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Abstract 
 

It is already known for several decades that the implementation of capital augmented technical 

progress, as is done to date, leads to the conclusion that the CES production has to be Cobb-

Douglas or there exists labor augmented technical progress only. This is the so-called Cobb-

Douglas labor augmented only paradox. Institutions keep on using this way of thinking in their 

models in spite of the theoretical inconsistency. We reject the old concept, i.e., all kind of neutral 

and non-neutral capital and labor augmented technical progress and introduce a new 

implementation of technical progress to avoid this theoretical problem. We explain the term 

labor saving technical progress, showing that technical progress is always relatively labor 

saving. We also analyze the problem on how to estimate the coefficient of elasticity of 

substitution.  Economic growth is presented as partly exogenous, due to technical progress, and 

partly endogenous, due to capital growth. We introduce formulas to convert total factor 

productivity into economic growth to show the connection. This new theory is not limited to 

growth models but can be used also in DSGE models and possibly also in other areas where CES 

functions are useful. It will give you a different angle of view on the Solow model. And last but 

not least we will show the connection between Solow’s growth accounting and neo-classical 

growth theory. 
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1. Introduction 
 

 

Solow (1956) and Arrow et al. (1961) first introduced production functions with constant elasticity of 

substitution as an extension of the Leontief and the Cobb-Douglas production function so far used. 

Solow in 1956 started his paper with the following statement: 

 

‘All theory depends on assumptions which are not quite true. That is what makes it theory. The art of 

successful theorizing is to make the inevitable simplifying assumptions in such a way that the final 

results are not very sensitive. A "crucial" assumption is one on which the conclusions do depend 

sensitively, and it is important that crucial assumptions be reasonably realistic. When the results of a 

theory seem to flow specifically from a special crucial assumption, then if the assumption is dubious, 

the results are suspect.’  
 

At that time, he was talking about the Harrod-Domar model, but his statement is still valid today and 

even in a much wider and general context. In line of thought with his paper, I wish to argue that this is 

true for capital and labor augmented technical progress, whether it is neutral or non-neutral (Brugger, 

2017) (Klump, 2000). 

 

In order to show you the details of this thought, we will start in section 2, with a description of a 

simple growth model. However, the model itself is not relevant. In section 3, we show the conditions 

of consumers behavior to reach a unique and stable equilibrium using CES functions in this growth 

model.  Section 4 will be about wages, capital gain and the important relationship between capital 

share, capital-labor-mix and the capital to income ratio. 

 

Although, the classical way of describing a CES function is as good as the normalized CES function 

from a mathematical point of view, each way has his advantage from an economical interpretation 

point of view. Section 5 will be about changing the base point, which is an important feature, that we 

will use together with the normalization method. To understand how we can discriminate a single CES 

function, we describe the class of CES functions.  

 

In section 6, we will use this knowledge in a CES production function. We show the relation between 

general income and capital growth versus implementation of capital and labor augmented technical 

progress. General growth here is potential growth as a general progress phenomenon for capital and 

income.  

 

In section 7, we introduce total factor productivity as the technical progress term, only caused by 

technical improvement. It contains every kind of growth that is not caused by the growth of other 

variables in the production function, i.e., not caused by capital and labor in our case. We will show the 

connection between total factor productivity, general growth, capital and labor augmented technical 

progress and the capital-labor-mix. 

 

In section 8, we remind you that growth can also be influenced by consumer and producer behavior by 

changing to another capital to income ratio. 
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The known theoretical problem with regard to capital augmented technical progress leads us to the 

conclusion that we have to reject this type of progress as implemented to date (section 9). From here 

we take it a step further and have to conclude that Hicks, Harrod, Solow neutral and even (or better: 

especially) non-neutral implementations have to be rejected. However, we do not deny that there exists 

technical progress. It is the way in which it is implemented that is wrong. 

 

In section 10, we discuss a new way of implementing technical growth, which is in fact not so new, 

but now at least we know why we do it. A brief introduction to the problem in estimating the capital-

labor-mix, the elasticity of substitution and technical progress is captured in section 11. 

 

We go into detail on the term labor saving progress in section 12, showing that technical progress is 

always relatively labor saving. Finally, in section 13 we discuss growth accounting vs. the classical 

growth theory. We end with some conclusions in section 14.  

 

2.  Simple growth model 
 

As we did for the Cobb-Douglas case in De la Fonteijne (2011) we will start with the construction 

of our simple closed economy without government. This, however, is done for convenience and 

is not limiting our conclusions. 

We assume that consumers have the possibility to decide to buy and consume the amount C they 

desire within the limits of their income. Our economy is transparent and customers tell 

producers the products they like to buy and producers produce exactly what is needed and the 

level of inventory is zero. 

Producers on the other hand can decide which amount they will invest and are going to buy from 

capital goods producers. 

Because these two purchases have to be equal to the total amount of production Y, we can write: 𝑌 = 𝐶 + 𝐼                                         (1) 

This is also equal to the amount to be paid to the producers. 

The producers have to pay the workers a wage w for the number of labor units L and they have 

to pay for the use of capital K. Direct or indirect these payments will end up with income Y 𝑌 =  𝑤𝐿 + (𝛿 +  𝑟)𝐾                              (2) 

in which δ is depreciation of capital K and r is interest on capital use. 

As consumers can decide to spend C, the remaining part 𝑆 of Y is saved. 𝑌 =  𝐶 +  𝑆                                        (3) 

If we look at the production side, we assume the production to be dependent on K and L. 𝑊 =  𝐹(𝐾, 𝐿)                                (4) 
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This production W has the value Y 

W = Y                                        (5) 

As a result, we conclude that the investments I will equal the savings S. 𝐼 =  𝑆                                           (6) 

Moreover, we can consider capital as accumulated labor combined with energy E (from the sun) 

and resources R (from mother earth). We assume this energy E and resources R are available for 

free and it becomes valuable once we add labor to exploit those resources. Action to preserve 

the environment can be thought as part of the consumption 𝐶 once we agree upon this to do so, 

or even better to think of it as a part of depreciation to emphasize the fact that you have to 

consider it as costs to generate consumption 𝐶. For the sake of simplicity, we consider 

knowledge (human capital, research, entrepreneurial spirit, etc.) as factors responsible for 

technical growth concentrated in one, two or more parameters.  

3. The specific case of CES production functions 
 

We choose the production function F to be a homogeneous CES production function only for 

demonstration and convenience, because we can derive formulas in explicit and simple form. 

The philosophy stays the same if we choose an arbitrary other type of production function.  

We will start with the general formula in normalized form (Klump et al., 2011) with only the 

production factors capital K and labor L. 

𝑌 = 𝐹(𝐾, 𝐿)  =  𝑌0[𝛼 (𝐾𝐾0)𝛾 + (1 − 𝛼) ( 𝐿𝐿0)𝛾]𝜂 𝛾⁄     (7) 

In which α, 𝛾, 𝜂 are parameters describing a specific production process in our economy. The 

interchangeability between K and L is characterized by the elasticity coefficient of substitution 𝜎 𝜎 = 11−𝛾        (8a) 

𝛾 = 𝜎−1𝜎         (8b) 

 The parameter 𝜂 defines the returns of scale. For reasons of easy explaining we take 𝜂 = 1 in 

which case we can rewrite equation 7 per capita as 𝑦 = 𝐹(𝑘, 1) =  𝑦0[𝛼 ( 𝑘𝑘0)𝛾 + (1 − 𝛼)]1 𝛾⁄                              (9) 

We consider a simple model with following equations: 𝑌 =  𝐶 +  𝐼        (10) 

𝑌 = 𝑌0[𝛼 (𝐾𝐾0)𝛾 + (1 − 𝛼) ( 𝐿𝐿0)𝛾]1 𝛾⁄      (11) �̇� = 𝐼 − 𝛿𝐾        (12) 



7 

 

With Y is income, K is used capital, L labor needed and 𝛿 is the depreciation rate of capital K. 

Per capita the equations are: 𝑦 =  𝑐 +  𝑖        (13) 𝑦 = 𝑦0[𝛼 ( 𝑘𝑘0)𝛾 + (1 − 𝛼)]1 𝛾⁄         (14) �̇� = 𝑖 − 𝛿𝑘        (15) 

with the labor productivity  𝑦 = 𝑌𝐿              (16) 

the capital to labor ratio or capital deepening 𝑘 =  𝐾𝐿               (17) 

the consumption to labor ratio 𝑐 =  𝐶𝐿              (18) 

and the investment to labor ratio 𝑖 =  𝐼𝐿               (19) 

If we choose 𝑐 = 𝑐1𝑦              (20) 

where 𝑐1 is the consumer part of income y, then we can solve the equilibrium solution of 

equation 13-15 for k and y at every consumers choice c1. In fact, c1 is determined by c and i and 

so by consumers and producers spending. The equilibrium solution is (we use 𝑝 = 𝑦0 and 𝑎𝐾 =1𝑘0 interchangeable):  

𝑘𝑐1  = [ 1−𝛼( 𝛿𝑝(1−𝑐1))𝛾−𝛼𝑎𝐾𝛾]
1 𝛾⁄

      (21) 

𝑦𝑐1  = 𝛿(1−𝑐1) [ 1−𝛼( 𝛿𝑝(1−𝑐1))𝛾−𝛼𝑎𝐾𝛾]
1 𝛾⁄

     (22)  

𝑐𝑐1 = 𝑐1 𝛿(1−𝑐1) [ 1−𝛼( 𝛿𝑝(1−𝑐1))𝛾−𝛼𝑎𝐾𝛾]
1 𝛾⁄

     (23) 

and, the capital to income ratio 𝛽 at c1 𝛽𝑐1 = (𝑘𝑦)𝑐1  = (1−𝑐1)𝛿        (24) 
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which is, with 𝑠 = (1 − 𝑐1) equivalent to the well-known solutions found in literature 𝛽 = 𝑠𝛿. 
Maximizing the isoelastic utility function with risk neutrality 𝑢(𝑐), without discount, results in 

𝑐1_𝑜𝑝𝑡 =  1 – ((𝑝𝑎𝐾𝛿 )𝛾 𝛼)1 (1−𝛾)⁄
     (25) 

𝑘𝑜𝑝𝑡  = [ 1−𝛼( 𝛿𝑝(1−𝑐1_𝑜𝑝𝑡))𝛾−𝛼𝑎𝐾𝛾]
1 𝛾⁄

      (26) 

𝑦𝑜𝑝𝑡  = 𝛿(1−𝑐1_𝑜𝑝𝑡) [ 1−𝛼( 𝛿𝑝(1−𝑐1_𝑜𝑝𝑡))𝛾−𝛼𝑎𝐾𝛾]
1 𝛾⁄

    (27) 

𝑐𝑜𝑝𝑡  = 𝑐1_𝑜𝑝𝑡 𝛿(1−𝑐1_𝑜𝑝𝑡) [ 1−𝛼( 𝛿𝑝(1−𝑐1_𝑜𝑝𝑡))𝛾−𝛼𝑎𝐾𝛾]
1 𝛾⁄

    (28) 

𝛽𝑐1_𝑜𝑝𝑡 = (𝑘𝑦)c1_𝑜𝑝𝑡  = (1−𝑐1_𝑜𝑝𝑡)𝛿 = 1𝛿 ((𝑝𝑎𝐾𝛿 )𝛾 𝛼)1 (1−𝛾)⁄
   (29)  

For a graph of 𝑐, 𝑘, 𝑦 as a function of 𝑐1 see fig. 1 with 𝛼 =  0.3022 and 𝛿 =  .079, 𝑤 =   55.7, 𝑎𝐾 = .0062 and 𝑝 = 84.4  arbitrary chosen for the Cobb-Douglas (𝜎 = 1) and for 𝜎 = .4. 

Notice that by putting these equations per labor unit will force capital k to be used to its full 

capacity to generate y and the part not used for consumption is invested. Except for capital no 

stocks exist, which means that these stocks cannot influence the dynamic behavior. 

By choosing 𝑐 = 𝑐1𝑦 we introduce the consumers and producers behavior with respect to the 

dynamics of the system.  

If we rewrite eq. 13-15 this results in: �̇� = 𝑝[𝛼(𝑎𝐾𝑘)𝛾 + (1 − 𝛼)]1 𝛾⁄ − δk − c    (30) 

We choose 𝑐 = 𝑐1𝑦 and linearize around  𝑘𝑐1 , using Taylor expansion at 𝑐1 gives 

�̇� = (1−𝑐1)(𝑘𝑦)𝑐1
𝛼(𝑎𝐾𝑘𝑐1)𝛾𝛼(𝑎𝐾𝑘𝑐1)𝛾+(1−𝛼)𝑘 − 𝛿𝑘=( 𝛼(𝑎𝐾𝑘𝑐1)𝛾𝛼(𝑎𝐾𝑘𝑐1)𝛾+(1−𝛼)− 1)𝛿𝑘 = (1 − 𝑘𝑠)𝛿𝑘  (31) 

The eigen value of this equation is λ λ = (1 − 𝑘𝑠)𝛿 < 0          (32) 

which holds for ∀ 𝑐1𝜖(0,1) 
This means that this system is stable and will converge towards the equilibrium at 𝑐1, starting 

from arbitrary initial condition 𝑘0 > 0. The time constant τ is 
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τ =  |1λ|         (33) 

 

 

 

Fig. 1 CES production functions, the Cobb-Douglas case (𝜎 = 1) with 𝑝 = 84.4, 𝑎𝐾 = .0062, 𝛿 = 0.079, 𝛼 =  0.3022 and a CES case with 𝜎 = .4. Also shown are the profit curves for fixed wage 𝑤 = 55.7 and for wages under maximum profit conditions. Curves are tangent at  𝑐1 = .85. 
4. Wages, capital share, labor share and net profitability rate in CES 

production functions 
 

First, we maximize profit per work unit keeping wages fixed and then with variable wages under 

maximum profit conditions. 

At this point, we introduce labor to understand what this will mean for the number of labor units 

required. So far, we have examined long-term profit maximization. On the short term, firms 

consider capital 𝐾 and wages 𝑤 as fixed and optimize with respect to the workforce they hire. 

We use equations 13-15 and 

 𝑌 =  𝑤𝐿 + (𝑟 + 𝛿)𝐾       (34) 

Equation 34 divided by L results in 

Lemma: If consumer’s behavior is 𝑐 = 𝑐1𝑦 under maximizing profit with wages fixed or 

under maximum profit conditions, then all choices  𝑐1 will result in a unique and stable 

equilibrium. 
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𝑦 =  𝑤 + (𝑟 + 𝛿)𝑘       (35) 

We calculate profit 𝜋 for fixed w as 𝜋 =  𝑦 − 𝑤 − 𝛿𝑘       (36) 

Maximum profit is at  
𝑑𝜋𝑑𝑘 = 𝑑𝑦𝑑𝑘 − 𝛿=0     (37) 

𝑑𝑦𝑑𝑘 = 𝛼𝑝𝛾𝑦1−𝛾𝑎𝐾𝛾𝑘𝛾−1 = 𝛼𝑝𝛾𝑎𝐾𝛾𝛽𝛾−1 = 𝛿    (38) 

Taking the second derivative with respect to k together with equation 24 gives us 𝑑2𝜋𝑑𝑘2 = 𝑑2𝑦𝑑𝑘2 = 𝛼𝑝𝛾𝑦1−𝛾𝑎𝐾𝛾(𝛾 − 1)𝑘𝛾−2 +  𝛼𝑝𝛾(1 − 𝛾)𝑦−𝛾 𝑑𝑦𝑑𝑘 𝑎𝐾𝛾𝑘𝛾−1 = 

                              = 𝛼𝑦𝑘−2𝑝𝛾𝑎𝐾𝛾𝛽𝛾(𝛾 − 1)(1 −  𝛿𝛽) = 𝛼𝑝𝛾𝑦𝑘−2𝑎𝐾𝛾𝛽𝛾(𝛾 − 1)𝑐1 < 0  (39) 

which is the condition that we deal with a maximum. 

From eq. 37 we calculate with eq. 24 the maximum profit at 𝑐1 

𝑐1_𝑜𝑝𝑡_𝑤𝑓𝑖𝑥 =  1 – ((𝑝𝑎𝐾𝛿 )𝛾 𝛼)1 (1−𝛾)⁄ =  1 – (( 1𝛽0𝛿)𝛾 𝛼)1 (1−𝛾)⁄
 for ∀𝑤 fixed.   (40) 

Notice that 𝑐1_𝑜𝑝𝑡_𝑤𝑓𝑖𝑥 = 𝑐1_𝑜𝑝𝑡 for ∀𝑤 fixed.    (41) 

Notice that maximum profit for fixed wages w coincides with maximum utility 𝑢(𝑐) = 𝑐 at 𝑐1 =𝑐1_𝑜𝑝𝑡. 
Maximum profit, capital, income and consumption per capita can be calculated from equation 

36, 21, 22 and 23. 

Under maximum profit condition we have 𝜕𝑌𝜕𝐿 = 𝑤         (42) 

 and  𝜕𝑌𝜕𝐾 = 𝑟 + 𝛿        (43) 

 which yields the following equations: (1 − 𝛼)𝛼(𝑎𝐾𝑘)𝛾+(1−𝛼)𝑦 = 𝑤       (44) 

𝛼(𝑎𝐾𝑘)𝛾𝛼(𝑎𝐾𝑘)𝛾+(1−𝛼) 𝑦𝑘 = 𝛿 + 𝑟      (45)  

For each c1 we can calculate a corresponding w and r for which maximum profit conditions 

holds.  

We rewrite equation 44 and 45 as labor share ws and capital share ks 
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𝑤𝑠 = 𝑤𝑦 = (1 − 𝛼)𝛼(𝑎𝐾𝑘)𝛾+(1−𝛼) = 1 − 𝛼 ( 𝛽𝛽0)𝛾    (46) 

𝑘𝑠 = 𝑘𝑦 (𝛿 + 𝑟) = 𝛽(𝛿 + 𝑟) = 𝛼(𝑎𝐾𝑘)𝛾𝛼(𝑎𝐾𝑘)𝛾+(1−𝛼) = 𝛼(𝑎𝐾𝑘)𝛾(𝑦𝑝)𝛾 = 𝛼 ( 𝑘𝑦𝑘0𝑦0)𝛾 = 𝛼 ( 𝛽𝛽0)𝛾  (47)  

Of course, labor share plus capital share adds up to one. 

 𝑤𝑠 + 𝑘𝑠 = 1        (48) 

We are left with one degree of freedom in our system. We can choose e.g. one of the following: 𝑐1, 

w, 𝛽, 𝑦, 𝑘, 𝑤𝑠, 𝑘𝑠, 𝑟 or time preference and optimize a desirable consumer utility function. In our 

opinion the time preference is not a suitable tool as also stated in De la Fonteijne (2015a).  

Suppose we choose ratio 𝑐1 with known parameters 𝛿, p, 𝑎𝐾 , 𝛼, 𝜎. For a sustainable solution to 

exist we choose 𝑐1_𝑜𝑝𝑡 < 𝑐1 < 𝑐1_𝑚𝑎𝑥. 

The value of k, y, c and 𝛽 can be calculated from equation 21, 22, 23 and 24. 

Wage w and wage share ws can be calculated from equation 24, 44, and 46 as 

𝑤𝑠 = 1 − 𝛼 ( 𝛽𝛽0)𝛾 = 1 − 𝛼 ( (1−c1)(1−𝑐1_0))𝛾     (49) 

𝑤 = 𝑦 (1 − 𝛼 ( 𝛽𝛽0)𝛾) = 𝑦 (1 − 𝛼 ( (1−c1)(1−𝑐1_0))𝛾)    (50) 

and capital share ks from equation 48 and 49 as 

𝑘𝑠 = 1 − 𝑤𝑠 = 𝛼 ( 𝛽𝛽0)𝛾 = 𝛼 ( (1−c1)(1−𝑐1_0))𝛾    (51) 

Net profitability rate r follows from equation 45 

𝑟 = 𝑘𝑠𝛽 − 𝛿 = 𝛼( 𝛽𝛽0)𝛾𝛽 − 𝛿 = ( 
𝛼( (1−c1)(1−𝑐10))

𝛾
(1−𝑐1) − 1) 𝛿   (52) 

where 𝑐10  is the corresponding value for 𝑐1 at the base point in equilibrium. Or we write 

equivalent 

𝑟 = 1−𝑤𝑠𝛽 − 𝛿 = 𝛼 𝜎𝜎−1𝛽0 (1 − 𝑤𝑠) 11−𝜎 − 𝛿      (53) 

or the inverse 𝑤𝑠 = 1 − 𝛽0(𝑟 + 𝛿)1−𝜎𝛼𝜎       (54) 

Fig. 2 shows the labor work share as a function of 𝑐1. The graph is characteristic for all CES 

functions. 
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Fig. 2 Workshare as a function of 𝑐1 with parameter 𝜎. For the base point 𝑐1=.85.  

 

5. Changing the base point in CES production functions  
 

We will show that for a change in base point there exists a parameter transformation, which 

leaves the elasticity of substitution invariant. 

Recall that the production function is 

𝑦 = 𝑦0 [𝛼0 ( 𝑘𝑘0)𝛾 + (1 − 𝛼0)]1 𝛾⁄               (55) 

Suppose that our system is in equilibrium in the base point 𝑘 = 𝑘0 and 𝑦 = 𝑦0, with 𝛼 = 𝛼0 at 𝑐1 = 𝑐10 . 

 

If we change 𝑐1 to 𝑐1 = 𝑐10′ then using eq. 21 and eq. 22 𝑘 will move to 𝑘 = 𝑘1 and 𝑦 will move to 𝑦 = 𝑦1. Rewriting eq. 55 as 

 𝑦 = 𝑦0 [𝛼0 (𝑘1𝑘0)𝛾 ( 𝑘𝑘1)𝛾 + (1 − 𝛼0)]1 𝛾⁄               (56) 

and normalizing with 𝛼0 (𝑘1𝑘0)𝛾 + (1 − 𝛼0) results in 

𝑦 = 𝑦0 (𝛼0 (𝑘1𝑘0)𝛾 + (1 − 𝛼0))1 𝛾⁄ [[ 𝛼0(𝑘1𝑘0)𝛾𝛼0(𝑘1𝑘0)𝛾+(1−𝛼0) ( 𝑘𝑘1)
𝛾 + (1−𝛼0)𝛼0(𝑘1𝑘0)𝛾+(1−𝛼0)]

1 𝛾⁄
             (57) 

which we can write as 
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𝑦 = 𝑦0 (𝛼0 (𝑘1𝑘0)𝛾 + (1 − 𝛼0))1 𝛾⁄ [[𝛼1 ( 𝑘𝑘1)𝛾 + (1 − 𝛼1)]1 𝛾⁄            (58) 

where  

𝛼1 = 𝛼0(𝑘1𝑘0)𝛾𝛼0(𝑘1𝑘0)𝛾+(1−𝛼0)              (59) 

For trivial reason, using equation 55 (𝛼0 (𝑘1𝑘0)𝛾 + (1 − 𝛼0))1 𝛾⁄ =   
𝑦1𝑦0            (60) 

Combining equation 58 and 60 results in 𝑦 = 𝑦1 [[𝛼1 ( 𝑘𝑘1)𝛾 + (1 − 𝛼1)]1 𝛾⁄                (61) 

which is exactly the equation for our production function expressed in the new base point 

values. It is leaving 𝜎 unchanged. This means that the coefficient of elasticity of substitution 𝜎 is 

invariant under a shift in basepoint. 

 

We will use this property to shed some light on the sense and non-sense of capital and labor 

augmented technical progress. 

To describe the class of CES function we use equation 47 𝛼 = 𝑘𝑠 = 𝛼0 ( 𝛽𝛽0)𝛾 = 𝑎𝛽𝛾      (62) 

with 𝑎 = 𝛼0𝛽0𝛾         (63) 

which is a constant for each coefficient of substitution 𝜎 for a specific CES production function. 

The class of all CES functions can be described by the formula of a CES function for all 

combination 𝑎 and 𝜎. 

 

The coefficient 𝑎 = 𝛼0𝛽0𝛾 is the same as in 𝑦 = [𝑎𝑘𝛾 + 𝑏]1 𝛾⁄ , the coefficient 𝑏 is equal to                 𝑏 = (1 − 𝛼0)𝑦0𝛾. With respect to the end result and conclusions it will make no difference which 

representation of the production function you use. They are mathematically equivalent. Each has 

his own advantages for economic interpretation. 

Lemma: In a CES production function the coefficient of elasticity of substitution 𝜎 is 

invariant under a shift in basepoint. 

Lemma: The class of CES production functions can be described by  𝑦 = 𝑦0[𝛼 ( 𝑘𝑘0)𝛾 + (1 − 𝛼)]1 𝛾⁄  for ∀𝑎, 𝜎 ∈ ℛ+, 

where 𝑎 = 𝛼0𝛽0𝛾 and 𝜎 is the coefficient of elasticity of substitution.  
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6. General technological progress and the capital-labor mix and the 

trouble with capital and labor augmented technical progress 
 

In literature, labor and capital augmented technical progress, 𝜉𝐿𝑇 and 𝜉𝐾 , is incorporated in 

models as an additional multiplier factor for labor L and capital 𝐾, respectively. The idea is that 

both labor and capital augmented technical progress represents the evolution of technical 

progress, due to inventions, education etc. The nature of augmented technical progress (Klump 

et al., 2011) remains vague and results are not always conclusive, especially regarding the 

theoretical trouble with capital augmented technical progress. To escape from it, Jones (2003) 

e.g. introduced a short term CES function in combination with a long term Cobb-Douglas 

function.   

We will examine labor and capital augmented technological progress. Both, 𝜉𝐿𝑇 and 𝜉𝐾 are 

function of time and, if you wish, functions of the determinants, i.e. inventions, education, etc. We 

use the same implementation as is done in literature. This gives us the per capita production 

function in normalized form 

𝑦 = 𝑦0 [𝛼0 (𝜉𝐾𝑘𝑘0 )𝛾 + (1 − 𝛼0)𝜉𝐿𝑇𝛾]1 𝛾⁄               (64) 

We rewrite equation 64 by taking out a mutual general progress part 𝜉𝑔 (so returning for 𝑘 =𝜉𝑔𝑘0 to the same capital to income ratio as we started with) 

𝑦 = 𝑦0𝜉𝑔 [𝛼0𝜉𝐾𝛾 ( 𝑘𝜉𝑔𝑘0)𝛾 + (1 − 𝛼0) (𝜉𝐿𝑇𝜉𝑔 )𝛾]1 𝛾⁄              (65) 

Notice that by choosing a mutual general progress part 𝜉𝑔, we indirect assume that the capital to 

income ratio is constant. 

Normalizing to the new 𝛼2 should yield 𝑦 = 𝑦0𝜉𝑔[𝛼2 ( 𝑘𝜉𝑔𝑘0)𝛾 + (1 − 𝛼2)]1 𝛾⁄               (66) 

This can be achieved if we take 𝛼2 = 𝛼0𝜉𝐾𝛾𝛼0𝜉𝐾𝛾+(1−𝛼0)(𝜉𝐿𝑇𝜉𝑔 )𝛾 = 𝛼0𝜉𝐾𝛾           (67) 

Equation 67 is defining a relation between 𝜉𝑔, 𝜉𝐿𝑇 and 𝜉𝐾 as 

𝛼0𝜉𝐾𝛾 + (1 − 𝛼0) (𝜉𝐿𝑇𝜉𝑔 )𝛾 = 1            (68) 

And the result for 𝜉𝑔 is 

𝜉𝑔 = ((1−𝛼0)𝜉𝐿𝑇𝛾1−𝛼0𝜉𝐾𝛾 )1 𝛾⁄        (69) 

We will leave 𝑘0 and 𝑦0 unchanged, leaving the original base point unchanged.  

The general description for the production function is then 
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𝑦 = 𝑦0𝜉𝑔 [𝛼2 ( 𝑘𝜉𝑔𝑘0)𝛾 + (1 − 𝛼2)]1 𝛾⁄               (70) 

Equation 67 is limiting the value of 𝜉𝐾 . We require 𝛼2 ≤ 1, because otherwise 1 − 𝛼2 < 0, in 

which case it is better not to use labor at all, to avoid the negative influence of labor in the 

production function. This holds mutatis mutandis for capital at the lower bound of 𝛼2. 

The limits for capital augmented technical progress 𝜉𝐾 are 0 < 𝜉𝐾 < ( 1𝛼0)𝛾    for 𝜎 > 1      (71) 

and ( 1𝛼0)𝛾 < 𝜉𝐾            for 𝜎 < 1      (72) 

 

Fig. 3 Boundary for capital augmented technical progress 𝜉𝐾 as a function of the coefficient of 

elasticity of substitution 𝜎. The drawn line is representing the boundary for which the capital-

labor-mix 𝛼2 exceeds 1, 𝛼0 = .5. The boundaries for 𝜎 > 1 are 0 < 𝜉𝐾 < ( 1𝛼0)𝛾, which results in a 

capital production function if 𝜉𝐾 exceeds the maximum value. For 𝜎 < 1 we have ( 1𝛼0)𝛾 < 𝜉𝐾 , 

which also results in a capital production function if 𝜉𝐾 is lower than the minimum value.  

 

Beyond these boundaries, we have capital or labor production functions only. To be more 

specific, assuming that capital augmented technical progress will continue to grow, then this 

growth will turn the CES production function into a capital only production function if the 

coefficient of substitution is greater than one at the boundary value of 𝜉𝐾 . And it will turn into a 
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labor only production function if the coefficient of substitution is lower than one and 𝜉𝐾 goes to 

infinity.  

Uzawa (1961-1) realized that capital augmented technical progress introduced a problem for 

steady state growth. To solve the problem, he came up with his labor augmented technical 

progress only theorem. 

We have showed that labor and capital augmented technical progress can be expressed in a 

general progress term and a change in the capital-labor-mix. Both are influencing general 

technical progress and only 𝜉𝐾 is responsible for the change in the new capital-labor-mix 𝛼.  

The capital-labor-mix 𝛼 is a factor in the production function influencing the output. Under 

maximum profit conditions 𝛼 is equal to the capital share of income 𝑘𝑠 in the base point for CES 

production functions.  

Suppose that 𝑘0 is the initial base point and is not varying in time. If 𝑦 is growing in time then so 

is 𝑘 at the same speed along a balanced (Jones, 2005) growth path. The capital-labor-mix factor 𝛼 depends on capital augmented technical progress 𝜉𝐾 (Jones, 2003) (Acemoglu, 2003). 

Interesting to see that consumers and producers can decide what to do with this change by 

choosing 𝑐1. In literature a balanced growth path is referring to a stabilized capital to income 

ratio over time in combination with a not changing shape of the production function, ruling out 

any other progress then general progress. If, however, the shape is changing we still have the 

possibility that capital progress can be compensated by an adaption of 𝑐1 to keep the capital to 

income ratio constant. 

Normalizing with respect to general progress 𝜉𝑔, with 𝑦∗ = 𝑦𝜉𝑔 and 𝑘∗ = 𝑘𝜉𝑔  will give us the 

general progress independent solution  

𝑦∗ = 𝑦0 [𝛼 (𝑘∗𝑘0)𝛾 + (1 − 𝛼)]1 𝛾⁄ .               (73) 

Realize that 𝛼 can fluctuate over time to express the change in the capital-labor mix. 

In case of a neo classical steady state Jones (2004) gave an alternative proof of the labor 

augmented technical progress only theorem introduced by Uzawa, where he proved that a 

steady state can only exist if technical progress is labor augmenting technical progress only 

(capital and labor augmented technical progress implemented as is done since the 1960’s). Later 

we will show that the labor technical progress term he used in fact was total growth of income and 

capital. 

Uzawa (1961-1) in the same paper also proved that the equilibria were unique and stable. We 

can not agree on this last item. He assumed that capital never depreciates, but without 

depreciation, you simply cannot prove it, because the eigen value of the differential equal is 

zero. I agree on his final differential equation 
�̇�(𝑡)𝑧(𝑡) = 𝑓𝑘[𝑧(𝑡)] − 𝜆 − 𝜇, but not on his 

conclusion with respect to stability. Uniqueness is forced by putting 𝑓𝑘[𝑧(𝑡)] = 𝜆 + 𝜇, 

allowing only one capital to income ratio, but then uniqueness is trivial. Moreover, a 

limitation, by letting depreciation zero, is not realistic and in addition we showed that 

uniqueness and stability is influenced by consumers behavior (De la Fonteijne, 2011). If you 

would take the wages smaller than  𝑤 < 𝑦 − (𝜆 + 𝜇)𝑘 you can even get continuous growth 

without technical growth. 
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An even more explicit way of demonstrating and motivating this approach is by expressing the 

CES production function in terms of the capital to income ratio by dividing equation 70 by 𝑦 and 

rewrite it as 

𝑦 = 𝑦0𝜉𝑔 [ 1−𝛼1−𝛼( 𝛽𝛽0)𝛾]
1 𝛾⁄ = 𝑦0𝜉𝑔 [ 1−𝛼1−𝑘𝑠]1 𝛾⁄     (74) 

with a general growth term 𝜉𝑔 and a form factor not dependent on general growth 

 [ 1−𝛼1−𝛼( 𝛽𝛽0)𝛾]
1 𝛾⁄ = [ 1−𝛼1−𝑘𝑠]1 𝛾⁄       (75) 

 

In fact, we can use the same idea for any arbitrary production function.  

Technical improvement can also result in a price chance for the production factors. In a micro 

economic setting this would been taken care of by adapting the prices in the cost equation. In a 

macro economic setting wage 𝑤 and capital cost rate (𝑟 + 𝛿) is already fixed by the fact that we 

assume that we operate under maximum profit principle and by the choice of 𝑐1. So it is already 

included in our model. 

 

7. Total Factor Productivity 
 

To examine the same process from another angle we split the process of growth in two part: 

• income growth from technical progress only 

• income growth due to the raise in capital 

Again, we start with the per capita production function including the augmenting technical 

progress factors 

𝑦 = 𝑦0 [𝛼0𝜉𝐾𝛾 ( 𝑘𝑘0)𝛾 + (1 − 𝛼0)𝜉𝐿𝑇𝛾]1 𝛾⁄     (76) 

Introducing total factor productivity and normalizing to the new 𝛼 yields 

𝑦 = 𝑦0𝜉𝑇𝐹𝑃 [𝛼1 ( 𝑘𝑘0)𝛾 + (1 − 𝛼1)]1 𝛾⁄      (77) 

where  

Lemma: Capital and labor augmented technical progress in a CES production function can be 

expressed by the terms general technical progress and a change in the capital-labor mix 𝛼. 

Lemma: It is convenient to split up a production function into a general progress term 

and a shape term, the parameters of which may vary in time. 

Lemma: Price changes of the production factors due to technical progress is already 

taking care of by means of the choice of 𝑐1 and the fact that we operate under maximum 

profit principle. 
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𝜉𝑇𝐹𝑃 = [𝛼0𝜉𝐾𝛾 + (1 − 𝛼0)𝜉𝐿𝑇𝛾]1 𝛾⁄      (78) 

and 𝛼1 = 𝛼0𝜉𝐾𝛾𝛼0𝜉𝐾𝛾+(1−𝛼0)𝜉𝐿𝑇𝛾 = 𝛼0 ( 𝜉𝐾𝜉𝑇𝐹𝑃)𝛾      (79) 

Due to this increase in technical growth there is an instantaneous growth in productivity 𝑦, 

which we like to refer to as total factor productivity growth 𝜉𝑇𝐹𝑃. This part has only to do with 

the production function. The next step will involve the maximum profit system as a whole. Due 

to the increase in productivity, capital is not in equilibrium. Assuming that 𝑐1 is kept constant 

then capital will go to the level 𝑘∗, while the capital to income ratio 𝛽 will return to its original 

level 𝛽0. Realize, however, that this two-step experiment of thought will take place in one go and 

will lower consumption 𝑐 = 𝑐1𝑦 by the investment needed to increase capital. Furthermore, we 

limit ourselves to CES functions and only 𝛼0 is allowed to change over time. 

𝑘∗ = 𝛽0 𝑦∗ = 𝛽0𝑦0𝜉𝑇𝐹𝑃 [𝛼1 (𝑘∗𝑘0)𝛾 + (1 − 𝛼1)]1 𝛾⁄    (80)   

Solving 𝑘∗ yields 

 𝑘∗ = ((1−𝛼1)𝜉𝑇𝐹𝑃𝛾1−𝛼1𝜉𝑇𝐹𝑃𝛾 )1 𝛾⁄ 𝑘0      (81) 

Which means that the growth of 𝑘 and, of course, of 𝑦 in total is 

𝜉𝑔 = ((1−𝛼1)𝜉𝑇𝐹𝑃𝛾1−𝛼1𝜉𝑇𝐹𝑃𝛾 )1 𝛾⁄         (82) 

Changing to the new base point and normalizing to the new 𝛼 yields 

𝑦 = 𝑦∗ [𝛼2 ( 𝑘𝑘∗)𝛾 + (1 − 𝛼2)]1 𝛾⁄      (83) 

where 𝛼2 = 𝛼1𝜉𝑔𝛾𝛼1𝜉𝑔𝛾+(1−𝛼1) ,       (84) 𝑦∗ = 𝑦0𝜉𝑔 and 𝑘∗ = 𝑘0𝜉𝑔. 

Substituting equation 82 in equation 84 results in 𝛼2 = 𝛼1𝜉𝑇𝐹𝑃𝛾        (85) 

With equation 78 and 79 equation 85 changes to 𝛼2 = 𝛼0𝜉𝐾𝛾           (86) 

and equation 82 changes to 

𝜉𝑔 = ((1−𝛼0)𝜉𝐿𝑇𝛾1−𝛼0𝜉𝐾𝛾 )1 𝛾⁄           (87) 

Notice that the equations 86 and 87 are the same as 67 and 69. 

Using equation 86 and 78 we can express 𝜉𝑔 (equation 87) in term of 𝛼2 and 𝜉𝑇𝐹𝑃 only 
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𝜉𝑔 = (𝜉𝑇𝐹𝑃𝛾−𝛼21−𝛼2 )1 𝛾⁄          (88) 

For Cobb-Douglas, 𝜎 = 1 (𝛾 = 0) equation 88 reduces to 𝜉𝑔 = 𝜉𝑇𝐹𝑃   1 (1−𝛼0)⁄
          (89) 

for all choices of 𝜉𝐾 and 𝜉𝐿𝑇, similar to what we described in De la Fonteijne (2011) and what can 

be found in literature with respect to Cobb-Douglas production functions (Acemoglu, 2008) 

(Jones, 2013). 

For Harrod, Hicks and Solow neutrality, we will use the same definitions as is done by Klump et 

al. (2011) and as is indicated in the following text.  

Notice that if in equation 87 𝜉𝐾 = 1, then 𝜉𝑔 = 𝜉𝐿𝑇 (Harrod neutral as labor augmented 

technical progress only), i.e. labor augmented technical progress 𝜉𝐿𝑇 is equal to the increase 

in productivity and not to total factor productivity. Total factor productivity is  𝜉𝑇𝐹𝑃 = 𝜉𝐻𝑎𝑟𝑟𝑜𝑑 = [𝛼0 + (1 − 𝛼0)𝜉𝐿𝑇𝛾]1 𝛾⁄ .     (90) 

The form of the production function has not changed, because the base point stayed the same 

and the capital-labor-mix did not change 𝛼2 = 𝛼0, while keeping the capital to income ratio 

constant. Total productivity growth is 

𝜉𝑔 = 𝜉𝐿𝑇 = (𝜉𝐻𝑎𝑟𝑟𝑜𝑑𝛾−𝛼01−𝛼0 )1 𝛾⁄       (91) 

 

Notice that if in equation 78 we take 𝜉𝐾 = 𝜉𝐿𝑇 (Hicks neutral as equally capital and labor 

augmenting technical progress), then  𝜉𝑇𝐹𝑃 = 𝜉𝐻𝑖𝑐𝑘𝑠 = 𝜉𝐾 = 𝜉𝐿𝑇 ,      (92) 

i.e. labor augmented technical progress is equal to total factor productivity. The form of the 

production function has changed, because the base point stayed the same and the capital-

labor-mix changed from 𝛼0 to 𝛼2 = 𝛼0𝜉𝐾𝛾 = 𝛼0𝜉𝐻𝑖𝑐𝑘𝑠𝛾, while keeping the capital to income 

ratio constant. Total productivity growth is            

𝜉𝑔 = (𝜉𝐻𝑖𝑐𝑘𝑠𝛾−𝛼21−𝛼2 )1 𝛾⁄ = 𝜉𝐻𝑖𝑐𝑘𝑠 ( 1−𝛼01−𝛼0𝜉𝐻𝑖𝑐𝑘𝑠𝛾)1 𝛾⁄ .    (93) 

 

Notice that if in equation 86 𝜉𝐿𝑇 = 1 (Solow neutral as capital augmenting technical progress 

only), that 𝛼2 = 𝛼0𝜉𝐾𝛾. The form of the production function has changed, because the base 

point stayed the same and the capital-labor-mix changed from 𝛼0 to 𝛼2 = 𝛼0𝜉𝐾𝛾, while 

keeping the capital to income ratio constant. Total factor productivity is  𝜉𝑇𝐹𝑃 = 𝜉𝑆𝑜𝑙𝑜𝑤 = [𝛼0𝜉𝐾𝛾 + (1 − 𝛼0)]1 𝛾⁄ .    (94) 

Total productivity growth is            𝜉𝑔 = (𝜉𝑆𝑜𝑙𝑜𝑤𝛾−𝛼21−𝛼2 )1 𝛾⁄ .       (95) 
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Growth of capital per capita is expressed by 𝜉𝑔 and growth of income per capita takes place in 

two steps, the first direct part due to the total of technical progress 𝜉𝑇𝐹𝑃 and the second indirect 

part 𝜉𝑦𝑘 due to the growth of capital. In total the growth of income per capita 𝜉𝑔 is the same as 

the growth of capital per capita, i.e. if the capital to income ratio is kept at a constant value. 𝜉𝑔 = 𝜉𝑦𝑘𝜉𝑇𝐹𝑃        (96) 

Capital growth is not a direct result of labor or capital technical progress itself. Capital growth is 

a result of the mathematical process by which technical progress allows the economy to use 

more capital. This is the true nature of capital growth.  

 

 

The labor part of 𝜉𝑇𝐹𝑃 is due to the improvement of skills, education, etc. and the capital part of 𝜉𝑇𝐹𝑃 is due to the technical improvement of existing capital as well as of new capital, both under 

the name of investments. 

Later we will calculate the part due to TFP increase in total income increase.  

8. Consumers behavior 
 

Growth of capital also depends on consumers behavior i.e. the choice of 𝑐1 in 𝑐 = 𝑐1𝑦. If 𝑐1 is 

constant then the desired capital to income ratio is constant and the economy and capital will 

grow, under maximum profit conditions, up to the total of the general progress term 𝜉𝑔. If e.g. 

the new 𝑐1 is chosen smaller than the original one, then GDP and capital will grow until the new 

equilibrium with a changed capital to income ratio is reached as described in section 3.  

9. The consequence of ongoing capital augmented technical progress 
 

From the previous sections we conclude that if there exists an ongoing capital augmented 

technical progress 𝜉𝐾 > 1, then the production function must be Cobb-Douglas as reported in 

literature.  

Lemma: Capital growth is not a direct result of labor or capital technical progress itself, 

but it is a result of the mathematical process by which technical progress allows the 

economy to use more capital if there is general progress. This is the true nature of capital 

growth. 

Lemma: Income growth is partly a direct result of labor or capital technical progress itself 

and the second part is caused by the use of more capital. The first part is 𝜉𝑇𝐹𝑃, which is 

considered in most cases as exogenous  and the second part is 𝜉𝑦𝑘, which is endogenous, 

in total 𝜉𝑔 = 𝜉𝑦𝑘𝜉𝑇𝐹𝑃. 
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To compensate for the change in the capital-labor-mix we can adapt the capital to income ratio. 

If 𝜉𝐾 > 1 and 𝜎 < 1 then 𝜉𝐾𝛾 < 1, which means that 𝛼2<𝛼0. This can be compensated by 

changing to the new capital to income ratio. Recall that equation 63 holds for a particular CES 

production function. In our case there is first a change to 𝑎2 and then a change in 𝛽 to 𝛽2 𝑎2 = 𝛼2𝛽0𝛾 = 𝛼0𝛽2𝛾 , where 𝑎2 is a constant.    (97) 

With use of equation 86 we can calculate 𝛽2 as 𝛽2 = 𝛽0𝜉𝐾         (98) 

This means, assuming 𝜉𝐾 > 1, that 𝛽2 has to be taken smaller than 𝛽0 by choosing the new 𝑐1 

greater. It holds for all 𝜎. A lower 𝛽2 means a lower capital 𝑘 and a lower income 𝑦, quite contrary to the ‘capital is back’ explanation of Piketty (2014). Income and capital are lower than 

in base point operation, and so is consumption. 

 

If  𝜉𝐾 = 1, i.e. progress is labor augmenting only, then due to the increase of  𝜉𝑇𝐹𝑃, the capital-

labor-mix 𝛼1is changing from 𝛼0 to  𝛼1 and due to the increase of capital 𝛼1 is changing back to 𝛼0 (equations 79 and 84). Realize that only capital augmented technical progress can change the 

shape of production function, because then 𝑎 in equation 63 is changing. When capital is 

growing, we are moving over the same CES production function, while the capital-labor-mix is 

changing. Compensating and changing back to the original capital-labor-mix by changing 𝑐1 also 

leaves the shape of the production function unchanged. 

We exclude the possibility on the long run 𝜉𝐾 ≤ 1, because it is not plausible. There is a clear 

evidence that capital as well as labor improve over time and we do not see an end to this 

process. If 𝜉𝐾 > 1, then the production function has to be Cobb-Douglas as is known from 

literature. We end up with an unresolved dispute how to solve this paradox. 

At this point, we have to draw a conclusion, because there clearly is a theoretical contradiction. 

What might cause this contradiction? What do we have so far: 

• two economic identities  

• a CES production function, with a certain elasticity of substitution 𝜎 > 0 

• increasing capital and labor technical progress 

• the implementation of capital and labor augmented technical progress 

We have no reasons to doubt the first item. Concerning the second item, we do not see any 

theoretical or practical evidence that the elasticity of substitution should be exactly one. The 

third item we feel reasonable comfortable with. This bring us to the idea that we might have a 

problem with the implementation of augmented technical progress.  

In his book Acemoglu (2008, p. 59) describes this situation as troubling, which seems to be an 

understatement. 

Lemma: If, using a CES production function, there exists an ongoing capital augmented 

technical progress 𝜉𝐾 > 1 as implemented, then the production function must be Cobb-

Douglas. 

Lemma: If there exists an ongoing capital augmented technical progress 𝜉𝐾 > 1 as 

implemented, with the capital share held constant, then the capital to income ratio will 

continue to decrease. 



22 

 

A possible (and probably the only) solution could be that we have to reject the way we have 

implemented capital and labor augmented technical progress. And, in fact, that is what we will 

do. What we find bothering, is the combination of capital and labor technical progress factor 

together with capital and labor as a multiplication factor. It seems logical, but it is not. Suppose 

you want to measure the effect of technical progress directly, then the only way is, to measure 

the changed output 𝑦, which can be determined for each factor. However, what counts is the 

combination of capital and labor progress on output 𝑦, which leads us to a combined output 

factor, say total factor productivity 𝜉𝑇𝐹𝑃. This total factor productivity 𝜉𝑇𝐹𝑃 might be a more 

complicated function of the level of capital, labor and other determinants, with the risk that the 

production function is not homogeneous of degree one. But that would be more a theoretical 

problem than a practical problem in a numerical world. 

 

Altogether this means that we have to come up with a new way of implementing technical 

progress. We will go into more detail in the next section. 

10. A new way of implementing technical progress 
 

To be clear, we skip the augmented progress terms for each production factor separately. The 

reason for that is, the disturbing influence of 𝜉𝐾 on the form parameter 𝑎 or, which is the same, 

on the capital-labor-mix at constant capital to income ratio 𝛽. To our opinion an improvement of 

capital or labor can have an increasing or decreasing effect on the form parameter 𝑎. For now, 

we simply accept, that we have no clear understanding how this influence on parameter 𝑎 takes 

place. When there is no effect on parameter 𝑎, we stay on a CES function with the same form. 

This means, if income increase instantaneously because of  𝜉𝑇𝐹𝑃, then simultaneously 𝛼 changes 

to 𝛼1 = 𝛼0 ( 1𝜉𝑇𝐹𝑃)𝛾.  If at the same time 𝛼0 change to 𝛼2 then the production function is 

𝑦 = 𝑦0𝜉𝑇𝐹𝑃 [𝛼1 ( 𝑘𝑘0)𝛾 + (1 − 𝛼1)]1 𝛾⁄      (99) 

and 𝛼1 = 𝛼2 ( 1𝜉𝑇𝐹𝑃)𝛾       (100) 

 

Notice that equation 77 holds and the result is the same as using labor augmented technical 

progress only, albeit now including capital augmented progress, but without the trouble. The 

rest of the procedure stays the same. Due to 𝜉𝑇𝐹𝑃 the economy per capita can grow in total with 𝜉𝑔 and 𝛼 is changed to 𝛼2 or in case there is no change in the capital-labor-mix back again to 𝛼2 = 𝛼0. This solves the paradox.  

In fact, we can extend this thought to all parameters of the CES function (or arbitrary production 

function), making all parameters a function of time when technical progress evolves over time. 

 

Lemma: If there exists an ongoing capital augmented technical progress 𝜉𝐾 > 1 as 

implemented and we allow CES functions in general, then the way of implementation of 

capital and labor augmented technical progress has to be rejected. There exists an 

ongoing improvement of technical progress. So, we reject the way capital and labor 

progress is implemented. 
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Fortunately, we end up with the same way of adapted interpretation of technical progress as we 

used before, but now without the burden.  

This means that the increase in income per capita 𝜉𝑔 is the result of total factor productivity 𝜉𝑇𝐹𝑃 

and capital increase. The capital-labor-mix 𝛼2 is allowed to fluctuate up or down and will be 

dictated by the interaction of capital and labor, for which we have to find out the determinants. If 

you choose or measure 𝛼2, then 𝛼1 has to be calculated from equation 85. 

 

To estimate the coefficient of substitution all investigators, I am aware of, used Hicks, Harrod or 

Solow neutrality or some kind of Box-Cox weighing function (Klump et al., 2007, 2011). But as 

long as you are using the same system and assuming that there is no end to capital augmented 

technical progress, you will always explicitly frustrate the ‘Cobb-Douglas or labor augmented technical progress only’ paradox.  
 

 

The labor part of 𝜉𝑇𝐹𝑃 is due to the improvement of skills, education, etc. and the capital part of 𝜉𝑇𝐹𝑃 is due to the technical improvement of capital, new invested or existing. 

It remains interesting to understand where the growth of total factor productivity comes from 

(Donselaar, 2011). Donselaar referred to and used the formulas of Solow, but fortunately limited 

himself to the Cobb-Douglas case including human capital, and so avoiding the problem. I.e., if 

Lemma: A new way of implementing capital and labor technical progress is adding a total 

factor productivity 𝜉𝑇𝐹𝑃 and to adapt the new capital-labor-mix 𝛼 to 𝛼2 and calculate 𝛼1 

from equation 85 

 𝛼1 = 𝛼2 ( 1𝜉𝑇𝐹𝑃)𝛾. The new production function is 

𝑦 = 𝑦0𝜉𝑇𝐹𝑃 [𝛼1 ( 𝑘𝑘0)𝛾 + (1 − 𝛼1)]1 𝛾⁄       This procedure solves a long existing dispute on the ‘Cobb-Douglas or labor augmented technical progress only’ paradox. 

Lemma: In total the economy per capita will grow with 𝜉𝑔 = (𝜉𝑇𝐹𝑃𝛾−𝛼21−𝛼2 )1 𝛾⁄ . The new 

production function is 𝑦 = 𝑦0𝜉𝑔 [𝛼2 ( 𝑘𝜉𝑔𝑘0)𝛾 + (1 − 𝛼2)]1 𝛾⁄ . The capital-labor-mix 𝛼2 (at 

constant capital to income ratio 𝛽) can be adapted accordingly measured or estimated 

values, resulting in an adapted form parameter 𝑎.  

𝛼0 𝛽 𝑎
With regards to the Box-Cox method (Klump et al., 2011) to express the decaying and 

stabilizing effect on the capital augmented technical progress we argue that this is also 

some kind of capital augmented technical progress and therefore in principle not suitable. 

In particular to the formula used, we argue that to express a decaying effect, there exists 

simpler and more transparent formulas to achieve the same goal. You better use a simple 

exponential function, which is also more flexible to adjust, e.g. 𝐸(𝑡) = 𝑎 + (1 − 𝑎)𝑒−𝑏𝑡 .      (101) 
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you agree that Cobb-Douglas is the right choice and by not referring to 𝜉𝐾 or 𝜉𝐿𝑇. Donselaar 

spend (was struggling with the inconsistency in theory) a substantial part of his thesis on neo 

classical growth theory vs. growth accounting and I wonder if parts have to be reconsidered 

regarding terms as labor saving technical growth, embodied and disembodied technological 

growth. We will come back on labor saving progress and growth accounting later. 

Until so far, we derived formulas per capita. To arrive at the extensive production function, we 

only have to multiply with the workforce at that time and equation 99 changes to 

𝑌 = 𝑌0𝜉𝑇𝐹𝑃 [𝛼1 (𝐾𝐾0)𝛾 + (1 − 𝛼1) ( 𝐿𝐿0)𝛾]1 𝛾⁄     (102) 

where 𝛼1 = 𝛼2 ( 1𝜉𝑇𝐹𝑃)𝛾       (103) 

The same equation but now expressed in terms of growth of GDP 𝜉𝐺 = 𝜉𝑔𝜉𝐿, where 𝜉𝐿 represents 

growth of the workforce 

𝑌 = 𝑌0𝜉𝐺 [𝛼2 ( 𝐾𝜉𝐺𝐾0)𝛾 + (1 − 𝛼2) ( 𝐿 𝜉𝐿𝐿0)𝛾]1 𝛾⁄     (104) 

We can calculate the part of TFP in total potential growth under constant capital to income ratio 

as 

𝜂𝑇𝐹𝑃 = 𝜉𝑇𝐹𝑃̇𝜉𝑇𝐹𝑃𝜉�̇�𝜉𝑔 = lim𝜉𝑇𝐹𝑃→1 𝜉𝑇𝐹𝑃−1𝜉𝑔−1 = lim𝜉𝑇𝐹𝑃→1 𝜉𝑇𝐹𝑃−1(𝜉𝑇𝐹𝑃𝛾−𝛼21−𝛼2 )1 𝛾⁄ −1 =1 − 𝛼2 for all 𝜎.  (105) 

It is simple to prove that this result is valid not only for CES functions, but for all production 

functions. 

We remind you that there no longer exists a relation between 𝛼2 and 𝜉𝐾 . We do not use 𝜉𝐾 . If it 

turns out that there is a relation between 𝛼2 and 𝜉𝑇𝐹𝑃 then equation 105 has to be adapted 

accordingly. 

The ratio 𝜂𝑇𝐹𝑃 is calculated under the condition that the capital to income ratio is constant. It is 

also possible to take another criterium, e.g. leave the profit rate 𝑟 constant. If there is a change in 

the capital-labor-mix due to the technological improvement from 𝛼0 to 𝛼2, then the capital to 

income ratio has to be adapted in the same way 𝛽2 = 𝛼2𝛼0 𝛽0. This will, of course, also change 𝑐1. 

The ratio 𝜂𝑇𝐹𝑃 will change because the total increase in income is different. 

Equation 80 has to be adapted to 

𝑘∗ = 𝛽2𝑦∗ = 𝛼2𝛼0 𝛽0𝑦0𝜉𝑇𝐹𝑃 [𝛼1 (𝑘∗𝑘0)𝛾 + (1 − 𝛼1)]1 𝛾⁄    (106) 

and the growth of 𝑘∗ is 

𝜉𝑘∗ = (𝜉𝑇𝐹𝑃𝛾−𝛼2(𝛼2𝛼0)𝛾−𝛼2)
1 𝛾⁄

         (107) 
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and the growth of  𝑦∗is 

𝜉𝑦∗ = ( 𝜉𝑇𝐹𝑃𝛾−𝛼21−𝛼2(𝛽0𝛽2)𝛾)
1 𝛾⁄

          (108) 

resulting in an alternative definition for 𝜂𝑇𝐹𝑃 at constant profitability 𝜂𝑇𝐹𝑃 = lim𝜉𝑇𝐹𝑃→1 𝜉𝑇𝐹𝑃−1
(𝜉𝑇𝐹𝑃𝛾−𝛼21−𝛼2(𝛽0𝛽2)𝛾)

1 𝛾⁄ −1 = 0   for all 𝜎.    (109) 

So, in case we take the limit the result is not useful. However, without the limit it will give you 

the actual value of 𝜂𝑇𝐹𝑃. Notice that the growth of 𝑘 and 𝑦 are not equal. 

In case 𝛼2 = 𝛼0 then there is no difference between the two definitions.  If we assume that 𝜉𝑇𝐹𝑃 

and 𝛼2 are slowly moving functions in time, then it is allowed to take 𝛼2 = 𝛼0 which results in 

the momentarily value for 𝜂𝑇𝐹𝑃 at  𝑘0 and 𝑡0 𝜂𝑇𝐹𝑃 = lim𝑡→𝑡0 𝜉𝑇𝐹𝑃−1
(𝜉𝑇𝐹𝑃𝛾−𝛼21−𝛼2(𝛽0𝛽2)𝛾)

1 𝛾⁄ −1 =1 − 𝛼0 for all 𝜎.    (110) 

This seems a reasonable and general useful definition. 

 

In the next section, we will use this new way of technical progress when analyzing the problem 

of estimating the parameters of a CES production function. 

These parameters may change over time then the parameters are also a function of time, i.e. 𝜉𝐺 = 𝜉𝐺(𝑘0(𝑡), 𝑡), 𝜎 = 𝜎(𝑘0(𝑡), 𝑡), 𝛼 = 𝛼(𝑘0(𝑡), 𝑡).    (111) 

11. Analysis of the problem in estimating the coefficient of 

substitution 
 

In this section we show you, as a first step, how you can estimate the elasticity coefficient of 

substitution following a slightly different way than you can find in most of the literature.  

We saw already in equation 70 that the workshare for a CES function is 𝑤𝑠 = 𝑤𝑦 = 1 − 𝛼 ( 𝛽𝛽0)𝛾       (112)  

and the elasticity coefficient of substitution 𝜎 is 

Lemma: The technical improvement part (TFP) in total potential growth is equal to one minus 

the capital-labor-mix at the considered constant capital to income ratio. 𝜂𝑇𝐹𝑃=1 − 𝛼0 for all 𝜎 and for all production functions 𝑓(𝑘) 
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𝜎 = 11−𝛾         (113) 

Partial differentiating 𝑤𝑠 with respect to 𝛽 gives 𝜕(𝑤𝑠)𝜕𝛽 = − (1−𝑤𝑠)𝛽 (𝜎−1)𝜎         (114) 

which implies that if  𝛼 is constant 

if and only if 𝜎 < 1 then  
𝜕(𝑤𝑠)𝜕𝛽 > 0,      (115) 

if and only if 𝜎 = 1 then  
𝜕(𝑤𝑠)𝜕𝛽 = 0,     (116) 

and 

if and only if 𝜎 > 1 then  
𝜕(𝑤𝑠)𝜕𝛽 < 0.     (117) 

Partial differentiating 𝑤𝑠 with respect to 𝛼 gives 

𝜕(𝑤𝑠)𝜕𝛼 = −( 𝛽𝛽0)𝛾 = − (1−𝑤𝑠)𝛼        (118) 

The derivative is independent of 𝜎 and in the base point 
𝜕(𝑤𝑠)𝜕𝛼 = −1.
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Fig. 4 Derivative of workshare with respect to the capital to income ratio as a function of the 

elasticity of substitution for a 1-sector CES model with the parameters time independent, i.e. 𝜎 

and 𝛼 are constant. 

Before going any further on the consequences of these formulas, I like to refer to Piketty (2014), 

where he is arguing that the capital to income ratio will rise in the future and that the coefficient 

of elasticity might have turned into a value above 1. For an extensive treatment, see my critics on 

Piketty in De la Fonteijne (2016). In his blog, Jacobs (2014) was more precise in his arguments 

and formulas but was not very conclusive, nor was Krugman, where Jacobs is referring to.  

The weak point of Piketty and Jacobs is their a priori assumption of 𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 to estimate 𝜎 

smaller or greater than one. 

Here is the problem, we do not have the possibility to measure the needed differentials 

momentarily, i.e. at one point in time. We need at least a few points in time where 𝛽 is changing 

to be able to determine 𝜎 from equation 112 and 113, under the assumption that parameter 𝛼 is 

not changing. If 𝛼 is not changing then 𝛼 = 𝑘𝑠 in the basepoint and is known if we take one of the 

measured point as our basepoint. In total, we need at least two points to calculate 𝜎 from 

equation 112 and 113, i.e. from 𝛾 = 𝑙𝑜𝑔(𝑘𝑠)−𝑙𝑜𝑔 (𝛼)𝑙𝑜𝑔(𝛽)−𝑙𝑜𝑔 (𝛽0) and      (119) 

𝜎 = 11−𝛾         (120) 

With more data points available, we can fit the data to this non-linear equation by e.g. a least 

square fit. 

If 𝛼 is a function of time then the solution is not so straightforward. 

We can write equation 70 as 

𝛼 = 1−( 𝑦𝜉𝑔𝑦0)𝛾1−( 𝑘𝜉𝑔𝑘0)𝛾         (121) 

Be aware of the fact that for this purpose we are not using formulas that depend on 𝑐1, because 

those formulas only hold in equilibrium. Equation 119 and 121 are derived from the two 

economic identities available and from the maximum profit conditions, which means that they 

hold at all times. 

Diamond and McFadden (1965, 1978) proved that 𝜎 could not be resolved without additional a 

priori knowledge or assumptions. 

Klump et al. (2011) and many others find in their investigations that there is a strong evidence 

that the elasticity of substitution is below 1, or more in particular, is between .4 and .7.  

As we argued in section 6, we will use a general progress term as is done in the equations 119-

121 or alternatively equations 119, 120 and 99. In addition 𝜎, 𝛼, 𝜉𝐺  and 𝜉𝑇𝐹𝑃 are functions of 

time in general. 
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With n measured data points we have 3(𝑛 − 1) unknown variables and 2(𝑛 − 1) equations. It is 

clear that we cannot resolve the variables. However, we can reduce the number of variables by 

taking e.g. the elasticity of substitution 𝜎 a constant and letting the capital-labor-mix 𝛼 a linear 

or quadratic function of time. In the linear case for 𝛼 we have 1 + 1 + (𝑛 − 1) variables and 2(𝑛 − 1) equations, which we can solve if we have enough data points with a minimum of 𝑛 = 3 

(the base point inclusive). For the quadratic case we have 3 + (𝑛 − 1) variables and 2(𝑛 − 1) 
equations, which we can solve if we have enough data points with a minimum of 𝑛 = 4 (the base 

point inclusive). 

Upfront it is not clear where we can reduce the parameter space. It seems plausible that the 

capital-labor-mix 𝛼 is moving slowly in time, allowing a linear or quadratic approximation. 

A point of concern is the sensitivity for errors on determining 𝜎. You can see from equation 119 

that if 𝛼 and 𝑘𝑠 are close together then the error should be smaller than the difference between 𝛼 and 𝑘𝑠. The same is true for 𝛽 and 𝛽0. Partial differentiating equation 119 with respect to 𝛼 

clearly show this sensitivity. 𝜕𝜎𝜕𝛼 = 𝜎(𝜎−1)𝛼log (𝛼𝑘𝑠)        (122)  

or relative 𝜕𝜎𝜎 = 𝜕𝛼𝛼 (𝜎−1)log (𝛼𝑘𝑠)        (123)  

Notice that for 𝜎 ≈ 1 the power to discriminate decreases. 

Equation 123 clearly shows the accuracy of the measured data needed to be able to estimate the 

elasticity of substitution. 

12. Labor or capital saving technical progress 
 

In literature we encounter in many places the term labor saving progress. Unfortunately, is it not 

always clear what is exactly meant by this term. As a consequence of our new way of describing 

technical progress we will have to reconsider it. For that we take a closer look at labor saving 

and start with a microeconomic definition. We call a new production process labor saving if we 

can achieve the same output with less labor under a certain budget constraint. For simplicity we 

will only consider labor and capital production factors. As is common knowledge, we know that 

depending on the elasticity of substitution the equilibrium between labor and capital will change 

if prices of the factors will change. 

However, from a macroeconomic perspective the reasoning is a little bit different. Prices are 

indirectly determined by consumer and producer behavior, by the depreciation rate, by the 

elasticity of substitution and by the capital-labor-ratio.  

Suppose for a moment that these parameters do not change and that there is only 𝜉𝑇𝐹𝑃 due to 

technical progress, which will generate 𝜉𝑔 as we have seen, then the capital deepening will 

increase with the factor 𝜉𝑔. The capital deepening is the ratio of used capital and labor. One 
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could say that this is relatively labor saving. That is, relative to capital. But it will not save labor 

in the sense that there will be less people needed resulting in unemployment, because from a 

theoretical point of view we can always achieve full employment on each level of capital. 

Altogether this means that technical progress 𝜉𝑇𝐹𝑃 itself, always will be relatively labor saving. 

The other direction is not very likely to happen, because we will not allow changes in technical 

progress if this will lower our productivity. The other parameters have the ability to introduce 

relatively labor saving as well as more relatively labor consuming changes. Total factor 

productivity change 𝜉𝑇𝐹𝑃 is the only factor causing ongoing growth. 

 

This brings us to an interesting practical case. Recently it is argued, that to keep medical health 

care possible with an aging population 𝐿, with the number of workers 𝐿𝑤, it would be wise to 

focus on labor saving measures regarding the health care if the ratio workforce and total 

population 𝑟𝐿 = 𝐿𝑤𝐿  is decreasing. First of all, health care is a field which is labor intensive, 

especially regarding the needed one to one attention for people. It will be hard or impossible to 

increase technical progress in health care to compensate for the lack of employees. In fact, it is 

probably easier to focus on technical progress in general for the economy in total and reduce the 

problem to a money reallocation issue and shift more workers to health care organizations. One 

of the easiest ways, which is totally under our control, is to increase hours 𝐿ℎ worked per 

worker or increase number of years worked (so shifting pension age) or a combination of the 

two in order to keep productivity per inhabitant 𝑦𝐿  at the same level. 

In formula form 𝑌 = 𝐿𝑤𝐿ℎ𝑦ℎ         (124) 

with  𝑦ℎ is productivity per worked hour. Needed capital will become 𝑘ℎ = 𝛽𝑦ℎ         (125) 

Productivity per inhabitant is expressed by 𝑦𝐿 = 𝑌𝐿 = 𝑟𝐿𝐿ℎ𝑦ℎ = 𝑟𝐿𝑦𝑤      (126) 

with 𝑦𝑤 is the productivity per worker. 

If the depreciation rate 𝛿, the coefficient of substitution 𝜎, the capital-labor-mix 𝛼 and 𝑐1 are not 

changing then the capital to income ratio 𝛽 is constant. As can be seen from the formulas, a 

decrease of 𝑟𝐿 can be compensated by an increase of 𝐿ℎ or an increase 𝜉𝑔 of productivity 𝑦ℎ, 

which is the same as an increase 𝜉𝑔 of capital deepening 𝑘ℎ due to an increase in total factor 

productivity  𝜉𝑇𝐹𝑃. 

If the depreciation rate 𝛿, the coefficient of substitution 𝜎 and the capital-labor-mix 𝛼 are 

changing then we have to adapt 𝑐1 to the desired firm profitability is reached again, or to 

another desired criterium. 

Lemma: Total factor productivity change 𝜉𝑇𝐹𝑃 is the only factor causing an ongoing 

increase in capital deepening and growth. It is always relatively labor saving, meaning 

that capital deepening is increasing. 
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Profitability in the base point is  

 𝑟0 = 𝛼0𝛽0 − 𝛿0        (127) 

with  𝛽0 = 1−𝑐10𝛿0         (128) 

Profitability in the new point is  𝑟1 = 𝛼1𝛽1 − 𝛿1        (129) 

with  𝛽1 = 1−𝑐10𝛿1         (130) 

In order to keep 𝑟 = 𝑟0 we have to adapt 𝑐1 to 𝑐12 . Profitability will become 

𝑟2 = 𝛼1(𝛽2𝛽1)𝛾𝛽2 − 𝛿1 = 𝛿1𝛼1(1−𝑐121−𝑐10)𝛾1−𝑐12 − 𝛿1     (131) 

 

For 𝑟2 = 𝑟0 the new 𝑐1 will result in  𝑐12 

𝑐12 = 1 − ( 𝛿1𝛼1(𝑟0+𝛿1)(1−𝑐10))𝜎 (1 − 𝑐10)      (132) 

 

In the special case that 𝛿1 = 𝛿0 then 𝑐12 reduces to 

𝑐12 = 1 − (𝛼1𝛼0)𝜎 (1 − 𝑐10)       (133) 

Altogether this result in a shift of 𝑘ℎ which also has to be compensated for in the way we 

discussed before. 

13. Growth accounting vs. neo-classical growth theory 
 

Solow started his theory on growth accounting with the production function formula 𝑌 = 𝐴 𝐹(𝐾, 𝐿) .        (134) 

He stated explicitly that he used neutral capital and labor technical progress by using 𝐴 𝐹(𝐾, 𝐿) = 𝐹(𝐴𝐾, 𝐴𝐿) .       (135) 
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Assuming that 𝐹(𝐾, 𝐿) is homogeneous of degrees one equation 135 is correct, but as we have 

explained in this paper calling factor 𝐴 neutral capital and labor technical progress is not 

allowed. 

This means that the starting principles of growth accounting are wrong. 

To show where this will lead us, we will start with equation 99 and derive equivalent formulas 

for the same production function in the intensive form 

𝑦 = 𝑦0𝜉𝑇𝐹𝑃 [𝛼1 ( 𝑘𝑘0)𝛾 + (1 − 𝛼1)]1 𝛾⁄      (136) 

𝑦 = 𝑦0𝜉𝑔 [𝛼2 ( 𝑘𝜉𝑔𝑘0)𝛾 + (1 − 𝛼2)]1 𝛾⁄       (137) 

𝑦 = 𝜉𝑔 [𝑎 ( 𝑘𝜉𝑔)𝛾 + 𝑏]1 𝛾⁄        (138) 

and in the extensive form 

𝑌 = 𝑌0𝜉𝑇𝐹𝑃 [𝛼1 (𝐾𝐾0)𝛾 + (1 − 𝛼1) ( 𝐿𝐿0)𝛾]1 𝛾⁄     (139) 

𝑌 = 𝑌0𝜉𝐺 [𝛼2 ( 𝐾𝜉𝐺𝐾0)𝛾 + (1 − 𝛼2) ( 𝐿𝜉𝐿𝐿0)𝛾]1 𝛾⁄     (140) 

𝑌 = 𝜉𝐺 [𝑎 (𝐾𝜉𝐺)𝛾 + 𝑏 ( 𝐿𝜉𝐿)𝛾]1 𝛾⁄        (141) 

where 𝛼0 holds in the base point,  𝛼1 = 𝛼2 ( 1𝜉𝑇𝐹𝑃)𝛾 and 𝛼2 is the changed capital-labor mix from 𝛼0 to 𝛼2. 

If we change to a general format, we can write 𝑌 = 𝜉𝐺  𝐹(𝐾𝜉𝐺 , 𝐿𝜉𝐿) .        (142) 

Dividing by 𝑌 and using its homogeneous degree one property equation 142 results in 1 = 𝐹 (𝛽, 𝜉𝐺𝑌 𝐿𝜉𝐿) = 𝐹 (𝛽, 𝜉𝑔𝑦 ) .       (143) 

This equation shows that under the condition of constant capital to income ratio, the 

productivity has to be divided by its increase 𝜉𝑔 in order to satisfy the formula. 

Equivalent we can write 𝑌 =  𝐹(𝐾, 𝜉𝑔𝐿)        (144) 

from which it is clear that the same is achieved by multiplying the labor production factor 𝐿 with 

the increase in productivity  𝜉𝑔.  It looks like Harrod Neutral, but keep in mind that we do not 

deal with any kind of capital or labor neutrality any longer. We change the principle ‘technical 
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progress is Harrod neutral or else the production function has to be Cobb-Douglas’ into ‘technical progress in a homogeneous degree one production function can be represented by 

multiplying the labor production factor 𝐿 with the productivity factor 𝜉𝑔 (equation 144), 

corresponding with the change in total factor productivity 𝜉𝑇𝐹𝑃 at constant capital to income 

ratio’. For an arbitrary production function use equation 142. 

 

Apart from 𝜉𝑔, as time is evolving, the production function 𝑌 =  𝐹(𝐾, 𝜉𝑔𝐿) will change and result 

in not easy to implement formulas, that is why, in that case, we will approximate the production 

function piece wise by CES production functions. 

For point (𝑌0, 𝐾0, 𝐿0) we assume that we also know the changed parameter 𝛼2 and 𝜎. We can use 

equation 139 as the approximated production function. 

To see the connection with Solow’s growth accounting formula, we will consider equation 144 

and write it in the same form as Solow did (equation 134), now assuming that 𝜉𝑔 is the only 

change in the production function, leaving 𝛼0 unchanged under constant capital to income ratio 𝑌 = 𝜉𝑇𝐹𝑃𝐹( 𝐾𝜉𝑇𝐹𝑃 , 𝜉𝑔𝐿𝜉𝑇𝐹𝑃)        (145) 

Notice that equation 139 is satisfying equation 145, which is easy to show using equation 88. 

We have to conclude that equation 134 with factor 𝐴 is equal to total factor productivity 𝜉𝑇𝐹𝑃 𝑌 = 𝜉𝑇𝐹𝑃 𝐹(𝐾, 𝐿)        (146) 

is not equal to our derivation (equation 145) of the production function after technical progress 

has taken place, nor can factor  𝐴 be adjusted to accomplish that equality. 

 As a check we change, in our CES example, to the new base point (𝑌1, 𝐾1, 𝐿1) = (𝜉𝐺𝑌0, 𝜉𝐺𝐾0, 𝜉𝐿𝐿0) 
with unchanged 𝛼2 = 𝛼0. Equation 139 or 140 will convert to 

𝑌 = 𝑌0𝜉𝑇𝐹𝑃 [𝛼1 (𝐾𝐾0)𝛾 + (1 − 𝛼1) ( 𝐿𝐿0)𝛾]1 𝛾⁄ = 𝑌1 [𝛼0 (𝐾𝐾1)𝛾 + (1 − 𝛼0) ( 𝐿𝐿1)𝛾]1 𝛾⁄  (147) 

which has the same form as the production function in point (𝑌0, 𝐾0, 𝐿0) and so representing the 

same production function, albeit on a scaled level. 

If we use equation 144 as a start for growth accounting we can write 

𝑑𝑌𝑌 = 𝜕𝐹𝜕𝜉𝑔 𝜉𝑔𝑌 𝑑𝜉𝑔𝜉𝑔 + 𝜕𝐹𝜕𝐾 𝐾𝑌 𝑑𝐾𝐾 + 𝜕𝐹𝜕𝐿 𝐿𝑌 𝑑𝐿𝐿      (148) 

In point (𝑌1, 𝐾1, 𝐿1) = (𝜉𝐺𝑌0, 𝜉𝐺𝐾0, 𝜉𝐿𝐿0) this reduces to the growth rate equation 

Lemma: The principle ‘technical progress is Harrod neutral or else the production function 
has to be Cobb-Douglas’ is no longer valid and has to be changed into ‘technical progress 
in a homogeneous degree one production function can be represented by multiplying the 

labor production factor 𝐿 with the productivity factor 𝜉𝑔 (equation 144), corresponding 

with the change in total factor productivity 𝜉𝑇𝐹𝑃 at constant capital to income ratio’. For an 
arbitrary production function use equation 142. 
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𝑔𝑌 = (1 − 𝛼2)𝑔𝑔 + 𝛼2𝑔𝐾 + (1 − 𝛼2)𝑔𝐿 = 𝑔𝑇𝐹𝑃 + 𝛼2𝑔𝐾 + (1 − 𝛼2)𝑔𝐿  (149) 

where we used equation 89, because this formula also holds in general for infinitesimal small 

changes of 𝜉𝑇𝐹𝑃, from which we deduct that (1 − 𝛼2)𝑔𝑔 = 𝑔𝑇𝐹𝑃. 

Equation 149 is the standard basic equation from which growth accounting is evaluated. If we use Solow’s equation 146 in (𝑌0, 𝐾0, 𝐿0) we arrive at a similar expression 𝑔𝑌 = 𝑔𝑇𝐹𝑃 + 𝛼0𝑔𝐾 + (1 − 𝛼0)𝑔𝐿     (150) 

We conclude that this leads to the same result. 

It is obvious that equation 146 holds for the Cobb-Douglas case. Near the base point all 

production functions with the same labor-capital-mix 𝛼0 are nearly the same and can be 

approximated by e.g. a Cobb-Douglas production function. Only in the Cobb-Douglas case it is a 

good description of the entire production function. However, we can use this procedure to 

estimate the total productivity factor 𝜉𝑇𝐹𝑃 in the base point.  

 

Altogether this means that the presented formulas hold in general for infinitesimal small 

variations. The fact that we started with a wrong equation 134 was not harmful, because it is (by 

coincidence?) the right formula in case of a Cobb-Douglas production function, for which 

equation 150 always holds. Notice that 𝐴 is total factor productivity. In general, however, if you 

are not considering small variations, you have to do the exact inverse calculation to resolve  𝐴. 

14. Conclusions 
 

You might think, if it turns out in a special case, that the elasticity of substitution is 

approximately 𝜎 ≈ 1 then we could use the Cobb-Douglas case as a good approximation. With 

equation 78 reduced to 𝜉𝑇𝐹𝑃 = 𝜉𝐾𝛼𝜉𝐿𝑇1−𝛼, we still can use Cobb-Douglas. This will, however, 

introduce a new problem because then you have to explain why it does not matter how progress 𝜉𝑇𝐹𝑃 in total factor productivity 𝑇𝐹𝑃 is achieved, by  𝜉𝐾 or 𝜉𝐿𝑇 or a combination of the two. And 

that is why we also have to reject capital and labor augmented technical progress in this case. 

Although, ignoring it would be a solution. And this is what is done in growth accounting for 

many decades and also how it is used by Donselaar (2011). So as long as you do not hold 𝜉𝐾 

and/or 𝜉𝐿𝑇 accountable for 𝜉𝑇𝐹𝑃 you are on the right track. And it is exactly that what we 

introduced with our new philosophy in section 10, but now for all production functions. In the 

case of CES functions capital and labor technical progress is responsible for changes in 𝜉𝑇𝐹𝑃 and 

can also introduce changes in the capital-labor-mix as well as in the elasticity of substitution. 

And to be real, what else had you expected if we have one scale factor and two form factors 

available with regard to CES production functions. In total this leads to: 

Lemma: If we forget the origin of Solow’s formula, i.e. some kind of capital or labor 
neutrality, the formulas for growth accounting are still valid. 𝑔𝑌 = 𝑔𝑇𝐹𝑃 + 𝛼0𝑔𝐾 + (1 − 𝛼0)𝑔𝐿  
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• We have rejected the old way of implementing capital and labor augmented technical 

progress as is done since it was introduced/used/described by Hicks, Solow, Harrod, 

Uzawa, Inada, Jones, Acemoglu, Barro, Krusell (2014) and Stiglitz, to name a few.  

• We introduced an alternative for capital and labor progress in the form of total factor 

productivity and other possible parameter changes. 

• It solves the long existing theoretical problem, labor augmented technical progress only 

or Cobb-Douglas. 

• We showed the relation between total factor productivity and total growth per capita. 

• We analyzed the difficulties of determining the elasticity of substitution. 

• The analysis presented gives you an alternative view on the Solow growth model. 

• Growth accounting and neo-classical growth theory are in perfect harmony. 

• We have the impression that these changes will create new possibilities of describing 

capital and labor progress in an even better way.  

• It also may pave the way to new forms of endogenous technical progress. 

 

 

Acknowledgement  
 

This research was carried out by DLF Macro Economic Research by means of private funding. 

Copyright ©: All the material in this manuscript is copyright protected. Please contact us if you 

like to use it in your own manuscripts and books.  

Literature 
 

• Acemoglu, D., 2003, Labor- and Capital-Augmenting Technical Change, Journal of the European 

Economic Association, Vol. 1, No. 1 (Mar., 2003), pp. 1-37, MIT Press, 

http://www.jstor.org/stable/40005140 

• Acemoglu, D., Guerrieri, V., 2006, Capital Deepening And Non-Balanced Economic Growth, 

NBER Working Paper Series, Working Paper 12475, http://www.nber.org/papers/w12475  

• Acemoglu, D., 2008, Introduction to modern economic growth, Princeton University Press 

• Arrow, K. J.; Chenery, H. B.; Minhas, B. S.; Solow, R. M. (1961). "Capital-labor substitution and 

economic efficiency". Review of Economics and Statistics. The MIT Press. 43 (3): 225–250 

• Barelli, P., Abreu Pessôa S. de, 2003, Inada conditions imply that production function must be 

asymptotically Cobb–Douglas, Economics Letters 81 (2003) 361 – 363 

http://bibliotecadigital.fgv.br/dspace/handle/10438/1012 

• Barro, Robert J., Sala-i-Martin, Xavier, 2003, Economic Growth, Second Edition, MIT Press 

• Brugger, F., Gehrke, C., 2017, The Neoclassical Approach to Induced Technical Change: From 

Hicks to Acemoglu, Metroeconomica, 2017, vol. 68, issue 4, 730-776 

• De la Fonteijne, Marcel R., 2011,  Exploring stability and other fundamentals in a simple economy 

model, MPRA, https://mpra.ub.uni-muenchen.de/72850/  

• De la Fonteijne, Marcel R., 2013, The Monetary Profit Paradox and a Sustainable Economy: A 

Fundamental Approach, MPRA, https://mpra.ub.uni-muenchen.de/55235/ 

http://www.nber.org/papers/w12475
http://bibliotecadigital.fgv.br/dspace/handle/10438/1012
https://mpra.ub.uni-muenchen.de/72850/
https://mpra.ub.uni-muenchen.de/55235/


35 

 

• De la Fonteijne, Marcel R., 2014a, An Inconsistency in using Stock Flow Consistency in 

Modelling the Monetary Profit Paradox, Economics: The Open-Access, Open-Assessment E-

Journal, 8 (2014-15): 1—7. http://dx.doi.org/10.5018/economics-ejournal.ja.2014-15  

• De la Fonteijne, Marcel R., 2014b, Okun's Law, Dead or Alive: A Fundamental Approach, MPRA, 

https://mpra.ub.uni-muenchen.de/83911/  

• De la Fonteijne, Marcel R., 2015a, Jones on Piketty’s r > g: A critique, MPRA, 

https://mpra.ub.uni-muenchen.de/83830/  

• De la Fonteijne, Marcel R., 2015b, Do Inada Conditions imply Cobb-Douglas Asymptotic 

Behavior or only a Elasticity of Substitution equal to one, MPRA, https://mpra.ub.uni-

muenchen.de/82304/ 

• De la Fonteijne, Marcel R., 2016, The (F)Laws of Piketty’s Capitalism: A Fundamental 
Approach, MPRA, https://mpra.ub.uni-muenchen.de/72719/ 

• Diamond, P. A. and McFadden, D. (1965). Identification of the Elasticity of Substitution and the 

bias of Technical Change: An Impossibility Theorem. Working Paper No. 62, University of 

California Berkeley. 

• Diamond, P. A., McFadden, D., and Rodriguez, M. (1978). Measurement of the elasticity of 

substitution and bias of technical change. In Fuss, M. and McFadden, D., editors, Production 

Economics, Vol. 2, pages 125–147. Amsterdam and North Holland, 

https://eml.berkeley.edu/~mcfadden/prodecon/apps/ch12.pdf  

• Donselaar, P., 2011, Innovation and productivity: The Solow residual disentangled, 

Ridderkerk, Ridderkerk bv, thesis in Dutch. 

• Hahn, Frank H., 1965, On Two-Sector Growth Models, Review of Economic Studies, Vol. 32, No. 

4 (Oct., 1965), pp. 339-346, http://www.jstor.org/stable/2295840  

• Jacobs, B., 2014, blog, https://basjacobs.wordpress.com/tag/piketty/, 2018-01-07 

• Inada, K.-I., 1963, On a two-sector model of economic growth: comments and a generalization. 

Review of Economic Studies, 30 (2), 119–127, http://www.jstor.org/stable/2295809 

• Jones, C.I., 2003, Growth, Capital Shares, and a New Perspective on Production Functions, Econ 

Papers, Proceedings, 2003, issue Nov, 

http://econpapers.repec.org/RePEc:fip:fedfpr:y:2003:i:nov:x:2 

• Jones, Charles I., Scrimgeour, Dean, 2004, The Steady-State Growth Theorem: A Comment on 

Uzawa (1961), NBER Working Paper No. 10921, http://www.nber.org/papers/w10921.pdf 

• Jones, C. I. (2005). The shape of production functions and the direction of technical change. 

Quarterly Journal of Economics, 120(2):517–549, 

https://web.stanford.edu/~chadj/JonesQJE2005.pdf  

• Jones, C.I., Scrimgeour, D., 2008, A new proof of Uzawa’s steady-state growth theorem, The 

Review of Economics and Statistics, February 2008, 90(1): 180–182, 

https://web.stanford.edu/~chadj/JonesScrimgeour2008.pdf 

• Jones, C.I., 2013, Introduction to economic growth, WW Norton & Co 

• Klump, R., Preissler, H., 2000, Ces Production Functions and Economic Growth, Scand. J. of 

Economics, 102(1), 41-56, 2000 

• Klump, R., et al., 2007, Factor Substitution and Factor Augmenting Technical Progress in the US: 

A Normalized Supply-Side System Approach, Review of Economics and Statistics, Volume 89, 

Issue 1, February 2007, p.183-192, https://doi.org/10.1162/rest.89.1.183 

• Klump, R., McAdam, P., Willman, A., 2011, The normalized CES Production function theory and 

empirics, ECB Working Paper Series, No 1294, http://ssrn.com/abstract_id=1761410 

• Krusell, P., 2014, Real Macroeconomic Theory, version 2014, http://hassler-

j.iies.su.se/courses/macroII/Notes/Perbook2010.pdf per 12 dec 2018 

• León-Ledesma, M. A., McAdam, P. and Willman, A. (2010), ‘Identifying the Elasticity of 

Substitution with Biased Technical Change’, American Economic Review pp. 1330–1357. 

http://dx.doi.org/10.5018/economics-ejournal.ja.2014-15
https://mpra.ub.uni-muenchen.de/83911/
https://mpra.ub.uni-muenchen.de/83830/
https://mpra.ub.uni-muenchen.de/82304/
https://mpra.ub.uni-muenchen.de/82304/
https://mpra.ub.uni-muenchen.de/72719/
https://eml.berkeley.edu/~mcfadden/prodecon/apps/ch12.pdf
http://www.jstor.org/stable/2295840
https://basjacobs.wordpress.com/tag/piketty/
http://www.jstor.org/stable/2295809
http://econpapers.repec.org/article/fipfedfpr/
http://econpapers.repec.org/RePEc:fip:fedfpr:y:2003:i:nov:x:2
http://www.nber.org/papers/w10921.pdf
https://web.stanford.edu/~chadj/JonesQJE2005.pdf
https://web.stanford.edu/~chadj/JonesScrimgeour2008.pdf
https://www.bol.com/nl/b/ww-norton-co/14536231/?lastId=23940
https://doi.org/10.1162/rest.89.1.183
http://ssrn.com/abstract_id=1761410
http://hassler-j.iies.su.se/courses/macroII/Notes/Perbook2010.pdf
http://hassler-j.iies.su.se/courses/macroII/Notes/Perbook2010.pdf


36 

 

• Litina, A., Palivos, T., 2008, Do Inada conditions imply that production function must be 

asymptotically Cobb–Douglas? A comment, Economics Letters 99 (2008) 498–499 

http://bibliotecadigital.fgv.br/dspace/bitstream/10438/1012/3/1324.pdf 

• Piketty, T., 2014, Capital in the Twenty-First Century, translation from: Le capital au XXI siècle 

(2013). Harvard University Press, Cambridge, MA. 

• Paul M. Romer, 1990,  Endogenous technological change, Journal of Political Economy, 98(5 

pt.2):S71–S102, October 1990. 

• Romer, P., 2015, Mathiness in the Theory of Economic Growth, American Economic Review: 

Papers & Proceedings 2015, 105(5): 89–93, http://dx.doi.org/10.1257/aer.p20151066 

• Saam, M., 2014, The Identification of Directed Technical Change Revisited, Centre for European 

Economic Research (ZEW), Discussion Paper No. 14-127,  
http://ftp.zew.de/pub/zew-docs/dp/dp14127.pdf  

• Solow, R.M., 1956, A contribution to the theory of economic growth, Quarterly Journal of 

Economics, Vol. 70: 65–94 (1956) 

• Solow, R.M., 1957,  Technical Change and the Aggregate Production Function, The Review of 

Economics and Statistics, Vol. 39, No. 3 (Aug., 1957), pp. 312-320, 

http://www.jstor.org/stable/1926047  

• Solow, R.M., 1994, Perspectives on Growth Theory, The Journal of Economic Perspectives, Vol. 

8(1), Winter 1994, p. 45-54 
• Solow, R.M., 1961, Note on Uzawa’s two-sector model of economic growth, Review of Economic 

Studies, Vol. 29: p. 48–50 

• Stiglitz, Joseph, 1967, A Two Sector Two Class Model of Economic Growth, Review of Economic 

Studies, 1967, vol. 34, issue 2, 227-238, 

https://EconPapers.repec.org/RePEc:oup:restud:v:34:y:1967:i:2:p:227-238 

• Stiglitz, Joseph, 2014, Unemployment and Innovation, NBER Working Paper No. 20670, 

https://www.nber.org/papers/w20670  

• Uzawa, Hirofumi, 1961-1, Neutral Inventions and the Stability of Growth Equilibrium, Review of 

Economic Studies, February 1961, 28 (2), 117.124 

• Uzawa, H., 1961-2, On a two-sector model of economic growth, Review of Economic Studies, Vol. 

29 (1961-1962) 

• Uzawa, H., 1962, On a two-sector model of economic growth II, Review of Economic Studies, 

Vol. 30 (1962-1963) 

http://bibliotecadigital.fgv.br/dspace/bitstream/10438/1012/3/1324.pdf
http://www.hup.harvard.edu/catalog.php?isbn=9780674430006
http://ftp.zew.de/pub/zew-docs/dp/dp14127.pdf
http://www.jstor.org/stable/1926047
https://econpapers.repec.org/RePEc:oup:restud:v:34:y:1967:i:2:p:227-238
https://www.nber.org/papers/w20670

