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Abstract. This paper investigates the impact of knowledge capital stocks on total 
factor productivity through the lens of the knowledge capital model proposed by 
Griliches (1979), augmented with a spatially discounted cross-region knowledge 
spillover pool variable. The objective is to shift attention from firms and 
industries to regions and to estimate the impact of cross-region knowledge 
spillovers on total factor productivity (TFP) in Europe. The dependent variable is 
the region-level TFP, measured in terms of the superlative TFP index suggested 
by Caves, Christensen and Diewert (1982). This index describes how efficiently 
each region transforms physical capital and labour into output. The explanatory 
variables are internal and out-of-region stocks of knowledge, the latter capturing 
the contribution of cross-region knowledge spillovers. We construct patent stocks 
to proxy regional knowledge capital stocks for N=203 regions over the 1997-
2002 time period. In estimating the effects we implement a spatial panel data 
model that controls for the spatial autocorrelation due to neighbouring regions 
and the individual heterogeneity across regions. The findings provide a fairly 
remarkable confirmation of the role of knowledge capital contributing to 
productivity differences among regions, and add an important spatial dimension 
to the discussion, by showing that productivity effects of knowledge spillovers 
increase with geographic proximity.  
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1    Introduction 

 

Many economic studies, such as the pioneering study by Solow (1957), have demonstrated the 

central role played by technological progress in economic growth. These studies based on a 

growth-accounting approach do not attempt to measure technological progress directly, but treat 

it as the residual factor accounting for growth. According to the standard interpretation, this 

residual represents disembodied technological progress, usually referred to as total factor 

productivity (TFP), defined as output per unit labour and physical capital combined. 

 

This paper lies in the research tradition that investigates the impact of knowledge capital stocks 

on total factor productivity through the lens of the knowledge capital model proposed by 

Griliches (1979) to augment the production function with the stock of knowledge1. The 

knowledge capital model has become the cornerstone of the productivity literature for more than 

25 years and has been applied in dozens of empirical studies on firm-level productivity and 

extended to the more aggregated industry- and country-levels (see Griliches 1995 for a survey). 

 

This model has evolved in many directions. Jaffe (1986) initiated ways of accounting for the 

appropriability of external flows of knowledge or knowledge spillovers. Knowledge spillovers 

may be defined to denote the benefits of knowledge to firms, industries or regions not 

responsible for the original investment in the creation of this knowledge. It is important to 

distinguish between two distinct types of knowledge spillovers: Spillovers embodied in traded 

capital or intermediate goods and services (so-called pecuniary externalities)2 and spillovers of 

the disembodied kind (non-pecuniary externalities). The focus of this paper is on spillovers of 

the second type. Such spillovers arise because the production of knowledge has public good 

characteristics limiting the ability of firms to stop other firms or individuals exploring it. 
                                                 
1 It is worth emphasizing that this field is rather different from the abundance of studies that aim to estimate a 

knowledge production function that relates the output of the knowledge production process, the increment of 
economically valuable technological knowledge in a region, to R&D inputs. Regional knowledge production is 
seen to depend on two major sources: university research and commercial R&D (see, for example, Anselin, Varga 
and Acs 1997; Fischer and Varga 2003). Such knowledge production function studies allow for testing hypotheses 
about the impact of spillovers from academic research and about the existence of Jacobian spillovers, and permit 
statements about the spatial extent of knowledge externalities but no statements about productivity effects. 

 
2 As pointed out by Griliches (1995), pecuniary externalities that work through the price system are not really a 

case of pure spillovers. They are often just consequences of conventional measurement problems. 
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The last few years have seen the development of a significant body of research that includes 

measures of external knowledge capital in an attempt to estimate the productivity effects of 

knowledge spillovers across firms (see, for example, Los and Verspagen 2000, and Mairesse and 

Sassenou 1991 for a survey), across industries (see, for example, Scherer 1993, and Branstetter 

2001) or across countries (see, for example, Park 1995)3. Even though the subnational region is 

increasingly regarded as an important level of economic policy, there have been very few 

attempts so far to investigate the impact of knowledge capital stocks on region-level total factor 

productivity. One notable exception is the study by Robbins (2006) which finds mixed evidence 

in terms of the significance of industry-specific knowledge spillovers at the state level in the US, 

and a lack of evidence in most manufacturing industries. This contradicts the strong findings in 

firm-level, sectoral and country-level studies. 

 

The objective of our study is to investigate whether knowledge spilling across regional 

boundaries has an impact on regional total factor productivity in manufacturing industries in 

Europe. By Europe we mean the 15 pre-2004 EU member states. We use a panel of 203 NUTS-2 

regions to estimate the spillover impact over the period 1997-2002. NUTS-2 regions are 

interesting units of analysis in an increasingly integrated European market. They are more 

homogeneous than countries, better connected within themselves, and they are becoming 

increasingly important as policy units for research and innovation (see European Commission 

2001). 

 

                                                 
3 It is worth noting that Coe and Helpman (1995) use weights related to input purchase flows to measure the impact 

of international knowledge spillovers. But these are pecuniary rather than non-pecuniary externalities. 
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In using patent stocks4 to proxy knowledge stocks, we build on Robbins (2006), but depart from 

this previous work at least in two major aspects. First, we extend the knowledge capital model 

with a spatially discounted cross-region knowledge spillover pool variable that allows to 

measure rather than to assume the degree of localization of such spillovers, and second, we 

account for spatial error autocorrelation due to neighbouring regions and the individual 

heterogeneity across regions in estimating the model and, hence, avoid misspecification 

problems. 

 

The remainder of this paper is organized as follows. The section that follows presents the 

reduced-form model that relates regional TFP not only to region-internal knowledge capital but 

also to cross-region knowledge spillovers. We use a region-level relative TFP index – suggested 

by Caves, Christensen and Diewert (1982) – as an approximation to the true TFP measure and 

patent stocks to proxy regional knowledge capital stocks. Section 3 details the definition of the 

TFP index and the construction of the regional patent stocks. Important econometric issues 

raised by the estimation of the model are addressed in Section 4, while Section 5 reports the 

estimation results. Section 6 concludes the paper.    

 

 

2    The empirical model 

 

The model used in this paper builds on the knowledge capital model (see Griliches 1979, 

Doraszerlski and Jaumandreu 2008), but modifies it so that the region’s total factor productivity 

depends not only on its own knowledge capital stock, but also on the level of the pool of general 

knowledge accessible to it. Denote regions by 1,...,i N=  and time periods by 1,...,t T= . 

Ignoring constants, time trends or year dummies, the regional production function is given by 

                                                 
4 An alternative, widely used in firm-level studies, would be to use measures of R&D input. One problem with this 

way to proxy knowledge spillovers is that some double counting occurs because R&D labour and capital are 
counted twice, once in the available measures of labour and physical capital, and again in the measure of R&D 
capital stocks (see, for example, the study by Griliches and Mairesse 1984). As the necessary data are generally 
not available, double counting cannot be corrected for. Using patents, we avoid this problem as well as the 
problem of potential endogeneity of the knowledge spillover stock variable. But patents have their own 
weaknesses. This measure is most flawed by the fact that not all important inventions have been patented, while 
many patents represent only incremental inventions. 
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( , )it it it itQ A g L C=   (1) 

  

where (.,.)g  is assumed to be homogeneous of degree one and to exhibit diminishing marginal 

returns to the accumulation of each factor alone. C is the stock of physical capital, L the stock of 

labour, Q value added, and A an index of the technical efficiency of production with 

 

( , )it it itA A K K ∗=   (2) 

 

where K  and K ∗  are the stocks of region-internal and region-external knowledge capital, 

respectively. The stocks of knowledge capital are proxies for the state of knowledge. The 

knowledge created by a private or public agent is added to the pool of the existing knowledge 

capital stock to which other agents have access. Note that even if the benefits of R&D activities 

are fully appropriated by an agent, in the sense that an agent acquires a monopoly right by patent 

protection, some portion of the knowledge that has led to the patent may diffuse across regions 

through various communication channels such as publications, seminars, personal contacts, 

reverse engineering, (informal) exchange in networks, transfer of human capital and other means 

(Park 1995). 

 

In an N-region world, the global stock of knowledge capital is given by 

 

1

N

jt

j

K
=
∑   (3) 

 

where the subscript j denotes the jth region, and knowledge capital jtK  is assumed to accumulate 

with knowledge production activities and to depreciate from period to period at a rate Kr . Hence, 

its law of motion can be written as 

 

1
1 1 1

1

(1 ) 1 jt

jt K jt jt jt K

jt

S
K r K S K r

K

−
− − −

−

⎛ ⎞
= − + = − +⎜ ⎟⎜ ⎟

⎝ ⎠
  (4) 
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This law implies that knowledge production activities 1jtS −  undertaken in period t–1 become 

productive in period t. 

 

For region i, itK  represents its own knowledge capital stock in period t and itK ∗  its relevant pool 

of knowledge spillovers. Since not all knowledge capital will necessarily spill over from one 

region to another, it seems appropriate to define itK ∗  as5 

 
N

it ij jt m

j ì

K w K∗
−

≠

=∑   (5) 

 

where ijw  represents region’s i ability to internalize pieces of region’s j knowledge stock for 

production in region i, and jt mK −  represents the knowledge capital stock of region j at time t–m 

(m positive integer). 

 

The term ij jt mw K −  may be interpreted as the effective fraction (pool) of the stock of knowledge 

in region j “borrowed” by region i. The time lag is important since it takes time for knowledge 

spillovers from region j to be expressed in new products and processes in region i. We construct 

a spatially discounted time-lagged pool by assuming that the effective knowledge contribution 

by each of the regions j ( )j i≠  depends on the geographic distance between that region j and 

region i. This is quite in line with the literature on spatial knowledge spillovers (see Döring and 

Schellenbach 2006 for a survey). Empirical work by Jaffe, Trajtenberg and Henderson (1993), 

for example, on patent citations proxying knowledge spillovers showed the spatial decay in 

knowledge spillovers relative to the patent source, which was interpreted as knowledge diffusion 

decay. This motivated us to follow Fischer, Scherngell and Jansenberger (2006) in assuming a 

parametric exponential dependence between weights and geographic distance as given by6 

                                                 
5  The definition shows that one faces two major problems in constructing the relevant pool of knowledge spillovers, 

deciding on the appropriate time lag structure m and finding an appropriate weight structure { , }
ij

w i j≠  to 

represent borrowed knowledge and spillovers.  
 
6 This exponential specification is attractive because of its theoretical underpinning in spatial interaction theory and 

analysis (see Fischer and Reggiani 2004). In addition, it shows some nice properties. It is symmetric so that  
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exp( )ij ijw dδ= −   (6) 

 

which enables us to test rather than to assume the strength of the spatial dependence. ijd  denotes 

geographic distance, in some sense, between the knowledge spilling region j and the knowledge 

receiving region i. δ  is the distance sensitivity parameter that captures the impact of distance on 

the spillover variable. Estimating 0δ =  would mean that distance would not matter. Positive 

-estimatesδ  would suggest that the benefits from out-of-region knowledge capital stocks 

exponentially decline with distance. Different distance measures can be used to represent 

possible geographic impediments to the free flow of knowledge across space. In the context of 

our study we measure distance between regions i and j as great circle distance between their 

economic centres7. 

 

Substituting Equation (2) into Equation (1) and assuming a Cobb-Douglas production technology 

gives, for region i, 

 
*

1 2 1( , , , ) exp( )it it it it it it it it it itQ Q K K L C K K L C
γ γ α α ε∗ −= =   (7) 

 

where 1 2, 1 , ,α α γ γ−  are the output elasticities with respect to labour, physical capital, region-

internal and region-external knowledge capital. ε  is the error term reflecting all unmeasured 

determinants of output and productivity, approximations and other disturbances. 

 

Define total factor productivity F in the usual way as 1/ ( )it it it itF Q L Cα α−=  then it is easy to see 

how total factor productivity is linked to knowledge stocks inside and outside the region in 

question: 

 

                                                                                                                                                             
exp( )

ij
dδ−  equals exp( )

ji
dδ− . When 

ij
d  equals zero, exp( )

ij
dδ−  equals one. As 

ij
d  approaches infinity, 

exp( )
ij

dδ−  approaches zero. 

 
7  Travel distance is an alternative measure (see, for example, Crescenzi, Rodríguez-Pose and Storper 2007, LeSage 

and Fischer 2007), that is especially attractive in contexts where knowledge diffusion primarily takes place with 
face-to-face interaction. 
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1 2 1 2 log exp ( )
N

it it it it it ij jt m it

j i

f k k k d Kγ γ ε γ γ δ ε∗
−

≠

⎡ ⎤
= + + = + − +⎢ ⎥

⎣ ⎦
∑  (8) 

 

where we follow the convention that lower case letters denote logs and upper case letters levels, 

that is logit itf F= , logit itk K=  and logit itk K∗ ∗= . Equation (8) is a simple panel data regression 

model, where i denotes the cross-section and t the time series dimension. 1γ  measures the effect 

of the region’s own knowledge capital stock on total factor productivity, while 2γ  captures the 

relative effect from cross-region knowledge spillovers. A positive and significant estimate of 2γ  

is interpreted as evidence of such spillovers. For 0δ > , variation in regional productivity levels 

is best accounted for by giving a lower weight to knowledge capital stocks in regions j that are 

located relatively far away from region i. If 0δ = , then geographic distance and relative location 

do not matter. Note that 1γ , 2γ  and δ  have to be estimated. There is no agreement on the correct 

length of the time lag. Since the data we have are not rich enough in the time dimension to 

determine the lag structure m in the knowledge spillover-productivity nexus, the assumption is 

made that knowledge spillovers take one year to affect productivity. 

 

Model specification (8) can be thought of as a multi-region extension of the knowledge capital 

model that relates region-level TFP to only region-internal knowledge capital, which would be a 

special case with 2 0.γ =  Of course, this skeletal regression model is rather simplistic and based 

upon a whole string of untenable assumptions, the major ones being a Cobb-Douglas production 

technology with constant returns to scale with respect to physical capital and labour. One can 

raise immediately a number of reservations about this model. There are major difficulties in the 

specification and measurement of the dependent variable, and there are issues of timing, 

depreciation and coverage in the construction of the regional knowledge stock variables. 

Nevertheless, this simple model allows analysing the reduced-form relationship between 

knowledge capital and productivity, and provides useful information on this long-run average 

relationship at the regional level. In this reduced form, 1γ  and 2γ  are the elasticities of TFP with 

respect to region-internal and out-of-region knowledge capital. 
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3    Data and variables 

 

Our empirical results are based on data for N=203 regions over the 1997-2002 period. The data 

come from two major sources. Information used to construct the TFP index comes from the 

Cambridge Econometrics database, while the European Patent Office patent database is the 

source for constructing patent stocks to proxy knowledge stocks. The observation units are 

NUTS-2 regions that are adopted by the European Commission for the evaluation of regional 

growth processes. The NUTS-2 region, although varying considerably in size, is widely viewed 

as the most appropriate unit for modelling and analysis purposes (see, e.g., Fingleton 2001). The 

cross-section is composed of NUTS-2 regions located in the 15 pre-2004 EU member states.  

The Appendix describes the sample of regions.   

 

Empirical implementation of the model described in the previous section requires data on total 

factor productivity8 and knowledge stocks for each of the N regions at six points in time. TFP 

calculations at the regional level require interregionally comparable data on regional outputs and 

inputs such as physical capital and labour. Since regional TFP comparisons are a classic index 

number problem, we use a TFP index to register the impact of knowledge capital stocks. 

Unfortunately, TFP indices have no unique optimal form. In line with Harrigan (1997), Keller 

(2002) and Robbins (2006) we have chosen the index proposed by Caves, Christensen and 

Diewert (1982). This choice is well justified. First, the index is superlative, meaning that it is an 

approximation if the production function takes the general neoclassical form, but holds exactly 

for the flexible translog functional form. Second, the index meets the circularity test which is 

often referred to as transitivity. This makes the choice of the base region and year 

inconsequential. Third, superlative index numbers that maintain circularity can be used for 

making multilateral comparisons, not only for cross-section and time series comparisons, but 

also for combinations of both. Formally, the index is defined by 

                                                 
8 Interested readers for a review of different approaches to the theory and measurement of TFP are referred to 

Nadiri (1970) and Diewert (1992). 
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( ) ( ) (1 ) ( )it it t it it t it it tf q q s l l s c c= − − − − − −  (9) 

 

where itf  is the log of total factor productivity of region i at time t, itq  the log of output, itl  the 

log of labour, itc  the log of physical capital, and its  is the share of labour in total production 

costs. An upper bar above a variable denotes a geometric mean.  
 

Note that this index assumes that production is characterized by constant returns to scale. It 

provides a measure of each region’s productivity relative to the other N-1 regions and is 

equivalent to an output index where labour and physical capital inputs are held constant across 

regions. Thus, it describes how efficiently each region transforms labour and physical capital 

into output. To provide a simple illustration, if a region’s TFP level is computed as 1.2, this 

implies that the region can produce 20 percent more output than the average region with the 

same amount of conventional inputs. 

 

Gross value added data in Euro (constant prices of 1995, deflated) has been used as measure of 

output Q . Building on the work by Keller (2002) we have used cost-based rather than revenue-

based factor shares to construct the index. Cost-based shares are more robust in the presence of 

imperfect competition. Two other important characteristics of the TFP data are: First, we 

adjusted the Cambridge Econometrics data on labour inputs to account for differences in average 

annual hours worked across countries. This is important because average annual hours worked in 

the year 1997 in Swedish manufacturing for example, were almost 14 percent lower than in 

Greek manufacturing. Without adjusting for differences in input usage, productivity in Greek 

and Portuguese regions would be overestimated throughout, while in Swedish and Dutch regions 

underestimated.  

 

Second, physical capital stock data is not available in the Cambridge Econometrics database, but 

gross fixed investment in current prices is. Thus, we constructed the stocks of physical capital for 

each region by using the perpetual inventory method 1 1(1 )it C it itC r C I− −= − + , where itC  is the 

stock of physical capital of region i at time t, 1itI −  is the flow of gross investment in period t–1, 
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becoming productive in period t, and Cr  is the constant depreciation rate. We applied a constant 

rate of ten percent depreciation across space and time. The annual flows of fixed investments 

were deflated by national gross fixed capital formation deflators. The mean annual rate of 

growth, which precedes the benchmark year 1997, covers the period 1990-1997 to estimate 

initial regional capital stocks. 

 

Besides the TFP measure, Equation (8) contains also a measure of the knowledge capital stock 

for each of the N regions and the six time periods. We use patent applications to proxy 

knowledge capital. Patents have the comparative advantage of being direct outcome of R&D 

processes. The patent data are numbers of corporate patent applications. Corporate patents cover 

inventions of new and useful processes, machines, manufactures, and compositions of matter. To 

the extent that patents document inventions, an aggregation of patents is arguably more closely 

related to a stock of knowledge than is an aggregation of R&D expenditures (Robbins 2006). 

However, a well known problem of using patent data is that technological inventions are not all 

patented. This could be because of applying for a patent, is a strategic decision and, thus, not all 

patentable inventions are actually patented. Even if this is not an issue, as long as a large part of 

knowledge is tacit, patent statistics will necessarily miss that part, because codification is 

necessary for patenting to occur. We assume that part of the knowledge generated with the idea 

leading to a patent is embodied in persons, imperfectly codified, and linked to the experience of 

the inventor(s). 

 

Patent stocks were derived from European Patent Office (EPO) documents. Each EPO document 

provides information on the inventor(s), his or her name and address, the company or institution 

to which property rights have been assigned, citations to previous patents, and a description of 

the device or process. To create the patent stocks for 1997-2002, the EPO patents with an 

application date 1990-2002 were transformed from individual patents into stocks by first sorting 

based on the year that a patent was applied for, and second the region where the inventor resides. 

In the case of cross-region inventor teams we used the procedure of fractional rather than full 

counting. Then for each region, the annual patents were aggregated using Equation (4), with a 
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constant depreciation rate9 12Kr =  percent applied for each year to the stock of patents created 

in earlier years. Thus, the region-internal knowledge stocks, itK  ( 1,..., ; 1,..., ),i N t T= =  may be 

viewed as depreciated sums over time of patents applied by inventors in region i, while the out-

of-region knowledge stocks, *
itK ( 1,..., ; 1,..., ),i N t T= = are spatially discounted sums over time 

of the time-lagged internal knowledge stocks of all regions j excluding i.  
 

 

4   Error specification and model estimation 

 

In estimating Equation (8), the disturbance vector is assumed to have random region effects as 

well as spatially autocorrelated residual disturbances10, 11 

 

t t= +ε μ ζ  (10) 

 

with 

 

t t tλ= W + ηζ ζ  (11) 

 

where 1( ,..., ) 't t Ntε ε=ε , 1( ,..., ) 't t Ntζ ζ=ζ , and 1( ,..., ) 'Nμ μ=μ  denotes the vector of random 

region effects which are assumed to be iid (0, 2σ μ ). 1( ,..., ) 't t Ntη η=η  where itη  is iid over i and t 

and is assumed to be 2(0, )σηN . The { }itη process is also independent of the process { }iμ . λ  is 

the scalar spatial autoregressive coefficient with | | 1λ < . W is a known N-by-N spatial weights 

matrix where diagonal elements are zero. In this study, the weights matrix is constructed so that 

                                                 
9 We used a constant rate of obsolescence because of evident complications in tracking obsolescence over time. The 

depreciation rate 12
K

r =  percent corresponds to the rate of knowledge obsolescence in the US over the past 
century, as found in Caballero and Jaffe (1993). 

 
10 This error component specification corresponds to that suggested by Anselin (1988, pp. 152). But note that our 

spatial panel data model differs from his model somewhat in that we allow one independent variable, the 
knowledge spillover pool variable, to depend on a spatial deterrence function with an a priori unknown                   
δ-parameter. The inclusion of this parameter in the specification of the pool of cross-region spillovers complicates 
maximum likelihood (ML) model estimation. 

 
11 One of the referees suggests to use an alternative and more general error component specification developed by 

Kapoor, Kelejian and Prucha (2007) for GM-based spatial panel data models. The authors show the GMM 
coefficient estimates to be consistent, but the inferential statistics for these parameters appear to be ad-hoc at best. 
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a neighbouring region takes the value of one and zero otherwise. The rows of this matrix are 

normalized12 by the largest characteristic root of W. Thus, the matrix ( )N λ−I W  is non-

singular, where NI  is an identity matrix of dimension N. We note that for T = 1 our specification 

reduces to the standard Cliff-Ord first order spatial autoregressive model.  

 

One can rewrite (11) as 

 
1 1( )t N t tλ − −−= I W = Aξ ξ η  (12) 

 

where ,N λ−= I WΑ  and NI  is an identity matrix of dimension N. Model (8) can be rewritten 

in matrix notation as 

 
= +f X γ ε   (13) 

 

where f is of dimension NT-by-1, X is NT-by-2, γ  is 2-by-1 and ε  is NT-by-1. The observations 

are ordered by t being the slow running index and i is the fast running index13, i.e., 

11 1 1( ,..., ,..., ,..., ) 'N T NTf f f f=f . 

 

Equation (10) can be written in vector form as 

 

1( ) ( )T N T

−⊗ ⊗ε = I + I Aι μ η  (14) 

 

where ⊗  denotes the Kronecker product, Tι  is a vector of ones of dimension T, and TI  is an 

identity matrices of dimension T.  

 

Under these assumptions, the variance-covariance matrix for ε  is  

 

                                                 
12 This normalization has the advantage that the spatial weights matrix is kept symmetric (Elhorst 2005). 

 
13 We group the data by time periods rather than cross-section units because this grouping is more convenient for 

modelling spatial autocorrelation via Equation (11). 
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2 2 1[ '] [ '] ( ) ( ' )T N TE E σ σ −⎡ ⎤⊗ ⊗⎣ ⎦μ η= = = J I + I A AεΩ ε ε ε ε  (15) 

 

where TJ  is a matrix of ones of dimension T, and 'T T Τ=J ι ι . Following Baltagi, Song and Koh 

(2003), this variance-covariance matrix can be rewritten in such a way that14 

 

{ }2 1 1 2( ' ) ( ' )T N TTσ φ σ− −⎡ ⎤⊗ + ⊗ =⎣ ⎦= J I + A A E A Aε η η εΩ Σ  (16) 

 

where 2 2= , / , ,T T T T TTφ σ σ = = −J J E I Jμ η and { }1 1( ' ) ( ' )T N TT φ − −⎡ ⎤⊗ + ⊗⎣ ⎦= J I + A A E A AεΣ

. Following Wansbeek and Kapteyn (1983), −1
εΣ  is given by  

 
11( ' ) ( ' )T N TT φ
−−1 −⎡ ⎤⊗ + ⊗⎣ ⎦= J I + A A E A AεΣ  (17) 

 

which involves no matrix inversions of dimension larger than N. Also, 
11 1( ' ) ( ' )

T

NT φ
−− −= I + A A A AεΣ . 

 

Under the assumption of normality, the log-likelihood for our model, conditional on δ, becomes 

(see Anselin 1988, pp. 154, Baltagi, Song and Koh 2003) as 

 

2

2

2 2 11 1
2 2 2

2 1 11 1 1
2 2 2 2

( , , , | ) ln( 2 ) ln '

ln( 2 ) ln ( ' ) ln ' '

NT

NT T
NT

σ

σ

σ φ λ δ π σ

π σ φ

−

− −−

= − − − =

= − + + −

γ e e

I A A A A e e

L
η

η

η η ε ε

η ε

∑ ∑

∑
 (18) 

 

where 1( ,..., )'Te ee =  and ( ).t t te −= f X γ  First order conditions for the ML estimates and the 

elements of the information matrix can be obtained in the usual way (see Anselin 1988, p. 154, 

and Elhorst 2003, p. 253).  

 

                                                 
14 If λ = 0, so that there is no spatial autocorrelation, then A = IN  and εΩ  from Equation (16) becomes the usual 

error component variance-covariance matrix 2 2
( ) ( ).

N T NΤσ σ⊗ ⊗= J I + I Iμ ηεΩ  
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The main computational task in the iterative maximization process is the repeated evaluation of 

the log-determinants of the N-by-N matrices '( ) ( )λ λA A  and 1[ '( ) ( )]NT φ λ λ −
I + A A  afresh at 

each iteration step in the optimization process. Following Griffith (1988), the calculation of these 

determinants can be simplified by using 

 

1

( ) (1 )
N

i

i

λ λω
=

= −∏A  (19) 

 

[ ] 1 2

1

'( ) ( ) (1 )
N

N i

i

T Tφ λ λ φ λω− −

=

⎡ ⎤= + −⎣ ⎦∏I + A A  (20) 

 

where iω  denotes the ith eigenvalue of W. The only computational issue associated with this 

eigenvalue-route approach in panels with large cross-sectional dimensions involves the 

calculation of eigenvalues15. In this study we followed the eigenvalue route to computing the 

log-determinants and adopted Elhorst’s software respat in combination with Brent’s direct search 

procedure (see Press et al. 1992, pp. 402) to obtain the model parameters 2, , ,σ φ λγ η  and δ. 

 

 

5   Estimation results 

 

The dependent variable is region-level TFP as defined by Equation (9). The regressors are 

random region effects which are assumed to be 2(0, ),iid ση  the region-internal knowledge 

capital stock and the knowledge spillover pool variable defined as a spatially discounted sum of 

the time-lagged internal knowledge stocks of all other regions as described by Equations (5)-(6). 

 

The estimates are presented in Table 1 together with their standard errors, shown in parentheses. 

The first column reports the results given by the conventional random effects panel data model 

(10)-(11). The estimation method is GLS. The productivity effect from region-internal 

                                                 
15 Anselin (2001, pp. 325) pointed out that the computation of eigenvalues becomes instable when N is larger than 

1,000 observations, and much remains to be done to develop efficient algorithms and data structures to allow the 
analysis of very large panel data sets. 

 



 

 
16 

 

knowledge is estimated as 1 0.200,γ =  with a standard error of 0.026. The parameter estimate of 

2 0.120γ =  determines the relative potency of distance-deflated cross-region knowledge 

spillovers. The parameter estimate of δ  is equal to 0.080. This suggests that effective knowledge 

from external regions is falling exponentially with bilateral distance. Productivity effects in 

regions that are far away from the spilling-out region is much lower than in those located closer, 

because knowledge diffusion and its productivity effects are geographically localized. 

 

The second column presents the estimates of the random effects spatial panel data model. The λ  

estimate is 0.640, with a standard error of 0.040. A likelihood ratio test for the null hypothesis of 

0λ =  yields a 2
1χ  test statistic of 5,197.314. This is statistically significant and confirms the 

importance of a spatial autoregressive disturbance in the random effects model for measuring the 

TFP impact of cross-region knowledge spillovers. The TFP effects of internal and out-of-region 

stocks of knowledge are somewhat larger when spatial autocorrelation due to neighbouring 

regions is taken explicitly into account. The strength of interregional knowledge spillovers is 

about 4.7 percent higher than in the specification that neglects the importance of a spatial 

autoregressive disturbance in the random effects model. The distance decay (or localization) 

parameter δ  is estimated to be 0.072, with a standard error of 0.027. This is consistent with the 

hypothesis of geographic localization of interregional knowledge spillovers, and supports 

Bottazzi and Peri’s (2003) findings on innovation and spillovers in European regions that a 

significant positive impact of knowledge spillovers on innovative activities in neighbouring 

regions appears to exist only for a distance up to 300 km. 

 

Table 1 about here 

 

These results provide a fairly remarkable confirmation of the role of interregional knowledge 

spillovers as a statistically highly significant factor contributing to productivity differences 

among the regions. The 2γ -estimate implies that a one percent increase in the pool of out-of-

region knowledge capital raises the average total factor productivity in the spill-in region by 

about 0.13 percent. This confirms that cross-region knowledge spillovers reinforce the impact of 

the region-internal knowledge stock, and – to a certain extent – may even compensate for a 
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weaker contribution of the region’s own knowledge stock. The evidence based on the distance 

parameter, inherent in the construction of the pool of cross-region spillovers, indicates that the 

benefits from out-of-region knowledge capital are to a substantial degree decreasing with 

geographic distance. Formally integrating the spatial configuration of the data tends to slightly 

increase the TFP effects with respect to both the region’s internal stock of knowledge and its 

pool of knowledge spillovers, by about 4.5 percent, while decreasing the distance decay effect by 

about 10 percent. 

 
 

6    Closing comments 

 

Although regional studies of economic growth and convergence have been recently in 

abundance, they characteristically focus on explaining output growth, as determined by the 

accumulation of physical capital, labour and some additional socioeconomic variables. The 

novelty of the new theory of economic growth essentially lies in explaining the growth of total 

factor productivity, which is the component of output growth not attributable to the accumulation 

of conventional input, such as labour and physical capital. This theory also underlines 

interregional economic relations that link a region’s productivity gains to economic 

developments in other regions. For this reason, we have chosen to focus on the central link 

between productivity and cross-regional knowledge spillovers at the regional level. The issue is 

not so much a question whether or not such a relationship exists. Firm-level productivity studies 

and other factual knowledge in the field leave little doubt on this. The question, however, is 

whether or not econometric studies can characterize such a relationship in a satisfactory manner 

at the regional level of observation. 

 

In spite of all the measurement difficulties and reservations with our simple reduced-form model, 

derived from the knowledge capital model, the work presented in this paper has yielded a 

number of interesting results. First and foremost, our evidence suggests that a region’s total 

factor productivity depends not only on its own knowledge capital stock, but also – as suggested 

by the theory – on the stocks of knowledge capital of its neighbouring regions. While the 

beneficial effects on TFP from region-internal knowledge have been established in earlier 

studies, the evidence of the importance of external knowledge capital is new. The second main 
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result is that knowledge spillovers and their productivity effects are to a substantial degree 

geographically localized, and this finding is consistent with the localization hypothesis, and 

supports, at the regional level, the cross-country findings of Keller (2002). 

 

The final conclusion is about the research agenda for the future. All the computations described 

above capture only those contributions of knowledge that are measured at the aggregate regional 

level. Our current understanding may be improved by looking at industry-specific data and 

considering explicitly industry-specific knowledge capital stocks and spillovers. Another avenue 

for future research is to extend our framework to allow not only for geographical, but also for 

technological dependence between regions. This would permit us to quantify knowledge 

spillover effects arising from both spatial and technological proximity. 
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Appendix 

NUTS is an acronym of the French for the “nomenclature of territorial units for 

statistics", which is a hierarchical system of regions used by the statistical office of the 

European Community for the production of regional statistics. At the top of the 

hierarchy are NUTS-0 regions (countries) below which are NUTS-1 regions and then 

NUTS-2 regions. The sample is composed of 203 NUTS-2 regions located in the pre-

2004 EU member states (NUTS revision 1999, except for Finland NUTS revision 

2003). We exclude the Spanish North African territories of Ceuta and Melilla, and the 

French Départements d'Outre-Mer Guadeloupe, Martinique, French Guayana and 

Réunion. Thus, we include the following NUTS 2 regions: 

 

Austria:  Burgenland; Niederösterreich; Wien; Kärnten; Steiermark; 

Oberösterreich; Salzburg; Tirol; Vorarlberg 

Belgium:  Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest; 

Prov. Antwerpen; Prov. Limburg (BE); Prov. Oost-Vlaanderen; 

Prov. Vlaams-Brabant; Prov. West-Vlaanderen; Prov. Brabant 

Wallon; Prov. Hainaut; Prov. Liége; Prov. Luxembourg (BE); 

Prov. Namur 

Denmark:  Danmark 

Germany:  Stuttgart; Karlsruhe; Freiburg; Tübingen; Oberbayern; 

Niederbayern; Oberpfalz; Oberfranken; Mittelfranken; 

Unterfranken; Schwaben; Berlin; Brandenburg; Bremen; 

Hamburg; Darmstadt; Gießen; Kassel; Mecklenburg-Vorpommern; 

Braunschweig; Hannover; Lüneburg; Weser-Ems; Düsseldorf; 

Köln; Münster; Detmold; Arnsberg; Koblenz; Trier; Rheinhessen-

Pfalz; Saarland; Chemnitz; Dresden; Leipzig; Dessau; Halle; 

Magdeburg; Schleswig-Holstein; Thüringen 

Greece:  Anatoliki Makedonia; Kentriki Makedonia; Dytiki Makedonia; 

Thessalia; Ipeiros; Ionia Nisia; Dytiki Ellada; Sterea Ellada; 

Peloponnisos; Attiki; Voreio Aigaio; Notio Aigaio; Kriti 

Finland:  Itä-Suomi; Etelä-Suomi; Länsi-Suomi; Pohjois-Suomi 

France:  Île de France; Champagne-Ardenne; Picardie Haute-Normandie; 

Centre; Basse-Normandie; Bourgogne; Nord-Pas-de-Calais; 

Lorraine; Alsace; Franche-Comté; Pays de la Loire; Bretagne; 
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Poitou-Charentes; Aquitaine; Midi-Pyrénées; Limousin; Rhône-

Alpes; Auvergne; Languedoc-Roussillon; Provence-Côte d'Azur; 

Corse 

Ireland:  Border, Midland and Western; Southern and Eastern 

Italy:  Piemonte; Valle d'Aosta; Liguria; Lombardia; Trentino-Alto 

Adige; Veneto; Friuli-Venezia Giulia; Emilia-Romagna; Toscana; 

Umbria; Marche; Lazio; Abruzzo; Molise; Campania; Puglia; 

Basilicata; Calabria; Sicilia; Sardegna 

Luxembourg:  Luxembourg (Grand-Duché) 

Netherlands:  Groningen; Friesland; Drenthe; Overijssel; Gelderland; Flevoland; 

Utrecht; Noord-Holland; Zuid-Holland; Zeeland; Noord-Brabant; 

Limburg (NL) 

Portugal:  Norte; Centro (P); Lisboa e Vale do Tejo; Alentejo; Algarve; 

Açores; Madeira 

Spain:  Galicia; Asturias; Cantabria; Pais Vasco; Comunidad Foral de 

Navar; La Rioja; Aragón; Comunidad de Madrid; Castilla y León; 

Castilla-la Mancha; Extremadura; Cataluña; Comunidad 

Valenciana; Islas Baleares; Andalucia; Región de Murcia 

Sweden:  Stockholm; Östra Mellansverige; Sydsverige; Norra 

Mellansverige; Mellersta Norrland; Övre Norrland; Småland med 

Öarna; Västsverige 

United Kingdom:  Tees Valley & Durham; Northumberland & Wear; Cumbria; 

Cheshire; Greater Manchester; Lancashire; Merseyside; East 

Riding & .Lincolnshire; North Yorkshire; South Yorkshire; West 

Yorkshire; Derbyshire & Nottingham; Leicestershire; 

Lincolnshire; Herefordshire; Shropshire & Staffordshire; West 

Midlands; East Anglia; Bedfordshire & Hertfordshire; Essex; Inner 

London; Outer London; Berkshire; Surrey; Hampshire & Isle of 

Wight; Kent; Gloucestershire; Dorset & Somerset; Cornwall & 

Isles of Scilly; Devon; West Wales; East Wales; North Eastern 

Scotland; Eastern Scotland; South Western Scotland; Highlands 

and Islands; Northern Ireland 
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Table 1  Total factor productivity estimation results (pooled data 1997-2002; N = 203, T = 6) 

 
The conventional  

random effects model [GLS] 
The random effects spatial panel  

data model [ML] 

Region-internal stock of 
knowledge capital [γ1] 

0.200** (0.026)1 0.209**  (0.026)1 

Interregional knowledge 
spillovers [γ2] 

0.120** (0.021)1   0.126**  (0.020)1 

Distance sensitivity  
parameter [δ] 0.080*  (0.036)1,2 0.072*   (0,027)1,2 

Spatial autocorrelation coefficient 
[λ]  ––– 0.640**  (0.040)1 

Variance 
2ση  0.004** (0.000)1,2 0.004**  (0.000)1,2 

Variance 
2σ μ  0.173** (0.024)1,2 0.155**  (0.009)1,2 

Likelihood ratio test statistic  
(p-value) 

 ––– 5,197.314     (0.000) 

Log likelhood 
AIC 

       -1,016.363 
-2,026.726 

-1,114.629 
-2,223.258 

**  denotes significance at the 0.001 level; and * significance at the 0.05 level;  
1 standard errors in brackets; 
2  standard errors based on jackknife estimates [they seem to be more reliable and – in any case – often much 

larger than standard error based on first-order asymptotics]. 
 


