. In particular, these initiatives should include farming techniques 

in line with zone-specific climate change conditions, the implementation of crop diversification 

activities, and the enhancement of agricultural extension services to communicate current climate-

resilient adaptation programs to farmers. Furthermore, in those five countries where climate 

variability exhibits a negative long-run effect on maize TFP, policymakers should take immediate 

action to provide farmers with adequate and expeditious irrigation facilities, including the 

construction of dams,  to harvest and store rainfall water for future use. In addition, it is important 

to state that the variables behind the observed climate variability-TFP relationship have not been 
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clarified by this study. To understand the climate variability-TFP nexus, future studies could add 

new variables such as solar radiation. 
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Appendix 

Table A1. Average productivity growth and its components by country. 

Country  TC PEC SEC TFP 

Benin 1.000 0.731 1.000 1.000 0.731 

Botswana 1.006 0.741 1.005 1.001 0.746 

Burkina Faso 1.000 0.820 1.001 1.000 0.820 

Cote D'Ivoire 1.003 0.817 1.001 1.002 0.819 

Ethiopia 1.000 0.817 1.000 1.000 0.878 

Ghana 1.004 0.933 1.003 1.001 0.937 

Kenya 0.999 0.839 0.998 1.002 0.839 

Malawi 1.006 0.946 1.004 1.002 0.952 

Mali 1.000 0.941 1.000 1.000 0.941 

Niger  1.000 0.980 1.000 1.000 0.980 

Nigeria 0.999 1.000 1.001 0.998 0.999 

South Africa 0.998 0.974 0.998 1.000 0.972 

Togo 1.000 1.187 1.000 1.000 1.186 

Zambia 0.999 1.169 0.999 1.000 1.168 

Mean 1.001 0.916 1.001 1.000 0.917 
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Table A2. Long-run relationships: FMOLS for all 14 countries 

   Dependent Variable: logTFP   

Country Cvar R&D Capital Labour Literacy 

Benin 0.022(0.000)*** -3.279(0.001)*** 0.174(0.000)*** 4.773(0.002)*** -1.462(0.001)*** 

Botswana 

Burkina Faso 

Ivory Coast 

0.199(0.000)*** 

  -0.270(0.00)*** 

0.103(0.003)*** 

0.969(0.001)*** 

   0.160(0.0000*** 

   0.541(0.028)*** 

-0.023(0.000)*** 

0.118(0.000)*** 

-1.317(0.044)*** 

0.302(0.001)*** 

    -0.037(0.00)*** 

     4.634(0.182)*** 

-2.592(0.007)*** 

 -0.350(0.00)*** 

 -1.461(0.082)*** 

Ethiopia -0.040(0.000)*** -0.891(0.004)*** -0.375(0.000)*** 4.987(0.000)*** -1.529(0.008)*** 

Ghana 0.039(0.000)*** -0.718(0.000)*** 1.139(0.000)*** 5.953(0.000)*** -8.723(0.008)*** 

Kenya 0.165(0.000)*** -0.229(0.000)*** 0.116(0.000)*** 1.126(0.000)*** -2.408(0.001)*** 

Malawi 0.322(0.000)*** 0.496(0.000)*** -1.826(0.000)*** 2.468(0.000)*** -3.605(0.014)*** 

Mali -0.226(0.000)*** 0.829(0.000)*** -2.209(0.000)*** 5.288(0.000)*** -3.143(0.000)*** 

Niger -0.207(0.000)*** 0.701(0.000)*** 0.186(0.000)*** -2.726(0.000)*** 1.219(0.000)*** 

Nigeria 0.042(0.000)*** 0.102(0.000)*** 0.188(0.000)*** 1.453(0.000)*** 0.178(0.000)*** 

South Africa -0.083(0.000)*** 0.920(0.000)*** 0.818(0.000)*** 1.920(0.000)*** 9.016(0.000)*** 

Togo 0.259(0.000)*** -1.667(0.000)*** -1.202(0.000)*** 2.990(0.000)*** -4.541(0.000)*** 

Zambia -0.141(0.000)*** -0.478(0.000)*** 1.078(0.000)*** -10.004(0.000)*** -5.065(0.000)*** 

Note: Standard errors in parentheses (), *** p<0.01, ** p<0.05, * p<0.1 
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Figure A1. Zivot-Andrews test for structural breaks in TFP, 1996-2016 
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Figure A2. Zivot-Andrews test for structural breaks in rainfall variability, 1996-2016 
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