
Munich Personal RePEc Archive

The grand dividends value

Besner, Manfred

HfT Stuttgart

16 March 2021

Online at https://mpra.ub.uni-muenchen.de/107615/

MPRA Paper No. 107615, posted 08 May 2021 15:01 UTC



The grand dividends value

Manfred Besner∗

May 7, 2021

Abstract

We introduce a new value for games with transferable utility, called grand dividends value.
In the payoff calculation, the grand dividends value takes into account the worths of all
subcoalitions of a player set. The concept of grand dividends, representing the surplus
(which can also be non-positive) of the worth of the grand coalition over the worths of
all coalitions that lack one player of the player set, is the initial point here. Many of
the properties known from the Shapley value are also satisfied by the grand dividends
value. Along with new axioms having a similar correspondence to axioms satisfied by the
Shapley value, axiomatizations arise that have an analogous equivalent for the Shapley
value, including the classics by Shapley and Young.

Keywords Cooperative game · (Harsanyi/Grand) Dividends · Shapley value · Grand

dividends value

1. Introduction

The concept of a coalition function, also called characteristic function, goes back to von
Neumann and Morgenstern (1944). In Shapley (1953b), a TU-game is given by a finite
subset N of the universe of all possible players and a superadditive set function (the
coalition function) from the subsets of N into the real numbers with the only condition
that the worth of the empty set is zero. We will follow Shapley’s approach but dispense
with superadditivity. The coalition function can be used, for example, to model and
analyze economic, political, or other social phenomena. In general, the worth of a coalition
is the reward that this coalition can guarantee regardless of what players do outside the
coalition.
In the model of Harsanyi (1959), the fundamental assumption is that each player is

simultaneously a member of all possible different coalitions (Harsanyi uses the term ‘syn-
dicate’) which contain it. Introducing the important concept of his (Harsanyi) dividends,
he assumes that each coalition guarantees a certain payment, the Harsanyi dividend,
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which should be divided among the members of this coalition. Moreover, these dividends
should be assumed in addition to any dividends that each member of the coalition may
receive from other coalitions. Under these assumptions, Harsanyi can show that his so-
lution for TU-games provides each player with an equal share of all Harsanyi dividends
from coalitions containing it and coincides with the Shapley value. Thus, by Harsanyi
(1959), the coalition function inherently justifies the Shapley value, but only under the
assumptions noted above.
For many scenarios, these assumptions are quite reasonable. But other situations are

also conceivable. Harsanyi (1959) himself points out that in von Neumann and Morgen-
stern (1944), it is assumed that each player is a member of only one coalition of players
from a player set. For the equal division value (see, e.g., Zou et al. (2021)), we can as-
sume that the grand coalition (the coalition containing all players) is the only coalition
that actually forms. Consequently, only the grand coalition receives a dividend equal to
its worth, which is then distributed equally among all players. If we consider the equal
surplus division value, introduced in Driessen and Funaki (1991) as the center-of-gravity
of the imputation-set value, the singletons and the grand coalition can be assumed to be
the coalitions that actually form. Here, each player receives its stand-alone worth as a
dividend, paid in full, plus an equal share of the surplus of the worth of the grand coalition
over the worths of the singletons as a dividend of the grand coalition.
While the last two values take into account only a (small) part of the worths of all

possible coalitions, this is not the case for the Shapley value and the following new value.
First, let us assume that each player is a member of the grand coalition and simultane-

ously of all coalitions that are subsets of the grand coalition and contain that player and
one player less than the grand coalition. In addition, these coalitions should guarantee a
payoff equal to their worth, regardless of the other coalitions. Then we can consider the
worth of the grand coalition minus the sum of all the worths of coalitions that are missing
exactly one player of the player set as a ‘grand dividend’ for the grand coalition in this
model.
But then, we can also examine the subgames on player sets where one player of the

original player set is removed and get a grand dividend for the grand coalition in each
subgame accordingly. Proceeding in this way, we obtain grand dividends for all coalitions,
until finally, each player receives its stand-alone worth as a grand dividend for its singleton.
Of course, we can have non-positive grand dividends, just like the Harsanyi dividends.
For player sets with only two players, grand dividends coincide with Harsanyi dividends.
With the concept of grand dividends, we can introduce a new TU-value, called ‘grand

dividends value’. The grand dividends value is given by the fact that each player receives
an equal share of the grand dividends of all subgames where that player is a member of
the player set as a payoff. Note, however, that, depending on the size of the player set
and the number of members in a coalition, we may have to consider the same dividend
several times, just as our assumption above would dictate.
The grand dividends value satisfies many axioms that are also satisfied by the Shapley

value. Remarkably, however, it also satisfies a set of new axioms that are analogous to
ones also satisfied by the Shapley value. Thus we can give axiomatizations of the grand
dividends value that are analogous to axiomatizations of the Shapley value in Shapley
(1953b), Myerson (1980), and Besner (2020). In particular, the new grand dividends
monotonicity, which states that for a player the payoff does not decrease if the grand



3

dividends do not decrease, has interesting economic significance in our view, similar to
strong monotonicity (Young, 1985). It offers, along with efficiency and symmetry, an
analogous characterization of the grand dividends value to the axiomatization of the
Shapley value in Young (1985).
The article is organized as follows. In Section 2 we give some preliminaries. Section 3

introduces the grand dividends and the grand dividends value. In Section 4, we propose
a recursive formula of the grand dividends value and give two axiomatizations. In Sec-
tions 5 and 6, respectively, we provide axiomatizations that are similar to the classical
axiomatizations of the Shapley value in Shapley (1953b) and Young (1985). Section 7
contains some concluding remarks. Finally, an Appendix (Section 8) shows the logical
independence of the axioms in our characterizations.

2. Preliminaries

Let U be a countably infinite set, the universe of all players and let N be the set of all non-
empty and finite subsets of U. A cooperative game with transferable utility (TU-game)
is a pair (N, v) with a player set N ∈ N and a coalition function v : 2N → R, v(∅) = 0.
Each subset S ⊆ N is called a coalition, v(S) is the worth of the coalition S and ΩS

denotes the set of all non-empty subsets of S. For each S ∈ ΩN, |S| or s respectively
denotes the cardinality of S, especially n denotes the cardinality of a player set N . V(N)
denotes the set of all TU-games with player set N . The restriction of (N, v) to a player
set S ∈ ΩN is denoted by (S, v). A unanimity game (N, uS), S ∈ ΩN, is defined for all
T ⊆ N by uS(T ) = 1, if S ⊆ T , and uS(T ) = 0, otherwise.
Let N ∈ N and (N, v) ∈ V(N). For all S ∈ ΩN, the Harsanyi dividends ∆v(S)

(Harsanyi, 1959) are defined inductively by

∆v(S) := v(S)−
∑

R(S,R 6=∅

∆v(R). (1)

Themarginal contributionMCv
i of a player i ∈ N to S ⊆ N\{i} is given byMCv

i (S) :=
v(S ∪ {i})− v(S). A player i ∈ N is called a null player in (N, v) if v(S ∪ {i}) = v(S)
for all S ⊆ N\{i}. Two players i, j ∈ N, i 6= j, are symmetric in (N, v) if v(S ∪ {i}) =
v(S ∪ {j}) for all S ⊆ N\{i, j}.
For all N ∈ N , a TU-value or solution ϕ is an operator that assigns to any (N, v) ∈

V(N) a payoff vector ϕ(N, v) ∈ RN.
For all N ∈ N , (N, v) ∈ V(N), the Shapley value Sh (Shapley, 1953b), is given by

Shi(N, v) :=
∑

S⊆N,S∋i

(s− 1)! (n− s)!

n!

[

v(S)− v(S\{i})
]

for all i ∈ N. (2)

We refer to the following well-known axioms for TU-values ϕ which hold for all N ∈ N :

Efficiency, E. For all (N, v) ∈ V(N), we have
∑

i∈N ϕi(N, v) = v(N).

Efficiency means that the worth of the grand coalition is fully shared among all players.

Null player, N. For all (N, v) ∈ V(N) and i ∈ N such that i is a null player in (N, v),
we have ϕi(N, v) = 0.
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A null player receives nothing.

Additivity, A. For all (N, v), (N,w) ∈ V(N), we have φ(N, v)+φ(N,w) = φ(N, v+w).

Additivity requires that it is irrelevant whether one first adds the games and then applies
the solution concept, or whether one first applies the solution concept to the individual
games and then adds the payoffs.

Symmetry, Sym. For all (N, v) ∈ V(N) and i, j ∈ N such that i and j are symmetric
in (N, v), we have φi(N, v) = φj(N, v).

Symmetry means that two players who contribute the same amount to each coalition
should receive the same payoff.

Balanced contributions, BC (Myerson, 1980). For all (N, v) ∈ V(N) and i, j ∈ N, i 6=
j, we have ϕi(N, v)− ϕi(N\{j}, v) = ϕj(N, v)− ϕj(N\{i}, v).

By this property, for two players the amount that one player would win or lose if the other
player drops out of the game is the same for both players.

Strong monotonicity, SMon (Young, 1985). For all (N, v), (N,w) ∈ V(N) and i ∈ N

such that MCv
i (S) ≤ MCw

i (S) for all S ⊆ N\{i}, we have ϕi(N, v) ≤ ϕi(N,w).

Strong monotonicity states that a player’s payoff should not decrease if the worth of the
coalitions containing that player increases or stays the same compared to the worth of
the coalitions that do not contain that player.

Marginality, Mar (Young, 1985). For all (N, v), (N,w) ∈ V(N) and i ∈ N such that
MCv

i (S) = MCw
i (S) for all S ⊆ N\{i}, we have ϕi(N, v) = ϕi(N,w).

By marginality, only a player’s marginal contributions are relevant to the player’s payoff.
The following axiom states that the payoff differences of two players should be the same
for different worths of the grand coalition.

Equal (aggregate) monotonicity, EMon (Béal et al., 2018). For all (N, v) ∈ V(N)
and α ∈ R, we have

ϕi(N, v)− ϕi(N, v + α · uN) = ϕj(N, v)− ϕj(N, v + α · uN) for all i, j ∈ N,

3. The grand dividends value

Harsanyi (1959), proposing Harsanyi dividends, assumes that all possible coalitions are
formed simultaneously. The Harsanyi dividend of a singleton equals the worth of the
singleton, and for all other coalitions, we have recursively that their Harsanyi dividends
equal their worth minus the Harsanyi dividends of all proper subcoalitions.
As demonstrated in the introduction, we can also assume that only the grand coalition

and all coalitions with one less player than the grand coalition actually form. Since
we assume this for all games on all sets of players, the same applies to the subgames
(S, v), S ∈ ΩN, of a game (N, v) ∈ V(N), N ∈ N . For all N ∈ N , we define as the
grand dividend Γv(N) of the grand coalition N in the game (N, v) the (not necessarily
positive) surplus of the worth of N over the sum of the worths of all subsets of N that
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contain one less player. Formally, for all N ∈ N , (N, v) ∈ V(N), we have,

Γv(N) := v(N)−
∑

j∈N

v(N\{j}). (3)

By Harsanyi (1959), equivalent to (2), for all N ∈ N , (N, v) ∈ V(N), the Shapley value
Sh is given by

Shi(N, v) :=
∑

S⊆N,S∋i

∆v(S)

s
for all i ∈ N. (4)

The Shapley value assigns to each player an equal share of the Harsanyi dividends of
all coalitions in which that player is a member. We now introduce a new TU-value
that assigns to each player an equal share of the grand dividends of the grand coalitions
of all subgames where that player is a member of the player set. However, since we
successively consider all subgames when assigning dividends, depending on the size of the
set of players, the respective coalitions are thus considered multiple times, so that we
multiply each grand dividend by the number of times it occurs.

Definition 3.1. For all N ∈ N , (N, v) ∈ V(N), the grand dividends value Ψ is given
by

Ψi(N, v) :=
∑

S⊆N,S∋i

(n− s)!

s
Γv(S) for all i ∈ N. (5)

Remark 3.2. For all (N, v) ∈ V(N), N ∈ N , the grand dividends value Ψ coincides with
the Shapley value Sh if v(S) = 0 for all S ⊆ N, |S| ≤ |N | − 2. In particular, this is the
case if |N | = 2.

4. A recursive formula, inessential grand dividends, and balanced
summarized contributions

We present a recursive formula for the grand dividends value.1 Each player receives an
equal share of the grand dividend and the sum of the payoffs received in all subgames in
which one player of the player set is missing.

Proposition 4.1. For all N ∈ N , (N, v) ∈ V(N), the grand dividends value Ψ is induc-
tively given by

Ψi(N, v) :=
Γv(N)

n
+

∑

j∈N, j 6=i

Ψi(N\{j}, v) for all i ∈ N.2 (6)

1In Kongo and Funaki (2016), we find a recursive formula for the Shapley value which is proposed earlier
in Hart and Mas-Colell (1989) and Sprumont (1990), given by

Shi(N, v) :=
1

n

(

v(N)− v(N\{i}
)

+
1

n

∑

j∈N, j 6=i

Shi(N\{j}, v) for all i ∈ N.

2If n = 1, we use the convention that an empty sum evaluates to zero.
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Proof. Let N ∈ N , (N, v) ∈ V(N). Each coalition S ( N, S ∋ i, is a subset of (n − s)
different coalitions T ( N, |T | = n− 1, T ∋ i. Therefore, we have

∑

j∈N, j 6=i

[

∑

S⊆N\{j}, S∋i

(n− 1− s)!

s
Γv(S)

]

=
∑

S(N,S∋i

(n− s)!

s
Γv(S) for all i ∈ N. (7)

It follows, for all i ∈ N ,

Ψi(N, v) =
(5)

Γv(N)

n
+

∑

S(N,S∋i

(n− s)!

s
Γv(S)

=
(7)

Γv(N)

n
+

∑

j∈N, j 6=i

[

∑

S⊆N\{j}, S∋i

(n− 1− s)!

s
Γv(S)

]

=
(5)

Γv(N)

n
+

∑

j∈N, j 6=i

Ψi(N\{j}, v).

We call a TU-game (N, v) ∈ V(N) an inessential grand dividend game if v(N) =
∑

j∈N v(N\{j}) which is, by (3), equivalent to Γv(N) = 0. The following property states
that in an inessential grand dividend game, the payoff to a player is completely determined
by the sum of the player’s payoffs in all subgames in which one player of the player set is
removed at a time.

Inessential grand dividend, IGD.3 For all N ∈ N and all inessential grand dividend
games (N, v) ∈ V(N), we have ϕi(N, v) =

∑

j∈N\{i} ϕi(N\{j}, v) for all i ∈ N .

It follows a first axiomatization of the grand dividends value.

Theorem 4.2. The grand dividends value Ψ is the unique TU-value that satisfies E,
IGD, and EMon.4

Proof. Let N ∈ N , (N, v) ∈ V(N).
I. Existence: IGD and EMon follow immediately by (6). We show E by induction on

the size n.
Initialization: Let n = 1. Then, E is satisfied by (3) and (6).
Induction step: Let n ≥ 2. Assume that Ψ satisfies E for all n′, n′ < n, (IH). We have

∑

i∈N

Ψi(N, v) =
(6)

∑

i∈N

[

Γv(N)

n
+

∑

j∈N, j 6=i

Ψi(N\{j}, v)

]

=
(IH)

Γv(N) +
∑

i∈N

v(N\{i}) =
(3)

v(N),

and E is shown.
II. Uniqueness: Let ϕ be a TU-value which satisfies all axioms from Theorem 4.2. We

show uniqueness by induction on the size n.
Initialization: Let n = 1. Then, uniqueness is satisfied by E.

3This axiom is related to the inessential grand coalition property in Besner (2020).
4A related axiomatization of the Shapley value can be found in Besner (2020) where the inessential grand
dividend property is replaced by the inessential grand coalition property.



7

Induction step: Let n ≥ 2. Assume that ϕ is unique for all n′, n′ < n, (IH). Then, by
(IH) and IGD, ϕ is unique on the inessential grand dividend game

(

N, v − Γv(N)uN

)

.
By EMon, we have, for all i, j ∈ N ,

ϕi(N, v) = ϕi

(

N, v − Γv(N) · uN

)

+ ϕj(N, v)− ϕj

(

N, v − Γv(N) · uN

)

⇔
∑

k∈N

ϕk(N, v) =
∑

k∈N

ϕk

(

N, v − Γv(N) · uN

)

+ n ·
[

ϕj(N, v)− ϕj

(

N, v − Γv(N) · uN

)]

and, by E and (IH), ϕ is unique for the player j. Since j is arbitrary, uniqueness and,
therefore, also Theorem 4.2 is shown.

The balanced contributions property BC states that for any two players, the amount that
one player would win or lose if the other player drops out of the game is the same for
both players. By the following property, the gain or loss for two players of a player set is
the same if they would play the game with the entire player set instead of playing games
with player sets, each missing one of their players.

Balanced summarized contributions, BSC. For all N ∈ N , (N, v) ∈ V(N), and
i, j ∈ N, i 6= j, we have

ϕi(N, v)−
∑

k∈N, k 6=i

ϕi(N\{k}, v) = ϕj(N, v)−
∑

k∈N, k 6=j

ϕj(N\{k}, v).

The balanced summarized contributions property has a strong connection to the grand
dividends value. Similar as the Shapley value can be characterized by E and BC (Myer-
son, 1980), the grand dividends value can be characterized by E and BSC.

Theorem 4.3. The grand dividends value Ψ is the unique TU-value that satisfies E and
BSC.

Proof. Since E is already shown in the proof of Theorem 4.2 andBSC follows immediately
from (6), we only need to show uniqueness.
Let N ∈ N , (N, v) ∈ V(N), and ϕ be a TU-value which satisfies E and BSC. We show

uniqueness by induction on the size n.
Initialization: Let n = 1. Then, uniqueness is satisfied by E.
Induction step: Let n ≥ 2. Assume that ϕ is unique for all n′, n′ < n, (IH). By BSC,

we have

ϕi(N, v)−
∑

k∈N, k 6=i

ϕi(N\{k}, v) = ϕj(N, v)−
∑

k∈N, k 6=j

ϕj(N\{k}, v)

⇔ n · ϕi(N, v)− n ·
∑

k∈N, k 6=i

ϕi(N\{k}, v) =
∑

k∈N

ϕk(N, v)−
∑

j∈N

∑

k∈N, k 6=j

ϕj(N\{k}, v)

and, by E and (IH), ϕ is unique for the player i. Since i is arbitrary, uniqueness and,
therefore, Theorem 4.3 is shown.
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5. An axiomatization in the spirit of Shapley

We pick the original axiomatization of the Shapley value as the starting point of this
section.

Theorem 5.1 (Shapley, 1953b). The Shapley value Sh is the unique TU-value that
satisfies E, A, N, and Sym.

We would like to point out that Nowak and Radzik (1994) also introduced their solidar-
ity value with an axiomatization similar to this one. Their axiomatization differs from
Shapley’s by replacing the null player axiom N with their A-null player axiom. Further
axiomatizations which differ only in the null player axiom from Shapley’s axiomatization
are the axiomatization of the equal division value in van den Brink (2007), using the
nullifying player property, and the axiomatization of the equal surplus division value by
Casajus and Huettner (2014), using the dummifying player property.
Our next axiomatization of the grand dividends value also differs from Shapley’s only

in the null player axiom. It is well-known and easy to prove that i ∈ N is a null player
in (N, v) if ∆v(S) = 0 for all S ⊆ N, S ∋ i. Analogously, we call a player i ∈ N a grand
dividends null player in (N, v) if Γv(S) = 0 for all S ⊆ N, S ∋ i. This yields the
following property.

Grand dividends null player, GDNull. For all N ∈ N , (N, v) ∈ V(N), and i ∈ N

such that i is a grand dividends null player in (N, v), we have ϕi(N, v) = 0.

It is not so far-fetched that a grand dividends null player i receives a payoff of zero. Each
coalition containing player i has as its worth a sum of worths of coalitions that all do not
contain player i. Player i does not contribute to any coalition, so the other players split
the full payoff among themselves. We give a first axiomatization.

Theorem 5.2. The grand dividends value Ψ is the unique TU-value that satisfies E, A,
GDNull, and Sym.

Proof. In unanimity games (N, uS), S ∈ ΩN, which form a basis for V(N) (see Shapley
(1953b)), we have ∆uS

(S) = 1 and ∆uS
(T ) = 0, T ∈ ΩN, T 6= S. Analogosly, we introduce

another basis. For each coalition S ∈ ΩN, we use a TU-game (N, zS) ∈ V(N) such that

ΓzS(T ) :=

{

1, if T = S,

0, if , T ∈ ΩN, T 6= S.
(8)

Due to (3), we have zS(S) = 1 and all coalitions which are no supersets of S have a
worth of zero. Each coalition T containing S as a proper subset, contains

(

t−s

t−s−1

)

= t− s

coalitions of the size t − s − 1 containing S and all other coalitions which are subsets of
the same size have a worth of zero. Thus, each TU-game (N, zS), S ∈ ΩN, is given, by

zS(T ) :=

{

(t− s)!, if S ⊆ T,

0, otherwise.
(9)

Since a (2n − 1)× (2n − 1) matrix A of the 2n − 1 entries of the 2n − 1 coalition functions
zS, S ∈ ΩN, correspondingly ordered, is a triangular matrix with detA = 1 6= 0, we have
found a basis for V(N).
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Let now N ∈ N , (N, v), (N,w) ∈ V(N), and α ∈ R.
I. Existence: E is shown in the proof of Theorem 4.2. By (5), Ψ obviously satisfies

GDNull and Sym. Since we have, by (3), Γv+w = Γv + Γw, A is satisfied by (5).
II. Uniqueness: Let ϕ be a TU-value which satisfies all axioms from Theorem 5.2. For

all S ∈ ΩN, i ∈ N, we have ϕi(N,αzS) = 0, by Sym and E, if α = 0 and, by GDNull,

if i ∈ N\S . By E, Sym, and (9), it follows ϕi(N,αzS) = α
(n− s)!

s
for all i ∈ S.

Therefore, ϕ is unique on all games (N,αzS) for all α ∈ R and all S ∈ ΩN. But then, by
A, uniqueness is shown and the proof is complete.

6. An axiomatization in the spirit of Young

Certainly, the following theorem is one of the most beautiful axiomatizations of the Shap-
ley value.

Theorem 6.1 (Young, 1985). The Shapley value Sh is the unique TU-value that sat-
isfies E, SMon, and Sym.

Thereby SMon can also be replaced by the weaker Mar. By (1), the condition
‘MCv

i (S) = MCw
i (S) for all S ⊆ N\{i}’ in Mar can be equivalently replaced by

‘∆v(S) = ∆w(S) for all S ⊆ N, S ∋ i’, analogously in SMon. We replace marginal
contributions or Harsanyi dividends respectively by grand dividends in both axioms and
obtain two new properties.

Grand dividends independency, GDInd. For all N ∈ N , (N, v), (N,w) ∈ V(N),
and i ∈ N such that Γv(S) = Γw(S) for all S ⊆ N, S ∋ i, we have ϕi(N, v) = ϕi(N,w).

Grand dividends monotonicity, GDMon. For all N ∈ N , (N, v), (N,w) ∈ V(N),
and i ∈ N such that Γv(S) ≤ Γw(S) for all S ⊆ N, S ∋ i, we have ϕi(N, v) ≤ ϕi(N,w).

The grand dividends monotonicity states that the payoff to a player should not decrease
if the grand dividends of all coalitions containing that player increase or stay the same.
It is easy to show that GDMon implies GDInd. By this property, the payoffs remain
the same if the grand dividends of all coalitions containing that player stay the same.
Therefore, a player’s payoff depends only on the grand dividends of coalitions containing
the player. Just as Young (1985) used SMon instead of Mar to axiomatize the Shapley
value where the proof only used Mar, we could also use GDMon instead of GDInd in
what follows, but we will not. We introduce GDMon only because it might seem even
more compelling for applications than GDInd. We formulate an axiomatization in the
spirit of the characterization of the Shapley value just mentioned.

Theorem 6.2. The grand dividends value Ψ is the unique TU-value that satisfies E,
GDInd, and Sym.

Proof. The proof is similar to the proof in Young (1985).
Since E is shown in the proof of Theorem 4.2 and Sym and GDInd follow immediately

from (5), we only need to show uniqueness.
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The games (N, zS), S ∈ ΩN, defined by (9), form a basis of V(N). This means, we have
for any (N, v) ∈ V(N) a unique representation of the coalition function v, given by

v =
∑

S∈ΩN

αSzS, αS ∈ R. (10)

Note, due to (8), that for all S ∈ ΩN, c ∈ R, and two games (N, v), (N,w) ∈ V(N), w :=
v + czS, we have

Γv(T ) = Γw(T ) for all T ⊆ N, T 6= S. (11)

Therefore, GDInd implies

ϕi(N, v) = ϕi(N,w) for all i ∈ N\S. (12)

Let N ∈ N , (N, v) ∈ V(N), and ϕ be a TU-value which satisfies E, Sym, and GDInd.
We use an induction on the size rv := |{R ∈ ΩN : Γv(R) 6= 0}|.
Initialization: Let r = 0. We have v(N) = 0 and uniqueness is satisfied by E and Sym.
Induction step: Let r ≥ 1. Assume that ϕ is unique for all TU-games (N, v′), rv′ ≤ r−1,

(IH). Let Q be the intersection of all coalitions Qk ∈ ΩN, Γv(Qk) 6= 0,

Q :=
⋂

1≤k≤r

Qk.

Two cases can be distinguished: (a) i ∈ N\Q and (b) i ∈ Q.
(a) Each i ∈ N\Q is a member of at most r− 1 coalitions Qk, Γv(Qk) 6= 0 and we have

at least one coalition Qi ∈ ΩN, Γv(Qi) 6= 0. Then, by (10), exists a coalition function vi
such that

vi =
∑

S∈ΩN, S 6=Qi

αSzS,

and, by (11), we have Γv(S) = Γvi(S) for all S ⊆ N, S ∋ i. Therefore, by GDInd, (12),
and (IH), ϕ is unique on (N, v) for all i ∈ N\Q.
(b) Each i ∈ Q is a member of all coalitions Qk, Γv(Qk) 6= 0. Thus, all coalitions

S ∈ ΩN, Q * S, have a grand dividend Γv(S) = 0. It follows, v(S) = 0 for all S ∈
ΩN, Q * S. Therefore, if |Q| = 1, by E, and (a), ϕ is unique for i ∈ Q. If |Q| ≥ 2, we
have v(T ∪ {j}) = v(T ∪ {k}) for all j, k ∈ Q and T ⊆ N\{j, k}. Hence, all players i ∈ Q

are symmetric in (N, v). By Sym, E, and (a), ϕ also is unique for all i ∈ Q and the proof
is complete.

7. Conclusion

Of course, the grand dividends value can be applied to all coalition functions, just like the
Shapley value. However, from our point of view, if the respective assumptions mentioned
above are satisfied, the corresponding axioms and hence the associated TU-values are
the most convincing. The same applies to the assumptions made in the introduction
regarding the equal division value and the equal surplus division value. It may not always
be appropriate to give a nullifying or zero player (see van den Brink (2007) and Deegan
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and Packel (1978)), who causes any coalition containing that player to receive a worth of
zero, a payoff of zero with no further penalty when the cooperation of the other players
is actually present.
Therefore, when selecting a TU-value for a payoff calculation, each user should pay

attention not only to the desired properties the value should have, i.e., the satisfied
axioms, but also to which coalition formations actually occur.
Definition 3.1 or Proposition 4.1 immediately reveal various extensions of the grand

dividends value. Analogous to the weighted Shapley values (Shapley, 1953a), each player
could be assigned a personal weight and the summands in (5) would no longer be dis-
tributed equally among the members of the coalitions S but in proportion to these mem-
bers’ weights (see (13)). As in the case of the proportional Shapley value (Béal et al.,
2018; Besner, 2019), these weights could also be replaced by the stand-alone worths of
the individual members. An extension in the sense of the Harsanyi solutions (Hammer et
al., 1977; Vasil’ev, 1978)5 would also be conceivable where the weights of two players for
different coalitions could be in different proportions.
The investigation and axiomatizations of these extensions are left to further research.

8. Appendix

We show the logical independence of the axioms in the theorems. The locical independence
of the two axioms in Theorem 4.3 is obvious.

Remark 8.1. The axioms in Theorems 4.2 and 6.2 are logically independent:

• E: The null value φ0, defined by φ0
i (N, v) = 0 for all i ∈ N , satisfies IGD/GDInd

and EMon/Sym but not E.

• IGD/GDInd: The Shapley value Sh satisfies E and EMon/Sym but not
IGD/GDInd.

• EMon/Sym: Let W := {f : U → R++}, wi := w(i) for all w ∈ W, i ∈ U, be the
collection of all positive weight systems on U and N ∈ N , (N, v) ∈ V(N). For each
w ∈ W , the weighted grand dividends value Ψw, given by

Ψw
i (N, v) :=

∑

S⊆N,S∋i

wi(n− s)!
∑

j∈S wj

Γv(S) for all i ∈ N, (13)

such that wj 6= wk for at least two different players j, k ∈ N , satisfies E and
IGD/GDInd but not EMon/Sym.

Remark 8.2. The axioms in Theorem 5.2 are logically independent:

• E: The null value φ0 satisfies A, GDNull, and Sym but not E.

• A: Let N ∈ N , (N, v) ∈ V(N). The TU-value ϕ, given by

ϕi(N, v) :=







0, if i is a grand dividends null player,
v(N)

|{j ∈ N : j is no grand dividends null player in (N, v)|
, otherwise,

5Detailed information can be found in Derks et al. (2000) and Vasil’ev and van der Laan (2002).
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for all i ∈ N , satisfies E, GDNull, and Sym but not A.

• GDNull: The Shapley value Sh satisfies E, A, and Sym but not GDNull.

• Sym: The TU-values Ψw, as defined in Remark 8.1, satisfy E, A, and GDNull but
not Sym.
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