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Abstract. This paper provides some evidence on the importance of geographically 

mediated knowledge spillovers from university research activities to regional 

knowledge production in high-technology industries in Austria. Spillovers occur 

because knowledge created by universities has some of the characteristics of public 

goods, and creates value for firms and other organisations. The paper lies in the 

research tradition that finds thinking in terms of a production function of knowledge 

useful and looks for patents as a proxy of the 'output' of this process, while university 

research and corporate R&D investment represent the 'input' side. We refine the 

classical regional knowledge production function by introducing a more explicit 

measure to capture the pool of relevant spatial academic knowledge spillovers. A 

spatial econometric approach is used to test for the presence of spatial effects and – 

when needed – to implement models that include them explicitly. The empirical results 

confirm the presence of geographically mediated university spillovers that transcend 

the spatial scale of political districts. They, moreover, demonstrate that such spillovers 

follow a clear distance decay pattern. 

 

JEL Classification: O31, H41, O40  

Keywords: knowledge production function, patents, high-technology R&D, spatial 

econometrics 
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1. Introduction 

Innovation activities involve the use, application and transformation of scientific and 

technical knowledge in the solution of practical problems. Much of the essential 

knowledge in this process is specialised and resides in tacit form within experienced 

researchers and engineers. Tacitness refers – as Dosi (1988, p.1126) suggested on 

the basis of earlier insights by Polanyi (1967) – to "those elements of knowledge, that 

persons have, which are ill-defined, uncodified, and which they themselves cannot 

articulate, and which differ from person to person, but which to some degree be shared 

by collaborators who have a common experience". This kind of knowledge has to be 

carefully distinguished from information in the usual sense that is factual, while 

knowledge is characteristically complex and aims to discover the why (procedural 

knowledge) and how (skills and competences). 

 

Knowledge has some of the characteristics of public goods. It is widely considered to 

be a partially excludable and non-rivalrous good (see Romer 1990). Non-rivalry implies 

that a novel piece of knowledge can be utilised many times and in many different 

circumstances without reducing its value. Knowledge is only imperfectly excludable 

and, thus, subject to spillovers. One might view knowledge spillovers as leaks, but in 

reality they are the sine qua-non condition for the development of knowledge and 

economic growth (OECD 1992, Romer 1990). Following Cohen and Levinthal (1989, p. 

571) we define knowledge spillovers to include "any original, valuable knowledge 

generated in the research process which becomes publicly accessible, whether it be 

knowledge fully characterising an innovation, or knowledge of a more intermediate 

nature". 

 

In this paper we will concentrate on knowledge spillovers1 that originate from university 

research. There are numerous channels through which knowledge might spread to 

firms. It may seep into the public domain in publications or public presentations of 

various types (university seminars, academic conferences etc.). It may travel with 

graduates who take a job at a firm or start their own. It may also be uncovered through 

reverse engineering and other purposive search processes. The extent to which 

                                                 
1
  More precisely on 'pure' knowledge spillovers in contrast to rent spillovers that are closely linked to 

knowledge embodied in traded capital or intermediated goods. 
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knowledge flows through these different channels depends upon the capability of the 

recipient (especially, his/her absorptive capacity), the nature of the knowledge itself (for 

example, whether it is tacit or codified), and other factors that bring academic and 

industry sector researchers together (Geroski 1995). If knowledge is essentially tacit, 

then it can not be transferred by ways other than personal interaction, and 

geographical distance matters. Thus, the creation of knowledge is a process that is 

essentially localised. 

 

Since knowledge spillovers are not directly observable, systematic evidence on the 

extent and importance of such spillovers is difficult to come by. In recent years various 

attempts have started to document the effect of academic knowledge spillovers on 

corporate R&D in manufacturing industry, almost exclusively in a US American context. 

Research by Nelson (1986); Mansfield (1991, 1995); Jaffe (1989); Adams (1990, 

1993); Acs Audretsch and Feldman (1992, 1994), and others has found that university 

research has substantial effects on technological change in important segments of the 

economy2. Using state-level patent and innovation data, respectively, Jaffe (1989), Acs, 

Audretsch and Feldman (1992) and others have added an important spatial dimension 

to the discussion by illustrating that the effects not only differ by industries, but also 

increase with geographic proximity.  

 

These and many other studies that followed3 did find a strong and positive relationship 

between patenting or innovative activity, and university research and corporate R&D at 

the state level in the US. The situation, however, is different in terms of the significance 

of local geographic spillover effects. Overall considered the evidence is non-existent, 

weak or mixed, and only pertaining to a few individual sectors (see, for example, 

Anselin, Varga and Acs 2000). This lack of evidence contradicts the strong findings in 

micro-level studies (see, for example, Mansfield 1995; Jaffe, Trajtenberg and 

Henderson 1993). 

 

The objective of this paper is to shed some further light on the issue in an Austrian 

context. The study lies in the research tradition inspired by Griliches (1979) and Jaffe 

                                                 
2
  Most have used the production function approach inspired by Griliches (1979) and Jaffe (1989), some (see, for 

example, Bernstein and Nadiri 1988) the cost function approach to estimate the effects of spillovers. The 

disadvantage of the latter approach is the required use of prices. 

3
  For a survey of the literature see Karlsson and Manduchi (2001). 
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(1989), but departs from previous research in two major respects. First, it is based on a 

much finer, and thus, more appropriate spatial scale than most previous studies to 

capture interactions between universities and high-technology based firms. Second, we 

specify the relevant potential of spillovers in form of spatially discounted pools of 

knowledge. The specification makes use of accessibility measures derived from 

established principles in spatial interactions theory4. A spatial econometric approach is 

implemented both by testing for the presence of spatial effects and – when necessary – 

by implementing models that incorporate them explicitly. In the remainder of the paper 

we first introduce the conceptual framework in Section 2. Next we briefly describe the 

variables and the data sets (Section 3), then outline subsequently some 

methodological issues in specifying and estimating the model (Section 4) and finally 

present the results obtained (Section 5). The paper concludes with a brief evaluation of 

the results associated with some hints for future research activities. 

 

2. The Knowledge Production Function 

We adopt the view that finds thinking in terms of a production function of knowledge 

congenial and useful, and looks for patents or innovations to serve as a proxy of the 

'output' of this process, while university research and commercial R&D represent the 

'input' side. Less 'neoclassical' oriented economists might deny the usefulness of this 

view or the simplifications on which this view is based. But we believe that the 

importance and extent of academic knowledge spillovers can be best discussed in the 

context of an empirically useful regional variant of the knowledge production function. 

 

The basic model relates the output of the process, the increment of economically 

valuable technological knowledge (say, K), in region i (i =1, …, N) to research and 

development inputs. Regional knowledge production may be seen to depend on two 

major sources5: University research, say U, and commercial research and 

                                                 
4
  See Frost and Spence (1995) for a recent review of spatial accessibility measures. 

5
  The main institutions created by Western Society to meet the purpose to generate fundamental, general and public 

knowledge have been its universities and learned societies. Fundamental research of the quality and on the scale 

comparable to these institutions calls for high thresholds of R&D investment and a corporate research environment 

conducive to developing and discussing ideas freely with other research workers. Knowledge development within 

firms also raises proprietary issues. Thus, some sort of division of labour has been developed between university 

research on the one side and industry R&D on the other (see OECD 1992). 
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development, say R, located in region i. Inventive inputs have generally been treated 

as measured by the resources invested in them, most often research and development 

expenditures. The underlying assumption in general (see, for example, Anselin, Varga 

and Acs 1997 and many others) is to assume that research and development 

expenditures will lead to immediate inventive results. Because the production of useful 

knowledge takes time, we depart from this common practice and assume a time lag 

between the investment and the yield of results. Thus, our basic regional knowledge 

production function is given in general form as 

 

Ki, t = f (Ui,t-q, Ri,t-q)  for i =1, …, N (1) 

 

where the subscripts i and t refer to region i and time t, respectively. q denotes the time 

shape of the lag between research investment and invention results. Ui,t-q and Ri,t-q, 

represent university research and industry R&D investments, respectively. We may call 

this equation – more precisely f   – the classical regional knowledge production function.  

Of course, this formulation is rather simplistic and is based on several simplifying 

assumptions, either explicit or implicit. For example, implicit is the assumption that the 

production of knowledge of a particular firm or industry not only depends on its own 

research efforts, but also on outside efforts or – more generally – on the knowledge 

pool available within the region. It is assumed that knowledge generated in universities 

spills over to the generation of economically valuable technological knowledge by firms. 

Moreover, generally the assumption is made that the variable U represents the local 

pool of potential university spillovers. Knowledge tacitness is the reason for the local 

dimension of spillovers. 

The model is comparative-static in nature and abstracts from some important dynamic 

issues. In particular, there are long, variable, and uncertain lags in the interval between 

the start of a research activity and generating useful knowledge. The implicit 

assumption of a stable relationship between the input of the production process (U and 

R) and its output (in terms of K) may be defended on the perception that science 

progresses in general by a sequence of marginal improvements rather than through a 

series of discrete, essentially sporadic breakthroughs (see, for example, Kamien and 

Schwartz 1982; Rosenberg 1976). Assumptions about the properties of f – such as 
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diminishing returns to research expenditures or economies of scale and economies of 

scope – imply restrictions on the relationship between (U, R) and K.  

The increment to useful knowledge arising from R&D and university research is likely to 

depend upon a number of further factors including a host of variables related to the 

institutional and management environment within which the resources are deployed. 

We may broaden model (1) by including these additional influences represented by a 

vector of variables, Zi, that reflects these additional influences. Thus 

Ki,t = f (Ui,t-q , Ri,t-q, Zi,t-q)                 for i =1, …, N.  (2) 

The problem of modelling regional knowledge production is much more complicated 

when we realise that different amounts of knowledge from different regions may spill-in. 

There are different approaches to the construction of spillover stocks or pools. We 

utilise the approach where every possible pair of regions is treated separately, and the 

relevant stock of non-local spillovers for the receiving region is constructed specifically 

for it, using its distance from the N-1 spilling regions as a weight. There is a wide 

choice of possible weights. We use a spatial accessibility measure to induce a distance 

metric6.  

To simplify notation, let us denote 

'  t -qU  = (U1,t-q , …, UN,t-q)                  (3) 

'  t -qR = (R1,t-q , …, RN,t-q)                  (4) 

 and 

( ),1 , 1 , 1 ,,..., ,0, ,...,i i i i i i i ND d d d d
γ γ γ γ− − − −

• − +=   for i =1, …, N (5) 

 

                                                 
6
 See, for example, Frost and Spence (1995). 
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where dij represents the average geographic distance from the spilling region j (j≠i) to 

the receiving region i. γ>0 is a distance decay parameter. Then we can define the 

spatially discounted pool of non-local university spillovers as  

,

U

i t q i t qS D U− • −=  for i =1, …, N (6) 

and the spatially discounted pool of non-local industry R&D spillovers as 

,

R

i t q i t qS D R− • −=  for i =1, …, N. (7) 

This yields the following regional knowledge production function in general form:  

( ), , , , , ,, , , ,
U R

i t i t q i t q i t q i t q i tK U S R S Z− − − −= f  for i =1, …, N (8) 

that will enable us to capture intra- and interregional knowledge spillovers of two types, 

those originating from university research and those from industrial R&D. 

In order to implement model (8) we need to specify the functional form of f. For the 

purpose of this study we have taken the Cobb-Douglas version which can be written in 

logarithmic form as 

2, 0 1 , , 3 , 4 , 5 ,log log log log log log
U R

i t i t q i t q i t q i t q i t iU S R S ZK α α α α α α ε− − − −= + + + + + +  (9) 

where Ki,t , Ui,t-q , ,

U

i t qS − , Ri,t-q , ,

R

i t qS − , and Zi,t are defined as above; α1, …, α5 are the 

parameters of interest; α0 is a constant term and εi a stochastic error term. Model (9) 

has some attractive features. Aside from being easy to estimate, the αs are estimates 

of the elasticities of the increment of economically valuable technological knowledge, 

Ki,t, with respect to changes in the respective variables, and these elasticities are 

constant. But this tractability comes at some cost. The knowledge production function 

imposes a constant, unitary elasticity of substitution between all input pairs in addition 

to the constant output elasticities noted above. 
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We interpret an influence of Ui,t-q on Ki,t as evidence of intraregional spillovers of local 

universities in (t-q, t) and an influence of −,

U

i t q
S as evidence of interregional spillovers of 

universities located outside the region. A lack of significance of α1 and α2 would 

suggest that all production of new knowledge is generated internally to the corporate 

sector, either with interregional knowledge spillovers originating from firms outside the 

region if α4 is significant or without such spillovers if α4 is not significant. 

 

3. Data, Variable Definition and the Spatial Scale of the Analysis 

This paper follows in a tradition that uses patents to measure the outcome of the 

inventive process, that is knowledge increments. Patents are preferred to innovation 

counts because it is conceptually more closely related to invention activities7. Data on 

corporate patents of high-technology firms are from the Austrian Patent Office. The 

patent data file contains information on the application date that can be considered as 

being relatively close to the date of invention, the name of the assignee(s), the address 

of the assignee(s), the name of inventor(s), the location of the inventor(s), one or more 

International Patent Classification (IPC) codes and some information on the technology 

field of the patent classification. 

 

There is no simple, consistent practice with respect to the names to which corporate 

patents are assigned. Some patents go only to the assignee. As a consequence, we 

used the address of the assignee(s) to trace patent activity back to the region of 

knowledge generation. This approach may be biased in the case of large companies 

since patents are filed by the headquarter of a company. An extensive effort was made 

to identify patent-receiving subsidiaries and to redistribute the patents correctly. In the 

case of multiple assignees located in different regions, we followed the standard 

                                                 
7
  See Griliches (1990) for a discussion of the use of patent statistics as economic indicators. It is noteworthy that 

patents provide only a partial picture of the contributions of university research. But innovation counts are less 

useful because they measure more aspects of the economic impact of inventive activities rather than the output of 

the invention process. Innovation counts (generally in terms of improved products on the market) that have been 

used in most of the US American studies are too far away from the idea of outputs of the inventive process. 
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procedure of proportionate assignment8. We made use of the MERIT concordance 

table between IPC classes and the industrial ISIC sectors (Verspagen, Moergastel and 

Slabbers 1994). This table assigns the technical knowledge in the patent classes to the 

industrial sector best corresponding to the origin of this knowledge. In some cases 

where the IPC code corresponds to more than one industrial sector, a fractional count 

was made. Appendix A gives detailed information on the assignment of the patent 

classes to the industry sectors as used in the paper. 

 

At the sectoral scale, the patent data were aggregated to the two-digit ISIC code level. 

This is essentially due to data limitations for the explanatory variables in the model, 

more specifically for the variable on industry R&D investment. Our interest focused on 

patents in the high-technology sector as an aggregate. The determination of this sector 

is not unambiguous. We define the high-technology sector to consist broadly of the 

following six two-digit industries: Computers and Office Machines (ISIC 30);  

Electronics and Electrical Engineering (ISIC 31-32); Scientific Instruments (ISIC 33); 

Machinery & Transportation Vehicles (ISIC 29, 34-35); Oil Refining, Rubber & Plastics 

(ISIC  23, 25); and Chemistry & Pharmaceuticals (ISIC 24). These industries are not 

equally technology intensive. Some produce more inventions than others, and the 

propensity to patent these inventions differs between them (see Fischer, Fröhlich and 

Gassler 1994 for some evidence). 

 

The industries contain most of the three- and four-digit-ISIC categories that are 

typically classified as high-technology. But at the two-digit ISIC level, it is virtually 

impossible to designate industries as pure high-technology. To the extent that the 

sectoral mix in these industries shows some systematic variation over space in its 

'pure' high-technology content, our results on the relationship between the increment of 

economically valuable knowledge and research investment could be affected. But we 

are confident that we will be able to detect such systematic variation by means of 

careful specification tests for spatial effects. 

 

We measure industry R&D investment in the high-technology sector using data on 

R&D expenditures, even though expenditure data might not be a particularly accurate 

measure of the real resources actually used to do R&D (see Alston, Norton and Pardey 

                                                 
8
  Note that our dependent variable is, thus, metric. 
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1998). The data stem from a R&D survey carried out by the Austrian Chamber of 

Commerce in 1991. The questionnaire was sent to 5,670 manufacturing firms in 

Austria. The response rate was 34 percent. The sample can be seen to cover nearly all 

firms performing R&D activities in Austria. The ZIP code has been used to trace R&D 

activities back to the origin of knowledge production. The data are broken down by a 

very specific Industrial Classification System of the Chamber of Commerce that can be 

converted to the International Standard Classification System only at the fairly broad 

two-digit ISIC-level.  

 

A major effort was pursued to estimate university research expenditure data for the 

variable U. There are no consolidated research budgets or expense reports available 

that present data in sufficient detail. We utilised the 1991 survey of the Austrian 

Federal Ministry for Science and Research to get access to global university research 

expenditure data. These data include research-related basic and on-going operational 

costs, but not all relevant funding sources. Thus, the data may understate the 

resources actually used in support of research. But there is no way to overcome this 

data problem. We proceeded as follows to link university research expenditures to the 

high-technology industries. First, the global data were broken down by university 

department on the basis of some simplifying assumptions and a simple disaggregation 

procedure (see Fischer et al. 2001). Then – using results from Levin et al.'s (1987) 

survey9 and Varga's (1998) study in the spirit of Feldman (1994), Audretsch and 

Feldman (1994), Feldman and Audretsch (1999) – we assigned academic departments 

and the associated expenditure figures to the six two-digit high-technology industries to 

which knowledge spillovers from university research may flow. Appendix B shows the 

match to the two-digit industries. Note that only a smaller set of academic departments 

produce knowledge relevant to the high-technology sector.  

 

Skilled workers endowed with a high level of human capital are a mechanism through 

which knowledge externalities materialise. The concentration of skilled labour in one 

place facilitates flows of information and knowledge because timeliness and face-to-

face communication are important for generating new knowledge. To capture such 

                                                 
9
  In Levin et al.'s (1987) survey, R&D managers were asked to indicate on a 7-point Likert scale the 

relevance of eleven basic and applied fields of science and the importance of external sources of 

knowledge to technological change in a broad range of manufacturing industries. 
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agglomeration externalities (see also Feldman and Florida 1994), we included a 

location quotient for high-technology employment as a proxy for Z.  

 

The lack of evidence for local geographical spillovers in most US studies is partly – and 

probably primarily – due to a too high level of spatial data aggregation. In order to 

overcome this deficiency of previous studies, we have chosen a rather fine level of 

spatial detail, the scale level of a political district rather than that of a province 

[Bundesland]10. But the price we have to pay for this choice is that this rather fine 

spatial scale – Austria is divided into 99 political districts – does not support to estimate 

Equation (9) any more. This is a consequence of the very uneven spatial distribution of 

universities over the regional system of political districts. There are not enough degrees 

of freedom or independent variations in the university research expenditure data to 

allow us to distinguish between inter- and intraregional knowledge spillovers.  

 

One way out of this problem – and the way taken here – is to combine the knowledge 

spillover aggregates that reflect the pools of intraregional and interregional knowledge 

spillovers. Let us define, thus, ( ), , ,

U

i t q i t q i t qU SΦ − − −≡ +  and ( ), , ,

R

i t q i t q i t qR SΩ − − −≡ + . Then 

we get:  

 

, 0 1 , 2 , 3 ,log log log logi t i t q i t q i t iK ZΦ Ω ξβ β β β− −= + + + +  for i =1, …, N (10) 

 

where β1, β2, and β3 are the parameters of interest; β0 is a constant and ξi a stochastic 

error term.  Φ captures the pool of intra- and interregional university spillovers as an 

aggregate, and Ω the pool of intra- and interregional knowledge spillovers within the 

high-technology sector. Specification of the length of the lag relationship has been – 

and this study makes no exception – largely ad hoc, since past attempts to estimate 

rather than impose the parameter q have been inconclusive. We follow Verspagen and 

de Lo (1999) to assume q=2, that is, an average lag of two years for inventions to 

accompany research expenditures. In our study t refers to the year 1993 and, thus, t-q 

to 1991.  

 

                                                 
10

  This spatial scale is the lowest at which relevant data are available. Political districts – though political-administrative 

spatial units – are relatively homogeneous in so far that they generally include one larger urban centre and its 

surroundings. 
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Finally, it is worth noting that the Cobb-Douglas specification (10) of the regional 

knowledge production function creates particular sample selection problem in so far as 

only observations for which all the variables (dependent and independent) are non-zero 

can be utilised. Hence, our final data set only includes those political districts for which 

patents and research expenditures are available. The estimation is carried out with 72 

out of 99 observational units for which data are complete. These sample districts 

represent 100 percent of the university research expenditures (1991); 93.3 percent of 

the industry R&D activities (1991) and 99.96 percent of the patent applications (1993) 

in the high-tech sector. The data and specifications used are listed in Appendix C. 

 

4. Estimation Issues 

When models such as the Cobb-Douglas versions of (1), (2) and (8) or Equation (10) 

are estimated for cross-sectoral data on neighbouring spatial units, the lack of 

independence across these spatial units may lead to spatial dependence [spatial 

autocorrelation] in the regression equations and, thus, cause serious problems in 

specifying and estimating the models. In the existing literature, these effects are 

typically ignored with a few exceptions such as Anselin, Varga and Acs (1997, 2000). 

We assess these effects by means of a Lagrange Multiplier [LM] test using six different 

spatial weights (N, N)-matrices W with N=72 that reflect different a priori notions on the 

spatial structure of dependence: 

 

•  the simple contiguity weights matrix [CONT], 

•  the inverse distance weights matrix [IDIS1], 

•  the square inverse distance weights matrix [IDIS2], and 

•  distance based matrices for 50 km [D50], 75 km [D75] and 100 km [D100] between 

the administrative centres of the political districts. 

 

This test is used here to assess the extent to which remaining unspecified spatial 

knowledge spillovers may be present in the knowledge production function model. 

Spatial dependence can be incorporated in two distinct ways into the model: as an 

additional regressor in the form of a spatially lagged dependent variable or in the error 
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structure. The former is referred to as Spatial Lag Model and the latter Spatial Error 

Model.  

 

For convenience let be K=(log K1,t, …, log KN,t)' and ξ =(ξ 1, …, ξN)' with N=7. Then the 

Spatial Lag Version of (10) may be expressed in matrix notation as 

 

K = ρ W K + X β + ξ (11) 

 

where K is the (72,1)-vector of observations on the patent variable, W K is the 

corresponding lag for the (72,72)-weights matrix W, X is a (72, 4)-matrix of 

observations on the explanatory variables Φ, Ω, Z and  a constant term, with matching 

regression coefficients in the vector β. ξ is a (72, 1)-vector of normally distributed 

random error terms, with zero mean and constant homoskedastic variance σ2. ρ is the 

spatial autoregressive parameter. W K is correlated with the disturbances, even when 

the latter are i.i.d. Consequently, the spatial lag term has to be treated as an 

endogenous variable and proper estimation procedures have to account for this 

endogeneity. Ordinary least squares will be biased and inconsistent due to the 

simultaneity bias. 

 

The second way to incorporate spatial autocorrelation into the regression model (10) is 

to specify a spatial process for the disturbance terms. The resulting error covariance 

will be non-spherical, thus, while unbiased, ordinary least squares [OLS] will be 

inefficient. Different spatial processes lead to different error covariances with varying 

implications about the range and extent of spatial interaction in the model (Anselin and 

Bera 1998). The most common specification is a spatial autoregressive process in the 

error terms that results in the following matrix form of the spatial error model for 

regional knowledge production: 

 

K = X β + ξ (12) 

 

with 

 

ξ = λ W ξ + η (13) 
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that is a linear regression with error vector ξ, where λ is the spatial autoregressive 

coefficient for the error lag W ξ. X is a (72, 4)-matrix of observations on the explanatory 

variables including a constant term as above, and β a (4, 1)-vector of regression 

coefficients. The errors ξ are assumed to follow a spatial autoregressive process with 

autoregressive coefficients, and a white noise error η. 

 

The similarity between the Spatial Error Model (12) – (13) and the Spatial Lag Model 

(11) for knowledge production complicates specification testing in practice, since tests 

designed for a spatial lag specification will also have power against a spatial error 

specification, and vice versa. But as evidenced in a large number of Monte Carlo 

simulation experiments in Anselin and Rey (1991), the joint use of the Lagrange 

Multiplier tests for spatial lag and spatial error dependence suggested by Anselin 

(1988) provides the best guidance for model specification. When both tests have high 

values indicating significant spatial dependence in the data, the one with the highest 

value [lowest probability] will indicate the correct specification. 

 

5. Empirical Results 

Table 1 presents the results of the estimation of the cross-sectional regression of the 

regional knowledge production function for 72 political districts in Austria and the 

distance friction parameter11 γ=2. All variables are in logarithms. 

 

We estimated the Spatial Error Model version of Equation (10) [see Equations (12)-

(13)], and for matters of illustration two special cases of (10). Both assume i.i.d. zero 

mean error terms. The first, termed Basic Model, additionally assumes β3=0, while the 

second, termed Extended Model, does not, but assumes that knowledge externalities 

of the Marshall-Arrow-Romer and Isard-Jacobs type play a decisive role. The results of 

the Basic Model are reported in column 1, the results of the Extended Model in column 

2 and those of the Spatial Error Model in column 3. All estimation and specification 

tests were carried out with SpaceStat Software (see Anselin 1995). 

                                                 
11

  The distance friction parameter has been optimised for the Basic Model. The result achieved (γ=2) is in accordance 

with Sivitanidou and Sivitanides (1995). Note that the modelling results obtained are relatively insensitive to the 

choice of γ∈ [1, ...,4].  
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Locate Table 1 about here 

 

 

An influence of Ω on patent activities indicates knowledge production internally to the 

high-technology industries including geographically mediated spillovers between R&D 

laboratories. We interpret an influence of Φ on patent activities as evidence of the 

existence of geographically mediated academic spillovers. The results provide strong 

further evidence of the empirical relevance of geographic localisation of knowledge 

spillovers as was indicated, for example, in Jaffe (1989), Acs, Audretsch and Feldman 

(1992), Jaffe, Trajtenberg and Henderson (1993), Audretsch and Feldman (1994), and 

Anselin, Varga and Acs (1997, 2000) for the American case.  

 

All regression models yield highly significant and positive coefficients for both university 

research and industry R&D spillovers [at p < 0.01]. The university research elasticities 

range in magnitude from 0.128 for the Basic Model to 0.130 for the Spatial Error Model. 

The university research effect is much smaller than the industry R&D effect. Knowledge 

externalities of the Marshall-Arrow-Romer and Isard-Jacobs type are twice as important 

as industry R&D effects. For all models, diagnostic tests were carried out for 

heteroskedasticity, using the White (1980) test. In addition, specification tests for 

spatial dependence and spatial error were performed, utilising the Lagrange Multiplier 

test. The tests for spatial autocorrelation were computed for the six different spatial 

weights matrices [CONT, IDIS1, IDIS2, D50, D75 and D100]. Only the results for the 

most significant diagnostics are reported in Table 1.  

 

The Basic Model [column 1] confirms the strong significance of university research and 

industry R&D spillovers. There is a clear dominance of the coefficient of industry R&D 

over university research, indicating an elasticity that is about three times higher. There 

is no evidence of heteroskedasticity, but the Lagrange Multiplier test for spatial error 

dependence strongly indicates misspecification of the model. 

 

When the variable Z is added [see columns 2 and 3], the explanatory power of the 

regressions is substantially and significantly increased. The model fit increases from 
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0.60 to 0.70 [measured in terms of adjusted R2], with a positive and significant effect for 

the knowledge externalities of the Marshall-Arrow-Romer and Isard-Jacobs type. 

Geographically mediated industry R&D and university research spillovers remain 

positive and significant. But the addition of the variable causes the elasticity of both to 

drop more or less substantially: industry R&D elasticity from 0.402 to 0.211 and 

university research elasticity from 0.128 to 0.100. There is no evidence of 

heteroskedasticity, but the Lagrange Multiplier test for spatial error dependence 

strongly indicates misspecification12. 

 

The correct interpretation has to be based on the spatial error model that removes any 

misspecification in the form of spatial autocorrelation. The other results are only 

reported for completeness' sake. The significant parameter of the error term [λ], the 

significant value of the Likelihood Ratio test in spatial error dependence as well as the 

missing indication for spatial lag dependence and heteroskedasticity (Breusch-Pagan 

test, see Breusch and Pagan 1979) are taken as evidence for the correctness of the 

model. There is little change between the interpretation of the model with and without 

spatial autocorrelation which is to be expected. The main effect of the spatial error 

autocorrelation is on the precision of the estimates, but in this case it is not sufficient to 

alter any indication of significance. 

 

In sum, the maximum likelihood [ML]-estimates in column 3 of Table 1 can be reliably 

interpreted to indicate the influence of university research on knowledge increment in a 

political district, not only of university research in the district itself, but also in the 

surrounding districts. The geographic boundedness of university research spillovers is 

directly linked to a distance decay effect. 

 

6. Summary and Conclusions 

In this paper, we have estimated knowledge spillovers from universities within a 

knowledge production function framework. The production function approach abandons 

the details of specific events and concentrates on total output of knowledge generation 

                                                 
12

  Exogeneity of R and U were also checked by applying the Durbin-Wu-Hausman test. The null hypothesis of   

exogeneity was not rejected (p=0.22), suggesting that the single equation estimation methods utilised are correct. 
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as a function of industry R&D and university research investment. While this approach 

is more general than the case study approach, it is also coarser and suffers from a less 

sound behavioural foundation. Nevertheless, it is currently the only available general 

way of trying to answer questions about the importance and extent of spatial 

knowledge spillovers from university research. 

 

The key assumption we made in analysing the link between knowledge spillovers and 

corporate patent activity was that knowledge externalities are more prevalent in high-

technology industries where new – technological and scientific – knowledge plays a 

crucial role. Knowledge spillovers were captured by means of spatially discounted 

spillover pools. Our empirical results confirm the presence of geographically mediated 

knowledge spillovers from university and show that these transcend the geographic 

scale of the political district. The results also demonstrate that such spillovers follow a 

clear distance decay pattern, a result that is in accordance with Anselin, Varga and Acs 

(1997, 2000) despite differences in research design and context. But these externalities 

appear to be relatively small in comparison to knowledge externalities of the Marshall-

Arrow-Romer and Isard-Jacobs type. These findings call for policy strategies to 

facilitate flows of knowledge within Austrian regional systems of innovation. 

 

The findings are also important in that they highlight the relevance of modelling 

knowledge spillovers in form of spatially discounted external stocks of knowledge. But, 

some cautionary remarks are in order as well.  

 

•  First, we have chosen to focus on those districts where patent activity and R&D 

research in the high-technology industries were observed. This leaves aside the 

issue of why certain locations have R&D and patent activity and others do not, 

especially when one of the two is present, but the other not.  

 

•  Second, we were forced to define the high-technology sector on the basis of two-

digit ISIC industries. Many products manufactured by these high-technology 

industries are medium-tech or even low-tech. This aggregation level evidently 

masks considerable underlying heterogeneity and may be too crude to capture 

clearly university research effects. The available industry R&D expenditure data do 

not match the four- and three-digit ISIC levels. Hence additional progress on the 

issue will have to await the appearance of better data. 



published in Annals of Regional Science (2003) 37(3):303-322 

17 

 

 

 

•  Third, the MAUP problem in spatial analysis teaches us that the results of spatial 

analytical studies tend to be – more or less – affected by the spatial units of 

analysis. Thus, the choice of appropriate spatial units is of crucial importance. We 

have no doubt in mind that political districts qualify as most appropriate units of 

observation in the Austrian context, not at least because they come rather close to 

the idea of functional regions. But the choice comes not without some price to be 

paid: the loss of the ability to clearly distinguish intraregional from interregional 

spillovers.  

 

•  Fourth, our knowledge production function framework is comparative-static and 

hence – as all the previous studies – abstracts from several important dynamic 

issues. Because changes in knowledge have an impact over many years, there is 

an intrinsic dynamic relationship between today's research investment and future 

knowledge generation. There are long, variable and uncertain lags in the interval 

between the start of a research activity and generating useful knowledge. The 

problem of the timing of spillovers has – admittedly – not been given adequate 

attention in our study. Given the diffuse nature of knowledge spillovers and the likely 

presence of long and variable lags, the assumption of a two year lag may be too 

crude to adequately capture knowledge spillovers. Much more work needs to be 

done to estimate rather than to a priori impose the time shape of the lag between 

the input and the output of the knowledge production process. 

 

•  Fifth, in the context of our study some major research questions relate to 

measurement issues. How much of university research in a region is spillable? What 

is the appropriate size unit (the university institute, the university department or the 

research group)? These and several other questions are crucial for measuring 

knowledge spillovers from universities. We have chosen an approach essentially 

adapted from Varga (1998) to assign academic departments and the associated 

expenditure figures to the high-technology sector to which knowledge spillovers from 

university research may flow. The approach is rather heuristic in nature. No doubt 

that much more research needs to be done to address the above questions in some 

more depth with the aim to come up with a somewhat more analytical matching 

procedure. 
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Overall, one main conclusion of the study is that the spatial dimension of knowledge 

spillovers is not something that should be disregarded. Even with a less refined model 

version we were able to describe and illustrate the theoretical and empirical necessity 

to test for the presence of spatial effects and – when needed – to revise the knowledge 

production model to include them explicitly. This type of spatial econometric analysis 

may lead to an increasing understanding of the spatial extent of knowledge spillovers 

and, thus, provide important empirical support for the theory of endogenous economic 

growth. 
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APPENDIX A  Assignment of Patent Classes to the High Technology 
Sectors at the Two-Digit ISIC-Level 

 

ISIC 
Category 

Industry Sector IPC Patent Classes 

30 Computers & Office 
Machinery 

B41J, B41L [50%], G06C, G06E, G06F, G06G, G06J, G06K, 
G06M, G11B, G11C 

31-32 Electronics & Electrical 
Engineering 

A45D [40%], A47J [80%], A47L [40%], A61H [30%], B03C, 
B23Q [10%], B60Q, B64F [20%], F02P, F21H, F21K, F21L; 
F21M, F21P, F21Q, F21S, F21V, F27B [10%], G08B, G08G, 
H01B, H01F, H01G, H01H, H01J, H01K, H01M, H01R, H01S, 
H01T, H02B, H02G, H02H, H02J, H02K, H02M, H02N, H02P, 
H03M, H05B, H05C, H05F, H05H, G08C, G09B [50%],  
H01C, H01L, H01P, H01Q, H03B, H03C, H03D, H03F, H03G, 
H03H, H03J, H03K, H03L, H04A, H04B, H04G, H04H, H04J, 
H04K, H04L, H04M, H04N, H04Q, H04R, H04S, H05K 

33 Scientific Instruments A61B, A61C, A61D, A61F, A61G [90%], A61H [40%], A61L 
[60%], A61M, A61N, A62B [50%], B01L, B64F [10%], C12K 
[25%], C12Q, F16P [60%], F22B [20%], F22D [20%], F22G 
[20%], F22X [20%], F23N, F23Q [10%], F24F [20%], F41G, 
G01B, G01D, G01F [60%], G01H, G01J, G01K, G01L, G01M, 
G01N, G01P, G01R, G01S, G01T, G01V, G01W, G02B, 
G02C, G02F, G03B, G03C, G03D, G03G, G03H, G04B, 
G04C, G04F, G04G, G05B, G05C, G05D, G05F, G05G, 
G06D, G07B, G07C, G07D, G07F, G07G, G09G, G12B, 
G21F, G21G, G21H, G21K, H05G 

29,34-35 Machinery & 
Transportation Vehicles 

A01B, A01C, A01D, A01F, A01G [10%], A01J [80%], A01K 
[30%], A21B, A21C, A21D [30%], A22B [50%], A22C [70%], 
A23C[10%], A23G [10%], A23N, A23P, A24C, A24D [50%], 
A43D, A61H [30%], A62B [30%], B01B, B01D, B01F, B01J, 
B02B [50%], B02C, B03B, B03D, B04B, B04C, B05B [50%], 
B05C [95%], B05D, B05X [50%], B06B, B07B, B07C, B08B, 
B09B [25%], B22C [10%], B23Q [70%], B25J, B27J, B28B 
[60%], B28C [60%], B28D [70%], B29B [80%], B29C [80%], 
B29D [50%], B29F [80%], B29G [50%], B29H [50%], B29J 
[40%], B30B, B31B, B31C [90%], B31D [80%], B31F [80%], 
B41B, B41D, B41F, B41G, B42C [50%], B60C [20%], B65 B, 
B65C, B65G [40%], B65H, B66B, B66C, B66D, B66F, B66G, 
B67B [50%],B67C, B67D, C02F [30%], C10F, C12H, C12L, 
C12M, C13C, C13G, C13H, C14B [50%], C14C [50%],D01B 
[50%], D01C [50%], D01D [50%], D01F [50%], D01G [50%], 
D01H [50%], D02D, D02G [50%], D02H [50%], D02J [50%], 
D03D [50%],D03J, D04B [50%], D04C [50%], D04D [50%], 
D04G [50%], D04H [50%], D06C, D06F [70%], D06G, D06H 
[70%], D21F, D21G, E01B [50%], E01C [50%], E01H [80%], 
E02D [30%], E03B [30%], E04D [25%], E21B [45%], E21C, 
E21D [50%], F01B, F01C, F01D, F01K, F01L, F01M, F01N, 
F01P, F02B, F02C, F02D, F02F, F02G, F02K, F03B, F03C, 
F03D, F03G, F03H, F04B, F04C, F04D, F04F, F15B, F15C, 
F15D, F16C, F16J [80%], F16K, F16N, F16T, F23B, F23C, 
F23D, F23G, F23H, H23J, F23K, F23L, F23M, F23Q [60%], 
F23R, F24F [80%], F24J [30%], F25B, F25C, F25D, F25J, 
F26B, F27B [90%], F27D, F28B, F28C, F28D, F28G, F41A, 
F41B, F41C, F41D, F41F, F41H [50%], F42B, F42C, F42D 
[50%], G01F [40%], G01G, G21J 



published in Annals of Regional Science (2003) 37(3):303-322 

23 

 

 

23,25 Oil Refining, Rubber & 
Plastics 

A47G [50%], A47K [40%], A61J [40%], A62B [20%], B29H 
[50%], B60C [80%], C10B, C10C, C10G, C10L, C10M, D06N 
[50%], F42D [50%] 

24 Chemistry & 
Pharmaceuticals 

A01M [20%], A01N, A61J [30%], A61K [95%], A61L [40%], 
A62D, B09B [75%], B27K [70%], B29B [20%], B29C [20%], 
B29D [50%], B29F [20%], B29G [50%], B29K, B29L, B41M 
[15%], B44D [50%], C01B, C01C, C01D, C01F, C01G, C02F 
[50%], C05B, C05C, C05D, C05F, C05G, C06B, C06C, C06D, 
C06F, C07B [95%], C07C [95%], C07D [95%], C07F [95%], 
C07G [95%], C07H [90%], C07J, C07K, C08B, C08C, C08F, 
C08G, C08H, C08J, C08K, C08L, C09B, C09C, C09D, C09F, 
C09G, C09H, C09J, C09K, C10H, C10J, C10K, C10N, C11B 
[50%], C11C [50%], C11D, C12D [90%], C12K [75%], C12N 
[80%], C12P [50%], C12R [10%], C12S, C14C [50%], E04D 
[25%], F41H [50%] 

 

Note:       The assignment is based on the MERIT concordance table (Verspagen, Moergastel and Slabbers 1994) 
between the International Patent Classification (IPC) and the International Standard Industrial Classification of 
all economic activities (ISIC-rev.2) of the United Nations. The percentages in brackets in the last column of 
the table give the share of the patents in the IPC-class assigned to the accessory ISIC-category if not all 
patents in the IPC-class are assigned to the corresponding ISIC-category. A percentage of 80%, for example, 
therefore means that all patents in the IPC-class are assigned to the corresponding ISIC-category 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ctd. 
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APPENDIX B   Linking Scientific Fields/University Departments to the 
Two-Digit High Technology Sectors 

 

ISIC 
Category 

Industry Sector Associated Scientific Fields/University Departments 

30 Computers & Office 
Machinery 

Fields connected with Information Technologies: Micro-
Electronics, Automation and Robotics, Computer Sciences, 
etc. 

31-32 Electronics & Electrical 
Engineering 

Electrical Engineering, Micro-Electronics, Technical 
Mathematics, Automation and Robotics, Computer Sciences, 
etc. 

33 Scientific Instruments Engineering Fields such as Mechanical Engineering, Electrical 
Engineering, Micro-Electronics, Automation and Robotics, 
Technical Mathematics, Computer Sciences, Physics-Related 
Fields, Medicine-Related Fields, Biology-Related Fields, 
Materials Sciences, etc. 

29,34-35 Machinery & 
Transportation Vehicles 

Engineering Fields including Mechanical Engineering and 
Electrical Engineering, Heat Science, Thermodynamics, 
Material Sciences, Computer Sciences, Technical 
Mathematics, Astronomy, Transport Science 

23,25 Oil Refining, Rubber & 
Plastics 

Chemistry-Related Fields including Materials Sciences, 
Chemical Engineering and Care Chemistry except for certain 
sectors such as Quantum Chemistry, Biochemistry and 
Geochemistry 

24 Chemistry & 
Pharmaceuticals 

Chemistry-, Pharmaceuticals- and Medicine-Related Fields 
including Microbiology, Pharmaceutical Chemistry, 
Biochemistry, etc. 

 

Source: On the basis of Levin et al. (1987), Feldman (1994); Audretsch and Feldman (1994) and Varga (1998) in the 
spirit of Feldman and Audretsch (1999); only the most important scientific fields/university departments are 
listed. 
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APPENDIX C  Patent Applications (1993), Industry R&D (1991) and 
University Research (1991) for 72 Austrian Political 
Districts 

 

Political District Patent Applications

[Variable K] 

Industry R&D 

[Variable R] 

University Research 

and Out-of-District 

Access to University 

Research 

[Variable Φ ] 

Eisenstadt-Umgebung 3.00 35.45  1.24 

Neusiedl am See 3.00 7.29  1.38 

Oberpullendorf 1.00 3.80  0.52 

Klagenfurt (Stadt) 19.50 3.29  36.14 

Villach(Stadt) 8.00 16.16  0.13 

Hermagor 1.00 0.34  0.09 

Sankt Veit an der Glan 1.00 3.16  0.26 

Spittal an der Drau 4.00 0.41  0.10 

Villach Land 6.50 35.01  0.14 

Wolfsberg 2.00 6.24  0.35 

Feldkirchen 2.00 0.35  0.20 

Krems (Stadt) 2.50 17.74  0.71 

Sankt Pölten (Stadt) 7.50 21.34  1.01 

Waidhofen (Stadt) 3.00 6.60  0.31 

Wiener Neustadt (Stadt) 5.00 14.24  1.65 

Amstetten 16.00 87.49  0.37 

Baden 27.50 360.98  4.80 

Gänserndorf 3.00 14.33  3.19 

Korneuburg 12.50 46.70  9.82 

Mödling 22.40 213.57  12.97 

Neunkirchen 10.00 61.54  1.01 

Sankt Pölten (Land) 3.50 4.61  1.45 

Scheibbs 1.00 4.98  0.42 

Tulln 2.80 34.12  3.29 

Waidhofen an der Thaya 1.00 1.20  0.28 

Wiener Neustadt (Land) 6.60 11.75  1.55 

Vienna-Umgebung 14.60 323.08  25.35 

Linz (Stadt) 62.30 1144.26  218.16 

Steyr (Stadt) 28.60 1123.43  0.36 

Wels (Stadt) 12.50 30.87  0.44 

Braunau am Inn 8.50 14.73  0.13 

Gmunden 19.10 103.77  0.20 

Grieskirchen 10.00 49.42  0.24 

Kirchdorf an der Krems 12.30 7.21  0.25 

Linz-Land 10.70 111.67  2.74 

Perg 13.00 26.41  0.44 

Ried im Innkreis 5.30 11.96  0.17 

Rohrbach 3.00 3.11  0.22 

Schärding 5.00 10.34  0.14 

Steyr-Land 8.00 10.43  0.28 

Vöcklabruck 43.80 318.82  0.20 

Wels-Land 5.00 77.04  0.28 

Salzburg (Stadt) 34.30 36.70  117.1 

Hallein 8.10 107.28  0.53 

Salzburg-Umgebung 23.80         20.92           0.70 
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Zell am See 5.00 4.57  0.12

Graz (Stadt) 84.30 399.49  1195.15

Bruck an der Mur 4.30 9.17  1.09

Deutschlandsberg 5.50 93.80  0.97

Feldbach 1.00 2.08  0.81

Fürstenfeld 2.00 12.38  0.61

Graz-Umgebung 8.50 347.15  8.75

Hartberg 1.00 5.53  0.65

Judenburg 12.00 42.26  0.38

Knittelfeld 3.00 20.34  0.48

Leibnitz 4.00 2.23  1.09

Leoben 3.00 5.93  98.51

Liezen 4.00 25.22  0.22

Mürzzuschlag 1.00 9.84  0.55

Voitsberg 10.00 7.88  1.57

Weiz 4.00 123.45  1.68

Innsbruck-Stadt 9.00 5.54  852.03

Innsbruck-Land 29.40 39.07  8.38

Kitzbühel 7.00 15.91  0.18

Kufstein 9.00 329.98  0.25

Lienz 3.00 8.73  0.08

Schwaz 15.00 80.21  2.58

Bludenz 1.00 17.86  0.06

Bregenz 12.00 66.74  0.04

Dornbirn 11.00 146.49  0.04

Feldkirch 14.00 90.23  0.05

Vienna 383.70 6999.29  3345.06

 

Notes: Industry R&D and University Research were measured in terms of expenditures, all figures are in millions of 
1991 ATS; Patent and industry R&D data refer to high technology industries; University research data include 
those academic institutes that are expected to be important for the high technology industries; Universities are 
located in seven political districts: Vienna hosting six universities, Graz (Stadt), Innsbruck (Stadt), Salzburg 
(Stadt), Linz (Stadt), Klagenfurt (Stadt) and Leoben; all the other political districts have only out-of-district 
access to university research. 

Sources:  Patent data were compiled from the Austrian Patent Office database; Industry R&D data were compiled from 
the 1991 Industry R&D Survey of the Austrian Chamber of Commerce; University research date were 
estimated on the basis of information provided by the Austrian Federal Ministry for Science and Research 
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Table 1 Regression results for log (Patent Applications) at the level of Austrian political 
districts (N = 72, 1993) 

 

Model Basic 

Model 

[OLS] 

Extended Model 

[OLS] 

Spatial Error 

Model 

[ML] 

 

Constant 

 

 

Log Φ  

 

 

Log Ω 

 

 

Log Z 

 

 

Spatial Autoregressive 

Coefficient λ 

 

   0.608*** 

(0.182) 

 

   0.128*** 

(0.040)    

 

   0.402*** 

(0.054) 

 

    

 

   3.741*** 

(0.783) 

 

   0.100*** 

(0.037) 

 

   0.211*** 

(0.065) 

 

   0.512*** 

(0.125) 

 

   3.315*** 

(0.764) 

 

   0. 130*** 

(0. 037) 

 

   0. 213*** 

(0. 064) 

 

   0.438*** 

(0.121) 

 

 0.366* 

(0.190) 

 

Adjusted R
2
 0.598 0.672 0.699 

 

Multicollinearity Condition 

Number 

 

White Test for Heteroscedasticity 

 

Breusch-Pagan Test for 

Heteroscedasticity 

 

Likelihood Ratio Test for Spatial  

Error Dependence 

 

Lagrange Multiplier Test for 

Spatial Error Dependence 

 

Lagrange Multiplier Test for 

Spatial Lag Dependence 

 

 

3.978 

 

 

3.210 

 

 

 

 

 

 

 

10.092 

(D100) 

 

0.551 

(D50) 

 

21.341 

 

 

8.839 

 

 

 

 

 

 

 

3.444 

(D100) 

 

0.889 

(D75) 

 

21.341 

 

 

 

 

2.277 

 

 

2.863 

(D100) 

 

 

 

 

0.382 

(IDIS2) 

 

Notes:  Estimated standard errors in parentheses; critical values for the White statistic respectively 5 and 9 degrees of 
freedom are 11.07 and 16.92 (p = 0.05); critical value for the Breusch-Pagan statistic with 3 degrees of freedom 
is 7.82 (p = 0.05); critical values for Lagrange Multiplier Lag and Lagrange Multiplier Error statistics are 3.84 (p = 
0.05) and 2.71 (p = 0.10); critical value for Likelihood Ratio-Error statistic with one degree of freedom is 3.84 
(p=0.05); spatial weights matrices are row-standardized: D100 is a distance-based contiguity for 100 kilometers; 
D75 a distance-based contiguity for 75 kilometers; D50 a distance-based contiguity for 50 kilometers; IDIS2 
inverse distance squared; only the highest values for a spatial diagnostics are reported; * denotes significance 
at the 10 percent level, ** significance at the 5 percent level and *** significance at the one percent level 

 

 

 


