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Abstract

In this paper, we offer group-theoretic bifurcation theory to elucidate the mechanism of the self-

organization of square patterns in economic agglomerations. First, we consider a scalar field on

a square lattice that has the symmetry described by the group D4 ⋉ (Zn × Zn) and investigate

steady-state bifurcation of the spatially uniform equilibrium to steady planforms periodic on the

square lattice. To be specific, we derive the irreducible representations of the group D4 ⋉ (Zn ×
Zn) and show the existence of bifurcating solutions expressing square patterns by two different

mathematical ways: (i) using the equivariant branching lemma and (ii) solving the bifurcation

equation. Second, we apply such a group-theoretic methodology to a spatial economic model

with the replicator dynamics on the square lattice and demonstrate the emergence of the square

patterns. We furthermore focus on a special feature of the replicator dynamics: the existence of

invariant patterns that retain their spatial distribution when the value of the bifurcation parameter

changes. We numerically show the connectivity between the uniform equilibrium and invariant

patterns through the bifurcation. The square lattice is one of the promising spatial platforms for

spatial economic models in new economic geography. A knowledge elucidated in this paper would

contribute to theoretical investigation and practical applications of economic agglomerations.

Keywords: Bifurcation, group-theoretic bifurcation theory, invariant pattern, new economic

geography, replicator dynamics, self-organization, spatial economic model, square lattice.
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(a) Chicago (USA) (b) Kyoto (Japan)

Figure 1.1: Satellite photographs of cities provided by Google Maps displaying square road networks

1. Introduction

Square road networks prosper worldwide. Chicago (USA) and Kyoto (Japan), for example,

are well-known to accommodate such square networks historically (see Figure 1.1). This paper

intends to elucidate the mechanism of economic agglomerations on such square networks as the

important contribution of nonlinear mathematics to spatial economics.

In spatial economics, the mechanism of economic agglomerations is highlighted as the most

important topic. After a pioneering work by Krugman, 1991 [1], bifurcation is welcomed as a

catalyst to engender a core place and a peripheral place from two identical places. The study of

spatial agglomerations have come to be extended from the two-region economy to the racetrack

economy (one-dimension) and, in turn, to explain various polycentric agglomerations (Tabuchi

and Thisse, 2011 [2]; Ikeda et al., 2012 [3]; Akamatsu et al., 2012 [4]). In economic geography,

central place theory (Christaller, 1933 [5]; Lösch, 1954 [6]) envisaged the emergence of hexagonal

agglomerations based on the distribution of cities and towns in Southern Germany. The existence

of a hexagonal distribution of mobile production factors (e.g., firms and workers) was shown

based on a microeconomic foundation (Eaton and Lipsey, 1975 [7]). To explain the mechanism

of economic agglomerations in the real world, spatial platforms for spatial economic models are

required to be extended to a two-dimensional spaces as conducted in this present paper.

Lattice economies, including a hexagonal lattice and a square lattice, can accommodate various

two-dimensional agglomeration patterns of economic interest. Motivated by hexagonal agglom-

erations in central place theory, the bifurcation mechanism of spatial economic models on the

hexagonal lattice has been elucidated (Ikeda and Murota, 2014 [8]). The stability of bifurcating

solutions from the uniform distribution was investigated to demonstrate that theoretically predicted

bifurcating solutions, including hexagonal patterns, are all unstable just after the bifurcation (Ikeda

et al., 2018 [9]). Geometrical distributions that are solutions to the governing equation of a spatial

economic model with the replicator dynamics, irrespective of the value of the bifurcation (trans-

port cost) parameter, are called invariant patterns and were demonstrated to represent economic

agglomerations of great economic interest (Ikeda et al., 2019 [10]).

Yet the bifurcation mechanism of spatial economic models on the square lattice is not un-

derstood to the full extent. Some studies dealt with economic agglomerations on the square lat-
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tice (Clarke and Wilson, 1983 [11]; Weidlich and Haag, 1987 [12]; Munz and Weidlich, 1990

[13]; Brakman et al., 1999 [14]) but are not based on spatial economic models. As a pioneering

study that combined the square lattice with a spatial economic model, Ikeda et al., 2018 [15] in-

vestigated a break bifurcation point on the uniform distribution and indicated the occurrence of

period-doubling bifurcation. This study, however, found just a fraction of bifurcating solutions

and invariant patterns on the square lattice by relying on an ad hoc procedure.

That said, we aim to develop group-theoretic bifurcation theory of spatial economic models

on the square lattice. Such development would enrich the application of bifurcation theory in

nonlinear mathematics and would contribute to the future study in spatial economics. We rely on

two perspectives of agglomeration behaviour:

• bifurcation mechanisms due to geometrical symmetry and

• the existence of invariant patterns for the replicator dynamics.

We present an exhaustive list of bifurcating solutions from the uniform distribution. We develop

a systematic procedure to obtain invariant patterns as a generalization of Ikeda et al., 2018 [15]

and Ikeda et al., 2019 [10]. We obtain invariant patterns exhaustively, including the uniform,

monocentric, and polycentric distributions. The list of bifurcating solutions and invariant patterns

advanced in this paper would be of assistance in the study of economic agglomerations.

The group-theoretic analysis in this paper proceeds as follows. We first investigate the bifurca-

tion of a scalar field on the square lattice with periodic boundary conditions, which has the symme-

try described by the finite group D4⋉(Zn×Zn). Note that many pattern-formation phenomena have

been modeled by partial differential equations with group equivariance on an infinite plane. As the

mathematical model of reaction-diffusion models, Navier-Stokes flow, and the Bénard problem, a

system that is equivariant to the infinite group D4 ⋉ T2 (T2 expresses the two-torus of translation

symmetries) has been studied (Dionne et al., 1997 [16]; Golubitsky and Stewart, 2003 [17]). As

for economic agglomerations described by spatial economic models, it is essential to assume a

discretized finite plane. For this reason, we employ the finite group D4 ⋉ (Zn × Zn).

We next obtain invariant patterns for the replicator dynamics on the square lattice. Invariant

patterns have come to be used in the analysis of spatial economic models to capture a series of

agglomeration patterns of economic interest (Takayama et al., 2020 [18]; Osawa et al., 2020 [19]).

We use a systematic procedure proposed for the hexagonal lattice (Ikeda et al., 2019 [10]) and

obtain invariant patterns exhaustively.

We finally conduct a numerical bifurcation analysis of a spatial economic model on the square

lattice. We find mesh-like bifurcation diagrams with a large number of horizontal lines and non-

horizontal curves, like threads of warp and weft. Horizontal lines correspond to invariant patterns,

and non-horizontal curves correspond to bifurcating solutions. Such mesh-like bifurcation dia-

grams are similar to those which observed for the hexagonal lattice (Ikeda et al., 2018 [9]).

As the major achievement of this paper, we elucidate the connectivity between the uniform

state and invariant patterns: Population tends to be agglomerated to places with the largest posi-

tive components of a bifurcating solution from the uniform distribution, and then the spatial dis-

tribution arrives at an invariant pattern via a bifurcating curve. We futhermore pay a special at-

tention to the fact that when two half branches at a bifurcation point are symmetric (respectively,
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asymmetric), they would arrive at one (respectively, two) invariant patterns. We obtain theoreti-

cal conditions for the symmetry and the asymmetry of such bifurcating half branches as another

contribution of this paper.

This paper is organized as follows. Chapter 2 introduces an n × n square lattice with the group

D4 ⋉ (Zn × Zn) and classifies square patterns for economic agglomerations on this lattice. Chap-

ter 3 gives a derivation of the irreducible representations of the group D4 ⋉ (Zn × Zn). Chapter

4 provides the matrix representations of this group. Chapters 5 and 6 present a group-theoretic

bifurcation analysis by using equivariant branching lemma and by solving the bifurcation equa-

tion, respectively. Chapter 7 applies the group-theoretic bifurcation analysis to a spatial economic

model on the square lattice and conducts numerical simulations according to the theoretical results

elucidated in Chapters 5 and 6. Chapter 8 expresses concluding remarks.
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Figure 2.1: Infinite square lattice

2. Square Patterns on Square Lattice

In this chapter, we introduce an n × n finite square lattice with periodic boundary conditions

comprising a system of uniformly distributed n × n places. We allocate discretized degrees-of-

freedom to each node of this lattice. Periodic boundary conditions allow us to express infiniteness

and uniformity and to avoid heterogeneity due to the boundaries by spatially repeating the finite

lattice periodically to cover an infinite two-dimensional domain.

Using the group consisting of D4 and Zn×Zn, we express the symmetry of this lattice with dis-

cretized degrees-of-freedom. The study conducted in this chapter is purely geometric and involves

no bifurcation mechanism. it forms, however, an important foundation of the group-theoretic bi-

furcation analysis in Chapters 5 and 6.

This chapter is organized as follows. The infinite square lattice is introduced in Section 2.1.

Square patterns are described in Section 2.2. The n× n finite square lattice is given in Section 2.3.

The group associated with the square lattice is given in Section 2.4.

2.1. Infinite Square Lattice

Infinite square lattice is given as a set of integer combinations of oblique basis vectors

ℓ1 = d

[
1

0

]
, ℓ2 = d

[
0

1

]
, (2.1)

where d > 0 means the length of these vectors. That is, the infinite square lattice H is expressed

as

H = {n1ℓ1 + n2ℓ2 | n1, n2 ∈ Z}, (2.2)

where Z denotes the set of integers. Figure 2.1 depicts the infinite square lattice.
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(a) (α, β) = (1, 0) (b) (α, β) = (1, 1)

Figure 2.2: Square patterns on the square lattice

To represent square patterns on the latticeH , we consider a sublattice spanned by

t1 = αℓ1 + βℓ2, t2 = −βℓ1 + αℓ2, (2.3)

where α and β are integer-valued parameters with (α, β) , (0, 0). We denote this sublattice by

H(α, β), that is,

H(α, β) = {n1t1 + n2t2 | n1, n2 ∈ Z}
= {(n1α − n2β)ℓ1 + (n1β + n2α)ℓ2 | n1, n2 ∈ Z}

=

{
[ ℓ1 ℓ2 ]

[
α −β
β α

] [
n1

n2

] ∣∣∣∣∣∣ n1, n2 ∈ Z
}
. (2.4)

Since ∥t1∥ = ∥t2∥ and the angle between t1 and t2 is π/2, the lattice H(α, β) indeed represents a

square pattern.

The spatial period L is defined to be the (common) length of the basis vectors t1 and t2, which

is given by

L = d
√
α2 + β2. (2.5)

We refer to
L

d
=

√
α2 + β2 (2.6)

as the normalized spatial period, which is an important index for characterizing the size of a square

pattern. Although the definition here refers to the basis vectors, the spatial period L, as well as the

normalized spatial period L/d, is in fact determined by the sublattice H(α, β), as seen from (2.9)

with (2.8) below.

The normalized spatial period L/d in (2.6) takes specific values
√

1,
√

2,
√

4,
√

5, . . . as a

consequence of the fact that α and β are integers. The square pattern with L/d = 1 is the uniform
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pattern. The normalized spatial period is obtained from (2.6) as

L

d
=

√
α2 + β2

=
√

1,
√

2,
√

4,
√

5,
√

8,
√

9,
√

10,
√

13,
√

16,
√

17,
√

18,
√

20,
√

25, . . .

=

{
1, 2, 3, 4, 5, . . . ,√

2,
√

5,
√

8,
√

10,
√

13,
√

17,
√

18,
√

20, . . . .
(2.7)

The parameter values are given as follows:

(α, β) =



(1, 0) : L/d = 1,

(1, 1) : L/d =
√

2,

(2, 0) : L/d = 2,

(2, 1) : L/d =
√

5,

(2, 2) : L/d =
√

8,

(3, 0) : L/d = 3,

(3, 1) : L/d =
√

10,

(3, 2) : L/d =
√

13,

(4, 0) : L/d = 4,

(4, 1) : L/d =
√

17,

(3, 3) : L/d =
√

18,

(4, 2) : L/d =
√

20,

(4, 3) : L/d = 5,

(5, 0) : L/d = 5, . . . .

Figure 2.2 depicts some square patterns.

2.2. Description of Square Patterns

Square patterns are parameterized and classified into several types.

2.2.1. Parameterization of Square Patterns

In the parameterization (α, β) of the lattice, let us note its non-uniqueness that different param-

eter values of (α, β) can sometimes result in the same latticeH(α, β). Define

D = D(α, β) = α2 + β2, (2.8)

which is a positive integer for (α, β) , (0, 0). It will be shown later in this subsection that D is an

invariant in this parameterization, that is, we have the following implication:

H(α, β) = H(α′, β′) =⇒ D(α, β) = D(α′, β′). (2.9)

The converse, however, is not true, as the following example shows.

Example 2.1. For (α, β) = (5, 0) and (α′, β′) = (4, 3), we have D(α, β) = D(α′, β′) = 25. But the

latticesH(α, β) andH(α′, β′) are different. □

9



Table 2.1: The values of D(α, β) for (α, β) in (2.11)

α \ β 0 1 2 3 4 5 6 7

1 1 2

2 4 5 8

3 9 10 13 18

4 16 17 20 25 32

5 25 26 29 34 41 50

6 36 37 40 45 52 61 72

7 49 50 53 58 65 74 85 98

The parameter space for the square sublattices is given as follows, and the proof is given later

in this subsection.

Proposition 2.1. Square sublatticesH(α, β) are parameterized, one-to-one, by

{(α, β) ∈ Z2 | α > 0, β ≥ 0}. (2.10)

Two lattices H(α, β) and H(β, α) are not identical in general, but are mirror images with re-

spect to the y-axis. As such they are naturally regarded as essentially the same. Let us call two

square lattices essentially different if they are neither identical nor mirror images with respect to

the y-axis. Essentially different square sublattices are parameterized as follows, the proof being

given later in this subsection.

Proposition 2.2. Essentially different square sublattices H(α, β) are parameterized, one-to-one,

by

{(α, β) ∈ Z2 | α ≥ β ≥ 0, α , 0}. (2.11)

Table 2.1 shows the values of D = D(α, β) for (α, β) with 7 ≥ α ≥ β ≥ 0, α , 0. It is worth

noting that the values of D in this table are all distinct with the exceptions of D(5, 0) = D(4, 3) = 25

and D(5, 5) = D(7, 1) = 50. This means, in particular, that smaller square patterns (with D < 25)

are uniquely determined by their spatial period L, which is related to D as

L

d
=
√

D (2.12)

by (2.6) and (2.8).

Proofs of (2.9) and Propositions 2.1 and 2.2

First, recall that H(α, β) is generated by (t1, t2) = (t1(α, β), t2(α, β)) in (2.3), which can be

expressed as
[
t1 t2

]
=

[
ℓ1 ℓ2

] [ α −β
β α

]
. (2.13)
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1

2

y

x
1 

2
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x 

(a) Square pattern for (2.15) (b) Square pattern for (2.16)

Figure 2.3: Square patterns associated with (2.15) and (2.16)

The determinant of this coefficient matrix coincides with D(α, β) introduced in (2.8), i.e.,

D(α, β) = α2 + β2 = det

[
α −β
β α

]
. (2.14)

IfH(α′, β′) ⊆ H(α, β), then

[
α′ −β′
β′ α′

]
=

[
α −β
β α

] [
x11 x12

x21 x22

]

for some integers x11, x12, x21, x22, and hence D(α′, β′) is a multiple of D(α, β). Exchanging the

roles of (α, β) and (α′, β′), we have (2.9).

Next, the parameter spaces (2.10) and (2.11) forH(α, β) are derived. We observe geometrically

(see Fig. 2.3(a)) that H(α′, β′) = H(α, β) if and only if t′
1
= α′ℓ1 + β

′ℓ2 is obtained from t1 =

αℓ1 + βℓ2 by a rotation at an angle that is a multiple of π/2, i.e., t′
1
= R4

k t1 with

R4 =

[
cos(π/2) − sin(π/2)

sin(π/2) cos(π/2)

]
=

[
0 −1

1 0

]

for some k ∈ {0, 1, 2, 3}. Since

R4 t1 = R4(αℓ1 + βℓ2) = α(ℓ2) + β(−ℓ1) = [ ℓ1 ℓ2 ]

[
0 −1

1 0

] [
α

β

]
,

we haveH(α′, β′) = H(α, β) if and only if

[
α′

β′

]
=

[
0 −1

1 0

]k [
α

β

]

for some k ∈ {0, 1, 2, 3}. Therefore, we obtain the same lattice for the following four parameter

values:

(α, β), (−β, α), (−α,−β), (β,−α). (2.15)
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This allows us to adopt (2.10) as the parameter space for H(α, β), by which we mean that, for

every (α′, β′) , (0, 0) in Z2, the sublattice H(α′, β′) is the same as the sublattice H(α, β) for

some (uniquely determined) (α, β) in (2.10). It should be mentioned, in particular, that H(0, β) =

H(β, 0) by (2.15), and hence we have α > 0 in (2.10).

Geometrically, the lattices for (α, β) and (β, α) are mirror images with respect to the line x = y.

In this sense, we regardH(α, β) andH(β, α) as essentially the same. Thus, we regard the following

four parameter values as essentially equivalent to (α, β):

(β, α), (−α, β), (−β,−α), (α,−β). (2.16)

See Fig. 2.3(b) for the square pattern of (2.16). If β = 0 or α = β, the set of four parameters in

(2.16) is identical to the set in (2.15). This is because the lattices for β = 0 or α = β are symmetric

with respect to the line x = y.

Thus, essentially equivalent parameter values can be summarized as follows:

(α, β), (−β, α), (−α,−β), (β,−α),

(β, α), (−α, β), (−β,−α), (α,−β). (2.17)

which reduces in a special case of β = 0 to

(α, 0), (0, α), (−α, 0), (0,−α) (2.18)

or in another special case of α = β to

(α, α), (−α, α), (−α,−α), (α,−α). (2.19)

On the basis of the observations above, (2.11) can be adopted as the parameter space for essentially

different sublattices. This means that every (α, β) , (0, 0) in Z2 is essentially equivalent to some

(uniquely determined) member in (2.11).

2.2.2. Types of Square Patterns

The tilt angle φ of the sublatticeH(α, β) is defined as the angle between ℓ1 and t1, i.e., by

cosφ =
(ℓ1)⊤t1

∥ℓ1∥ · ∥t1∥
, (2.20)

where (α, β) is chosen from the parameter space in (2.10) or (2.11). This is equivalent to defining

φ by

φ = arcsin


β

√
α2 + β2

 . (2.21)

With reference to the tilt angle φ, square patterns can be classified into three types:



type V if φ = 0,

type M if φ = π/4,

type T otherwise.

(2.22)
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(a) Type V (b) Type M (c) Type T

Figure 2.4: Square patterns of three types that are centered at the origin

Figure 2.4 depicts square patterns of these three types that are centered at the origin, where “V”

indicates that the x-axis contains a vertex of the square, “M” denotes that the x-axis contains

the midpoint of two neighboring vertices of that square, and “T” means “tilted.” In terms of the

parameter (α, β), this classification is expressed as



type V if (α, β) = (α, 0) (α ≥ 1),

type M if (α, β) = (β, β) (β ≥ 1),

type T otherwise,

(2.23)

where the parameter space for type T depends on the choice of (2.10) or (2.11) as

For (2.10) : {(α, β) | α > 0, β ≥ 0, α , β}, (2.24)

For (2.11) : {(α, β) | α > β ≥ 0}. (2.25)

Accordingly, the parameter spaces in (2.10) and (2.11) are divided, respectively, into three parts:

{(α, 0) | α ≥ 1} ∪ {(β, β) | β ≥ 1} ∪ {(α, β) | α > 0, β ≥ 0, α , β}, (2.26)

{(α, 0) | α ≥ 1} ∪ {(β, β) | β ≥ 1} ∪ {(α, β) | α > β ≥ 0}. (2.27)

The types V, M, and T are correlated with the normalized spatial period as

L/d =



√
4,
√

9,
√

16,
√

25, . . . : type V,√
2,
√

8,
√

18,
√

32, . . . : type M,√
5,
√

10,
√

13,
√

17, . . . : type T.

It should be emphasized, however, that the type does not always determine, nor is determined by,

the spatial period. This is demonstrated by the two lattices H(5, 0) and H(4, 3). These lattices

share the same normalized spatial period L/d =
√

25, but of different types; the former is of type V

and the latter of type T.
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(a) 4 × 4 square lattice (b) Periodic boundaries

Figure 2.5: A system of places on the 4 × 4 square lattice with periodic boundaries

2.3. Finite Square Lattice

In the previous subsections we have considered the infinite square lattice spreading over the

entire plane. We now introduce an n × n finite square lattice with periodic boundary conditions.

We now consider a subset Hn of H that consists of integer combinations with coefficients

between 0 and n − 1:

Hn = {n1ℓ1 + n2ℓ2 | ni ∈ Z, 0 ≤ ni ≤ n − 1 (i = 1, 2)}. (2.28)

This is a finite set comprising n2 elements, where n represents the size ofHn. Figure 2.5(a) depicts

the 4 × 4 square lattice.

The infinite latticeH is regarded as a periodic extension ofHn with the two-dimensional period

of (nℓ1, nℓ2). In other words, H is regarded as being covered by translations of Hn by vectors of

the form m1(nℓ1) + m2(nℓ2) with integers m1 and m2. A point n1ℓ1 + n2ℓ2 in H corresponds to

n′
1
ℓ1 + n′

2
ℓ2 inHn for (n′

1
, n′

2
) given by

n′1 ≡ n1 mod n, n′2 ≡ n2 mod n. (2.29)

Figure 2.5(b) depicts the 4 × 4 square lattice with periodic boundaries.

For the sublattice H(α, β) of H defined in (2.4), we may consider its portion H(α, β) ∩ Hn

contained inHn, expecting that the periodic extension of this portion coincides withH(α, β) itself.

If this is the case, we say that (α, β) is compatible with n, or n is compatible with (α, β). Using the

Minkowski sum3 ofH(α, β)∩Hn andH(n, 0), the condition for compatibility can be expressed as

(H(α, β) ∩Hn) +H(n, 0) = H(α, β), (2.30)

3For two sets X,Y ⊆ Z2, their Minkowski sum X + Y is defined as X + Y = {x + y | x ∈ X,y ∈ Y}.
14



which is equivalent to

H(n, 0) ⊆ H(α, β). (2.31)

The compatibility condition is given as follows:

Proposition 2.3. The size n of Hn is compatible with (α, β) if and only if n is a multiple of

D(α, β)/ gcd(α, β), that is,

n = m
D(α, β)

gcd(α, β)
, m = 1, 2, . . . . (2.32)

Proof. By (2.31), the size n is compatible with (α, β) if and only if

[
t1 t2

] [ x11 x12

x21 x22

]
= n

[
ℓ1 ℓ2

]

for some integers x11, x12, x21, x22, where t1 and t2 are defined in (2.3). Substituting

[
t1 t2

]
=

[
ℓ1 ℓ2

] [ α −β
β α

]

into the above equation and multiplying the inverse of
[
ℓ1 ℓ2

]
from the left, we obtain

[
α −β
β α

] [
x11 x12

x21 x22

]
= n

[
1 0

0 1

]
,

from which
[

x11 x12

x21 x22

]
= n

[
α −β
β α

]−1

=
n

D(α, β)

[
α β

−β α

]
=

n gcd(α, β)

D(α, β)

[
α̂ β̂

−β̂ α̂

]
,

where α̂ = α/ gcd(α, β) and β̂ = β/ gcd(α, β). This shows that x11, x12, x21, x22 are integers if and

only if n is a multiple of D(α, β)/ gcd(α, β). □

When combined with the three types in (2.23), the compatibility condition (2.32) in Proposi-

tion 2.3 shows the following statements:

• For a patternH(α, β) of type V, parameterized by (α, β) = (α, 0) with α ≥ 1, a compatible n

is a multiple of α.

• For a patternH(α, β) of type M, parameterized by (α, β) = (β, β) with β ≥ 1, a compatible n

is a multiple of 2β.

• For a pattern H(α, β) of type T, with (α, β) in (2.24) or (2.25), a compatible n is a multiple

of D(α, β)/ gcd(α, β).

To sum up, we have

n =



mα (α ≥ 1) for type V,

2mβ (β ≥ 1) for type M,

mD(α, β)/ gcd(α, β) for type T,

(2.33)

where m = 1, 2, . . . .
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2.4. Groups Expressing the Symmetry

The first step of the bifurcation analysis of the square pattern on the n × n square lattice is to

identify the subgroup expressing the symmetry of this pattern.

2.4.1. Symmetry of the Finite Square Lattice

The symmetry of the n×n square latticeHn in (2.28) is characterized by invariance with respect

to

• r: counterclockwise rotation about the origin at an angle of π/2,

• s: reflection y 7→ −y,

• p1: periodic translation along the ℓ1-axis (i.e., the x-axis), and

• p2: periodic translation along the ℓ2-axis (i.e., the y-axis).

Consequently, the symmetry of the square latticeHn is described by the group

G = ⟨r, s, p1, p2⟩, (2.34)

which is generated by r, s, p1, and p2 with the fundamental relations:

r4 = s2 = (rs)2 = p1
n = p2

n = e, p2 p1 = p1 p2,

rp1 = p2r, rp2 = p−1
1 r, sp1 = p1s, sp2 = p−1

2 s, (2.35)

where e is the identity element. Each element of G can be represented uniquely in the form of

slrm p1
i p2

j, l ∈ {0, 1}, m ∈ {0, 1, 2, 3}, i, j ∈ {0, 1, . . . , n − 1}. (2.36)

The group G contains the dihedral group

⟨r, s⟩ ≃ D4

and cyclic groups

⟨p1⟩ ≃ Zn, ⟨p2⟩ ≃ Zn

as its subgroups, where Zn means the cyclic group of order n, which is denoted as Cn. The group

G has the structure of the semidirect product of D4 by Zn × Zn, that is, G = D4 ⋉ (Zn × Zn).

Remark 2.1. A group G is said to be a semidirect product of a subgroup H by another subgroup

A, denoted G = A ⋊ H, if

• A is a normal subgroup of G, and

• each element g ∈ G is represented uniquely as g = ah with a ∈ A and h ∈ H.

Each element g = ah ∈ G can also be represented uniquely in an alternative form of g = h′a with

h′ ∈ H and a ∈ A, since g = ah = h(h−1ah) and h′ = h−1ah ∈ A by the normality of A. Our group

G = ⟨r, s, p1, p2⟩ is a semidirect product of H = D4 by A = Zn×Zn, and we have G = D4⋉(Zn×Zn)

in accordance with g = slrm p1
i p2

j in (2.36) with slrm ∈ D4 and p1
i p2

j ∈ Zn × Zn. For more details

on the definition of semidirect product, see Curtis and Reiner, 1962 [20]. □
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2.4.2. Subgroups for Square Patterns

The symmetry of H(α, β) ∩ Hn is described by a subgroup of G = ⟨r, s, p1, p2⟩, which we

denote by G(α, β). With notations4

Σ(α, β) = ⟨r, s, pα1 p
β

2
, p
−β
1

pα2⟩, (2.37)

Σ0(α, β) = ⟨r, pα1 p
β

2
, p
−β
1

pα2⟩, (2.38)

the subgroup G(α, β) is given as follows:

G(α, β) =



⟨r, s, pα
1
, pα

2
⟩ = Σ(α, 0) (α ≥ 1, β = 0) : type V,

⟨r, s, pβ
1
p
β

2
, p
−β
1

p
β

2
⟩ = Σ(β, β) (β ≥ 1, α = β) : type M,

⟨r, pα
1

p
β

2
, p
−β
1

pα
2
⟩ = Σ0(α, β) (otherwise) : type T,

(2.39)

where the parameter (α, β) for type T runs over {(α, β) | α > 0, β ≥ 0, α , β} in (2.24) or

{(α, β) | α > β ≥ 0} in (2.25), depending on the adopted parameter space (2.10) or (2.11).

The parameter (α, β) must be compatible with the lattice size n via (2.33), which restricts (α, β)

to stay in a bounded range. Among the square patterns of type V on the n × n lattice, we exclude

those with Σ(1, 0) from our consideration of subgroups since Σ(1, 0) = ⟨r, s, p1, p2⟩ represents the

symmetry of the underlying n × n square lattice. That is, we consider Σ(α, 0) for 2 ≤ α ≤ n since

n is divisible by α by (2.33). A square pattern with the symmetry of Σ(n, 0) = D4, which lacks

translational symmetry, is included here as a square of type V for theoretical consistency. As for

type M, we must have 1 ≤ β ≤ n/2 in Σ(β, β) since n is divisible by 2β (β ≥ 1) by (2.33). The

parameter for type T, which is dependent on the choice of (2.10) or (2.11), must stay in the range

For (2.10) : {(α, β) | 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, α , β}, (2.40)

For (2.11) : {(α, β) | 1 ≤ β < α ≤ n − 1}. (2.41)

To sum up, the relevant subgroups of our interest are given by



Σ(α, 0) = ⟨r, s, pα
1
, pα

2
⟩ (2 ≤ α ≤ n) : type V,

Σ(β, β) = ⟨r, s, pβ
1
p
β

2
, p
−β
1

p
β

2
⟩ (1 ≤ β ≤ n/2) : type M,

Σ0(α, β) = ⟨r, pα
1

p
β

2
, p
−β
1

pα
2
⟩ ((2.40) or (2.41)) : type T.

(2.42)

Recall that (α, β) must also satisfy the compatibility condition (2.33).

4Subscript “0” to Σ0(α, β) indicates the lack of s.
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3. Irreducible Representations of the Group for Square Lattice

In the previous chapter, we introduced an n× n square lattice as a two-dimensional discretized

uniform space and identified the symmetry of this lattice by the group (2.34):

G = ⟨r, s, p1, p2⟩, (3.1)

which is composed of the dihedral group ⟨r, s⟩ ≃ D4 expressing local square symmetry and the

group ⟨p1, p2⟩ ≃ Zn × Zn (direct product of two cyclic groups of order n) expressing translational

symmetry in two directions. In the group-theoretic bifurcation analysis in Chapters 5 and 6, we

will find bifurcating solutions for each irreducible representation of this group, as each irreducible

representation is associated with possible bifurcating solutions with certain symmetries. It is,

therefore, the first step of the analysis to obtain all the irreducible representations of this group.

It is not difficult to obtain all irreducible representations for groups with simple structures such

as the dihedral and cyclic groups. Yet for the group in (3.1) with a far more complicated structure,

it might be difficult to list all the irreducible representations in an ad hoc way. Fortunately, we can

use the method of little groups in group representation theory to obtain all the irreducible represen-

tations in a systematic manner. In this chapter, we describe this method and construct a complete

list of the irreducible representations of this group. It turns out that the irreducible representations

over R are one-, two-, four-, or eight-dimensional, and all of them are absolutely irreducible. We

will use the irreducible representations derived in this manner in the group-theoretic bifurcation

analysis in Chapters 5 and 6 to prove the existence of square patterns.

This chapter is organized as follows. The matrix forms of the irreducible representations are

listed in Section 3.1. The irreducible representations of the group are derived in Section 3.2.

3.1. List of Irreducible Representations

The irreducible representations of D4 ⋉ (Zn×Zn) over R are listed in this section, whereas their

derivation is given in Section 3.2.

3.1.1. Number of Irreducible Representations

The irreducible representations of D4 ⋉ (Zn × Zn) over R are one-, two-, four-, or eight-

dimensional. The number Ndof d-dimensional irreducible representations of D4⋉(Zn×Zn) depends

on n, as shown below:

n \ d 1 2 4 8

N1 N2 N4 N8

2m 8 6 3(n − 2) (n2 − 6n + 8)/8

2m − 1 4 1 2(n − 1) (n2 − 4n + 3)/8

(3.2)

where m denotes a positive integer. For some values of n, the concrete numbers Nd of the d-

dimensional irreducible representations are listed in Table 3.1. This table for n = 1 shows that

D4 ⋉ (Z1 × Z1), being isomorphic to D4, has four one-dimensional irreducible representations and

one two-dimensional ones. Four-dimensional irreducible representations exist for n ≥ 3 and eight-

dimensional ones appear for n ≥ 5.
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Table 3.1: Number Nd of d-dimensional irreducible representations of D4 ⋉ (Zn × Zn)

n \ d 1 2 4 8

N1 N2 N4 N8

∑
Nd

1 4 1 0 0 5

2 8 6 0 0 14

3 4 1 4 0 9

4 8 6 6 0 20

5 4 1 8 1 14

6 8 6 12 1 27

7 4 1 12 3 20

8 8 6 18 3 35

9 4 1 16 6 27

10 8 6 24 6 44

11 4 1 20 10 35

12 8 6 30 10 54

n \ d 1 2 4 8

N1 N2 N4 N8

∑
Nd

13 4 1 24 15 44

14 8 6 36 15 65

15 4 1 28 21 54

16 8 6 42 21 77

17 4 1 32 28 65

18 8 6 48 28 90

19 4 1 36 36 77

20 8 6 54 36 104

21 4 1 40 45 90
...

...
...

...
...

...

42 8 6 120 190 324

We have the relation

∑

d

d2Nd = 12N1 + 22N2 + 42N4 + 82N8 = 8n2, (3.3)

which is a special case of the well-known general identity for the number of irreducible representa-

tions over C. This formula applies since all the irreducible representations over R of D4⋉ (Zn×Zn)

are absolutely irreducible (see Section 3.2).

In Sections 3.1.2–3.1.5, the matrix forms of the irreducible representations of respective di-

mensions are shown together with their characters. Table 3.2 is a preview summary, referring

to names of irreducible representations, such as (1;+,+,+) and (8; k, ℓ), to be introduced in the

following subsections.

3.1.2. One-Dimensional Irreducible Representations

The group D4 ⋉ (Zn × Zn) = ⟨r, s, p1, p2⟩ has eight one-dimensional irreducible representa-

tions. They are labeled (1;+,+,+), (1;+,−,+), (1;−,+,+), (1;−,−,+), (1;+,+,−), (1;+,−,−),

(1;−,+,−), (1;−,−,−) and are given by

T (1;+,+,+)(r) = 1, T (1;+,+,+)(s) = 1, T (1;+,+,+)(p1) = 1, T (1;+,+,+)(p2) = 1,

T (1;+,−,+)(r) = 1, T (1;+,−,+)(s) = −1, T (1;+,−,+)(p1) = 1, T (1;+,−,+)(p2) = 1,

T (1;−,+,+)(r) = −1, T (1;−,+,+)(s) = 1, T (1;−,+,+)(p1) = 1, T (1;−,+,+)(p2) = 1,

T (1;−,−,+)(r) = −1, T (1;−,−,+)(s) = −1, T (1;−,−,+)(p1) = 1, T (1;−,−,+)(p2) = 1,

T (1;+,+,−)(r) = 1, T (1;+,+,−)(s) = 1, T (1;+,+,−)(p1) = −1, T (1;+,+,−)(p2) = −1,

T (1;+,−,−)(r) = 1, T (1;+,−,−)(s) = −1, T (1;+,−,−)(p1) = −1, T (1;+,−,−)(p2) = −1,

T (1;−,+,−)(r) = −1, T (1;−,+,−)(s) = 1, T (1;−,+,−)(p1) = −1, T (1;−,+,−)(p2) = −1,

T (1;−,−,−)(r) = −1, T (1;−,−,−)(s) = −1, T (1;−,−,−)(p1) = −1, T (1;−,−,−)(p2) = −1.

(3.4)
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Table 3.2: Irreducible representations of D4 ⋉ (Zn × Zn)

n \ d 1 2 4 8

2m (1;+,+,+), (1;+,−,+) (2;+), (2;−) (4; k, 0,+), (4; k, 0,−) (8; k, ℓ)

(1;+,−,+), (1;−,−,+) (2;+,+), (2;+,−) (4; k, k,+), (4; k, k,−)

(1;+,+,−), (1;+,−,−) (2;−,+), (2;−,−) (4; n/2, ℓ,+), (4; n/2, ℓ,−)

(1;−,+,−), (1;−,−,−)

2m − 1 (1;+,+,+), (1;+,−,+) (2;+) (4; k, 0,+), (4; k, 0,−) (8; k, ℓ)

(1;+,−,+), (1;−,−,+) (4; k, k,+), (4; k, k,−)

(4; k, 0;+), (4; k, 0;−) with 1 ≤ k ≤ ⌊(n − 1)/2⌋ in (3.13);

(4; k, k;+), (4; k, k;−) with 1 ≤ k ≤ ⌊(n − 1)/2⌋ in (3.14);

(4; n/2, ℓ;+), (4; n/2, ℓ;−) with 1 ≤ ℓ ≤ ⌊(n − 1)/2⌋ in (3.15);

(8; k, ℓ) with 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤ ⌊(n − 1)/2⌋ in (3.25)

The characters χµ(g) = Tr T µ(g), which are equal to T µ(g) for one-dimensional representa-

tions, are given as follows for µ = (1;+,+,+), (1;+,−,+), (1;−,+,+), (1;−,−,+), (1;+,+,−),

(1;+,−,−), (1;−,+,−), (1;−,−,−):

g χ(1;+,+,+)(g) χ(1;+,−,+)(g) χ(1;−,+,+)(g) χ(1;−,−,+)(g)

p1
i p2

j 1 1 1 1

rp1
i p2

j 1 1 −1 −1

r2 p1
i p2

j 1 1 1 1

r3 p1
i p2

j 1 1 −1 −1

srm p1
i p2

j (m : even) 1 −1 1 −1

(m : odd) 1 −1 −1 1

(3.5)

g χ(1;+,+,−)(g) χ(1;+,−,−)(g) χ(1;−,+,−)(g) χ(1;−,−,−)(g)

p1
i p2

j (−1)i+ j (−1)i+ j (−1)i+ j (−1)i+ j

rp1
i p2

j (−1)i+ j (−1)i+ j −(−1)i+ j −(−1)i+ j

r2 p1
i p2

j (−1)i+ j (−1)i+ j (−1)i+ j (−1)i+ j

r3 p1
i p2

j (−1)i+ j (−1)i+ j −(−1)i+ j −(−1)i+ j

srm p1
i p2

j (m : even) (−1)i+ j −(−1)i+ j (−1)i+ j −(−1)i+ j

(m : odd) (−1)i+ j −(−1)i+ j −(−1)i+ j (−1)i+ j

(3.6)

where i, j = 0, 1, . . . , n − 1 and m = 0, 1, 2, 3.

3.1.3. Two-Dimensional Irreducible Representations

The group D4 ⋉ (Zn × Zn) = ⟨r, s, p1, p2⟩ has six or one two-dimensional irreducible represen-

tations depending on whether n is even or odd. Two two-dimensional irreducible representations,
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denoted as (2;σ) (σ ∈ {+,−}), exist for n even and are defined by

T (2;σ)(r) =

[
−1

1

]
, T (2;σ)(s) =

[
1

−1

]
, (3.7)

T (2,σ)(p1) = T (2;σ)(p2) = σ

[
1

1

]
, (3.8)

whereas (2;−) is absent for n odd. The other four two-dimensional irreducible representations,

denoted as (2;σr, σs) (σr, σs ∈ {+,−}), exist when n is even and are defined by

T (2;σr ,σs)(r) =

[
σr

1

]
, T (2;σr ,σs)(s) = σs

[
1

σr

]
, (3.9)

T (2;σr ,σs)(p1) =

[
−1

1

]
, T (2;σr ,σs)(p2) =

[
1

−1

]
. (3.10)

The characters χµ(g) = Tr T µ(g) are given as follows for µ = (2;+), (2;−), (2;+,+), (2;+,−),

(2;−,+), (2;−,−). For the representations µ = (2;+), (2;−) in (3.7) and (3.8), we have

g χ(2;+)(g) χ(2;−)(g)

p1
i p2

j 2 (−1)i+ j2

rp1
i p2

j 0 0

r2 p1
i p2

j −2 −(−1)i+ j2

r3 p1
i p2

j 0 0

srm p1
i p2

j 0 0

(3.11)

where i, j = 0, 1, . . . , n − 1 and m = 0, 1, 2, 3. For the representations µ = (2;+,+), (2;+,−),

(2;−,+), (2;−,−) in (3.9) and (3.10), we have

g χ(2;+,+)(g) χ(2;+,−)(g) χ(2;−,+)(g) χ(2;−,−)(g)

p1
i p2

j (−1)i + (−1) j (−1)i + (−1) j (−1)i + (−1) j (−1)i + (−1) j

rp1
i p2

j 0 0 0 0

r2 p1
i p2

j (−1)i + (−1) j (−1)i + (−1) j −(−1)i − (−1) j −(−1)i − (−1) j

r3 p1
i p2

j 0 0 0 0

sp1
i p2

j (−1)i + (−1) j −(−1)i − (−1) j (−1)i − (−1) j −(−1)i + (−1) j

srp1
i p2

j 0 0 0 0

sr2 p1
i p2

j (−1)i + (−1) j −(−1)i − (−1) j −(−1)i + (−1) j (−1)i − (−1) j

sr3 p1
i p2

j 0 0 0 0

(3.12)

where i, j = 0, 1, . . . , n − 1 and m = 0, 1, 2, 3.
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3.1.4. Four-Dimensional Irreducible Representations

The group D4 ⋉ (Zn × Zn) = ⟨r, s, p1, p2⟩ with n ≥ 3 has 4-dimensional irreducible representa-

tions. We can designate them by

(4; k, 0, σ) with 1 ≤ k ≤
⌊
n − 1

2

⌋
, σ ∈ {+,−}; (3.13)

(4; k, k, σ) with 1 ≤ k ≤
⌊
n − 1

2

⌋
, σ ∈ {+,−}; (3.14)

(4; n/2, ℓ, σ) with 1 ≤ ℓ ≤ n

2
− 1, σ ∈ {+,−}. (3.15)

Here (4; n/2, ℓ, σ) exists only for n even and ⌊x⌋ denotes the largest integer not larger than x for a

real number x. The number of 4-dimensional irreducible representations is given by

N4 =

{
3n − 6 (n = 2m),

2n − 2 (n = 2m − 1).
(3.16)

The irreducible representation (4; k, 0, σ) is given by

T (4;k,0,σ)(r) =

[
S

I

]
, T (4;k,0,σ)(s) = σ

[
I

S

]
, (3.17)

T (4;k,0,σ)(p1) =

[
Rk

I

]
, T (4;k,0,σ)(p2) =

[
I

Rk

]
, (3.18)

where

R =

[
cos(2π/n) − sin(2π/n)

sin(2π/n) cos(2π/n)

]
, S =

[
1

−1

]
, I =

[
1

1

]
. (3.19)

The irreducible representation (4; k, k, σ) is given by

T (4;k,k,σ)(r) =

[
S

I

]
, T (4;k,k,σ)(s) = σ

[
S

S

]
, (3.20)

T (4;k,k,σ)(p1) =

[
Rk

R−k

]
, T (4;k,k,σ)(p2) =

[
Rk

Rk

]
. (3.21)

The irreducible representation (4; n/2, ℓ, σ) is given by

T (4;n/2,ℓ,σ)(r) =

[
S

I

]
, T (4;n/2,ℓ,σ)(s) = σ

[
S

I

]
, (3.22)

T (4;n/2,ℓ,σ)(p1) =

[
−I

R−ℓ

]
, T (4;n/2,ℓ,σ)(p2) =

[
Rℓ

−I

]
. (3.23)

The characters χ(4;k,0,σ)(g) = Tr T (4;k,0,σ)(g), χ(4;k,k,σ)(g) = Tr T (4;k,k,σ)(g), and χ(4;n/2,ℓ,σ)(g) =
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Tr T (4;n/2,ℓ,σ)(g) for σ ∈ {+,−} are given as follows:

g χ(4;k,0,σ)(g) χ(4;k,k,σ)(g) χ(4;n/2,ℓ,σ)(g)

p1
i p2

j 2[cos(kiθ) 2[cos(k(i + j)θ) 2[(−1)i cos(ℓ jθ)

+ cos(k jθ)] + cos(k(i − j)θ)] + (−1) j cos(ℓiθ)]

rm p1
i p2

j 0 0 0

(m = 1, 2, 3)

sp1
i p2

j 2σ cos(kiθ) 0 2σ(−1) j cos(ℓiθ)

srp1
i p2

j 0 2σ cos(k(i − j)θ) 0

sr2 p1
i p2

j 2σ cos(k jθ) 0 2σ(−1)i cos(ℓ jθ)

sr3 p1
i p2

j 0 2σ cos(k(i + j)θ) 0

(3.24)

where θ = 2π/n and i, j = 0, 1, . . . , n − 1.

3.1.5. Eight-Dimensional Irreducible Representations

The group D4 ⋉ (Zn × Zn) = ⟨r, s, p1, p2⟩ with n ≥ 5 has eight-dimensional irreducible repre-

sentations. We can designate them by (8; k, ℓ) with

1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
. (3.25)

The number of eight-dimensional irreducible representations is given by

N8 =

{
(n2 − 6n + 8)/8 (n = 2m),

(n2 − 4n + 3)/8 (n = 2m − 1).
(3.26)

The irreducible representation (8; k, ℓ) is defined as

T (8;k,ℓ)(r) =



S

I

I

S


, T (8;k,ℓ)(s) =



I

I

I

I


, (3.27)

T (8;k,ℓ)(p1) =



Rk

R−ℓ

Rk

R−ℓ


, T (8;k,ℓ)(p2) =



Rℓ

Rk

R−ℓ

R−k


(3.28)

with

R =

[
cos(2π/n) − sin(2π/n)

sin(2π/n) cos(2π/n)

]
, S =

[
1

−1

]
, I =

[
1

1

]
. (3.29)

The characters χ(8;k,ℓ)(g) = Tr T (8;k,ℓ)(g) are given as follows. For g = p1
i p2

j, being free from r

and s, we have

χ(8;k,ℓ)(p1
i p2

j) = 2[ cos((ki + ℓ j)θ) + cos((−ℓi + k j)θ) + cos((ki − ℓ j)θ) + cos((−ℓi − k j)θ) ],

(3.30)

where θ = 2π/n and i, j = 0, 1, . . . , n − 1. For other g, we have χ(8;k,ℓ)(g) = 0.
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3.2. Derivation of Irreducible Representations

The group G = D4 ⋉ (Zn × Zn) for the n × n square lattice is a semidirect product of H =

⟨r, s⟩ = D4 by an abelian group A = ⟨p1, p2⟩ = Zn × Zn. The irreducible representations over

C of such a group can be constructed in a systematic manner by the method of little groups of

Wigner and Mackey. It turns out that the irreducible representations over C are one-, two-, four-,

or eight-dimensional, and they are representable over R.

3.2.1. Method of Little Groups

A systematic method, called the method of little groups, for constructing irreducible represen-

tations of a general group with the structure of semidirect product by an abelian group is described

in this subsection. For more details, see Section 8.2 of Serre, 1977 [21].

Let G be a group that is a semidirect product of a group H and an abelian group A. This means

that A is a normal subgroup of G, and each element g ∈ G is represented uniquely as g = ah with

a ∈ A and h ∈ H.

Since A is abelian, every irreducible representation of A over C is one-dimensional, and is

identified with its character χ. Accordingly, the set of all irreducible representations of A over C

can be denoted as

X = {χi | i ∈ R(A)} (3.31)

with a suitable index set R(A). For χ ∈ X and g ∈ G, we define a function gχ on A by

gχ(a) = χ(g−1ag), a ∈ A, (3.32)

which is also a character of A, belonging to X. This defines an action of G on X.

With reference to the action of G on X, we classify the elements of X into orbits. It should be

noted that, for g = bh with b ∈ A and h ∈ H, we have

gχ(a) = χ((bh)−1a(bh)) = χ(h−1ah) = hχ(a), a ∈ A,

in which b−1ab = a since A is abelian. Hence, the orbits can in fact be obtained by the action of

the subgroup H on X, instead of that of G. Denote by

{χi | i ∈ R(A)/H} (3.33)

a system of representatives from the orbits, where R(A)/H is an index set, or the set of “names” of

the orbit. This means that

• χi ∈ X for each i ∈ R(A)/H,

• for distinct i and j in R(A)/H, χi
,

h(χ j) for any h ∈ H, and

• for each χ ∈ X, there exist some i ∈ R(A)/H and h ∈ H such that χ = h(χi).

For each i ∈ R(A)/H, we define

Hi = {h ∈ H | h(χi) = χi}, (3.34)
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which is a subgroup of H associated with the orbit i, and

Gi = {ah | a ∈ A, h ∈ Hi}, (3.35)

which is a subgroup of G, called the little group. Noting that each element of Gi can be represented

as ah with a ∈ A and h ∈ Hi, we define a function χ̃i on Gi by

χ̃i(ah) = χi(a), a ∈ A, h ∈ Hi, (3.36)

which is a one-dimensional representation (a character of degree one) of Gi.

Let T µ be an irreducible representation of Hi over C indexed by µ ∈ R(Hi). Then the matrix-

valued function T (i,µ) defined on Gi of (3.35) by

T (i,µ)(ah) = χi(a)T µ(h), a ∈ A, h ∈ Hi (3.37)

is an irreducible representation of Gi. Denote by T̃ (i,µ) the induced representation of G obtained

from T (i,µ) (see Remark 3.1 below). Then T̃ (i,µ) is an irreducible representation of G. Moreover,

all the irreducible representations of G can be obtained in this manner, and T̃ (i,µ)’s are mutually

inequivalent for different (i, µ). Thus, the irreducible representations of G are indexed by (i, µ),

i.e.,

R(G) = {(i, µ) | i ∈ R(A)/H, µ ∈ R(Hi)} (3.38)

and

{T̃ (i,µ) | i ∈ R(A)/H, µ ∈ R(Hi)} (3.39)

gives a complete list of irreducible representations of G over C.

Remark 3.1. The induced representation is explained here. Let G be a group, G′ be a subgroup

of G, and T ′ be a representation of G′ of dimension N′. Consider the coset decomposition

G = g1G
′ + g2G

′ + · · · + gmG′, (3.40)

where j = 1, . . . ,m and m = |G|/|G′|. Each g ∈ G causes a permutation of (g1, g2, . . . , gm) to

(gπ(1), gπ(2), . . . , gπ(m)) according to the equation

gg j = gπ( j) f j, f j ∈ G′ (3.41)

for j = 1, . . . ,m. Note that the choice of (g1, g2, . . . , gm) is not unique, but once this is fixed, f j is

uniquely determined for each g.

Define T̃ (g) to be an mN′ × mN′ matrix with rows and columns partitioned into m blocks of

size N′ such that the (π( j), j)-block of T̃ (g) equals T ′( f j), whereas the (i, j)-block of T̃ (g) equals

O if i , π( j). Note that this is well-defined, since f j and π( j) are uniquely determined from g,

and T ′( f j) for j = 1, . . . ,m are assumed to be given. The family of matrices {T̃ (g) | g ∈ G} is a

representation of G of dimension mN′, called the induced representation. For example, if m = 3,

(π(1), π(2), π(3)) = (2, 3, 1), we have

T̃ (g) =



T ′( f3)

T ′( f1)

T ′( f2)

 .

We shall apply this construction to T ′ = T (i,µ) on G′ = Gi to obtain T̃ = T̃ (i,µ), where the

dimension N′ of T (i,µ) is equal to that of T µ by (3.37). □
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3.2.2. Orbit Decomposition and Little Groups

We apply the method of little groups in Section 3.2.1 to

A = Zn × Zn = ⟨p1⟩ × ⟨p2⟩, H = D4 = ⟨r, s⟩

to obtain the irreducible representations of G = D4 ⋉ (Zn × Zn).

As the first step we determine the system of representatives (3.33) in the orbit decomposition of

X. Since A = Zn × Zn is an abelian group, all the irreducible representations are one-dimensional.

The set X of irreducible representations of A = Zn × Zn is indexed by

R(A) = {(k, ℓ) | 0 ≤ k ≤ n − 1, 0 ≤ ℓ ≤ n − 1}, (3.42)

where (k, ℓ) denotes a one-dimensional representation (or character) χ(k,ℓ) defined by

χ(k,ℓ)(p1) = ωk, χ(k,ℓ)(p2) = ωℓ (3.43)

with

ω = exp(2πi/n). (3.44)

We extend the notation (k, ℓ) for any integers, to designate the element (k′, ℓ′) of R(A) with k′ ≡ k

mod n and ℓ′ ≡ ℓ mod n.

For the orbit decomposition of X by H, we compute h−1 p1h and h−1 p2h for h ∈ H, to obtain

h e r r2 r3 s sr sr2 sr3

h−1 p1h p1 p−1
2

p−1
1

p2 p1 p−1
2

p−1
1

p2

h−1 p2h p2 p1 p−1
2

p−1
1

p−1
2

p−1
1

p2 p1

(3.45)

For example, for h = s, we have (h−1 p1h, h−1 p2h) = (p1, p
−1
2

), and we see, by (3.43), that the action

of s in (3.32) is given as sχ(k,ℓ) = χ(k,−ℓ), which is expressed symbolically as (k, ℓ) ⇒ (k,−ℓ). In

this manner, we can obtain the following orbit containing (k, ℓ):

(ℓ,−k) ← (−k,−ℓ)
↓ ↑

(k, ℓ) → (−ℓ, k)

⇓
(k,−ℓ) → (−ℓ,−k)

↑ ↓
(ℓ, k) ← (−k, ℓ)

(3.46)

where “⇓” means the action of s, and “→” (or “←”, “↑”, “↓”) means the action of r. It should be

clear that (ℓ,−k), for example, is understood as (ℓ mod n,−k mod n). The orbit (3.46) is illustrated

in Fig. 3.1.

The system of representatives in (3.33) in the orbit decomposition of X with respect to the

action of G is given as follows. In view of Fig. 3.1, it is natural to take

R(A)/H = {(k, ℓ) | 0 ≤ ℓ ≤ k ≤ ⌊(n − 1)/2⌋}, (3.47)
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Figure 3.1: Orbit of (k, ℓ) in (3.46)

which corresponds to the set of integer lattice points (k, ℓ) contained in the triangle with vertices

at (k, ℓ) = (0, 0), (n/2, 0), (n/2, n/2), where the points on the edges of the triangle are included.

The subgroup Hi = H(k,ℓ) in (3.34) for i = (k, ℓ), which is expressed as

H(k,ℓ) = {h ∈ D4 | h(χ(k,ℓ)) = χ(k,ℓ)}
= {h ∈ D4 | χ(k,ℓ)(h−1ah) = χ(k,ℓ)(a) for all a ∈ Zn × Zn},

is obtained with reference to (3.43) and (3.45). For h ∈ D4, we have h ∈ H(k,ℓ) if and only if

χ(k,ℓ)(hp1h−1) = χ(k,ℓ)(p1), χ(k,ℓ)(hp2h−1) = χ(k,ℓ)(p2).

For (k, ℓ) = (0, 0), for example, this condition is satisfied by all h ∈ D4, and hence H(0,0) = ⟨r, s⟩.
In this manner, we obtain

H(k,ℓ) =



⟨r, s⟩ for (k, ℓ) = (0, 0),

⟨r, s⟩ for (k, ℓ) = (n/2, n/2) if n is even,

⟨r2, s⟩ for (k, ℓ) = (n/2, 0) if n is even,

{e, s} for (k, ℓ) = (k, 0) (1 ≤ k ≤
⌊

n−1
2

⌋
),

{e, sr3} for (k, ℓ) = (k, k) (1 ≤ k ≤
⌊

n−1
2

⌋
),

{e, sr2} for (k, ℓ) = (n/2, ℓ) (1 ≤ ℓ ≤
⌊

n−1
2

⌋
) if n is even,

{e} for (k, ℓ) (1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊

n−1
2

⌋
).

(3.48)

The little group Gi = G(k,ℓ) in (3.35) for i = (k, ℓ) is obtained as the semidirect product of H(k,ℓ) by

A = ⟨p1, p2⟩.
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Example 3.1. For n = 3, 4, 7, 8, 9, the system of representatives R(A)/H and the associated sub-

groups H(k,ℓ) in (3.48) are given as follows:

n = 3

(k, ℓ) H(k,ℓ)

(0, 0) ⟨r, s⟩
(1, 0) {e, s}
(1, 1) {e, sr3}

n = 4

(k, ℓ) H(k,ℓ)

(0, 0) ⟨r, s⟩
(2, 2) ⟨r, s⟩
(2, 0) ⟨r2, s⟩
(1, 0) {e, s}
(1, 1) {e, sr3}
(2, 1) {e, sr2}

n = 7

(k, ℓ) H(k,ℓ)

(0, 0) ⟨r, s⟩
(1, 0), (2, 0), (3, 0) {e, s}
(1, 1), (2, 2), (3, 3) {e, sr3}
(2, 1), (3, 1), (3, 2) {e}

n = 8

(k, ℓ) H(k,ℓ)

(0, 0) ⟨r, s⟩
(4, 4) ⟨r, s⟩
(4, 0) ⟨r2, s⟩
(1, 0), (2, 0), (3, 0) {e, s}
(1, 1), (2, 2), (3, 3) {e, sr3}
(4, 1), (4, 2), (4, 3) {e, sr2}
(2, 1), (3, 1), (3, 2) {e}

n = 9

(k, ℓ) H(k,ℓ)

(0, 0) ⟨r, s⟩
(1, 0), (2, 0), (3, 0), (4, 0) {e, s}
(1, 1), (2, 2), (3, 3), (4, 4) {e, sr3}
(2, 1), (3, 1), (3, 2) {e}
(4, 1), (4, 2), (4, 3) {e}

□

3.2.3. Induced Irreducible Representations

The procedure for constructing irreducible representations of G = ⟨r, s, p1, p2⟩ using the orbit

decomposition and little groups in Section 3.2.2 is as follows.

For each (k, ℓ) ∈ R(A)/H, we have the associated subgroup H(k,ℓ) in (3.48). Let T µ be an

irreducible representation of H(k,ℓ) indexed by µ ∈ R(H(k,ℓ)), and define T (k,ℓ,µ) by

T (k,ℓ,µ)(p1
i p2

jh) = χ(k,ℓ)(p1
i p2

j)T µ(h) = ωki+ℓ jT µ(h), 0 ≤ i, j ≤ n − 1, h ∈ H(k,ℓ), (3.49)

which is an irreducible representation of the little group G(k,ℓ).

The coset decomposition (3.40) takes the form of

G = g1G
(k,ℓ) + g2G

(k,ℓ) + · · · + gmG(k,ℓ) (3.50)

with m = |G|/|G(k,ℓ)| = |D4|/|H(k,ℓ)| = 8/|H(k,ℓ)|. Since G(k,ℓ) ⊇ ⟨p1, p2⟩, we may assume that

g j ∈ ⟨r, s⟩ for j = 1, . . . ,m and g1 = e.

The induced representation T̃ (k,ℓ,µ)(g) is determined by its values at g = p1, p2, r, s that generate

the group G. Hence, it suffices to consider g = p1, p2, r, s in the equation (3.41):

gg j = gπ( j) f j, (3.51)

where π( j) and f j ∈ G(k,ℓ) are to be found for j = 1, . . . ,m. The induced representation T̃ (k,ℓ,µ)

is an irreducible representation of dimension mNµ = 8Nµ/|H(k,ℓ)| over C, where Nµ denotes the

dimension of T µ.
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Table 3.3: Induced irreducible representations of D4 ⋉ (Zn × Zn)

(k, ℓ) H(k,ℓ) m Induced irreducible representations

(0, 0) ⟨r, s⟩ 1 (1;+,+,+), (1;+,−,+), (1;−,+,+), (1;−,−,+), (2;+)

(n/2, n/2) ⟨r, s⟩ 1 (1;+,+,−), (1;+,−,−), (1;−,+,−), (1;−,−,−), (2;−)

(n/2, 0) ⟨r2, s⟩ 2 (2;+,+), (2;+,−), (2;−,+), (2;−,−)

(k, 0) {e, s} 4 (4; k, 0,+), (4; k, 0,−)

(k, k) {e, sr3} 4 (4; k, k,+), (4; k, k,−)

(n/2, ℓ) {e, sr2} 4 (4; n/2, ℓ,+), (4; n/2, ℓ,−)

(k, ℓ) {e} 8 (8; k, ℓ)

(k, ℓ) = (n/2, n/2) and (n/2, 0) exist if n is even;

(k, 0) for 1 ≤ k ≤
⌊

n−1
2

⌋
in (3.13);

(k, k) for 1 ≤ k ≤
⌊

n−1
2

⌋
in (3.14);

(n/2, ℓ) for 1 ≤ ℓ ≤
⌊

n−1
2

⌋
in (3.15);

(k, ℓ) for 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤ ⌊(n − 1)/2⌋ in (3.25)

According to the general theory, T̃ (k,ℓ,µ) obtained in this manner is not a representation over

R but over C, as is evident from the fact that ω appearing in (3.49) is a complex number defined

by (3.44). Fortunately, however, all irreducible representations thus obtained are representable

over R. We can thus determine a complete list of irreducible representations over R of the group

G = D4 ⋉ (Zn × Zn). Table 3.3 is a summary of the derivations below.

Case of (k, ℓ) = (0, 0)

For (k, ℓ) = (0, 0), χ(k,ℓ) is the unit representation by (3.43), and therefore

H(k,ℓ) = ⟨r, s⟩ = D4,

as is shown in (3.48). D4 has four one-dimensional irreducible representations µ = (+,+,+),

(+,−,+), (−,+,+), and (−,−,+), and one two-dimensional irreducible representation µ = (2;+)

(e.g., see Kim, 1999 [22] and Kettle, 2008 [23]).

Since G(k,ℓ) = G, the coset decomposition (3.50) is trivial with m = 1 and g1 = e, and the

equation (3.51) reads g · g1 = g1 · g for every g ∈ G. For each µ, the induced representation

T̃ (0,0,µ)(g) for g = p1
i p2

jh with h ∈ D4 is given by (3.49) as

T̃ (0,0,µ)(g) = T̃ (0,0,µ)(p1
i p2

jh) = χ(0,0)(p1
i p2

j)T µ(h) = T µ(h).

With this result, we have the one-dimensional irreducible representations (1;+,+,+), (1;+,−,+),

(1;−,+,+), (1;−,−,+) in Section 3.1.2, and the two-dimensional irreducible representation (2;+)

in Section 3.1.3 as the irreducible representations for the group D4 ⋉ (Zn × Zn).

Case of (k, ℓ) = (n/2, n/2)

In this case, χ = χ(k,ℓ) = χ(n/2,n/2) is given by (3.43) as χ(p1) = χ(p2) = ωn/2 = −1. For

(k, ℓ) = (n/2, n/2), we have

H(k,ℓ) = ⟨r, s⟩ = D4,
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as is shown in (3.48). Hence we have the one-dimensional irreducible representations (1;+,+,−),

(1;+,−,−), (1;−,+,−), (1;−,−,−) in Section 3.1.2, and the two-dimensional irreducible repre-

sentation (2;−) in Section 3.1.3.

Case of (k, ℓ) = (n/2, 0)

The case of (k, ℓ) = (n/2, 0) occurs when n is even. In this case, χ = χ(k,ℓ) = χ(n/2,0) is given by

(3.43) as χ(p1) = −1 and χ(p2) = 1, and therefore

H(k,ℓ) = {e, r2, s, sr2} = ⟨r2, s⟩ ≃ D2,

as is shown in (3.48). This group has four one-dimensional irreducible representations, say, µ =

(σr, σs) = (+,+), (+,−), (−,+), (−,−) defined by

T µ(r2) = σr = ±1, T µ(s) = σs = ±1.

Since G(k,ℓ) = ⟨r2, s, p1, p2⟩, the coset decomposition in (3.50) is given by

G = g1G
(k,ℓ) + g2G

(k,ℓ) = e · ⟨r2, s, p1, p2⟩ + r · ⟨r2, s, p1, p2⟩

with m = 2, g1 = e and g2 = r. The equation (3.51) for g = p1, p2, r, s reads as follows:

p1 · g j = gπ( j) · f j p2 · g j = gπ( j) · f j r · g j = gπ( j) · f j s · g j = gπ( j) · f j

p1 · e = e · p1 p2 · e = e · p2 r · e = r · e s · e = e · s
p1 · r = r · p−1

2
p2 · r = r · p1 r · r = e · r2 s · r = r · sr2

For the one-dimensional representation µ = (σ) with σ ∈ {+,−}, the induced representation

T̃ = T̃ (n/2,0,µ) is given by

T̃ (p1) =

[
χ(p1)T µ(e)

χ(p−1
2

)T µ(e)

]
=

[
−1

1

]
,

T̃ (p2) =

[
χ(p2)T µ(e)

χ(p1)T µ(e)

]
=

[
1

−1

]
,

T̃ (r) =

[
χ(e)T µ(r2)

χ(e)T µ(e)

]
=

[
σr

1

]
,

T̃ (s) =

[
χ(e)T µ(s)

χ(e)T µ(sr2)

]
= σs

[
1

σr

]
,

where (3.49) is used and the nonzero blocks here are determined with reference to π( j) and f j

computed above (Remark 3.1 in Section 3.2.1).

Case of (k, ℓ) = (k, 0), (k, k), or (n/2, ℓ)

For (k, ℓ) = (k, 0) in (3.13), we have χ(k,ℓ)(p1) = ωk and χ(k,ℓ)(p2) = 1 by (3.43), and therefore

H(k,ℓ) = {e, s},
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as is shown in (3.48). For (k, ℓ) = (k, k) in (3.14), we have χ(k,ℓ)(p1) = χ(k,ℓ)(p2) = ωk, and therefore

H(k,ℓ) = {e, sr3}.

For (k, ℓ) = (n/2, ℓ) in (3.15), we have χ(k,ℓ)(p1) = −1 and χ(k,ℓ)(p2) = ωℓ, and therefore

H(k,ℓ) = {e, sr2}.

Let h0 = s for (k, ℓ) = (k, 0), h0 = sr3 for (k, ℓ) = (k, k), and h0 = sr2 for (k, ℓ) = (n/2, ℓ). In either

case H(k,ℓ) = {e, h0} is isomorphic to D1 and has two one-dimensional irreducible representations,

say, µ = µ1, µ2 defined by

T µ1(h0) = 1, T µ2(h0) = −1.

That is, T µ(h0) = σµ with σµ1 = 1 and σµ2 = −1. The notation is summarized as follows:

(k, ℓ) H(k,ℓ) h0 T µ1(h0) T µ2(h0)

(k, 0) {e, s} sr 1 −1

(k, k) {e, sr3} sr3 1 −1

(n/2, ℓ) {e, sr2} sr2 1 −1

The coset decomposition in (3.50) is given by G(k,ℓ) = ⟨h0, p1, p2⟩, m = 4, and g j = r j−1 for

j = 1, . . . , 4. The equation (3.51) for g = p1, p2, r, s reads as follows (see (3.45) for p1 and p2):

p1 · g j = gπ( j) · f j p2 · g j = gπ( j) · f j r · g j = gπ( j) · f j

p1 · e = e · p1 p2 · e = e · p2 r · e = r · e
p1 · r = r · p−1

2
p2 · r = r · p1 r · r = r2 · e

p1 · r2 = r2 · p−1
1

p2 · r2 = r2 · p−1
2

r · r2 = r3 · e
p1 · r3 = r3 · p2 p2 · r3 = r3 · p1 r · r3 = e · e

s · g j = gπ( j) · f j

(k, 0) (k, k) (n/2, ℓ)

s · e = e · s s · e = r3 · sr3 s · e = r2 · sr2

s · r = r3 · s s · r = r2 · sr3 s · r = r · sr2

s · r2 = r2 · s s · r2 = r · sr3 s · r2 = e · sr2

s · r3 = r · s s · r3 = e · sr3 s · r3 = r3 · sr2

For (k, ℓ) = (k, 0), (k, k), (n/2, ℓ) and µ = µ1, µ2, the induced representation T̃ (k,ℓ,µ) is given, with

ω = exp(2πi/n), by

T̃ (k,ℓ,µ)(p1) = diag(χ(p1), χ(p−1
2 ), χ(p−1

1 ), χ(p2)) = diag(ωk, ω−ℓ, ω−k, ωℓ),

T̃ (k,ℓ,µ)(p2) = diag(χ(p2), χ(p1), χ(p−1
2 ), χ(p−1

1 )) = diag(ωℓ, ωk, ω−ℓ, ω−k),
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T̃ (k,ℓ,µ)(r) = T µ(e)



1

1

1

1


=



1

1

1

1


,

and

T̃ (k,0,µ)(s) = T µ(s)



1

1

1

1


= σµ



1

1

1

1


,

T̃ (k,k,µ)(s) = T µ(sr3)



1

1

1

1


= σµ



1

1

1

1


.

T̃ (n/2,ℓ,µ)(s) = T µ(sr2)



1

1

1

1


= σµ



1

1

1

1


.

The above representation over C can be transformed to a real representation. By permuting the

rows and columns as (1, 3, 2, 4), we obtain

T̂ (k,ℓ,µ)(p1) T̂ (k,ℓ,µ)(p2) T̂ (k,ℓ,µ)(r)

=



ωk

ω−k

ω−ℓ

ωℓ


, =



ωℓ

ω−ℓ

ωk

ω−k


, =



1

1

1

1


,

T̂ (k,0,µ)(s) T̂ (k,k,µ)(s) T̂ (n/2,ℓ,µ)(s)

= σµ



1

1

1

1


, = σµ



1

1

1

1


, = σµ



1

1

1

1


.

It is apparent that these representations are equivalent, respectively, to the four-dimensional real

irreducible representations (4; k, 0, σ) and (4; k, k, σ) in Section 3.1.4 with σ = σµ.
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Case of General (k, ℓ)

For (k, ℓ) in (3.25), χ = χ(k,ℓ) is given by (3.43), and H(k,ℓ) = {e}. The unit representation µ is

the only irreducible representation of H(k,ℓ).

The coset decomposition in (3.50) is given by G(k,ℓ) = ⟨p1, p2⟩, m = 8, and

g1 = e, g2 = r, g3 = r2, g4 = r3, g5 = s, g6 = sr, g7 = sr2, g8 = sr3.

The equation (3.51) for g = p1, p2, r, s reads as follows:

p1 · g j = gπ( j) · f j p2 · g j = gπ( j) · f j r · g j = gπ( j) · f j s · g j = gπ( j) · f j

p1 · e = e · p1 p2 · e = e · p2 r · e = r · e s · e = s · e
p1 · r = r · p−1

2
p2 · r = r · p1 r · r = r2 · e s · r = sr · e

p1 · r2 = r2 · p−1
1

p2 · r2 = r2 · p−1
2

r · r2 = r3 · e s · r2 = sr2 · e
p1 · r3 = r3 · p2 p2 · r3 = r3 · p−1

1
r · r3 = e · e s · r3 = sr3 · e

p1 · s = s · p1 p2 · s = s · p−1
2

r · s = sr3 · e s · s = e · e
p1 · sr = sr · p−1

2
p2 · sr = sr · p−1

1
r · sr = s · e s · sr = r · e

p1 · sr2 = sr2 · p−1
1

p2 · sr2 = sr2 · p2 r · sr2 = sr · e s · sr2 = r2 · e
p1 · sr3 = sr3 · p2 p2 · sr3 = sr3 · p1 r · sr3 = sr2 · e s · sr3 = r3 · e

The induced representation T̃ = T̃ (k,ℓ,µ), of dimension 8, is given in terms of ω = exp(2πi/n) as

follows:

T̃ (p1) = diag(ωk, ω−ℓ, ω−k, ωℓ, ωk, ω−ℓ, ω−k, ωℓ),

T̃ (p2) = diag(ωℓ, ωk, ω−ℓ, ω−k, ω−ℓ, ω−k, ωℓ, ωk),

T̃ (r) =

[
C O

O C⊤

]
, T̃ (s) =

[
O I

I O

]

with

C =



1

1

1

1


, I =



1

1

1

1


.

The above representation over C can be transformed to a real representation. By permuting the

rows and columns as (1, 3, 2, 4, 5, 7, 6, 8), we obtain

T̂ (p1) =

[
Ω1

Ω1

]
, T̂ (p2) =

[
Ω2

Ω3

]
, T̂ (r) =

[
D

D⊤

]
, T̂ (s) =

[
I

I

]
,

where

Ω1 =



ωk

ω−k

ω−ℓ

ωℓ


, Ω2 =



ωℓ

ω−ℓ

ωk

ω−k


,
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Ω3 =



ω−ℓ

ωℓ

ω−k

ωk


, D =



1

1

1

1


.

This representation is easily seen to be equivalent to the eight-dimensional real irreducible repre-

sentation (8; k, ℓ) in Section 3.1.5.
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4. Matrix Representation for Square Lattice

In preparation for the group-theoretic analysis in Chapters 5 and 6, we found the irreducible

representations of the group D4 ⋉ (Zn ×Zn) in Chapter 3. Note that not all the irreducible represen-

tations are involved in mathematical models on the square lattice. The consideration of relevant

irreducible representations is essential in a group-theoretic analysis that provides accurate infor-

mation about bifurcating solutions.

In this chapter, we first identify the irreducible representations µ that are relevant to our anal-

ysis on the square lattice. For this purpose, we derive the explicit form of the permutation repre-

sentation T (g) of the group D4 ⋉ (Zn × Zn) and investigate the irreducible decomposition of this

permutation representation. We can exclude irreducible representations that are not contained in

T (g) from consideration in search of square bifurcating patterns in Chapters 5 and 6. It turns

out that the only some of the one-, two-, and four-dimensional ones are relevant, and all of the

eight-dimensional ones are relevant.

We next present the transformation matrix Q for irreducible decomposition. Since the irre-

ducible representations are multiplicity-free (aµ = 1 or 0), the orthogonal transformation of the

Jacobian matrix J of F takes a diagonal form

Q−1JQ = diag(e1, . . . , eN).

This diagonal form is useful in the eigenanalysis of the computational bifurcation analysis on the

square lattice.

This chapter is organized as follows. The permutation representation for the square lattice is

investigated in Section 4.1. The irreducible decomposition of the permutation representation is

presented in Section 4.2. Transformation matrices for block-diagonalization are derived in Sec-

tion 4.3.

4.1. Representation Matrix

In our study of a system of N = n2 places on the n × n square lattice, each element g of

D4 ⋉ (Zn×Zn) = ⟨r, s, p1, p2⟩ acts as a permutation of place numbers (1, . . . ,N). Consequently, the

representation matrix T (g) is a permutation matrix for each g. By definition, T (g) has “1” at the

(i, j) entry if place j is moved to place i by the action of g.

The representation matrix T (g) for general n can be determined as follows. The coordinate of

a place on the n × n square lattice is given by

x = n1ℓ1 + n2ℓ2, n1, n2 = 0, 1, . . . , n − 1

with ℓ1 = d(1, 0)⊤, ℓ2 = d(0, 1)⊤ in (2.1), where d means the length of these vectors. Thus, the n2

places are indexed by (n1, n2), and so are the rows and columns of the representation matrix T (g).

The action of r is expressed as

r · ℓ1 = ℓ2, r · ℓ2 = −ℓ1.

Hence, we have

r · x = n1(r · ℓ1) + n2(r · ℓ2) = n1(ℓ2) + n2(−ℓ1) = (−n2)ℓ1 + n1ℓ2,
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which means that the action of r on (n1, n2) is given by

r · (n1, n2) ≡ (−n2, n1) mod n. (4.1)

Then, the column of T (r) indexed by (n1, n2) has “1” in the row indexed by (−n2 mod n, n1).

Similarly, the actions of s, p1, and p2 are expressed as

s · (n1, n2) ≡ (n1, −n2) mod n, (4.2)

p1 · (n1, n2) ≡ (n1 + 1, n2) mod n, (4.3)

p2 · (n1, n2) ≡ (n1, n2 + 1) mod n. (4.4)

The permutation representation T (g) is specified by (4.1)–(4.4) above.

Example 4.1. The permutation representation for the 4 × 4 square lattice is given by (4.1)–(4.4)

as follows:

T (r) =



1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1



, T (s) =



1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1



,

T (p1) =



1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1



, T (p2) =



1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1



.

□
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4.2. Irreducible Decomposition

The irreducible decomposition of the permutation representation T (g) for the n×n square lattice

is now investigated. The multiplicities of irreducible representations in this decomposition are

determined. It is to be emphasized that irreducible representations lacking in the decomposition of

T (g) can be excluded from consideration in the search for square bifurcating patterns in Chapters 5

and 6.

4.2.1. Simple Examples

Prior to the analysis for general n we present the results for n = 3 and n = 4.

We begin with the case of n = 3. The group D4 ⋉ (Z3 ×Z3) has nine irreducible representations

(see Section 3.1):

R(D4 ⋉ (Z3 × Z3)) = {(1;+,+,+), (1;+,−,+), (1;−,+,+), (1;−,−,+),

(2;+), (4; 1, 0,+), (4; 1, 0,−), (4; 1, 1,+), (4; 1, 1,−)}.

Among these nine irreducible representations, only three of them, (1;+,+,+), (4; 1, 0,+), and

(4; 1, 1,+), are contained in T (g) with multiplicity 1, whereas the others are missing in T (g).

Indeed we will see in Section 4.3 in a general setting that

Q−1T (g)Q = T (1;+,+,+)(g) ⊕ T (4;1,0,+)(g) ⊕ T (4;1,1,+)(g), g ∈ D4 ⋉ (Z3 × Z3) (4.5)

for some orthogonal matrix Q. Accordingly, the multiplicities aµ for µ ∈ R(D4 ⋉ (Z3 × Z3)) are

given as follows:

a(1;+,+,+) = 1, a(1;+,−,+) = 0, a(1;−,+,+) = 0, a(1;−,−,+) = 0;

a(2;+) = 0; a(4;1,0,+) = 1, a(4;1,0,−) = 0, a(4;1,1,+) = 1, a(4;1,1,−) = 0.

We next show the case of n = 4. Recall the permutation representation T (g) for n = 4 from

Example 4.1. The group D4 ⋉ (Z4 × Z4) has 20 irreducible representations (see Section 3.1):

R(D4 ⋉ (Z4 × Z4)) = {(1;+,+,+), (1;+,−,+), (1;−,+,+), (1;−,−,+),

(1;+,+,−), (1;+,−,−), (1;−,+,−), (1;−,−,−),

(2;+), (2;−), (2;+,+), (2;+,−), (2;−,+), (2;−,−),

(4; 1, 0,+), (4; 1, 0,−), (4; 1, 1,+), (4; 1, 1,−), (4; 2, 1,+), (4; 2, 1,−)}.

Among these 20 irreducible representations, only six of them, (1;+,+,+), (1;+,+,−), (2;+,+),

(4; 1, 0,+), (4; 1, 1,+), and (4; 2, 1,+), are contained in T (g) with multiplicity 1, whereas the others

are missing in T (g), as we will see in Section 4.3 in a general setting. This means that

Q−1T (g)Q = T (1;+,+,+)(g) ⊕ T (1;+,+,−)(g) ⊕ T (2;+,+)(g) ⊕ T (4;1,0,+)(g) ⊕ T (4;1,1,+)(g) ⊕ T (4;2,1,+)(g),

g ∈ D4 ⋉ (Z4 × Z4)

(4.6)
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Table 4.1: The values of character χ of the permutation representation T

g χ(g)

e n2

p1
i p2

j ((i, j) , (0, 0)) 0

rp1
i p2

j (i + j = 2k) 2 1

(i + j , 2k) 0 1

(n = 2m) (n , 2m)

r2 p1
i p2

j (i, j: even) 4 1

(other (i, j)) 0 1

(n = 2m) (n , 2m)

r3 p1
i p2

j (i + j = 2k) 2 1

(i + j , 2k) 0 1

(n = 2m) (n , 2m)

g χ(g)

sp1
i p2

j (i = 0, j = 2k) 2n n

(i = 0, j , 2k) 0 n

(i , 0) 0 0

(n = 2m) (n , 2m)

srp1
i p2

j (i = j) n

(i , j) 0

sr2 p1
i p2

j ( j = 0, i = 2k) 2n n

( j = 0, i , 2k) 0 n

( j , 0) 0 0

(n = 2m) (n , 2m)

sr3 p1
i p2

j (i = n − j) n

(i , n − j) 0

0 ≤ i, j ≤ n − 1; k,m: integers

for some orthogonal matrix Q, the concrete form of which is given in Example 4.2 in Section 4.3.1.

Accordingly, the multiplicities aµ for µ ∈ R(D4 ⋉ (Z4 × Z4)) are given as follows:

a(1;+,+,+) = 1, a(1;+,−,+) = 0, a(1;−,+,+) = 0, a(1;−,−,+) = 0,

a(1;+,+,−) = 1, a(1;+,−,−) = 0, a(1;−,+,−) = 0, a(1;−,−,−) = 0,

a(2;+) = 0, a(2;−) = 0, a(2;+,+) = 1, a(2;+,−) = 0,

a(2;−,+) = 0, a(2;−,−) = 0,

a(4;1,0,+) = 1, a(4;1,0,−) = 0, a(4;1,1,+) = 1, a(4;1,1,−) = 0,

a(4;2,1,+) = 1, a(4;2,1,−) = 0.

4.2.2. Analysis for the Finite Square Lattice

For general n, the permutation representation T (g) is specified by (4.1)–(4.4). We determine

the irreducible decomposition of T (g) with the aid of characters. Let χ(g) be the character of T (g),

which is defined by

χ(g) = Tr T (g), g ∈ D4 ⋉ (Zn × Zn). (4.7)

Table 4.1 shows the values of χ(g) for all g ∈ D4 ⋉ (Zn × Zn), which are dependent on whether

n is even or odd. For example, the action of rpi
1
p

j

2
reads

rpi
1 p

j

2
· (n1, n2) = r · (n1 + i, n2 + j) = (−n2 − j, n1 + i).
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Table 4.2: The values of irreducible characters χµ appearing in (4.10)

g χ(1;+,+,+) χ(4;k,0,+) χ(4;k,k,+) χ(8;k,ℓ) χ(1;+,+,−) χ(2;+,+) χ(4;n/2,ℓ,+)

(n = 2m) (n = 2m) (n = 2m)

p1
i p2

j 1 2[cos(kiθ) 2[cos(k(i + j)θ) (3.30) (−1)i+ j (−1)i + (−1) j 2[(−1)i cos(ℓ jθ)

+ cos(k jθ)] + cos(k(i − j)θ)] + (−1) j cos(ℓiθ)]

rp1
i p2

j 1 0 0 0 (−1)i+ j 0 0

r2 p1
i p2

j 1 0 0 0 (−1)i+ j (−1)i + (−1) j 0

r3 p1
i p2

j 1 0 0 0 (−1)i+ j 0 (−1)i + (−1) j

sp1
i p2

j 1 2 cos(kiθ) 0 0 (−1)i+ j (−1)i + (−1) j 2(−1) j cos(ℓiθ)

srp1
i p2

j 1 0 2 cos(k(i − j)θ) 0 (−1)i+ j 0 0

sr2 p1
i p2

j 1 2 cos(k jθ) 0 0 (−1)i+ j (−1)i + (−1) j 2(−1)i cos(ℓ jθ)

sr3 p1
i p2

j 1 0 2 cos(k(i + j)θ) 0 (−1)i+ j 0 0

θ = 2π/n; (3.30) reads:

χ(8;k,ℓ)(p1
i p2

j) = 2[ cos((ki + ℓ j)θ) + cos((−ℓi + k j)θ) + cos((ki − ℓ j)θ) + cos((−ℓi − k j)θ) ]

Invariant points (n1, n2) are those which satisfying (n1, n2) ≡ (−n2 − j, n1 + i) (mod n). The number

of these points, which depend on i + j and n, gives χ(rpi
1
p

j

2
).

In terms of characters, the irreducible decomposition of T (g) can be expressed as

χ(g) =
∑

µ

aµχµ(g), g ∈ D4 ⋉ (Zn × Zn), (4.8)

where χµ is the character of µ ∈ R(D4 ⋉ (Zn × Zn)), and the multiplicity aµ of µ can be determined

by the formula

aµ =
1

8n2

∑

g∈D4⋉(Zn×Zn)

χ(g)χµ(g). (4.9)

In the case of n = 2m, for example, we obtain

χ(g) = χ(1;+,+,+)(g) + χ(1;+,+,−)(g) + χ(2;+,+)(g) +
∑

k:(3.15)

χ(4;n/2,ℓ,+)(g)

+
∑

k:(3.13)

χ(4;k,0,+)(g) +
∑

k:(3.14)

χ(4;k,k,+)(g) +
∑

(k,ℓ):(3.25)

χ(8;k,ℓ)(g)

as the decomposition (4.8). The terms χ(1;+,+,−)(g), χ(2;+,+)(g), and χ(4;n/2,ℓ,+)(g) appear only when n
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is even. Hence we may represent this succinctly as

χ(g) = χ(1;+,+,+)(g)

+ χ
(1;+,+,−)(g) + χ(2;+,+)(g) +

∑

k:(3.15)

χ(4;n/2,ℓ,+)(g)


if n=2m

+
∑

k:(3.13)

χ(4;k,0,+)(g) +
∑

k:(3.14)

χ(4;k,k,+)(g) +
∑

(k,ℓ):(3.25)

χ(8;k,ℓ)(g),

g ∈ D4 ⋉ (Zn × Zn), (4.10)

where [ · ]if n=2m means that the term is included when n is even. Table 4.2 shows the values of the

irreducible characters χµ(g) appearing on the right-hand side of (4.10) (see Section 3.1 for details

about χµ(g)). The equality in (4.10) can be verified with the aid of Tables 4.1 and 4.2.

The decomposition (4.10) of the character χ(g) of T (g) means that some orthogonal matrix Q

exists such that

Q−1T (g)Q = T (1;+,+,+)(g)

⊕ T (1;+,+,−)(g) ⊕ T (2;+,+)(g) ⊕
⊕

k:(3.15)

T (4;n/2,ℓ,+)(g)


if n=2m

⊕
⊕

k:(3.13)

T (4;k,0,+)(g) ⊕
⊕

k:(3.14)

T (4;k,k,+)(g) ⊕
⊕

(k,ℓ):(3.25)

T (8;k,ℓ)(g),

g ∈ D4 ⋉ (Zn × Zn). (4.11)

This gives the irreducible decomposition of T (g). Accordingly, the multiplicities aµ in the irre-

ducible decomposition of T (g) are given as follows:

a(1;+,+,+) = 1, a(1;+,−,+) = 0, a(1;−,+,+) = 0, a(1;−,−,+) = 0,

a(1;+,+,−) = 1, a(1;+,−,−) = 0, a(1;−,+,−) = 0, a(1;−,−,−) = 0,

a(2;+) = 0, a(2;−) = 0,

a(2;+,+) =

{
1 if n is even,

0 if n is odd,

a(2;+,−) = 0, a(2;−,+) = 0, a(2;−,−) = 0,

a(4;k,0,+) = 1, a(4;k,0,−) = 0, 1 ≤ k ≤
⌊
n − 1

2

⌋
,

a(4;k,k,+) = 1, a(4;k,k,−) = 0, 1 ≤ k ≤
⌊
n − 1

2

⌋
,

a(4;n/2,ℓ,+) =

{
1 if n is even,

0 if n is odd,

a(4;n/2,ℓ,−) = 0, 1 ≤ ℓ ≤ n

2
− 1,

a(8;k,ℓ) = 1, 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
.
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Table 4.3: Irreducible representations contained in the permutation representation T

n \ d 1 2 4 8

2m (1;+,+,+), (1;+,+,−) (2;+,+) (4; k, 0;+), (4; k, k;+), (4; n/2, ℓ,+) (8; k, ℓ)

2m − 1 (1;+,+,+) (4; k, 0;+), (4; k, k;+) (8; k, ℓ)

(4; k, 0;+) for k with 1 ≤ k ≤ ⌊(n − 1)/2⌋;
(4; k, k;+) for k with 1 ≤ k ≤ ⌊(n − 1)/2⌋;
(4; n/2, ℓ;+) for k with 1 ≤ ℓ ≤ n/2 − 1;

(8; k, ℓ) for (k, ℓ) with 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤ ⌊(n − 1)/2⌋

Table 4.4: Number Ñd of d-dimensional irreducible representations of D4 ⋉ (Zn × Zn) contained in the permutation

representation T for the square lattice

n \ d 1 2 4 8

Ñ1 Ñ2 Ñ4 Ñ8

∑
Ñd

1 1 1

2 2 1 3

3 1 2 3

4 2 1 3 6

5 1 4 1 6

6 2 1 6 1 10

7 1 6 3 10

8 2 1 9 3 15

n \ d 1 2 4 8

Ñ1 Ñ2 Ñ4 Ñ8

∑
Ñd

9 1 8 6 15

10 2 1 12 6 21

11 1 10 10 21

12 2 1 15 10 28

13 1 12 15 28

14 2 1 18 15 36

15 1 14 21 36

16 2 1 21 21 45

n \ d 1 2 4 8

Ñ1 Ñ2 Ñ4 Ñ8

∑
Ñd

17 1 16 28 45

18 2 1 24 28 55

19 1 18 36 55

20 2 1 27 36 66

21 1 20 45 66
...

...
...

...
...

...

42 2 1 30 190 223
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It is noteworthy that the multiplicity is either 0 or 1 for each irreducible representation, that is,

the permutation representation T (g) in (4.1)–(4.4) is multiplicity-free (see Remark 4.1). Table 4.3

shows a summary.

By Ñd, we denote the number of d-dimensional irreducible representations of D4 ⋉ (Zn × Zn)

that exist in the permutation representation T (g). We have the following expressions for Ñd:

n \ d 1 2 4 8

Ñ1 Ñ2 Ñ4 Ñ8

2m 2 1 3(n − 2)/2 (n2 − 6n + 8)/8

2m − 1 1 0 n − 1 (n2 − 4n + 3)/8

(4.12)

whereas Table 4.4 shows the values of Ñd for several n. Also note the relation

∑

d

dÑd = n2. (4.13)

Remark 4.1. It is a basic fact that a permutation representation T (g) representing the action of a

group G on a finite set P is multiplicity-free if there exists some g ∈ G such that g · p = q and

g · q = p (e.g., see Proposition 1.4.8 of Ceccherini-Silberstein et al., 2010 [24]). The permutation

representation T (g) in (4.1)–(4.4) satisfies this condition as follows. By (4.1), (4.3), and (4.4), we

have

r2 p1
i p2

j · (n1, n2) ≡ (−n1 − i, n2 − j) mod n.

Hence, any pair of (n1, n2) and (n′
1
, n′

2
) can be rewritten as

g · (n1, n2) ≡ (n′1, n
′
2) mod n, g · (n′1, n′2) ≡ (n1, n2) mod n

by g = r2 p1
i p2

j with i = n1 − n′
1

and j = n2 − n′
2
. □

4.3. Transformation Matrix for Irreducible Decomposition

Transformation matrix Q for the irreducible decomposition is derived for the square lattice,

and examples of this matrix Q are presented.

4.3.1. Formulas for Transformation Matrix

For the n × n square lattice with the symmetry of D4 ⋉ (Zn × Zn), we derive the transformation

matrix

Q = (Qµ | µ ∈ D4 ⋉ (Zn × Zn)) (4.14)

for the irreducible decomposition. Note that the column set of Q is partitioned into blocks, each

associated with an irreducible representation µ contained in T (g) (see Table 4.3). Since such µ has

aµ = 1 (multiplicity-free), we have the relation

T (g)Qµ = QµT µ(g), g ∈ D4 ⋉ (Zn × Zn), (4.15)

where T (g) is the permutation representation given in Section 4.1.
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The vector λ expressing population pattern is defined as

λ = (λ1, . . . , λN)⊤

= (λ00, . . . , λn−1,0; λ01, . . . , λn−1,1; . . . ; λ0,n−1, . . . , λn−1,n−1)⊤

= (λn1n2
| n1, n2 = 0, . . . , n − 1),

where N = n2 and (λn1n2
| n1, n2 = 0, . . . , n − 1) is an N-dimensional column vector. For a vector

on this lattice with the (n1, n2)-component g(n1, n2), we express its normalization as5

⟨g(n1, n2)⟩ = (g(n1, n2)/
( n−1∑

i=0

n−1∑

j=0

g(i, j)2)1/2 | n1, n2 = 0, . . . , n − 1). (4.16)

Recall that the permutation representation T (g) is specified by (4.1)–(4.4) above. The action

of r on (n1, n2), for example, is expressed by

r · (n1, n2) ≡ (−n2, n1) mod n

in (4.1), which shows that the column of T (r) indexed by (n1, n2) has “1” in the row indexed by

(−n2, n1) mod n. For the present purpose, however, it is convenient to consider T (g) row-wise. It

is seen that the row of T (r) indexed by (n1, n2) has “1” at the column indexed by (n2,−n1) mod n,

since

(n′1, n
′
2) ≡ (−n2, n1) mod n

can be solved for (n1, n2) as

(n1, n2) ≡ (n′2,−n′1) mod n.

We denote this as

r ∗ (n1, n2) ≡ (n2,−n1) mod n. (4.17)

For s, p1, and p2, a similar argument based on (4.2)–(4.4) yields

s ∗ (n1, n2) ≡ (n1, −n2) mod n, (4.18)

p1 ∗ (n1, n2) ≡ (n1 − 1, n2) mod n, (4.19)

p2 ∗ (n1, n2) ≡ (n1, n2 − 1) mod n. (4.20)

The submatrices Qµ for µ are given by the following proposition, where the notation ⟨·⟩ for

normalization in (4.16) is used.

5The notation ⟨·⟩ here should not be confused with that for the generators of a group.
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Proposition 4.1. The submatrices Qµ of the transformation matrix Q on the n × n square lattice

are given by

Q(1;+,+,+) =
1

n
(1, . . . , 1)⊤ = ⟨1⟩, (4.21)

Q(1;+,+,−) =

{
[ ⟨cos(π(n1 − n2))⟩ ] if n is even,

missing if n is odd,
(4.22)

Q(2;+,+) =

{
[ ⟨cos(πn1)⟩, ⟨cos(πn2)⟩ ] if n is even,

missing if n is odd,
(4.23)

Q(4;k,0,+) = [ ⟨cos(2πk n1/n)⟩, ⟨sin(2πk n1/n)⟩, ⟨cos(2πkn2/n)⟩, ⟨sin(2πkn2/n)⟩ ]

for 1 ≤ k ≤
⌊
n − 1

2

⌋
, (4.24)

Q(4;k,k,+) = [ ⟨cos(2πk(n1 + n2)/n)⟩, ⟨sin(2πk(n1 + n2)/n)⟩,
⟨cos(2πk(−n1 + n2)/n)⟩, ⟨sin(2πk(−n1 + n2)/n)⟩ ]

for 1 ≤ k ≤
⌊
n − 1

2

⌋
, (4.25)

Q(4;n/2,ℓ,+) =



[ ⟨cos(πn1 + 2πℓn2/n)⟩, ⟨sin(πn1 + 2πℓn2/n)⟩,
⟨cos(−2πℓn1/n + πn2)⟩, ⟨sin(−2πℓn1/n + πn2)⟩ ]

for 1 ≤ ℓ ≤ n
2
− 1 if n is even,

missing if n is odd,

(4.26)

Q(8;k,ℓ) = [ ⟨cos(2π(kn1 + ℓn2)/n)⟩, ⟨sin(2π(kn1 + ℓn2)/n)⟩,
⟨cos(2π(−ℓn1 + kn2)/n)⟩, ⟨sin(2π(−ℓn1 + kn2)/n)⟩,
⟨cos(2π(kn1 − ℓn2)/n)⟩, ⟨sin(2π(kn1 − ℓn2)/n)⟩,
⟨cos(2π(−ℓn1 − kn2)/n)⟩, ⟨sin(2π(−ℓn1 − kn2)/n)⟩ ]

for 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
. (4.27)

Proof. Proof is given in Section 4.3.2. □

An example of the transformation matrix Q for n = 4 is presented below by assembling sub-

matrices Qµ in Proposition 4.1.
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Example 4.2. The transformation matrix Q for the 4 × 4 square lattice reads

Q = [Q(1;+,+,+),Q(1;+,+,−),Q(2;+,+),Q(4;1,0,+),Q(4;1,1,+),Q(4;2,1,+)]

= [ ⟨1⟩ | ⟨cos(π(n1 − n2))⟩ | ⟨cos(πn1)⟩, ⟨cos(πn2)⟩ |
⟨cos(π n1/2)⟩, ⟨sin(π n1/2)⟩, ⟨cos(πn2/2)⟩, ⟨sin(πn2/2)⟩ |
⟨cos(π(n1 + n2)/2)⟩, ⟨sin(π(n1 + n2)/2)⟩, ⟨cos(π(−n1 + n2)/2)⟩, ⟨sin(π(−n1 + n2)/2)⟩ |
⟨cos(πn1 + πn2/2)⟩, ⟨sin(πn1 + πn2/2)⟩, ⟨cos(−πn1/2 + πn2)⟩, ⟨sin(−πn1/2 + πn2)⟩ ]

=
1
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.

□

4.3.2. Proof of Proposition 4.1

We will now show that the relation T (g)Qµ = QµT µ(g) in (4.15) is satisfied by Qµ in Propo-

sition 4.1 for r, s, p1, and p2 that generate the group D4 ⋉ (Zn × Zn). Recall the actions of r, s,

p1, and p2 given in (4.17)–(4.20). We demonstrate the proof for µ = (2;+,+) and (8; k, ℓ), and the

other cases can be treated similarly.

Two-Dimensional Irreducible Representation

We shall prove that

Q(2;+,+) = [ ⟨cos(πn1)⟩, ⟨cos(πn2)⟩ ] (4.28)

satisfies (4.15) for µ = (2;+,+). Recall that (2;+,+) exists when n is even and T (2;+,+)(g) is defined

by (3.9) and (3.10).

The action of r on the wave numbers (n1, n2) in (4.28) is given, by a formal calculation using

(4.17), as

r ∗ (n1, n2) = (r ∗ n1, r ∗ n2) ≡ (n2,−n1 mod n).

In the matrix form, this gives

T (r)Q(2;+,+) = [ ⟨cos(πn2)⟩, ⟨cos(−πn1)⟩ ]

= [ ⟨cos(πn2)⟩, ⟨cos(πn1)⟩ ]

= [ cos(πn1), cos(πn2) ]

[
1

1

]

= Q(2;+,+)T (2;+,+)(r).
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The action of p1 on the wave numbers (n1, n2) is given by (4.19) as

p1 ∗ (n1, n2) ≡ (n1 − 1 mod n, n2),

which, in the matrix form, yields

T (p1)Q(2;+,+) = [ ⟨cos(π(n1 − 1))⟩, ⟨cos(πn2)⟩ ]

= [ ⟨− cos(πn1)⟩, ⟨cos(πn2)⟩ ]

= [ ⟨cos(πn1)⟩, ⟨cos(πn2)⟩ ]

[
−1

1

]

= Q(2;+,+)T (2;+)(p1).

The cases of s and p2 can be treated similarly. Thus, we have

T (g)Q(2;+,+) = Q(2;+,+)T (2;+,+)(g), g = r, s, p1, p2.

This completes the proof for µ = (2;+,+).

Eight-Dimensional Irreducible Representations

We shall prove that

Q(8;k,ℓ) = [ ⟨cos(2π(kn1 + ℓn2)/n)⟩, ⟨sin(2π(kn1 + ℓn2)/n)⟩,
⟨cos(2π(−ℓn1 + kn2)/n)⟩, ⟨sin(2π(ℓn1 + kn2)/n)⟩,
⟨cos(2π(kn1 − ℓn2)/n)⟩, ⟨sin(2π(kn1 − ℓn2)/n)⟩,
⟨cos(2π(−ℓn1 − kn2)/n)⟩, ⟨sin(2π(−ℓn1 − kn2)/n)⟩ ]

for 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
(4.29)

satisfies (4.15) for (8; k, ℓ) where n ≥ 5. Recall the definition of T (8;k,ℓ)(g) for g = r, s, p1, p2 in

(3.27) and (3.28), as well as the notations

R =

[
cos(2π/n) − sin(2π/n)

sin(2π/n) cos(2π/n)

]
, S =

[
1

−1

]
.

The action of r on the four wave numbers in (4.29) is given by (4.17) as

r ∗



kn1 + ℓn2

−ℓn1 + kn2

kn1 − ℓn2

−ℓn1 − kn2


≡



−ℓn1 + kn2

−(kn1 + ℓn2)

−(−ℓn1 − kn2)

kn1 − ℓn2


mod n,

which permutes and changes the sign of the column vectors of Q(8;k,ℓ) in (4.29) as

T (r)Q(8;k,ℓ) = Q(8;k,ℓ)



S

I

I

S


= Q(8;k,ℓ)T (8;k,ℓ)(r).
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The action of s on the four wave numbers in (4.29) is given by (4.18) as

s ∗



kn1 + ℓn2

−ℓn1 + kn2

kn1 − ℓn2

−ℓn1 − kn2


≡



kn1 − ℓn2

−ℓn1 − kn2

kn1 + ℓn2

−ℓn1 + kn2


mod n,

which gives

T (s)Q(8;k,ℓ) = Q(8;k,ℓ)



I

I

I

I


= Q(8;k,ℓ)T (8;k,ℓ)(s).

The action of p1 on the four wave numbers in (4.29) is given by (4.19) as

p1 ∗



kn1 + ℓn2

−ℓn1 + kn2

kn1 − ℓn2

−ℓn1 − kn2


≡



kn1 + ℓn2 − k

−ℓn1 + kn2 + ℓ

kn1 − ℓn2 − k

−ℓn1 − kn2 + ℓ


mod n,

which gives

T (p1)Q(8;k,ℓ) = Q(8;k,ℓ)



Rk

R−ℓ

Rk

R−ℓ


= Q(8;k,ℓ)T (8;k,ℓ)(p1).

The action of p2 on the four wave numbers in (4.29) is given by (4.20) as

p2 ∗



kn1 + ℓn2

−ℓn1 + kn2

kn1 − ℓn2

−ℓn1 − kn2


≡



kn1 + ℓn2 − ℓ
−ℓn1 + kn2 − k

kn1 − ℓn2 + ℓ

−ℓn1 − kn2 + k


mod n,

which gives

T (p2)Q(8;k,ℓ) = Q(8;k,ℓ)



Rℓ

Rk

R−ℓ

R−k


= Q(8;k,ℓ)T (8k,ℓ)(p2).

Thus, we have the following relation to complete the proof for µ = (8; k, ℓ):

T (g)Q(8;k,ℓ) = Q(8;k,ℓ)T (8;k,ℓ)(g), g = r, s, p1, p2.
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5. Square Patterns: Using Equivariant Branching Lemma

We presented fundamental facts about the square lattice in Chapters 2–4. We introduced the

n × n square lattice with periodic boundary conditions as a spatial platform for agglomeration

(Chapter 2). We labeled the symmetry of this lattice by the group D4 ⋉ (Zn ×Zn), and obtained the

irreducible representations of this group (Chapter 3). We decomposed the representation matrix for

the square lattice into irreducible components to determine the multiplicity aµ of each irreducible

representation µ (Chapter 4).

We would like to investigate the existence of square patterns as bifurcating solutions on the

square lattice. For each irreducible representation µ with aµ ≥ 1, we study bifurcation from a

critical point associated with µ by using group-theoretic bifurcation analysis procedures under

group symmetry. The following two different methods are available.

(i) The equivariant branching lemma is applied to the bifurcation equation associated with µ

to show the existence of bifurcating solutions with a specified symmetry. This analysis is

algebraic or group-theoretic, which focuses on the symmetry of solutions. The concrete

form of the bifurcation equation need not be derived, and isotropy subgroups play a key role

in the analysis.

(ii) The bifurcation equation is obtained in the form of power series expansions and is solved

asymptotically. This method is more complicated, treating nonlinear terms directly, but is

more informative, giving asymptotic forms of the bifurcating solutions and their directions

in addition to their existence.

In this chapter, we apply the first method (i), using the equivariant branching lemma, to the

economy on the n × n square lattice with the symmetry of D4 ⋉ (Zn × Zn). We obtain possible

bifurcating square patterns and associated lattice sizes for all the irreducible representations, which

are related to group-theoretic critical points with multiplicity M = 1, 2, 4, and 8.

The second method (ii), solving the bifurcation equation, is not based on the equivariant

branching lemma and capable of capturing all bifurcating solutions by dealing with the bifurca-

tion equation explicitly. The first method conducted in this chapter demands less analytical effort

than this method and fits to pinpoint the targeted square patterns among many other bifurcating

solutions.

This chapter is organized as follows. Theoretically-predicted bifurcating square patterns are

previewed in Section 5.1. Fundamentals of bifurcation analysis are recapitulated in Section 5.2.

Bifurcation points of multiplicity M = 1, 2, 4, and 8 are respectively studied in Sections 5.3–5.6.

5.1. Theoretically-Predicted Bifurcating Square Patterns

A possible bifurcation mechanism that can produce square patterns is presented as a preview

of the group-theoretic bifurcation analysis in Sections 5.4–5.6. Note that all critical points are

assumed to be group-theoretic as explained in Section 5.2.
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5.1.1. Symmetry of Bifurcating Square Patterns

Recall first that the symmetry of the n × n square lattice is labeled by the group

G = ⟨r, s, p1, p2⟩ = D4 ⋉ (Zn × Zn) (5.1)

in (2.34) with the fundamental relations (2.35):

r4 = s2 = (rs)2 = p1
n = p2

n = e, p2 p1 = p1 p2,

rp1 = p2r, rp2 = p−1
1 r, sp1 = p1s, sp2 = p−1

2 s, (5.2)

where e is the identity element.

We consider an equilibrium equation of the form

F (λ, ϕ) = 0, (5.3)

where λ = (λ, . . . , λN)⊤ with N = n2 is an N-dimensional independent variable vector and ϕ is the

bifurcation parameter. Among many possible solutions λ to the equilibrium equation (5.3), we are

particularly interested in those bifurcating solutions that represent the square patterns.

To describe the square patterns, we introduced in (2.4) a sublattice

H(α, β) = {n1(αℓ1 + βℓ2) + n2(−βℓ1 + αℓ2) | n1, n2 ∈ Z}

= {
[
ℓ1 ℓ2

] [ α −β
β α

] [
n1

n2

]
| n1, n2 ∈ Z}, (5.4)

where

ℓ1 = d

[
1

0

]
, ℓ2 = d

[
0

1

]
(5.5)

are basis vectors of length d of the underlying infinite square lattice

H = {n1ℓ1 + n2ℓ2 | n1, n2 ∈ Z} (5.6)

in (2.2). In this chapter we adopt the parameter space

{(α, β) ∈ Z2 | α > 0, β ≥ 0} (5.7)

in (2.10) of Proposition 2.1, instead of {(α, β) ∈ Z2 | α ≥ β ≥ 0, α , 0} in (2.11), unless otherwise

stated. The size of the square patterns inH(α, β) is characterized in (2.8) by

D = D(α, β) = α2 + β2. (5.8)

We recall the n × n square lattice

Hn = {n1ℓ1 + n2ℓ2 | ni ∈ Z, 0 ≤ ni ≤ n − 1 (i = 1, 2)} (5.9)
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in (2.28) and describe the symmetry of a square patternH(α, β)∩Hn on this lattice by the subgroup

G(α, β). This subgroup is classified in (2.39) into three types:

⟨r, s, pα
1
, pα

2
⟩ = Σ(α, 0) (α ≥ 1, β = 0) : type V,

⟨r, s, pβ
1
p
β

2
, p
−β
1

p
β

2
⟩ = Σ(β, β) (β ≥ 1, α = β) : type M,

⟨r, pα
1

p
β

2
, p
−β
1

pα
2
⟩ = Σ0(α, β) (otherwise) : type T.

(5.10)

Here it is convenient to introduce a convention

Σ0(0, 0) = ⟨r⟩, Σ(0, 0) = ⟨r, s⟩, Σ(1, 0) = ⟨r, s, p1, p2⟩. (5.11)

Recall the compatibility condition (2.33) between (α, β) and n given as

n =



mα for type V,

2mβ for type M,

mD(α, β)/ gcd(α, β) for type T,

(5.12)

where m = 1, 2, . . . .

The objective of this chapter is to look for a solution λ to (5.3) such that the isotropy subgroup

Σ(λ) for the symmetry of λ coincides with one of the subgroups in (5.10).

5.1.2. Square Patterns Engendered by Direct Bifurcations

The main message of this chapter is that bifurcating solutions for square patterns do arise

from the mathematical model on the square lattice with pertinent lattice sizes, and therefore these

patterns can be understood within the framework of group-theoretic bifurcation theory. The major

results to be derived in Sections 5.4–5.6, are summarized below.

Proposition 5.1. A bifurcating solution with the square symmetry expressed by the subgroup in

(5.10) exists for pertinent lattice sizes n. More specifically, we have the following, where m denotes

a positive integer.

• For (α, β; n) = (α, 0;αm) (2 ≤ α ≤ n), a square pattern of type V with symmetry Σ(α, 0)

branches at a bifurcation point with multiplicity M = 2 (α = 2), M = 4 (α ≥ 3), or M = 8

(α ≥ 5).

• For (α, β; n) = (β, β; 2βm) (1 ≤ β ≤ n/2), a square pattern of type M with symmetry Σ(β, β)

branches at a bifurcation point with multiplicity M = 1 (β = 1), M = 4 (β ≥ 2), or M = 8

(β ≥ 4).

• For (α, β; n) = (α, β; mD(α, β)/ gcd(α, β)), where 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, and

α , β, a square pattern of type T with symmetry Σ0(α, β) branches at a bifurcation point

with multiplicity M = 8.

Proof. This is proved in Sections 5.4–5.6. □

Possible square patterns for each value of (α, β; n) in Proposition 5.1 are summarized as fol-

lows:
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(α, β; n) M Type

α = 2 2

(α, 0;αm) α ≥ 3 4 V

α ≥ 5 8

β = 1 1

(β, β; 2βm) β ≥ 2 4 M

β ≥ 4 8

(α, β;
mD(α, β)

gcd(α, β)
) 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, α , β 8 T

where m = 1, 2, . . . .

The following proposition plays a pivotal role in the search for square patterns.

Proposition 5.2. The existence of square patterns depends on the divisors of the lattice size n as

follows:

(i) If n has a divisor α (2 ≤ α ≤ n), a square pattern of type V with symmetry Σ(α, 0) exists.

(ii) If n has a divisor 2β (1 ≤ β ≤ n/2), a square pattern of type M with symmetry Σ(β, β) exists.

(iii) If n has a divisor D(α, β)/ gcd(α, β), where 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, and α , β, a

square pattern of type T with symmetry Σ0(α, β) exists.

Proof. This follows from Proposition 5.1. □

Possible square patterns emerging via direct bifurcations for several values of n, obtained from

Proposition 5.2, are listed in Tables 5.1 and 5.2.

5.2. Procedure of Theoretical Analysis

A bifurcation analysis procedure resorting to the equivariant branching lemma is summarized.

5.2.1. Bifurcation and Symmetry of Solutions

Let us consider the system of equilibrium equations

F (λ, ϕ) = 0 (5.13)

endowed with the symmetry of, or equivariance to, G = D4 ⋉ (Zn × Zn) formulated as

T (g)F (λ, ϕ) = F (T (g)λ, ϕ), g ∈ G. (5.14)

Recall that ϕ serves as a bifurcation parameter, λ ∈ RN is an independent variable vector of

dimension N = n2 expressing a pattern of mobile population, F : RN × R → RN is the nonlinear

function, and T is the N-dimensional permutation representation in Section 4.1 of the group G =

D4 ⋉ (Zn × Zn).

Let (λc, ϕc) be a critical point of multiplicity M (≥ 1), at which the Jacobian matrix of F has

a rank deficiency M. The critical point (λc, ϕc) is assumed to be G-symmetric in the sense of

T (g)λc = λc, g ∈ G. (5.15)
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Table 5.1: Possible square patterns for several lattice sizes n (n = 2–17)

n (α, β) D Type G(α, β) M

2 (2, 0) 4 V Σ(2, 0) 2

(1, 1) 2 M Σ(1, 1) 1

3 (3, 0) 9 V Σ(3, 0) 4

4 (2, 0) 4 V Σ(2, 0) 2

(4, 0) 16 V Σ(4, 0) 4

(1, 1) 2 M Σ(1, 1) 1

(2, 2) 8 M Σ(2, 2) 4

5 (5, 0) 25 V Σ(5, 0) 4 or 8

(2, 1) 5 T Σ0(5, 0) 4

6 (2, 0) 4 V Σ(2, 0) 2

(3, 0) 9 V Σ(3, 0) 4

(6, 0) 36 V Σ(6, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(3, 3) 18 M Σ(3, 3) 4

7 (7, 0) 49 V Σ(7, 0) 4 or 8

8 (2, 0) 4 V Σ(2, 0) 2

(4, 0) 16 V Σ(4, 0) 4

(8, 0) 64 V Σ(8, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(2, 2) 8 M Σ(2, 2) 4

(4, 4) 32 M Σ(4, 4) 4 or 8

9 (3, 0) 9 V Σ(3, 0) 4

(9, 0) 81 V Σ(9, 0) 4 or 8

10 (2, 0) 4 V Σ(2, 0) 2

(5, 0) 25 V Σ(5, 0) 4 or 8

(10, 0) 100 V Σ(10, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(5, 5) 50 M Σ(5, 5) 4 or 8

(2, 1) 5 T Σ0(2, 1) 8

(3, 1) 10 T Σ0(3, 1) 8

(4, 2) 20 T Σ0(4, 2) 8

n (α, β) D Type G(α, β) M

11 (11, 0) 121 V Σ(11, 0) 4 or 8

12 (2, 0) 4 V Σ(2, 0) 2

(3, 0) 9 V Σ(3, 0) 4

(4, 0) 16 V Σ(4, 0) 4

(6, 0) 36 V Σ(6, 0) 4 or 8

(12, 0) 144 V Σ(12, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(2, 2) 8 M Σ(2, 2) 4

(3, 3) 18 M Σ(3, 3) 4

(6, 6) 72 M Σ(6, 6) 4 or 8

13 (13, 0) 169 V Σ(13, 0) 4 or 8

(3, 2) 13 T Σ0(3, 2) 8

14 (2, 0) 4 V Σ(2, 0) 2

(7, 0) 49 V Σ(7, 0) 4 or 8

(14, 0) 196 V Σ(14, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(7, 7) 98 M Σ(7, 7) 8 or 8

15 (3, 0) 9 V Σ(3, 0) 4

(5, 0) 25 V Σ(5, 0) 4 or 8

(15, 0) 225 V Σ(15, 0) 4 or 8

(2, 1) 5 T Σ0(2, 1) 8

(6, 3) 45 T Σ0(6, 3) 8

16 (2, 0) 4 V Σ(2, 0) 2

(4, 0) 16 V Σ(4, 0) 4

(8, 0) 64 V Σ(8, 0) 4 or 8

(16, 0) 256 V Σ(16, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(2, 2) 8 M Σ(2, 2) 4

(4, 4) 32 M Σ(4, 4) 4 or 8

(8, 8) 128 M Σ(8, 8) 4 or 8

17 (17, 0) 289 V Σ(17, 0) 4 or 8

(4, 1) 17 T Σ0(4, 1) 8
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Table 5.2: Possible square patterns for several lattice sizes n (n = 18–30)

n (α, β) D Type G(α, β) M

18 (2, 0) 4 V Σ(2, 0) 2

(3, 0) 9 V Σ(3, 0) 4

(6, 0) 36 V Σ(6, 0) 4 or 8

(9, 0) 81 V Σ(9, 0) 4 or 8

(18, 0) 324 V Σ(18, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(3, 3) 18 M Σ(3, 3) 4

(9, 9) 162 M Σ(9, 9) 4 or 8

19 (19, 0) 361 V Σ(19, 0) 4 or 8

20 (2, 0) 4 V Σ(2, 0) 2

(4, 0) 16 V Σ(4, 0) 4

(5, 0) 25 V Σ(5, 0) 4 or 8

(10, 0) 100 V Σ(10, 0) 4 or 8

(20, 0) 400 V Σ(20, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(2, 2) 8 M Σ(2, 2) 4

(5, 5) 50 M Σ(5, 5) 4 or 8

(10, 10) 200 M Σ(10, 10) 4 or 8

(2, 1) 5 T Σ0(2, 1) 8

(3, 1) 10 T Σ0(3, 1) 8

(4, 2) 20 T Σ0(4, 2) 8

(6, 2) 40 T Σ0(6, 2) 8

(8, 4) 80 T Σ0(8, 4) 8

21 (3, 0) 9 V Σ(3, 0) 4

(7, 0) 49 V Σ(7, 0) 4 or 8

(21, 0) 441 V Σ(21, 0) 4 or 8

22 (2, 0) 4 V Σ(2, 0) 2

(11, 0) 121 V Σ(11, 0) 4 or 8

(22, 0) 484 V Σ(22, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(11, 11) 242 M Σ(11, 11) 4 or 8

23 (23, 0) 529 V Σ(23, 0) 4 or 8

24 (2, 0) 4 V Σ(2, 0) 2

(3, 0) 9 V Σ(3, 0) 4

(4, 0) 16 V Σ(4, 0) 4

(6, 0) 36 V Σ(6, 0) 4 or 8

(12, 0) 144 V Σ(12, 0) 4 or 8

(24, 0) 576 V Σ(24, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(2, 2) 8 M Σ(2, 2) 4

(3, 3) 18 M Σ(3, 3) 4

(4, 4) 32 M Σ(4, 4) 4 or 8

(6, 6) 72 M Σ(6, 6) 4 or 8

(12, 12) 288 M Σ(12, 12) 4 or 8

n (α, β) D Type G(α, β) M

25 (5, 0) 25 V Σ(5, 0) 4 or 8

(25, 0) 625 V Σ(25, 0) 4 or 8

(2, 1) 5 T Σ(2, 1) 8

(4, 3) 25 T Σ(4, 3) 8

(10, 5) 125 T Σ(10, 5) 8

26 (2, 0) 4 V Σ(2, 0) 2

(13, 0) 169 V Σ(13, 0) 4 or 8

(26, 0) 676 V Σ(26, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(13, 13) 338 M Σ(13, 13) 4 or 8

(3, 2) 13 T Σ0(3, 2) 8

(5, 1) 26 T Σ0(5, 1) 8

(6, 4) 52 T Σ0(6, 4) 8

27 (3, 0) 9 V Σ(3, 0) 4

(9, 0) 81 V Σ(9, 0) 4 or 8

(27, 0) 729 V Σ(27, 0) 4 or 8

28 (2, 0) 4 V Σ(2, 0) 2

(4, 0) 16 V Σ(4, 0) 4

(7, 0) 49 V Σ(7, 0) 4 or 8

(14, 0) 196 V Σ(14, 0) 4 or 8

(28, 0) 784 V Σ(28, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(2, 2) 8 M Σ(2, 2) 4

(7, 7) 98 M Σ(7, 7) 4 or 8

(14, 14) 392 M Σ(14, 14) 4 or 8

29 (29, 0) 841 V Σ(29, 0) 4 or 8

(5, 2) 29 T Σ0(5, 2) 8

30 (2, 0) 4 V Σ(2, 0) 2

(3, 0) 9 V Σ(3, 0) 4

(5, 0) 25 V Σ(5, 0) 4 or 8

(6, 0) 36 V Σ(6, 0) 4 or 8

(10, 0) 100 V Σ(10, 0) 4 or 8

(15, 0) 225 V Σ(15, 0) 4 or 8

(30, 0) 900 V Σ(30, 0) 4 or 8

(1, 1) 2 M Σ(1, 1) 1

(3, 3) 18 M Σ(3, 3) 4

(5, 5) 50 M Σ(5, 5) 4 or 8

(15, 15) 450 M Σ(15, 15) 4 or 8

(2, 1) 5 T Σ0(2, 1) 8

(3, 1) 10 T Σ0(3, 1) 8

(4, 2) 20 T Σ0(4, 2) 8

(6, 3) 45 T Σ0(6, 3) 8

(9, 3) 90 T Σ0(9, 3) 8

(12, 6) 180 T Σ0(12, 6) 8

53



Moreover, it is assumed to be group-theoretic, which means, by definition, that the M-dimensional

kernel space of the Jacobian matrix at (λc, ϕc) is irreducible with respect to the representation T .

Then the critical point (λc, ϕc) is associated with an irreducible representation µ of G, and the

multiplicity M corresponds to the dimension of the irreducible representation µ. We denote the

representation matrix for µ by T µ(g).

By the Liapunov–Schmidt reduction with symmetry,6 the full system of equilibrium equations

(5.13) is reduced, in a neighborhood of the critical point (λc, ϕc), to a system of bifurcation equa-

tions

F̃ (w, ϕ̃) = 0 (5.16)

in w ∈ RM, where F̃ : RM × R→ RM is a function and ϕ̃ = ϕ − ϕc denotes the increment of ϕ. In

this reduction process, the equivariance (5.14) of the full system is inherited by the reduced system

(5.16). With the use of the representation matrix T µ(g) for the associated irreducible representation

µ, the equivariance of the bifurcation equation can be expressed as

T µ(g)F̃ (w, ϕ̃) = F̃ (T µ(g)w, ϕ̃), g ∈ G. (5.17)

This inherited symmetry plays a key role in determining the symmetry of bifurcating solutions.

The reduced equation (5.16) can possibly admit multiple solutions w = w(ϕ̃) with w(0) = 0,

since (w, ϕ̃) = (0, 0) is a singular point of (5.16). This gives rise to bifurcation. Each w uniquely

determines a solution λ to the full system (5.13), and moreover the symmetry of w is identical

with that of λ. Indeed, we have the following relation:

Gµ ⊆ Σµ(w) = Σ(λ), (5.18)

where Gµ is a subgroup of G as

Gµ = {g ∈ G | T µ(g) = I}, (5.19)

and Σ(λ) and Σµ(w) are isotropy subgroups defined respectively as

Σ(λ) = Σ(λ; G,T ) = {g ∈ G | T (g)λ = λ}, (5.20)

Σµ(w) = Σ(w; G,T µ) = {g ∈ G | T µ(g)w = w}. (5.21)

The significance of the relation (5.18) is twofold. First, unless a subgroup Σ is large enough

to contain Gµ, no bifurcating solution λ exists such that Σ = Σ(λ). Second, the symmetry of a

bifurcating solution λ is known as Σ(λ) = Σµ(w) through the analysis of the bifurcation equation

in w.

Remark 5.1. We define the variables w = (w1, . . . ,wM)⊤ in the bifurcation equation (5.16) with

the matrix Q derived in Section 4.3. That is, the components of w = (w1, . . . ,wM)⊤ are assumed

to correspond to the column vectors of Qµ = [q
µ

1
, . . . , q

µ

M
]. Then, the equivariance condition (5.17)

holds for the matrix representations T µ of the irreducible representations µ derived in Section 3.2.

□

6For more details on the Liapunov–Schmidt reduction, see Sattinger, 1979 [25] and Golubitsky et al., 1988 [26].
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Table 5.3: Irreducible representations of D4 ⋉ (Zn × Zn) to be considered in bifurcation analysis

n \ d 1 2 4 8

2m (1;+,+,+), (1;+,+,−) (2;+,+) (4; k, 0;+), (4; k, k;+), (4; n/2, ℓ,+) (8; k, ℓ)

2m − 1 (1;+,+,+) (4; k, 0;+), (4; k, k;+) (8; k, ℓ)

(4; k, 0;+) for k with 1 ≤ k ≤ ⌊(n − 1)/2⌋;
(4; k, k;+) for k with 1 ≤ k ≤ ⌊(n − 1)/2⌋;
(4; n/2, ℓ;+) for k with 1 ≤ ℓ ≤ ⌊(n − 1)/2⌋;
(8; k, ℓ) for (k, ℓ) with 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤ ⌊(n − 1)/2⌋

5.2.2. Use of Equivariant Branching Lemma

Equivariant branching lemma is a useful mathematical means to prove the existence of a bi-

furcating solution with a specified symmetry without actually solving the bifurcation equation

in (5.16). By the equivariant branching lemma, we shall demonstrate the emergence of square

patterns.

Bifurcation Equation and the Associated Irreducible Representation

To investigate the existence of a bifurcating solution λ with a specified symmetry Σ to the

equilibrium equation F (λ, ϕ) = 0 in (5.13), it suffices to apply the equivariant branching lemma to

the bifurcation equation F̃ (w, ϕ̃) in (5.16). This is justified by the fact that the isotropy subgroup

Σ(λ) expressing the symmetry of a bifurcating solution λ is identical to the isotropy subgroup

Σµ(w) of the corresponding solution w for the bifurcation equation, i.e., Σ(λ) = Σµ(w) as shown

in (5.18).

The bifurcation equation is associated with an irreducible representation µ of G = D4⋉(Zn×Zn)

as in (5.17). The associated irreducible representation µ is restricted to

µ = (1;+,+,+), (1;+,+,−), (2;+,+),

(4; k, 0;+), (4; k, k;+), (4; n/2, ℓ;+), (8; k, ℓ)

with k for (4; k, 0;+) in (3.13), k for (4; k, k;+) in (3.14), ℓ for (4; n/2, ℓ;+) in (3.15), and (k, ℓ)

for (8; k, ℓ) in (3.25), as a consequence of the irreducible decomposition (4.11) of the permutation

representation T for the economy on the n × n square lattice. The unit representation (1;+,+,+)

has been excluded since it does not correspond to a symmetry-breaking bifurcation point. Thus

we have to deal with critical points of multiplicity M = 1, 2, 4, and 8. As a modified form of

Table 4.3, therefore, we obtain Table 5.3, where the multiplicity M of a critical point is equal to

the dimension d of the associated irreducible representation.

Isotropy Subgroup and Fixed-Point Subspace

In the analysis by the equivariant branching lemma, the isotropy subgroup of w with respect

to T µ:

Σµ(w) = {g ∈ G | T µ(g)w = w}
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introduced in (5.21), and the fixed-point subspace of Σ for T µ:

Fixµ(Σ) = {w ∈ RM | T µ(g)w = w for all g ∈ Σ} (5.22)

play the major roles. The following facts, though immediate from the definitions, are important

and useful.

• By definition, Σ is an isotropy subgroup if and only if Σ = Σµ(w) for some w , 0.

• If Σ = Σµ(w), then w ∈ Fixµ(Σ) and dim Fixµ(Σ) ≥ 1.

• Not every Σ with the property of dim Fixµ(Σ) ≥ 1 is an isotropy subgroup.

• Σ ⊆ Σµ(w) for every w ∈ Fixµ(Σ).

• Σ is an isotropy subgroup if and only if Σ = Σµ(w) for some w ∈ Fixµ(Σ) with w , 0.

• Unless Σ is an isotropy subgroup, there exists no bifurcating solution w with symmetry Σ.

Analysis Procedure Using Equivariant Branching Lemma

The analysis for the n × n square lattice based on the equivariant branching lemma follows the

steps below.

1. Specify an irreducible representation µ of D4 ⋉ (Zn × Zn) in Table 5.3.

2. Specify a subgroup Σ as a candidate of an isotropy subgroup of a possible bifurcating solu-

tion.

3. Obtain the fixed-point subspace Fixµ(Σ) in (5.22) for the subgroup Σ with respect to the

irreducible representation µ.

4. Search for some w ∈ Fixµ(Σ) such that Σµ(w) = Σ. If no such w exists, then Σ is not an

isotropy subgroup, and hence there exists no solution with the specified symmetry Σ for the

bifurcation equation associated with µ. If such w exists, then we can ensure that Σ is an

isotropy subgroup, and can proceed to the next step.

5. Calculate the dimension dim Fixµ(Σ) of the fixed-point subspace.

6. If dim Fixµ(Σ) = 1, a bifurcating solution with symmetry Σ is guaranteed to exist generically

by the equivariant branching lemma. If dim Fixµ(Σ) ≥ 2, no definite conclusion can be

reached by means of the equivariant branching lemma.

Remark 5.2. The equivariant branching lemma assumes two technical conditions: i) absolute

irreducibility and ii) genericity (see Section 2.4.5 of Ikeda et al., 2014 [8]). The former condition

is satisfied by the group G = D4 ⋉ (Zn × Zn) since all the irreducible representations over R of this

group are absolutely irreducible (see Section 3.2). The latter condition is a matter of modeling,

and we assume this condition throughout this paper. For more details on the equivariant branching

lemma, see Cicogna, 1981 [27], Vanderbauwhede, 1982 [28], and Golubitsky et al., 1988 [26]. □
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Figure 5.1: Pattern on the 6 × 6 square lattice expressed by the column vector of Q(1;+,+,−). A black circle denotes a

positive component and a white circle denotes a negative component.

5.3. Bifurcation Point of Multiplicity 1

As shown by Table 5.3 in Section 5.2.2, a critical point of multiplicity 1 is associated with the

two-dimensional irreducible representation (1;+,+,−), which exists only when n is even. Recall

from (3.4) that this irreducible representation is given by

T (1;+,+,−)(r) = 1, T (1;+,+,−)(s) = 1, T (1;+,+,−)(p1) = −1, T (1;+,+,−)(p2) = −1. (5.23)

In view of Remark 5.1 in Section 5.2.1, let us assume that the variable w = w for the bifurcation

equation (5.16) corresponds to the column vectors of

Q(1;+,+,−) = [q] = [ ⟨cos(π(n1 − n2))⟩ ] (5.24)

in (4.22). The spatial pattern for this vector is depicted in Fig. 5.1 for n = 6. This is the smallest

square pattern.

Proposition 5.3. When n is even, a bifurcating solution in the direction of q with the symmetry

of ⟨r, s, p1 p2, p
−1
1

p2⟩ arises from a critical point of multiplicity 1 associated with the irreducible

representation (1;+,+,−).

Proof. The general procedure in Section 5.2.2 is applied to µ = (1;+,+,−) and Σ = ⟨r, s⟩ ⋉
⟨p1 p2, p

−1
1

p2⟩. We have

Fix(1;+,+,−)(Σ) = {w ∈ R}
since

T (1;+,+,−)(r)w = w, T (1;+,+,−)(s)w = w, T (1;+,+,−)(p1 p2)w = w, T (1;+,+,−)(p−1
1 p2)w = w

by (5.23). Thus the targeted symmetry Σ is an isotropy subgroup with

dim Fix(1;+,+,−)(Σ) = 1.

The equivariant branching lemma then guarantees the existence of a bifurcating path with symme-

try Σ. □
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(a) q1 (⟨r2, s, p2
1
, p2⟩) (b) q2 (⟨r2, s, p1, p

2
2
⟩) (c) q1 + q2 (⟨r, s, p2

1
, p2

2
⟩)

Figure 5.2: Patterns on the 6 × 6 square lattice expressed by the column vectors of Q(2;+,+). A black circle denotes a

positive component and a white circle denotes a negative component.

5.4. Bifurcation Point of Multiplicity 2

As shown by Table 5.3 in Section 5.2.2, a critical point of multiplicity 2 is associated with

the two-dimensional irreducible representation (2;+,+), which exists only when n is even. Recall

from (3.9) and (3.10) that this irreducible representation is given by

T (2;+,+)(r) =

[
1

1

]
, T (2;+,+)(s) =

[
1

1

]
, (5.25)

T (2;+,+)(p1) =

[
−1

1

]
, T (2;+,+)(p2) =

[
1

−1

]
. (5.26)

In view of Remark 5.1 in Section 5.2.1, let us assume that the variable w = (w1,w2)⊤ for the

bifurcation equation (5.16) corresponds to the column vectors of

Q(2;+,+) = [q1, q2] = [ ⟨cos(πn1)⟩, ⟨cos(πn2)⟩ ] (5.27)

in (4.23). The spatial patterns for these vectors are depicted in Fig. 5.2 for n = 6. The vectors q1

and q2 represent stripe patterns but q1 + q2 expresses a square pattern.

Proposition 5.4. When n is even, bifurcating solutions from a critical point of multiplicity 2 asso-

ciated with the irreducible representation (2;+,+) exist in the following directions:

(i) q1 + q2 with the symmetry of ⟨r, s, p2
1
, p2

2
⟩,

(ii) q1 with the symmetry of ⟨r2, s, p2
1
, p2⟩, and

(iii) q2 with the symmetry of ⟨r2, s, p1, p
2
2
⟩.

Proof. (i) The general procedure in Section 5.2.2 is applied to µ = (2;+,+) and Σ = ⟨r, s⟩⋉⟨p2
1
, p2

2
⟩.

Note

Fix(2;+,+)(Σ) = Fix(2;+,+)(⟨r⟩) ∩ Fix(2;+,+)(⟨s, p2
1, p

2
2⟩).

Here we have

Fix(2;+,+)(⟨r⟩) = {c(1, 1)⊤ | c ∈ R}
since T (2;+,+)(r)(w1,w2)⊤ = (w2,w1)⊤ by (5.25), whereas

Fix(2;+,+)(⟨s, p2
1, p

2
2⟩) = R2
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since T (2;+,+)(s) = T (2;+,+)(p2
1
) = T (2;+,+)(p2

2
) = I by (5.25) and (5.26). Therefore,

Fix(2;+,+)(Σ) = {c(1, 1)⊤ | c ∈ R},

that is, Σ = Σ(2;+,+)(w0) for w0 = (1, 1)⊤. Thus the targeted symmetry Σ is an isotropy subgroup

with

dim Fix(2;+,+)(Σ) = 1.

The equivariant branching lemma then guarantees the existence of a bifurcating path with symme-

try Σ.

(ii) Next the general procedure is applied to µ = (2;+,+) and Σ = ⟨r2, s, p2
1
, p2⟩. Note

Fix(2;+,+)(Σ) = Fix(2;+,+)(⟨p2⟩) ∩ Fix(2;+,+)(⟨r2, s, p2
1⟩).

Here we have

Fix(2;+,+)(⟨p2⟩) = {c(1, 0)⊤ | c ∈ R}
since T (2;+,+)(p2)(w1,w2)⊤ = (w1,−w2)⊤ by (5.25), whereas

Fix(2;+,+)(⟨r2, s, p2
1⟩) = R2

since T (2;+,+)(r2) = T (2;+,+)(s) = T (2;+,+)(p2
1
) = I by (5.25) and (5.26). Therefore,

Fix(2;+,+)(Σ) = {c(1, 0)⊤ | c ∈ R},

that is, Σ = Σ(2;+,+)(w0) for w0 = (1, 0)⊤. Thus the targeted symmetry Σ is an isotropy subgroup

with

dim Fix(2;+,+)(Σ) = 1.

The equivariant branching lemma then guarantees the existence of a bifurcating path with symme-

try Σ. The case of (iii) can be treated similarly. □

5.5. Bifurcation Point of Multiplicity 4

Square patterns branching from bifurcation points of multiplicity 4 are investigated.

5.5.1. Representation in Complex Variables

As shown by Table 5.3 in Section 5.2.2, a critical point of multiplicity 4 is associated with one

of the four-dimensional irreducible representations

(4; k, 0,+) with 1 ≤ k ≤
⌊
n − 1

2

⌋
, (5.28)

(4; k, k,+) with 1 ≤ k ≤
⌊
n − 1

2

⌋
, (5.29)

(4; n/2, ℓ,+) with 1 ≤ ℓ ≤ n

2
− 1, (5.30)

where n ≥ 3 and (4; n/2, ℓ,+) exists only when n is even.
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The irreducible representation (4; k, 0,+) is given by

T (4;k,0,+)(r) =

[
S

I

]
, T (4;k,0,+)(s) =

[
I

S

]
, (5.31)

T (4;k,0,+)(p1) =

[
Rk

I

]
, T (4;k,0,+)(p2) =

[
I

Rk

]
, (5.32)

where

R =

[
cos(2π/n) − sin(2π/n)

sin(2π/n) cos(2π/n)

]
, S =

[
1

−1

]
, I =

[
1

1

]
.

The irreducible representation (4; k, k,+) is given by

T (4;k,k,+)(r) =

[
S

I

]
, T (4;k,k,+)(s) =

[
S

S

]
, (5.33)

T (4;k,k,+)(p1) =

[
Rk

R−k

]
, T (4;k,k,+)(p2) =

[
Rk

Rk

]
. (5.34)

The irreducible representation (4; n/2, ℓ,+) is given by

T (4;n/2,ℓ,+)(r) =

[
S

I

]
, T (4;n/2,ℓ,+)(s) =

[
S

I

]
, (5.35)

T (4;n/2,ℓ,+)(p1) =

[
−I

R−ℓ

]
, T (4;n/2,ℓ,+)(p2) =

[
Rℓ

−I

]
. (5.36)

Let us assume that, for (4; k, 0,+), the variable w = (w1,w2,w3,w4)⊤ for the bifurcation equa-

tion (5.16) corresponds to the column vectors of

Q(4;k,0,+) = [ ⟨cos(2πk n1/n)⟩, ⟨sin(2πk n1/n)⟩, ⟨cos(2πkn2/n)⟩, ⟨sin(2πkn2/n)⟩ ] (5.37)

in (4.24). The variables w for (4; k, k,+) and (4; n/2, ℓ,+) can be defined similarly. Examples of

the spatial patterns for these vectors are depicted in Fig. 5.3 for n = 6.

Using complex variables

(z1, z2) = (w1 + iw2,w3 + iw4),

we can express the actions in (4; k, 0,+), given in (5.31) and (5.32) for the 4-dimensional vectors

(w1, . . . ,w4), as

r :

[
z1

z2

]
7→

[
z2

z1

]
, s :

[
z1

z2

]
7→

[
z1

z2

]
,

p1 :

[
z1

z2

]
7→

[
ωkz1

z2

]
, p2 :

[
z1

z2

]
7→

[
z1

ωkz2

]
,

(5.38)

where ω = exp(i2π/n). The actions in (4; k, k,+), given in (5.33) and (5.34), are

r :

[
z1

z2

]
7→

[
z2

z1

]
, s :

[
z1

z2

]
7→

[
z2

z1

]
,

p1 :

[
z1

z2

]
7→

[
ωkz1

ω−kz2

]
, p2 :

[
z1

z2

]
7→

[
ωkz1

ωkz2

]
.

(5.39)
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The actions in (4; n/2, ℓ,+), given in (5.35) and (5.36), are

r :

[
z1

z2

]
7→

[
z2

z1

]
, s :

[
z1

z2

]
7→

[
z1

z2

]
,

p1 :

[
z1

z2

]
7→

[
−z1

ω−ℓz2

]
, p2 :

[
z1

z2

]
7→

[
ωℓz1

−z2

]
.

(5.40)

The actions of p1 and p2 in (4; k, ℓ,+) are expressed in a unified form as

p1 :

[
z1

z2

]
7→

[
ωkz1

ω−ℓz2

]
, p2 :

[
z1

z2

]
7→

[
ωℓz1

ωkz2

]
. (5.41)

5.5.2. Isotropy Subgroups

To apply the method of analysis in Section 5.2.2, we identify isotropy subgroups for (4; k, 0,+),

(4; k, k,+), and (4; n/2, ℓ,+) that are relevant to square patterns. We denote the isotropy subgroup

of z = (z1, z2) and the fixed-point subspace of Σ with respect to T (4;k,ℓ,+) with ℓ ∈ {0, k} as

Σ(4;k,ℓ,+)(z) = {g ∈ G | T (4;k,ℓ,+)(g) · z = z}, (5.42)

Fix(4;k,ℓ,+)(Σ) = {z | T (4;k,ℓ,+)(g) · z = z for all g ∈ Σ}, (5.43)

where T (4;k,ℓ,+)(g) · z means the action of g ∈ G = D4 ⋉ (Zn × Zn) on z given in (5.38) and (5.39).

We also define

ň =
n

gcd(n, k)
, ǩ =

k

gcd(n, k)
, ñ =

n

gcd(n, ℓ)
, ℓ̃ =

ℓ

gcd(n, ℓ)
, (5.44)

where gcd(·, ·) means the greatest common divisor of the integers therein.

The symmetries of ⟨r⟩ and ⟨r, s⟩ and the translational symmetry of pa
1
pb

2
are dealt with in

Propositions 5.5, 5.6, and 5.7 below. In this connection, the isotropy subgroups of z = (z1, z2) =

(1, 1) (i.e., w = (1, 0, 1, 0)⊤) play a crucial role. Remark 5.3 given later should be consulted with

regard to the geometrical interpretation of the propositions below.

Proposition 5.5. For (4; k, 0,+) in (3.13), we have the following statements:

(i) Fix(4;k,0,+)(⟨r⟩) = Fix(4;k,0,+)(⟨r, s⟩) = {c(1, 1) | c ∈ R} for each k.

(ii) pa
1
pb

2
∈ Σ(4;k,0,+)((1, 1)) if and only if

ǩa ≡ 0, ǩb ≡ 0 mod ň. (5.45)

(iii) Σ(4;k,0,+)((1, 1)) = Σ(ň, 0) and Fix(4;k,0,+)(Σ(ň, 0)) = {c(1, 1) | c ∈ R}. That is, Σ(ň, 0) is the

isotropy subgroup of z = (1, 1) with dim Fix(4;k,0,+)(Σ(ň, 0)) = 1.

(iv) If Σ(α, β) is an isotropy subgroup (for some z), then (α, β) = (ň, 0) and it is the isotropy

subgroup of z = (1, 1).

(v) Σ0(α, β) is not an isotropy subgroup (for any z) for any value of (α, β).
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Proof. (i) By (5.38), z = (z1, z2) is invariant to r if and only if (z2, z1) = (z1, z2), which is equivalent

to z1 = z2 ∈ R. Such z is also invariant to s.

(ii) By (5.41) for (4; k, ℓ,+), the invariance of z = (1, 1) to pa
1
pb

2
is expressed as

ka + ℓb ≡ 0, −ℓa + kb ≡ 0 mod n, (5.46)

For ℓ = 0, this condition reduces to

ka ≡ 0, kb ≡ 0 mod n,

which is equivalent to (5.45).

(iii) (a, b) satisfies (5.45) if and only if both a and b are multiples of ň. The subgroup of G

generated by pa
1
pb

2
for such (a, b), together with r and s, coincides with Σ(ň, 0).

(iv) This follows from (i) and (iii).

(v) This follows from (v). □

Proposition 5.6. For (4; k, k,+) in (3.14), we have the following statements:

(i) Fix(4;k,k,+)(⟨r⟩) = Fix(4;k,k,+)(⟨r, s⟩) = {c(1, 1) | c ∈ R} for each k.

(ii) pa
1
pb

2
∈ Σ(4;k,k,+)((1, 1)) if and only if

ǩ(a + b) ≡ 0, ǩ(−a + b) ≡ 0 mod ň. (5.47)

(iii) If ň is even, then we have

Σ(4;k,k,+)((1, 1)) = Σ(ň/2, ň/2),

Fix(4;k,k,+)(Σ(ň/2, ň/2)) = {c(1, 1) | c ∈ R};

that is, Σ(ň/2, ň/2) is the isotropy subgroup of z = (1, 1) with dim Fix(4;k,k,+)(Σ(ň/2, ň/2)) = 1. If ň

is odd, then we have

Σ(4;k,k,+)((1, 1)) = Σ(ň, 0),

Fix(4;k,k,+)(Σ(ň, 0)) = {c(1, 1) | c ∈ R};

that is, Σ(ň, 0) is the isotropy subgroup of z = (1, 1) with dim Fix(4;k,k,+)(Σ(ň, 0)) = 1.

(iv) If Σ(α, β) is an isotropy subgroup (for some z), then

(α, β) =

{
(ň/2, ň/2) if ň is even,

(ň, 0) if ň is odd.

(v) Σ0(α, β) is not an isotropy subgroup (for any z) for any value of (α, β).

Proof. (i) By (5.39), z = (z1, z2) is invariant to r if and only if (z2, z1) = (z1, z2), which is equivalent

to z1 = z2 ∈ R. Such z is also invariant to s.

(ii) The condition (5.46) for ℓ = k reduces to

k(a + b) ≡ 0, k(−a + b) ≡ 0 mod n,

62



which is equivalent to (5.47).

(iii) The condition (5.47) is equivalent to the existence of integers p and q such that
[

1 1

−1 1

] [
a

b

]
= ň

[
p

q

]
.

Hence a and b satisfy (5.47) if and only if they are integers expressed as
[
a

b

]
= ň

[
1 1

−1 1

]−1 [
p

q

]
=

ň

2

[
1 −1

1 1

] [
p

q

]

for some integers p and q. When ň is odd, this is equivalent to (a, b) = ň(p′, q′) for integers p′ and

q′. Therefore, the subgroup of G generated by pa
1
pb

2
with such (a, b), together with r and s, is given

by Σ(ň, 0) with (p′, q′) = (1, 0) or Σ(ň/2, ň/2) with (p, q) = (1, 0) according to whether ň is odd or

even .

(iv) This follows from (i) and (iii).

(v) This follows from (i). □

Proposition 5.7. For (4; n/2, ℓ,+) in (3.15), we have the following statements.

(i) Fix(4;n/2,ℓ,+)(⟨r⟩) = Fix(4;n/2,ℓ,+)(⟨r, s⟩) = {c(1, 1) | c ∈ R} for each ℓ.

(ii) pa
1
pb

2
∈ Σ(4;n/2,ℓ,+)((1, 1)) if and only if

1

2
ña + ℓ̃b ≡ 0, −ℓ̃a + 1

2
ñb ≡ 0 mod ñ. (5.48)

(iii) If ñ is odd, then we have

Σ(4;n/2,ℓ,+)((1, 1)) = Σ(2ñ, 0),

Fix(4;n/2,ℓ,+)(Σ(2ñ, 0)) = {c(1, 1) | c ∈ R};

that is, Σ(2ñ, 0) is the isotropy subgroup of z = (1, 1) with dim Fix(4;n/2,ℓ,+)(Σ(2ñ, 0)) = 1. If ñ is

even and ñ/2 is odd, then we have

Σ(4;n/2,ℓ,+)((1, 1)) = Σ(ñ/2, ñ/2),

Fix(4;n/2,ℓ,+)(Σ(ñ/2, ñ/2)) = {c(1, 1) | c ∈ R};

that is, Σ(ñ/2, ñ/2) is the isotropy subgroup of z = (1, 1) with dim Fix(4;n/2,ℓ,+)(Σ(ñ/2, ñ/2)) = 1. If

ñ is even and ñ/2 is even, then we have

Σ(4;n/2,ℓ,+)((1, 1)) = Σ(ñ, 0),

Fix(4;n/2,ℓ,+)(Σ(ñ, 0)) = {c(1, 1) | c ∈ R};

that is, Σ(ñ, 0) is the isotropy subgroup of z = (1, 1) with dim Fix(4;n/2,ℓ,+)(Σ(ñ, 0)) = 1.

(iv) If Σ(α, β) is an isotropy subgroup (for some z), then

(α, β) =



(2ñ, 0) if ñ is odd,

(ñ, 0) if ñ is even and ñ/2 is even,

(ñ/2, ñ/2) if ñ is even and ñ/2 is odd.

(v) Σ0(α, β) is not an isotropy subgroup (for any z) for any value of (α, β).
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Proof. (i) By (5.40), z = (z1, z2) is invariant to r if and only if (z2, z1) = (z1, z2), which is equivalent

to z1 = z2 ∈ R. Such z is also invariant to s.

(ii) The condition (5.46) for k = n/2 reduces to

n

2
a + ℓb ≡ 0, −ℓa + n

2
b ≡ 0 mod n,

which is equivalent to (5.48).

(iii) When ñ is odd, (5.49) gives p and q are even, that is, (p, q) = (2p′, 2q′) for integers p′

and q′. Then, we have (a, b) = ñ(2p′, 2q′) = 2ñ(p′, q′). When ñ is even, from (5.48), we have

(a, b) = (ñ/2)(p, q) for integers p and q and this equation is rewritten as

ñ

2
p + ℓ̃q ≡ 0, −ℓ̃p + ñ

2
q ≡ 0 mod 2. (5.49)

When ñ is even and ñ/2 is even, we have ℓ̃ odd and (p, q) = (2p′′, 2q′′). Hence, we have (a, b) =

(ñ/2)(2p′′, 2q′′) = ñ(p′′, q′′) for integers p′′ and q′′. When ñ is even and ñ/2 is odd (ℓ̃ odd), we

have (a, b) = (ñ/2)(p, q) for p+q even. Therefore, the subgroup of G generated by pa
1
pb

2
with such

(a, b), together with r and s, is given by Σ(2ñ, 0) with (p′, q′) = (1, 0), Σ(ñ, 0) with (p′′, q′′) = (1, 0),

or Σ(ñ/2, ñ/2) with (p, q) = (1, 1), according to whether ñ is odd, ñ/2 is even, or ñ/2 is odd.

(iv) This follows from (i) and (iii).

(v) This follows from (i). □

The above propositions show that, in either case of (4; k, 0,+), (4; k, k,+), and (4; n/2, ℓ,+), any

isotropy subgroup Σ containing ⟨r⟩, which is of our interest, can be represented as Σ = Σ(4;k,ℓ,+)(z)

for z = (1, 1) and that dim Fix(4;k,ℓ,+)(Σ) = 1. On the basis of this fact, we will investigate possible

occurrences of square patterns for each of the three types V, M, and T in Sections 5.5.3–5.5.5.

Remark 5.3. The four-dimensional space of w = (w1,w2,w3,w4)⊤ for the bifurcation equation

(5.16) is spanned by the column vectors of

Q(4;k,ℓ,+) = [q1, q2, q3, q4], (5.50)

the concrete form of which is given in (4.24)–(4.26). For example, the spatial patterns for these

vectors with n = 6 are depicted in Fig. 5.3. The two vectors q1 and q3 represent stripe patterns

in different directions. The sum qsum = q1 + q3 of these two vectors, which is associated with

z = (1, 1), represents square patterns. □

5.5.3. Square Patterns of Type V

Square patterns of type V are here shown to branch from critical points of multiplicity 4.

Recall that a square pattern of type V is characterized by the symmetry of Σ(α, 0) with 2 ≤ α ≤ n

compatible with n (see (5.10) and (5.12)) and that D(α, 0) = α2.

The following proposition is concerned with the square patterns of type V.
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q1 q2 q3 q4 q1 + q3 (⟨r, s⟩)
(a) Q(4;1,0,+)

q1 q2 q3 q4 q1 + q3 (⟨r, s⟩)
(b) Q(4;2,0,+)

q1 q2 q3 q4 q1 + q3 (⟨r, s⟩)
(c) Q(4;1,1,+)

q1 q2 q3 q4 q1 + q3 (⟨r, s⟩)
(d) Q(4;2,2,+)

q1 q2 q3 q4 q1 + q3 (⟨r, s⟩)
(e) Q(4;3,1,+)

q1 q2 q3 q4 q1 + q3 (⟨r, s⟩)
(f) Q(4;3,2,+)

Figure 5.3: Patterns on the 6 × 6 square lattice expressed by the column vectors of Q(4;1,0,+), Q(4;2,0,+), Q(4;1,1,+),

Q(4;2,2,+), Q(4;3,1,+), and Q(4;3,2,+). A black circle denotes a positive component and a white circle denotes a negative

component.
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Proposition 5.8. Square patterns of type V with the symmetry of Σ(α, 0) (α ≥ 3) arise as bifurcat-

ing solutions from critical points of multiplicity 4 for specific values of n and associated irreducible

representations given by

(α, β) D n (k, ℓ) in (4; k, ℓ,+)

(α, 0) α2 αm (pm, 0)

(α, 0) α2 αm (pm, pm) (α is odd)

(α, 0) α2 αm (αm/2, pm) (α is even and α/2 is even)

(α, 0) α2 αm (αm/2, 2p′m) (α is even and α/2 is odd)

(5.51)

where m ≥ 1 and

gcd(p, α) = 1, 1 ≤ p < α/2, (5.52)

gcd(p′, α/2) = 1, 1 ≤ p′ < α/4. (5.53)

Proof. By Propositions 5.5, 5.6, and 5.7, we have three possibilities: (4; k, 0,+), (4; k, k,+), and

(4; n/2, ℓ). For (4; k, 0,+), we fix α and look for (k, n) that satisfies (5.28) and ň = α. For such

(k, n), Σ(α, 0) = Σ(ň, 0) is an isotropy subgroup with dim Fix(4;k,0,+) (Σ(α, 0)) = 1 by Proposi-

tion 5.5. Then the equivariant branching lemma (Section 5.2.2) guarantees the existence of a

bifurcating solution with symmetry Σ(α, 0).

For (4; k, k,+), we fix α that is odd and look for (k, n) that satisfies (5.29) and ñ = α, and

proceed in a similar manner using Proposition 5.6.

For (4; n/2, ℓ,+), we fix α that is even and look for (ℓ, n) that satisfies (5.30) and ñ = α/2 for

α/2 odd and ñ = α for α/2 even, and proceed in a similar manner using Proposition 5.7.

Suppose that (k, n) for (k, ℓ) = (pm, 0) and (pm, pm) is given by (5.51) with (5.52). Then

m = gcd(k, n) by gcd(p, α) = 1 and ň = n/ gcd(k, n) = n/m = α. We have k = pm ≥ 1 and

k/n = p/α < 1/2, thereby showing 1 ≤ k ≤
⌊

n−1
2

⌋
in (5.28) for (4; pm, 0,+) and (5.29) for

(4; pm, pm,+).

Suppose that (ℓ, n) for (k, ℓ) = (αm/2, pm) is given by (5.51) with (5.52). Then m = gcd(n, ℓ)

by gcd(p, α) = 1 and ñ = n/ gcd(ℓ, n) = n/m = α. We have ℓ = pm ≥ 1 and ℓ/n = p/α < 1/2,

thereby showing (5.30).

Suppose that (ℓ, n) for (k, ℓ) = (αm/2, 2p′m) is given by (5.51) with (5.53). Then 2m =

gcd(n, ℓ) by gcd(p′, α/2) = 1 and ñ = n/ gcd(ℓ, n) = n/(2m) = α/2. We have ℓ = 2p′m ≥ 1 and

ℓ/n = 2p′/α < 1/2, thereby showing (5.30).

Conversely, suppose that (k, n) satisfies ň = α, and (5.28) or (5.29). Then we have α = ň =

n/ gcd(k, n), which shows gcd(k, n) = n/α is an integer, say m. We also have k = ǩ gcd(k, n) = mp

for p = ǩ. Then gcd(p, α) = gcd(ǩ, ň) = 1, p = ǩ ≥ 1, and p/α = k/n < 1/2 by (5.28) or (5.29),

thereby showing (5.52).

Suppose that α/2 is even and (ℓ, n) satisfies ñ = α, and (5.30). Then we have α = ñ =

n/ gcd(ℓ, n), which shows gcd(ℓ, n) = n/α is an integer, say m. We also have ℓ = ℓ̃ gcd(ℓ, n) = mp

for p = ℓ̃. Then gcd(p, α) = gcd(ℓ̃, ñ) = 1, p = ℓ̃ ≥ 1, and p/α = ℓ/n < 1/2 by (5.30), thereby

showing (5.52).

Suppose that α/2 is odd and (ℓ, n) satisfies 2ñ = α and (5.30). Then we have α = 2ñ =

2n/ gcd(ℓ, n), which shows gcd(ℓ, n) = 2n/α is an even integer, say 2m. We also have ℓ =
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ℓ̃ gcd(ℓ, n) = 2mp′ for p′ = ℓ̃. Then gcd(p′, α/2) = gcd(ℓ̃, ñ) = 1, p′ = ℓ̃ ≥ 1, and p′/α =

ℓ/(2n) < 1/4 by (5.30), thereby showing (5.53).

The above argument is in fact valid for α ≥ 2. For α = 2, however, the condition 1 ≤ p < α/2

or 1 ≤ p′ < α/4 is already a contradiction, which proves the nonexistence of the square pattern

with D = 4 (α = 2). □

Example 5.1. The parameter values of (5.51) in Proposition 5.8 give

(α, β) D n (k, ℓ) in (4; k, ℓ,+)

(3, 0) 9 3m (m, 0); (m,m)

(4, 0) 16 4m (m, 0); (2m,m)

(5, 0) 25 5m (m, 0), (2m, 0); (m,m), (2m, 2m)

(6, 0) 36 6m (m, 0); (3m, 2m)

(7, 0) 49 7m (m, 0), (2m, 0), (3m, 0); (m,m), (2m, 2m), (3m, 3m)

(8, 0) 64 8m (m, 0), (3m, 0); (4m,m), (4m, 3m)

where m ≥ 1. For each α ≥ 3, there exists at least one eligible (k, n) for (4; k, 0,+) in (5.51); for

instance, (k, n) = (m, αm), which corresponds to p = 1. □

5.5.4. Square Patterns of Type M

Square patterns of type M are shown here to branch from critical points of multiplicity 4.

Recall that a square pattern of type M is characterized by the symmetry of Σ(β, β) with 1 ≤ β ≤ n/2

compatible with n (see (5.10) and (5.12)) and D(β, β) = 2β2.

The following proposition is concerned with the square patterns of type M.

Proposition 5.9. Square patterns of type M with the symmetry of Σ(β, β) (β ≥ 2) arise as bifurcat-

ing solutions from critical points of multiplicity 4 for specific values of n and associated irreducible

representations given by

(α, β) D n (k, ℓ) in (4; k, ℓ,+)

(β, β) 2β2 2βm (pm, pm)

(β, β) 2β2 2βm (βm, pm) (β is odd)

(5.54)

where m ≥ 1 and

gcd(p, 2β) = 1, 1 ≤ p < β. (5.55)

Proof. By Propositions 5.5, 5.6, and 5.7, we have two possibilities: (4; k, k,+) and (4; n/2, ℓ) and

look for (k, n) that satisfies (5.29) or (5.30) and the condition that

ň is even and β = ň/2 for (4; k, k,+), (5.56)

ň is even, ñ/2 is odd, and β = ñ/2 for (4; n/2, ℓ). (5.57)

For such parameter value (k, n) in (5.56) for (4; k, k,+), Σ(β, β) = Σ(ň/2, ň/2) is an isotropy sub-

group with dim Fix(4;k,k,+)(Σ(β, β)) = 1 by Proposition 5.6. For such parameter value (ℓ, n) in (5.57)

for (4; n/2, ℓ,+), Σ(β, β) = Σ(ñ/2, ñ/2) is an isotropy subgroup with dim Fix(4;n/2,ℓ,+)(Σ(β, β)) = 1
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by Proposition 5.7. Then the equivariant branching lemma (Section 5.2.2) guarantees the existence

of a bifurcating solution with symmetry Σ(β, β) for both (4; k, k,+) and (4; n/2, ℓ,+).

For (4; k, k,+), suppose that (k, n) is given by (5.54). Then m = gcd(k, n) by gcd(p, 2β) = 1,

and ň = n/ gcd(k, n) = 2β, which shows (5.56). As for the condition (5.29), we first observe that

k/n = p/(2β) < 1/2, which shows k < n/2. The case of (4; n/2, ℓ,+) can be treated similarly.

Conversely, for (4; k, k,+), suppose that (k, n) satisfies (5.29) and (5.56). Put m′ = gcd(k, n)

to obtain n = m′ň = 2m′β and k = m′ǩ = m′p for p = ǩ. Hence we have (k, n) = (pm′, 2βm′),

where gcd(p, 2β) = gcd(ǩ, ň) = 1 and p/(2β) = k/n < 1/2, thereby showing (5.55). The case of

(4; n/2, ℓ,+) can be treated similarly.

The above argument is valid also for β = 1. For β = 1, however, no p satisfies 1 ≤ p < β. This

proves the nonexistence of the square pattern with D = 2. □

Example 5.2. The parameter values of (5.54) in Proposition 5.9 give

(α, β) D n (k, ℓ) in (4; k, ℓ,+)

(2, 2) 8 4m (m,m)

(3, 3) 18 6m (m,m); (3m,m)

(4, 4) 32 8m (m,m), (3m, 3m),

(5, 5) 50 10m (m,m), (3m, 3m); (5m,m), (5m, 3m)

(6, 6) 72 12m (m,m), (5m, 5m)

where m ≥ 1. For each β ≥ 2, there exists at least one eligible (k, n) in (5.54); for instance,

(k, n) = (m, 2βm), which corresponds to p = 1. □

5.5.5. Square Patterns of Type T

It is shown that square patterns of type T do not appear from critical points of multiplicity 4.

Recall that a square pattern of type T is characterized by the symmetry of Σ0(α, β) with 1 ≤ α ≤
n− 1, 1 ≤ β ≤ n− 1, α , β (see (2.42)). The following proposition denies the existence of square

patterns of type T.

Proposition 5.10. Square patterns of type T with the symmetry of Σ0(α, β) 1 ≤ α ≤ n− 1, 1 ≤ β ≤
n − 1, α , β do not arise as bifurcating solutions from critical points of multiplicity 4 for any n.

Proof. By Propositions 5.5, 5.6, and 5.7, Σ0(α, β) is not an isotropy subgroup with respect to

neither (4; k, 0,+), nor (4; k, k,+), nor (4; , n/2, ℓ). □

5.5.6. Possible Square Patterns for Several Lattice Sizes

We have investigated possible occurrences of square patterns for each of the three types V, M,

and T, and enumerated all possible parameter values of n for the lattice size and k for the associated

irreducible representations (4; k, 0,+), (4; k, k,+), and/or (4; n/2, ℓ,+). By compiling the obtained

facts, we can capture, for each n, all square patterns that can potentially arise from critical points

of multiplicity 4. The result is given in Tables 5.4–5.7 for several lattice sizes n.
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Table 5.4: Square patterns arising from critical points of multiplicity 4 for several lattice sizes n (ň is given for

(4; k, 0,+) and (4; k, k,+), and ñ is given for (4; n/2, ℓ,+))

n (k, ℓ) in (4; k, ℓ,+) ň ñ (α, β) D Type

3 (1, 0) 3 (3, 0) 9 V

(1, 1)

4 (1, 0) 4 (4, 0) 16 V

(2, 1) 4

(1, 1) 4 (2, 2) 8 M

5 (1, 0), (2, 0) 5 (5, 0) 25 V

(1, 1), (2, 2)

6 (2, 0) 3 (3, 0) 9 V

(2, 2)

(1, 0) 6 (6, 0) 36 V

(3, 2) 3

(1, 1) 6 (3, 3) 18 M

(3, 1) 6

7 (1, 0), (2, 0), (3, 0) 7 (7, 0) 49 V

(1, 1), (2, 2), (3, 3)

8 (2, 0) 4 (4, 0) 16 V

(4, 2) 4

(1, 0), (3, 0) 8 (8, 0) 64 V

(4, 1), (4, 3) 8

(2, 2) 4 (2, 2) 8 M

(1, 1), (3, 3) 8 (4, 4) 32 M

9 (3, 0) 3 (3, 0) 9 V

(3, 3)

(1, 0), (2, 0), (4, 0) 9 (9, 0) 81 V

(1, 1), (2, 2), (4, 4)

10 (2, 0), (4, 0) 5 (5, 0) 25 V

(2, 2), (4, 4)

(1, 0), (3, 0) 10 (10, 0) 100 V

(5, 2), (5, 4) 5

(1, 1), (3, 3) 10 (5, 5) 50 M

(5, 1), (5, 3) 10

11 (1, 0), (2, 0), (3, 0), (4, 0), (5, 0) 11 (11, 0) 121 V

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)

12 (4, 0) 3 (3, 0) 9 V

(4, 4)

(3, 0) 4 (4, 0) 16 V

(6, 3) 4

(2, 0) 6 (6, 0) 36 V

(6, 4) 3

(1, 0), (5, 0) 12 (12, 0) 144 V

(6, 1), (6, 5) 12

(3, 3) 4 (2, 2) 8 M

(2, 2) 6 (3, 3) 18 M

(6, 2) 6

(1, 1), (5, 5) 12 (6, 6) 72 M

13 (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0) 13 (13, 0) 169 V

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)
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Table 5.5: Square patterns arising from critical points of multiplicity 4 for several lattice sizes n (ň is given for

(4; k, 0,+) and (4; k, k,+), and ñ is given for (4; n/2, ℓ,+))

n (k, ℓ) in (4; k, ℓ,+) ň ñ (α, β) D Type

14 (2, 0), (4, 0), (6, 0) 7 (7, 0) 49 V

(2, 2), (4, 4), (6, 6)

(1, 0), (3, 0), (5, 0) 14 (14, 0) 196 V

(7, 2), (7, 4), (7, 6) 7

(1, 1), (3, 3), (5, 5) 14 (7, 7) 98 M

(7, 1), (7, 3), (7, 5) 14

15 (5, 0) 3 (3, 0) 9 V

(5, 5)

(3, 0), (6, 0) 5 (5, 0) 25 V

(3, 3), (6, 6)

(1, 0), (2, 0), (4, 0), (7, 0) 15 (15, 0) 225 V

(1, 1), (2, 2), (4, 4), (7, 7)

16 (4, 0) 4 (4, 0) 16 V

(8, 4) 4

(2, 0), (6, 0) 8 (8, 0) 64 V

(8, 2), (8, 6) 8

(1, 0), (3, 0), (5, 0), (7, 0) 16 (16, 0) 256 V

(8, 1), (8, 3), (8, 5), (8, 7) 16

(4, 4) 4 (2, 2) 8 M

(2, 2), (6, 6) 8 (4, 4) 32 M

(1, 1), (3, 3), (5, 5), (7, 7) 16 (8, 8) 72 M

17 (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0) 17 (17, 0) 289 V

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8)

18 (6, 0) 3 (3, 0) 9 V

(6, 6)

(3, 0) 6 (6, 0) 36 V

(9, 6) 3

(2, 0), (4, 0), (8, 0) 9 (9, 0) 81 V

(2, 2), (4, 4), (8, 8)

(1, 0), (5, 0), (7, 0) 18 (18, 0) 324 V

(9, 2), (9, 4), (9, 8) 9

(3, 3) 6 (3, 3) 18 M

(9, 3) 6

(1, 1), (5, 5), (7, 7) 18 (9, 9) 162 M

(9, 1), (9, 5), (9, 7) 18

19 (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0) 19 (19, 0) 361 V

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9)

20 (5, 0) 4 (4, 0) 16 V

(10, 5) 4

(4, 0), (8, 0) 5 (5, 0) 25 V

(4, 4), (8, 8)

(2, 0), (6, 0) 10 (10, 0) 100 V

(10, 4), (10, 8) 5

(1, 0), (3, 0), (7, 0), (9, 0) 20 (20, 0) 400 V

(10, 1), (10, 3), (10, 7), (10, 9) 20

(5, 5) 4 (2, 2) 8 M

(2, 2), (6, 6) 10 (5, 5) 50 M

(10, 2), (10, 6) 10

(1, 1), (3, 3), (7, 7), (9, 9) 20 (10, 10) 200 M
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Table 5.6: Square patterns arising from critical points of multiplicity 4 for several lattice sizes n (ň is given for

(4; k, 0,+) and (4; k, k,+), and ñ is given for (4; n/2, ℓ,+))

n (k, ℓ) in (4; k, ℓ,+) ň ñ (α, β) D Type

21 (7, 0) 3 (3, 0) 9 V

(7, 7)

(3, 0), (6, 0), (9, 0) 7 (7, 0) 49 V

(3, 3), (6, 6), (9, 9)

(1, 0), (2, 0), (4, 0), (5, 0), (8, 0), (10, 0) 21 (21, 0) 441 V

(1, 1), (2, 2), (4, 4), (5, 5), (8, 8), (10, 10)

22 (2, 0), (4, 0), (6, 0), (8, 0), (10, 0) 11 (11, 0) 121 V

(2, 2), (4, 4), (6, 6), (8, 8), (10, 10)

(1, 0), (3, 0), (5, 0), (7, 0), (9, 0) 22 (22, 0) 484 V

(11, 2), (11, 4), (11, 6), (11, 8), (11, 10) 11

(1, 1), (3, 3), (5, 5), (7, 7), (9, 9) 22 (11, 11) 242 M

(11, 1), (11, 3), (11, 5), (11, 7), (11, 9) 22

23 (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0), (10, 0) 23 (23, 0) 529 V

(11, 0)

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 10)

(11, 11)

24 (8, 0) 3 (3, 0) 9 V

(8, 8)

(6, 0) 4 (4, 0) 16 V

(12, 6) 4

(4, 0) 6 (6, 0) 36 V

(12, 8) 3

(3, 0), (9, 0) 8 (8, 0) 64 V

(12, 3), (12, 9) 8

(2, 0), (10, 0) 12 (12, 0) 144 V

(12, 2), (12, 10) 12

(1, 0), (5, 0), (7, 0), (11, 0) 24 (24, 0) 576 V

(12, 1), (12, 5), (12, 7)(12, 11) 24

(6, 6) 4 (2, 2) 8 M

(4, 4) 6 (3, 3) 18 M

(12, 4) 6

(3, 3), (9, 9) 8 (4, 4) 32 M

(2, 2), (10, 10) 12 (6, 6) 72 M

(1, 1), (5, 5), (7, 7), (11, 11) 24 (12, 12) 288 M

25 (5, 0), (10, 0) 5 (5, 0) 25 V

(5, 5), (10, 10)

(1, 0), (2, 0), (3, 0), (4, 0), (6, 0), (7, 0), (8, 0), (9, 0), (11, 0), (12, 0) 25 (25, 0) 625 V

(1, 1), (2, 2), (3, 3), (4, 4), (6, 6), (7, 7), (8, 8), (9, 9), (11, 11), (12, 12)

26 (2, 0), (4, 0), (6, 0), (8, 0), (10, 0), (12, 0) 13 (13, 0) 169 V

(2, 2), (4, 4), (6, 6), (8, 8), (10, 10), (12, 12)

(1, 0), (3, 0), (5, 0), (7, 0), (9, 0), (11, 0) 26 (26, 0) 676 V

(13, 2), (13, 4), (13, 6), (13, 8), (13, 10), (13, 12) 13

(1, 1), (3, 3), (5, 5), (7, 7), (9, 9), (11, 11) 26 (13, 13) 338 M

(13, 1), (13, 3), (13, 5), (13, 7), (13, 9), (13, 11) 26
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Table 5.7: Square patterns arising from critical points of multiplicity 4 for several lattice sizes n (ň is given for

(4; k, 0,+) and (4; k, k,+), and ñ is given for (4; n/2, ℓ,+))

n (k, ℓ) in (4; k, ℓ,+) ň ñ (α, β) D Type

27 (9, 0) 3 (3, 0) 9 V

(9, 9)

(3, 0), (6, 0), (12, 0) 9 (9, 0) 81 V

(3, 3), (6, 6), (12, 12)

(1, 0), (2, 0), (4, 0), (5, 0), (7, 0), (8, 0), (10, 0), (11, 0), (13, 0) 27 (27, 0) 729 V

(1, 1), (2, 2), (4, 4), (5, 5), (7, 7), (8, 8), (10, 10), (11, 11), (13, 13) 27

28 (7, 0) 4 (4, 0) 16 V

(14, 7) 4

(4, 0), (8, 0), (12, 0) 7 (7, 0) 49 V

(4, 4), (8, 8), (12, 12)

(2, 0), (6, 0), (10, 0) 14 (14, 0) 392 V

(14, 4), (14, 8), (14, 12) 7

(1, 0), (3, 0), (5, 0), (9, 0), (11, 0), (13, 0) 28 (28, 0) 784 V

(14, 1), (14, 3), (14, 5), (14, 9), (14, 11), (14, 13) 28

(7, 7) 24 (2, 2) 8 M

(2, 2), (6, 6), (10, 10) 14 (7, 7) 98 M

(14, 2), (14, 6), (14, 10) 14

(1, 1), (3, 3), (5, 5), (9, 9), (11, 11), (13, 13) 28 (14, 14) 392 M

29 (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0), (10, 0) 29 (29, 0) 841 V

(11, 0), (12, 0), (13, 0), (14, 0)

(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 10)

(11, 11), (12, 12), (13, 13), (14, 14)

30 (10, 0) 3 (3, 0) 9 V

(10, 10)

(6, 0), (12, 0) 5 (5, 0) 25 V

(6, 6), (12, 12)

(5, 0) 6 (6, 0) 36 V

(15, 10) 3

(3, 0), (9, 0) 10 (10, 0) 100 V

(15, 6), (15, 12) 5

(2, 0), (4, 0), (8, 0), (14, 0) 15 (15, 0) 225 V

(2, 2), (4, 4), (8, 8), (14, 14)

(1, 0), (7, 0), (11, 0), (13, 0) 30 (30, 0) 900 V

(15, 2), (15, 4), (15, 8), (15, 14) 15

(5, 5) 6 (3, 3) 18 M

(15, 5) 6

(3, 3), (9, 9) 10 (5, 5) 50 M

(15, 3), (15, 9) 10

(1, 1), (7, 7), (11, 11), (13, 13) 30 (15, 15) 450 M

(15, 1), (15, 7), (15, 11), (15, 13) 30
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5.6. Bifurcation Point of Multiplicity 8

Square patterns branching from critical points of multiplicity 8 are investigated. The emer-

gence of tilted square patterns of type T is the most phenomenal finding of this chapter. In addition,

larger square patterns of type V and M also branch.

5.6.1. Representation in Complex Variables

As shown by Table 5.3 in Section 5.2.2, a critical point of multiplicity 8 is associated with the

eight-dimensional irreducible representation (8; k, ℓ) with

1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
, (5.58)

where n ≥ 5.

Recall from (3.27)–(3.28) that the irreducible representation (8; k, ℓ) is given by

T (8;k,ℓ)(r) =



S

I

I

S


, T (8;k,ℓ)(s) =



I

I

I

I


, (5.59)

T (8;k,ℓ)(p1) =



Rk

R−ℓ

Rk

R−ℓ


, T (8;k,ℓ)(p2) =



Rℓ

Rk

R−ℓ

R−k


(5.60)

with

R =

[
cos(2π/n) − sin(2π/n)

sin(2π/n) cos(2π/n)

]
, S =

[
1

−1

]
, I =

[
1

1

]
. (5.61)

Let us assume that the variable w = (w1,w2,w3,w4,w5,w6,w7,w8)⊤ for the bifurcation equa-

tion (5.16) corresponds to the column vectors of

Q(8;k,ℓ) = [ ⟨cos(2π(kn1 + ℓn2)/n)⟩, ⟨sin(2π(kn1 + ℓn2)/n)⟩,
⟨cos(2π(−ℓn1 + kn2)/n)⟩, ⟨sin(2π(−ℓn1 + kn2)/n)⟩,
⟨cos(2π(kn1 − ℓn2)/n)⟩, ⟨sin(2π(kn1 − ℓn2)/n)⟩,
⟨cos(2π(−ℓn1 − kn2)/n)⟩, ⟨sin(2π(−ℓn1 − kn2)/n)⟩ ]

for 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
.

Examples of the spatial patterns for these vectors are depicted in Fig. 5.4 for n = 6.
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(a) q1 (b) q2 (c) q3

(d) q4 (e) q5 (f) q6

(g) q7 (h) q8 (i) q1 + q3 + q5 + q7 (⟨r, s⟩)

Figure 5.4: Patterns on the 6 × 6 square lattice expressed by the column vectors of Q(8;2,1). A black circle denotes a

positive component and a white circle denotes a negative component.
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The action given in (5.59) and (5.60) on 8-dimensional vectors (w1, . . . ,w8) can be expressed

for complex variables z j = w2 j−1 + iw2 j ( j = 1, . . . , 4) as

r :



z1

z2

z3

z4


7→



z2

z1

z4

z3


, s :



z1

z2

z3

z4


7→



z3

z4

z1

z2


, (5.62)

p1 :



z1

z2

z3

z4


7→



ωk z1

ω−ℓ z2

ωk z3

ω−ℓ z4


, p2 :



z1

z2

z3

z4


7→



ωℓ z1

ωk z2

ω−ℓ z3

ω−k z4


, (5.63)

where ω = exp(i2π/n).

5.6.2. Outline of Analysis

The major ingredients of our analysis for critical points of multiplicity 8 associated with

(8; k, ℓ) are previewed.

We denote the isotropy subgroup of z = (z1, . . . , z4) with respect to (8; k, ℓ) as

Σ(8;k,ℓ)(z) = {g ∈ G | T (8;k,ℓ)(g) · z = z}, (5.64)

where T (8;k,ℓ)(g) · z means the action of g ∈ G = D4 ⋉ (Zn × Zn) on z given in (5.62) and (5.63). It

turns out that the isotropy subgroup of z = (1, 1, 0, 0) plays a crucial role in our analysis and that

Σ(8;k,ℓ)((1, 1, 0, 0)) = Σ0(α, β) (5.65)

for a uniquely determined (α, β) with 0 ≤ β ≤ α ≤ n (see Proposition 5.17 in Section 5.6.3). We

denote this correspondence (k, ℓ) 7→ (α, β) = (α(k, ℓ, n), β(k, ℓ, n)) by

Φ(k, ℓ, n) = (α, β). (5.66)

In a sense, (k, ℓ) and (α, β) are dual to each other; (k, ℓ) prescribes the action of the translations p1

and p2, and (α, β) describes the symmetry preserved under this action.7

Whereas the concrete form of the correspondence Φ is discussed in detail in Section 5.6.9, the

following proposition shows the most fundamental formulas connecting (k, ℓ) and (α, β). We use

the notations:

k̂ =
k

gcd(k, ℓ, n)
, ℓ̂ =

ℓ

gcd(k, ℓ, n)
, n̂ =

n

gcd(k, ℓ, n)
, (5.67)

where gcd(k, ℓ, n) means the greatest common divisor of k, ℓ, and n.

Proposition 5.11. Let (α, β) = Φ(k, ℓ, n).

(i)

n̂ =
D(α, β)

gcd(α, β)
. (5.68)

7In an analogy with physics we may compare (k, ℓ) to frequency and (α, β) to wave length.
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irred. rep.

(k, ℓ)
→(Φ)→ symmetry

(α, β)
→(Eq. Br. Lem.)→ bifurcating

solution

Figure 5.5: Two stages of bifurcation analysis at a critical point of multiplicity 8.

(ii)
n̂

gcd(k̂2 + ℓ̂2, n̂)
= gcd(α, β). (5.69)

Proof. The proof is given in Section 5.6.10; see Propositions 5.35(ii) and 5.36. It is mentioned

here that the proof relies on the Smith normal form for integer matrices. □

Our analysis of bifurcation consists of two stages (see Fig. 5.5):

1. Connect the irreducible representation (k, ℓ) to the associated symmetry represented by (α, β)

by obtaining the function Φ : (k, ℓ) 7→ (α, β).

2. Connect the symmetry represented by (α, β) to the existence of bifurcating solutions on the

basis of the equivariant branching lemma.

Proposition 5.12 below is a preview of a major result (Proposition 5.20 in Section 5.6.4) in a

simplified form. For classification of bifurcation into several cases, we consider the condition

GCD-div : 2 gcd(k̂, ℓ̂) is not divisible by gcd(k̂2 + ℓ̂2, n̂), (5.70)

and the negation of this condition is referred to as GCD-div. The set of even integers is denoted

by 2Z below.

Proposition 5.12. For a critical point of multiplicity 8, let (8; k, ℓ) be the associated irreducible

representation and (α, β) = Φ(k, ℓ, n). The bifurcation at this point is classified as follows.

Case 1: GCD-div and gcd(k̂ − ℓ̂, n̂) < 2Z : A bifurcating solution with symmetry Σ(n̂, 0) exists.

This solution is of type V.

Case 2: GCD-div and gcd(k̂ − ℓ̂, n̂) ∈ 2Z : A bifurcating solution with symmetry Σ(n̂/2, n̂/2)

exists. This solution is of type M.

Case 3: GCD-div and gcd(k̂ − ℓ̂, n̂) < 2Z : Bifurcating solutions with symmetries Σ(n̂, 0),

Σ0(α, β), and Σ0(β, α) exist.8 The first solution is of type V, and the other two solutions are of

type T.

Case 4: GCD-div and gcd(k̂ − ℓ̂, n̂) ∈ 2Z : Bifurcating solutions with symmetries Σ(n̂/2, n̂/2),

Σ0(α, β), and Σ0(β, α) exist. The first solution is of type M, and the other two solutions are of type T.

The classification criteria for the above four cases become more transparent when expressed in

terms of (α, β) (= Φ(k, ℓ, n)) rather than (k, ℓ). The expressions in terms of (α, β) can be obtained

8To be precise, Σ0(β, α) should be denoted as Σ0(α′, β′) with (α′, β′) in (5.81), which lies in the parameter space of

(5.7).
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Table 5.8: Classification of bifurcation at a critical point associated with (8; k, ℓ) with (α, β) = Φ(k, ℓ, n)

gcd(k̂ − ℓ̂, n̂) < 2Z gcd(k̂ − ℓ̂, n̂) ∈ 2Z

D̂ < 2Z D̂ ∈ 2Z

GCD-div Case 1: Case 2:

β = 0 or α = β type V type M

GCD-div Case 3: Case 4:

β , 0 and α , β type V and type T type M and type T

from Proposition 5.13 below, where

α̂ =
α

gcd(α, β)
, β̂ =

β

gcd(α, β)
, (5.71)

D̂ = α̂2 + β̂2 =
D(α, β)

(gcd(α, β))2
. (5.72)

It is noted in passing that an alternative expression

D̂ = gcd(k̂2 + ℓ̂2, n̂) (5.73)

results from (5.68), (5.69), and (5.72).

Proposition 5.13. Let (α, β) = Φ(k, ℓ, n).

(i) gcd(k̂ − ℓ̂, n̂) ∈ 2Z ⇐⇒ D̂ ∈ 2Z.

(ii) GCD-div in (5.70) ⇐⇒ β = 0 or α = β.

Proof. The proof is given in Section 5.6.10; see Proposition 5.35(i) and Proposition 5.40. It is

mentioned here that the proof of the equivalence in (ii) relies on the Smith normal form for integer

matrices and the integer analogue of the Farkas lemma. □

Propositions 5.12 and 5.13 together yield Table 5.8 that summarizes the classification of bifur-

cation phenomena into the four cases in terms of both (k, ℓ) and (α, β).

An important observation here is that the classification into the four cases in Proposition 5.12,

as well as in Table 5.8, can also be described in terms of the subgroup Σ0(α, β). The following

proposition shows how the conditions “β = 0 or α = β” and “D̂ ∈ 2Z” can be replaced by

conditions for Σ0(α, β).

Proposition 5.14.

(i) Σ0(α, β) = Σ0(β, α) ⇐⇒ β = 0 or α = β.

(ii)

Σ0(α, β) ∩ Σ0(β, α) =

{
Σ0(α′′, 0) if D̂ < 2Z,

Σ0(β′′, β′′) if D̂ ∈ 2Z
(5.74)

with

α′′ =
D(α, β)

gcd(α, β)
, β′′ =

D(α, β)

2 gcd(α, β)
. (5.75)
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Table 5.9: Bifurcation at a critical point associated with (8; k, ℓ) classified in terms of the subgroup Σ0(α, β) for

(α, β) = Φ(k, ℓ, n)

Σ0(α, β) ∩ Σ0(β, α) Σ0(α, β) ∩ Σ0(β, α)

= Σ0(α′′, 0) = Σ0(β′′, β′′)

Σ0(α, β) = Σ0(β, α) Case 1: Case 2:

type V type M

Σ0(α, β) , Σ0(β, α) Case 3: Case 4:

type V and type T type M and type T

Proof. (i) This is obvious from the definition of Σ0(α, β) in (5.10).

(ii) The proof is given in Proposition 5.32 in Section 5.6.10. □

By Proposition 5.14 above, we can rewrite Table 5.8 as Table 5.9. In particular, solutions of

type T exist if and only if Σ0(α, β) is asymmetric in the sense of Σ0(α, β) , Σ0(β, α). Not only

is this statement intuitively appealing, but it plays a crucial role in our technical arguments in

Section 5.6.10.

Remark 5.4. Some comments are in order about (5.74) in each case corresponding to type V,

type M, or type T.

• If β = 0, we have D̂ = 1 and α′′ = D(α, 0)/gcd(α, 0) = α2/α = α.

• If α = β, we have D̂ = 2 and β′′ = D(β, β)/(2 gcd(β, β)) = (2β2)/(2β) = β.

• For (α, β) with 1 ≤ β < α, we have D̂ = 5, 10, 13, 17, 20, and so on, some of which satisfy

D̂ ∈ 2Z, while others do not.

It should be also mentioned that the identity (5.74) is purely geometric in that it is valid for all

(α, β) that may or may not be related to irreducible representation (8; k, ℓ). If (α, β) is associated

with (8; k, ℓ), we have α′′ = n̂ and β′′ = n̂/2 by (5.68) and (5.75), respectively. □

5.6.3. Isotropy Subgroups

To apply the method of analysis described in Section 5.2.2, we identify isotropy subgroups for

(8; k, ℓ) related to square patterns.

We denote the fixed-point subspace of Σ in terms of z = (z1, . . . , z4) as

Fix(8;k,ℓ)(Σ) = {z | T (8;k,ℓ)(g) · z = z for all g ∈ Σ}, (5.76)

where T (8;k,ℓ)(g) · z means the action of g ∈ G = D4 ⋉ (Zn × Zn) on z given in (5.62) and (5.63).

Also recall from (5.64) the notation Σ(8;k,ℓ)(z) for the isotropy subgroup of z.

The symmetries of ⟨r⟩ and ⟨r, s⟩ are dealt with in Proposition 5.15 below, and the translational

symmetry pa
1
pb

2
is considered thereafter. Remark 5.8 below should be consulted with regard to the

geometrical interpretation of the following discussion.
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Proposition 5.15.

(i) Fix(8;k,ℓ)(⟨r⟩) = {c(1, 1, 0, 0) + c′(0, 0, 1, 1) | c, c′ ∈ R}.
(ii) Fix(8;k,ℓ)(⟨r, s⟩) = {c(1, 1, 1, 1) | c ∈ R}.

Proof. (i) By (5.62), z is invariant to r if and only if (z2, z1, z4, z3) = (z1, z2, z3, z4), which is

equivalent to z1 = z2 ∈ R and z3 = z4 ∈ R.

(ii) By (5.62), z is invariant to s if and only if (z3, z4, z1, z2) = (z1, z2, z3, z4), which is equivalent

to z1 = z3 and z2 = z4. Hence z is invariant to both r and s if and only if z1 = z2 = z3 = z4 ∈ R. □

The above proposition implies that any isotropy subgroup Σ containing ⟨r⟩, which is of our

interest, can be represented as Σ = Σ(8;k,ℓ)(z) for some vector z of the form

z = c(1, 1, 0, 0) + c′(0, 0, 1, 1), c, c′ ∈ R, (5.77)

and that dim Fix(8;k,ℓ)(Σ) ≤ 2.

We now turn to the invariance to the translational symmetry pa
1
pb

2
.

Proposition 5.16.

(i) pa
1
pb

2
∈ Σ(8;k,ℓ)((1, 1, 0, 0)) if and only if

k̂a + ℓ̂b ≡ 0, ℓ̂a − k̂b ≡ 0 mod n̂. (5.78)

(ii) pa
1
pb

2
∈ Σ(8;k,ℓ)((0, 0, 1, 1)) if and only if

k̂a − ℓ̂b ≡ 0, ℓ̂a + k̂b ≡ 0 mod n̂. (5.79)

Proof. (i) By (5.63), the invariance of z = (1, 1, 0, 0) to pa
1
pb

2
is expressed as

ka + ℓb ≡ 0, ℓa − kb ≡ 0 mod n,

which is equivalent to (5.78) with the notations in (5.67).

(ii) By (5.63) the invariance of z = (0, 0, 1, 1) to pa
1
pb

2
is expressed as

ka − ℓb ≡ 0, ℓa + kb ≡ 0 mod n,

which is equivalent to (5.79). □

The isotropy subgroup of z = c(1, 1, 0, 0)+ c′(0, 0, 1, 1) of the form of (5.77) is identified in the

following two propositions: the case with cc′ = 0 in Proposition 5.17 and the case with cc′ , 0 in

Proposition 5.18.

Proposition 5.17.

(i) For each (k, ℓ), we have

Σ(8;k,ℓ)((1, 1, 0, 0)) = Σ0(α, β) (5.80)

for a uniquely determined (α, β) with 0 ≤ β < n, 0 < α ≤ n.
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(ii) For the (α, β) associated with (k, ℓ) as in (i) above, define

(α′, β′) =

{
(β, α) if β > 0,

(α, 0) if β = 0.
(5.81)

Then we have

Σ(8;k,ℓ)((0, 0, 1, 1)) = Σ0(α′, β′). (5.82)

Proof. (i) By (5.62), Σ(8;k,ℓ)((1, 1, 0, 0)) contains r and not s. To investigate the translation symme-

try, denote byA(k, ℓ, n) the set of all (a, b) satisfying (5.78). That is,

A(k, ℓ, n) = {(a, b) ∈ Z2 | k̂a + ℓ̂b ≡ 0, ℓ̂a − k̂b ≡ 0 mod n̂}. (5.83)

Then A(k, ℓ, n) is closed under integer combination, i.e., if (a1, b1), (a2, b2) ∈ A(k, ℓ, n), then

n1(a1, b1) + n2(a2, b2) ∈ A(k, ℓ, n) for any n1, n2 ∈ Z. Next, if (a, b) ∈ A(k, ℓ, n), then (a′, b′) =

(−b, a) also belongs toA(k, ℓ, n) since

k̂a′ + ℓ̂b′ = k̂(−b) + ℓ̂a = ℓ̂a − k̂b ≡ 0 mod n̂,

ℓ̂a′ − k̂b′ = ℓ̂(−b) − k̂a = −(k̂a + ℓ̂b) ≡ 0 mod n̂.

The above argument shows thatA(k, ℓ, n) coincides with a set of the form

L(α, β) = {(a, b) ∈ Z2 | (a, b) = n1(α, β) + n2(−β, α), n1, n2 ∈ Z} (5.84)

for some appropriately chosen integers α and β. For such (α, β) we have

Σ(8;k,ℓ)((1, 1, 0, 0)) = ⟨r⟩ ⋉ ⟨pα1 p
β

2
, p
−β
1

pα2⟩ = Σ0(α, β).

To see the uniqueness of (α, β) we note the obvious correspondence between L(α, β) and the

square sublatticeH(α, β) in (2.4). By Proposition 2.1,H(α, β) is uniquely parameterized by (α, β)

with 0 ≤ β < α. Furthermore, we have α ≤ n as a consequence of the fact that L(α, β) contains

no point (a, b) of the form of (a, b) = x(α, β) + y(−β, α) with 0 < x < 1 and 0 < y < 1, which lies

in the interior of the parallelogram formed by its basis vectors (α, β) and (−β, α). To prove this by

contradiction, suppose that α > n and consider the point (a, b) = (α − n, β). This point belongs

to L(α, β), satisfying the defining conditions in of A(k, ℓ, n) in (5.83), whereas the corresponding

(x, y) satisfies 0 < x < 1 and 0 < y < 1, which is a contradiction.

(ii) Since

(0, 0, 1, 1) = T (8;k,ℓ)(s) · (1, 1, 0, 0),

it follows using the relation for the orbit Σ(T (g)u) = g · Σ(u) · g−1 (g ∈ G), (5.80), (2.35), and

(5.81) in this order that

Σ(8;k,ℓ)((0, 0, 1, 1)) = s · Σ(8;k,ℓ)((1, 1, 0, 0)) · s−1 = s · Σ0(α, β) · s−1 = Σ0(β, α) = Σ0(α′, β′).

□
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We denote the correspondence (k, ℓ) 7→ (α, β) = (α(k, ℓ, n), β(k, ℓ, n)) defined by (5.80) in

Proposition 5.17 as

Φ(k, ℓ, n) = (α, β). (5.85)

Remark 5.5. A preliminary explanation is presented here about how the value of (α, β) = Φ(k, ℓ, n)

can be determined, whereas a systematic method is given in Section 5.6.9.

The condition for (a, b) ∈ A(k, ℓ, n) in (5.83) is equivalent to the existence of integers p and q

satisfying [
k̂ ℓ̂

ℓ̂ −k̂

] [
a

b

]
= n̂

[
p

q

]
. (5.86)

Hence a pair of integers (a, b) belongs toA(k, ℓ, n) if and only if

[
a

b

]
= n̂

[
k̂ ℓ̂

ℓ̂ −k̂

]−1 [
p

q

]
=

n̂

k̂2 + ℓ̂2

[
k̂ ℓ̂

ℓ̂ −k̂

] [
p

q

]
(5.87)

for some integers p and q. There are two cases to consider.

• If n̂/(k̂2+ ℓ̂2) is an integer, a simpler method works. In this case, the right-hand side of (5.87)

gives a pair of integers for any integers p and q. Therefore, we set (p, q) = (1, 0) to obtain

an integer vector [
α

β

]
=

n̂

k̂2 + ℓ̂2

[
k̂

ℓ̂

]
(5.88)

and note that the vectors (a, b)⊤ of integers satisfying (5.86) form a lattice spanned by (α, β)⊤

and (β,−α)⊤. For (k, ℓ, n) = (3, 1, 20), for example, we have (k̂, ℓ̂, n̂) = (3, 1, 20) and n̂/(k̂2 +

ℓ̂2) = 20/10 = 2, and hence (5.87) reads

[
a

b

]
= 2

[
3 1

1 −3

] [
p

q

]
.

This shows Φ(3, 1, 20) = (α, β) = (6, 2), corresponding to (p, q) = (1, 0).

• If n̂/(k̂2 + ℓ̂2) is not an integer, number-theoretic considerations are needed to determine

(α, β) = Φ(k, ℓ, n). For (k, ℓ, n) = (18, 2, 42), for instance, we have (k̂, ℓ̂, n̂) = (9, 1, 21) and

k̂2 + ℓ̂2 = 82, and (5.87) reads

[
a

b

]
=

21

82

[
9 1

1 −9

] [
p

q

]
.

With some inspection we could arrive at Φ(18, 2, 42) = (α, β) = (21, 0), which corresponds

to (p, q) = (9, 1). A systematic procedure based on the Smith normal form is given in

Section 5.6.9.

□
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Remark 5.6. In the following arguments we shall make use of Propositions 5.11, 5.13, and 5.14

presented in Section 5.6.2. The readers may take these propositions for granted in the first reading,

but those who are interested in mathematical issues are advised to have a look at their proofs given

in Section 5.6.10. □

Proposition 5.18. Let (α, β) = Φ(k, ℓ, n), and define

α′′ =
D(α, β)

gcd(α, β)
, β′′ =

D(α, β)

2 gcd(α, β)
. (5.89)

For distinct nonzero real numbers c and c′ (c , c′), we have the following statements:

(i)

Σ(8;k,ℓ)((c, c, c, c)) =

{
Σ(α′′, 0) if D̂ < 2Z,

Σ(β′′, β′′) if D̂ ∈ 2Z,

where D̂ is defined in (5.72) and D̂ ∈ 2Z means that D̂ is even.

(ii)

Σ(8;k,ℓ)((c, c, c′, c′)) =

{
Σ0(α′′, 0) if D̂ < 2Z,

Σ0(β′′, β′′) if D̂ ∈ 2Z.

Proof. We first prove (ii). By (5.62), Σ(8;k,ℓ)((c, c, c′, c′)) contains r and not s. We have

Σ(8;k,ℓ)((c, c, c′, c′)) = Σ(8;k,ℓ)((1, 1, 0, 0)) ∩ Σ(8;k,ℓ)((0, 0, 1, 1))

= Σ0(α, β) ∩ Σ0(α′, β′),

where the second equality is due to Proposition 5.17. Then the claim follows from Proposi-

tion 5.14(ii).

Next we prove (i). By (5.62), Σ(8;k,ℓ)((c, c, c, c)) contains both r and s. We can proceed in a

similar manner as above while including the element s. Therefore

Σ(8;k,ℓ)((c, c, c, c)) = Σ(α, β) ∩ Σ(α′, β′),

which implies the claim. □

In Proposition 5.19, we can present the isotropy subgroups containing ⟨r⟩, with a classification

of the irreducible representations (8; k, ℓ) in terms of (α, β) = Φ(k, ℓ, n). See Fig. 5.6 for the

classification.

Proposition 5.19. For an irreducible representation (8; k, ℓ), let (α, β) = Φ(k, ℓ, n), and define

(α′, β′), α′′ and β′′ by (5.81) and (5.89), respectively. Then the isotropy subgroups containing ⟨r⟩
are given by Σ listed below.

Case 1: (α, β) = (α, 0) with 1 ≤ α ≤ n.



(a) Σ = Σ(α, 0) = Σ(8;k,ℓ)((1, 1, 1, 1)),

Fix(8;k,ℓ)(Σ) = {(c, c, c, c) | c ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(b) Σ = Σ0(α, 0) = Σ(8;k,ℓ)((c, c, c′, c′)) (c , c′, c , 0, c′ , 0),

Fix(8;k,ℓ)(Σ) = {(c, c, c′, c′) | c, c′ ∈ R}, dim Fix(8;k,ℓ)(Σ) = 2.
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General result

Case 1. (α, β) = (α, 0)

dim FixΣ(α, 0) = 1: type V, z = (1, 1, 1, 1)

dim FixΣ0(α, 0) = 2: non-targeted

Case 2. (α, β) = (β, β)

dim FixΣ(β, β) = 1: type M, z = (1, 1, 1, 1)

dim FixΣ0(β, β) = 2: non-targeted

Case 3. (α, β) : α , β,

1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, D̂ < 2Z

dim FixΣ(α′′, 0) = 1: type V, z = (1, 1, 1, 1)

dim FixΣ0(α, β) = 1: type T, z = (1, 1, 0, 0)

dim FixΣ0(α′, β′) = 1: type T, z = (0, 0, 1, 1)

dim FixΣ0(α′′, 0) = 2: non-targeted

Case 4. (α, β) : α , β,

1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, D̂ ∈ 2Z

dim FixΣ(β′′, β′′) = 1: type M, z = (1, 1, 1, 1)

dim FixΣ0(α, β) = 1: type T, z = (1, 1, 0, 0)

dim FixΣ0(α′, β′) = 1: type T, z = (0, 0, 1, 1)

dim FixΣ0(β′′, β′′) = 2: non-targeted

Figure 5.6: Isotropy subgroups for (8; k, ℓ) with (α, β) = Φ(k, ℓ, n), (α′, β′) in (5.81), and (α′′, β′′) in (5.89).
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Case 2: (α, β) = (β, β) with 1 ≤ β ≤ n/2.


(a) Σ = Σ(β, β) = Σ(8;k,ℓ)((1, 1, 1, 1)),

Fix(8;k,ℓ)(Σ) = {(c, c, c, c) | c ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(b) Σ = Σ0(β, β) = Σ(8;k,ℓ)((c, c, c′, c′)) (c , c′, c , 0, c′ , 0),

Fix(8;k,ℓ)(Σ) = {(c, c, c′, c′) | c, c′ ∈ R}, dim Fix(8;k,ℓ)(Σ) = 2.

Case 3: (α, β) with 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, α , β and D̂ < 2Z.


(a) Σ = Σ(α′′, 0) = Σ(8;k,ℓ)((1, 1, 1, 1)),

Fix(8;k,ℓ)(Σ) = {(c, c, c, c) | c ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(b) Σ = Σ0(α, β) = Σ(8;k,ℓ)((1, 1, 0, 0)),

Fix(8;k,ℓ)(Σ) = {(c, c, 0, 0) | c ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(c) Σ = Σ0(α′, β′) = Σ(8;k,ℓ)((0, 0, 1, 1)),

Fix(8;k,ℓ)(Σ) = {(0, 0, c′, c′) | c′ ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(d) Σ = Σ0(α′′, 0) = Σ(8;k,ℓ)((c, c, c′, c′)) (c , c′, c , 0, c′ , 0),

Fix(8;k,ℓ)(Σ) = {(c, c, c′, c′) | c, c′ ∈ R}, dim Fix(8;k,ℓ)(Σ) = 2.

Case 4: (α, β) with 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, α , β and D̂ ∈ 2Z.


(a) Σ = Σ(β′′, β′′) = Σ(8;k,ℓ)((1, 1, 1, 1)),

Fix(8;k,ℓ)(Σ) = {(c, c, c, c) | c ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(b) Σ = Σ0(α, β) = Σ(8;k,ℓ)((1, 1, 0, 0)),

Fix(8;k,ℓ)(Σ) = {(c, c, 0, 0) | c ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(c) Σ = Σ0(α′, β′) = Σ(8;k,ℓ)((0, 0, 1, 1)),

Fix(8;k,ℓ)(Σ) = {(0, 0, c′, c′) | c′ ∈ R}, dim Fix(8;k,ℓ)(Σ) = 1.

(d) Σ = Σ0(β′′, β′′) = Σ(8;k,ℓ)((c, c, c′, c′)) (c , c′, c , 0, c′ , 0),

Fix(8;k,ℓ)(Σ) = {(c, c, c′, c′) | c, c′ ∈ R}, dim Fix(8;k,ℓ)(Σ) = 2.

Proof. With an observation that Σ0(α, β) , Σ0(α′, β′) in Cases 3 and 4, the above classification

follows immediately from Propositions 5.17 and 5.18. □

Remark 5.7. In Case 1 of Proposition 5.19, we may have α = n, in which case Σ(α, 0) = Σ(0, 0) =

⟨r, s⟩ and Σ0(α, 0) = Σ0(0, 0) = ⟨r⟩, and the translational symmetry is absent. □

Remark 5.8. The isotropy subgroups in Proposition 5.19 can be understood quite naturally with

reference to the column vectors of the matrix

Q(8;k,ℓ) = [q1, . . . , q8]

given in (4.27). The spatial patterns for these vectors are depicted in Fig. 5.7, for example, for

(8; 2, 1) with n = 5. Although the four vectors q1, q3, q5, and q7 do not represent square patterns

(Figs. 5.7(a)–(f)), the sum of these four vectors, which is associated with z = (1, 1, 1, 1) (w =

(1, 0, 1, 0, 1, 0, 1, 0)⊤), represents a square pattern of type V with D = 25 (Fig. 5.7(g)). Moreover,

the sum q1 + q3, which is associated with z = (1, 1, 0, 0), represents square pattern of type T

with D = 5 (Fig. 5.7(e)). On the other hand, the pattern in Fig. 5.7(f), which is associated with

z = (0, 0, 1, 1), represents another square pattern of type T with D = 5. □
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Figure 5.7: Patterns on the 5 × 5 square lattice expressed by the column vectors of Q(8;2,1). A white circle denotes a

positive component and a black circle denotes a negative component.
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5.6.4. Existence of Bifurcating Solutions

A combination of Proposition 5.19 with the equivariant branching lemma (Section 5.2.2) shows

the existence of solutions with the targeted symmetry bifurcating from a critical point associated

with (8; k, ℓ).

Bifurcating solutions can be classified in accordance with number-theoretic properties of (k, ℓ).

To be specific, it depends on the following two properties:

2 gcd(k̂, ℓ̂) is divisible by gcd(k̂2 + ℓ̂2, n̂) , (5.90)

gcd(k̂ − ℓ̂, n̂) ∈ 2Z. (5.91)

We refer to the condition (5.90) as GCD-div and its negation as GCD-div. It should be men-

tioned that a simplified version of the following proposition has already been presented as Propo-

sition 5.12 in Section 5.6.2. See also Table 5.8.

Proposition 5.20. From a critical point associated with the irreducible representation (8; k, ℓ),

solutions with the following symmetries emerge as bifurcating solutions, where (α, β) = Φ(k, ℓ, n)

and (α′, β′) is defined in (5.81). We have four cases.

Case 1: GCD-div and gcd(k̂ − ℓ̂, n̂) < 2Z : We have Φ(k, ℓ, n) = (α, β) = (n̂, 0).

A bifurcating solution with symmetry Σ(n̂, 0), which corresponds to z(1) = c(1, 1, 1, 1), exists. This

solution is of type V.

Case 2: GCD-div and gcd(k̂ − ℓ̂, n̂) ∈ 2Z : We have Φ(k, ℓ, n) = (α, β) = (n̂/2, n̂/2). A

bifurcating solution with symmetry Σ(n̂/2, n̂/2), corresponding to z(1) = c(1, 1, 1, 1), exists. This

solution is of type M.

Case 3: GCD-div and gcd(k̂ − ℓ̂, n̂) < 2Z : We have Φ(k, ℓ, n) = (α, β) with 1 ≤ α ≤
n − 1, 1 ≤ β ≤ n − 1, α , β, and D̂ < 2Z. Bifurcating solutions with symmetries Σ(n̂, 0), Σ0(α, β),

and Σ0(α′, β′), corresponding to z(1) = c(1, 1, 1, 1), z(2) = c(1, 1, 0, 0), and z(3) = c(0, 0, 1, 1),

respectively, exist. The first solution is of type V, and the other two solutions are of type T.

Case 4: GCD-div and gcd(k̂− ℓ̂, n̂) ∈ 2Z : We have Φ(k, ℓ, n) = (α, β) with 1 ≤ α ≤ n−1, 1 ≤
β ≤ n − 1, α , β, and D̂ ∈ 2Z. Bifurcating solutions with symmetries Σ(n̂/2, n̂/2), Σ0(α, β),

and Σ0(α′, β′), corresponding to z(1) = c(1, 1, 1, 1), z(2) = c(1, 1, 0, 0), and z(3) = c(0, 0, 1, 1),

respectively, exist. The first solution is of type M, and the other two solutions are of type T.

Proof. By Proposition 5.13, as well as Remark 5.4 in Section 5.6.2, the above four cases cor-

respond to those in Proposition 5.19. In all cases, the relevant subgroup Σ is an isotropy sub-

group with dim Fix(8;k,ℓ)(Σ) = 1 by Proposition 5.19. Then the equivariant branching lemma

(Section 5.2.2) guarantees the existence of a bifurcating solution with symmetry Σ. □

Remark 5.9. The subgroup Σ = Σ0(α, 0), Σ0(β, β), Σ0(n̂, 0) or Σ0(n̂/2, n̂/2) appearing in Proposi-

tion 5.19 is an isotropy subgroup with dim Fix(8;k,ℓ)(Σ) = 2, for which the equivariant branching

lemma is not effective. It is emphasized that Proposition 5.20 does not assert the nonexistence of

solutions of these symmetries. Nonetheless, we do not have to deal with these subgroups since

none of these symmetries corresponds to square patterns (see (5.10)). □
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5.6.5. Square Patterns of Type V

Square patterns of type V (with D ≥ 25) are predicted to branch from critical points of multi-

plicity 8, whereas smaller square patterns of type V with D = 4, 9, and 16 do not exist. Recall that

a square pattern of type V is characterized by the symmetry of Σ(α, 0) with 2 ≤ α ≤ n (see (5.10))

and that D(α, 0) = α2.

The following propositions show such nonexistence and existence of square patterns of type V.

Proposition 5.21. Square patterns of type V with D = 4, 9, or 16 do not arise as bifurcating

solutions from critical points of multiplicity 8 for any n.

Proof. The proof is given at the end of the proof of Proposition 5.22. □

Proposition 5.22. Square patterns of type V with the symmetry of Σ(α, 0) (5 ≤ α ≤ n) arise as

bifurcating solutions from critical points of multiplicity 8 for specific values of n and irreducible

representations given by

(α, β) D n (k, ℓ) in (8; k, ℓ)

(α, 0) α2 αm ((p + q)m, qm)
(5.92)

with m ≥ 1 and
p ≥ 1, q ≥ 1, gcd(p, q, α) = 1, gcd(p, α) < 2Z,{

2(p + q + 1) ≤ α if n is even and m = 1,

2(p + q) + 1 ≤ α otherwise.

(5.93)

Proof. Type V occurs in Case 1 and Case 3 in Proposition 5.20, characterized by the condition

of gcd(k̂ − ℓ̂, n̂) < 2Z. Put k̂ = p + q and ℓ̂ = q for some p, q ∈ Z and note n̂ = α. Since

gcd(k̂ − ℓ̂, n̂) = gcd(p, α), the condition gcd(k̂ − ℓ̂, n̂) < 2Z holds if and only if gcd(p, α) < 2Z. We

have (k, ℓ, n) = ((p + q)m, qm, αm) for m = gcd(k, ℓ, n). Here we must have

1 = gcd(k̂, ℓ̂, n̂) = gcd(p + q, q, α) = gcd(p, q, α).

The inequality constraint in (5.58) is translated as

1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
⇐⇒

p ≥ 1, q ≥ 1,

{
2(p + q + 1) ≤ α if n is even and m = 1,

2(p + q) + 1 ≤ α otherwise.

Proposition 5.22 is thus obtained.

To prove Proposition 5.21, we note that, for α = 2, 3, 4, no (p, q) satisfies (5.93), which proves

the nonexistence of the smaller square patterns claimed in Proposition 5.21. □

Example 5.3. The parameter values of (5.92) in Proposition 5.22 give Table 5.10. Here, the

asterisk (·)∗ indicates coexistence of type T (see (5.96)), i.e., Case 3 of Proposition 5.20, whereas

unmarked cases correspond to Case 1 of Proposition 5.20, where no solution of type T coexists.

□

Remark 5.10. In all cases in (5.92), the compatibility condition (5.12) is satisfied for Σ(α, 0) as

n = mα with m = gcd(k, ℓ, n), since we have

gcd(k, ℓ, n) = ((p + q)m, qm, αm) = m gcd(p + q, q, α) = m gcd(p, q, α) = m

by (5.92) and (5.93). □
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Table 5.10: Correspondence of irreducible representation (8; k, ℓ) to (α, β) for square patterns of type V

(α, β) D n (k, ℓ) in (8; k, ℓ)

(5, 0) 25 5m (2m,m)∗

(6, 0) 36 6m (2m,m)

(7, 0) 49 7m (2m,m), (3m,m), (3m, 2m)

(8, 0) 64 8m (2m,m), (3m, 2m)

(9, 0) 81 9m (2m,m), (3m,m), (3m, 2m), (4m,m), (4m, 2m), (4m, 3m)

(10, 0) 100 10m (2m,m)∗, (3m, 2m), (4m,m), (4m, 3m)∗

(11, 0) 121 11m (2m,m), (3m,m), (3m, 2m), (4m,m), (4m, 2m), (4m, 3m),

(5m,m), (5m, 2m), (5m, 3m), (5m, 4m)

(12, 0) 144 12m (2m,m), (3m, 2m), (4m,m), (4m, 3m), (5m, 2m), (5m, 4m)

m = 1, 2, . . . ; (·)∗ indicates coexistence of type T (Case 3)

5.6.6. Square Patterns of Type M

Larger square patterns of type M (with D ≥ 32) are predicted to branch from critical points

of multiplicity 8, whereas smaller square patterns of type M with D = 2, 8, and 18 do not exist.

Recall that a square pattern of type M is characterized by the symmetry of Σ(β, β) with 1 ≤ β ≤ n/2

(see (5.10)) and that D(β, β) = 2β2.

The following propositions show such nonexistence and existence of square patterns of type M.

Proposition 5.23. Square patterns of type M with D = 2, 8, or 18 do not arise as bifurcating

solutions from critical points of multiplicity 8 for any n.

Proof. The proof is given at the end of the proof of Proposition 5.24. □

Proposition 5.24. Square patterns of type M with the symmetry of Σ(β, β) (4 ≤ β ≤ n/2) arise as

bifurcating solutions from critical points of multiplicity 8 for specific values of n and irreducible

representations given by

(α, β) D n (k, ℓ) in (8; k, ℓ)

(β, β) 2β2 2βm ((2p + q)m, qm)
(5.94)

where m ≥ 1 and

p ≥ 1, q ≥ 1, 2p + q ≤ β − 1, q < 2Z, gcd(p, q, β) = 1. (5.95)

Proof. Type M occurs in Case 2 and Case 4 in Proposition 5.20, characterized by the condition of

gcd(k̂ − ℓ̂, n̂) ∈ 2Z. For k̂ − ℓ̂ ∈ 2Z to be true, we can put k̂ = 2p + q and ℓ̂ = q for some p, q ∈ Z.

Then (k, ℓ, n) = ((2p + q)m, qm, 2βm) for m = gcd(k, ℓ, n). Since

1 = gcd(k̂, ℓ̂, n̂) = gcd(2p + q, q, 2β) = gcd(2p, q, 2β),
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we must have q < 2Z and gcd(p, q, β) = 1. The inequality constraint in (5.58) is translated as

1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
⇐⇒ p ≥ 1, q ≥ 1, 2p + q ≤ β − 1.

Proposition 5.24 is thus proved.

Finally, for β = 1, 2, 3, no (p, q) satisfies (5.95), which proves the nonexistence of the smaller

square patterns claimed in Proposition 5.23. □

Example 5.4. The parameter values of (5.94) in Proposition 5.24 give the following:

(α, β) D n (k, ℓ) in (8; k, ℓ)

(4, 4) 32 8m (3m,m)

(5, 5) 50 10m (3m,m)∗

(6, 6) 72 12m (3m,m), (5m,m), (5m, 3m)

(7, 7) 98 14m (3m,m), (5m,m), (5m, 3m)

(8, 8) 128 16m (3m,m), (5m,m), (5m, 3m), (7m,m), (7m, 3m), (7m, 5m)

(9, 9) 162 18m (3m,m), (5m,m), (5m, 3m), (7m,m), (7m, 3m), (7m, 5m)

(10, 10) 162 20m (3m,m)∗, (5m,m), (5m, 3m), (7m,m)∗, (7m, 3m), (7m, 5m),

(9m,m), (9m, 3m)∗, (9m, 5m), (9m, 7m)∗

(11, 11) 242 22m (3m,m), (5m,m), (5m, 3m), (7m,m), (7m, 3m), (7m, 5m),

(9m,m), (9m, 3m), (9m, 5m), (9m, 7m)

(12, 12) 288 24m (3m,m), (5m,m), (5m, 3m), (7m,m), (7m, 3m), (7m, 5m),

(9m,m), (9m, 5m), (9m, 7m), (11m,m), (11m, 3m), (11m, 5m),

(11m, 7m), (11m, 9m)

where m ≥ 1. The asterisk (·)∗ indicates the coexistence of type T (see (5.96)), i.e., Case 4 of

Proposition 5.20. The other (unmarked) cases correspond to Case 2 of Proposition 5.20, where no

solution of type T coexists. The coexistence of type T is a relatively rare event; it does not occur

for n = 8m, 12m, and 14m, but it recurs for n = 10m. □

Remark 5.11. In all cases in (5.94), the compatibility condition (5.12) for Σ(β, β) is satisfied as

n = 2mβ with m = gcd(k, ℓ, n), since

gcd(k, ℓ, n) = gcd((2p + q)m, qm, 2βm) = m gcd(2p + q, q, 2β) = m gcd(2p, q, 2β) = m

by (5.94) and (5.95). □

5.6.7. Square Patterns of Type T

Square patterns of type T are shown here to branch from critical points of multiplicity 8. Recall

that a square pattern of type T is characterized by the symmetry of Σ0(α, β) with 1 ≤ α ≤ n − 1,

1 ≤ β ≤ n − 1, and α , β (see (5.10)).

The following proposition is concerned with the five square patterns of type T with D = 5, 10,

13, 17 and 20 among ten smallest square patterns.
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Proposition 5.25. Square patterns of type T with D = 5, 10, 13, 17, and 20 arise as bifurcating so-

lutions from critical points of multiplicity 8 for specific values of n and irreducible representations

given by

(α, β) D n (k, ℓ) in (8; k, ℓ)

z(2) = c(1, 1, 0, 0) z(3) = c(0, 0, 1, 1)

(2, 1) 5 5m (2m,m) none

(1, 2) none (2m,m)

(3, 1) 10 10m (3m,m) none

(1, 3) none (3m,m)

(3, 2) 13 13m (3m,m), (6m, 4m) (5m,m)

(2, 3) (5m,m) (3m,m), (6m, 4m)

(4, 1) 17 17m (4m,m), (7m, 6m), (8m, 2m) (5m, 3m)

(1, 4) (5m, 3m) (4m,m), (7m, 6m)(8m, 2m)

(4, 2) 20 20m (4m, 2m) (8m, 6m)

(2, 4) (8m, 6m) (4m, 2m)

(5.96)

where m ≥ 1 is an integer.

Proof. By Proposition 5.20 (Case 3 and 4), a bifurcating solution with symmetry Σ0(α, β) exists for

(k, ℓ) such that Φ(k, ℓ, n) = (α, β), where the bifurcating solution corresponds to z = c(1, 1, 0, 0).

For such (k, ℓ), another bifurcating solution exists, which corresponds to z = c(0, 0, 1, 1) and

is endowed with the symmetry Σ0(α′, β′) for (α′, β′) given by (5.81). The list of parameters in

(5.96) is obtained by searching for such (k, ℓ) in the range of (5.58) using the method given in

Section 5.6.9, which was previewed in Remark 5.5 in Section 5.6.3. Alternatively, we can search

for such (k, ℓ) in the range of (5.58) satisfying (5.78) for a given (a, b). □

For square patterns of type T, in general, the above statement extends as follows.

Proposition 5.26. Assume 1 ≤ α ≤ n − 1, 1 ≤ β ≤ n − 1, and α , β for (α, β).

(i) Square patterns of type T with the symmetry of Σ0(α, β) arise as bifurcating solutions from

critical points of multiplicity 8 associated with the irreducible representation (8; k, ℓ) such that

Φ(k, ℓ, n) = (α, β) or (α′, β′), where (α′, β′) is defined by (5.81).

(ii) Some (k, ℓ, n) exist such that Φ(k, ℓ, n) = (α, β) or (α′, β′).

Proof. (i) The proof is the same as the proof of Proposition 5.25.

(ii) We can assume α > β by replacing (α, β) by (α′, β′) if necessary. Take (k, ℓ, n) = m(α̂, β̂,D(α, β)/gcd(α, β)),

for instance. Then m = gcd(k, ℓ, n) and (k̂, ℓ̂, n̂) = (α̂, β̂,D(α, β)/gcd(α, β)), and therefore

k̂2 + ℓ̂2 = α̂2 + β̂2 = n̂/ gcd(α, β).

This shows that the simpler method of computing Φ(k, ℓ, n), described in Remark 5.5 in Sec-

tion 5.6.3, is applicable. The right-hand side of (5.88) is calculated as

n̂

k̂2 + ℓ̂2

[
k̂

ℓ̂

]
= gcd(α, β)

[
α̂

β̂

]
=

[
α

β

]
,
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which shows Φ(k, ℓ, n) = (α, β).

We also note that the chosen parameter (k, ℓ) lies in the range of (5.58). The inequality 1 ≤
ℓ ≤ k − 1 is immediate from β ≥ 1 and α > β, whereas 2 ≤ k ≤

⌊
n−1

2

⌋
is shown as follows. The

inequality k ≥ 2 holds since α̂ ≥ 2. When n is odd,

2

m

(⌊
n − 1

2

⌋
− k

)
=

1

m
(n − 1 − 2k) = gcd(α, β)(α̂2 + β̂2) − 1

m
− 2α̂

≥ (α̂2 + β̂2) − 1 − 2α̂ = α̂(α̂ − 2) + β̂2 − 1 ≥ 0.

where α̂ ≥ 2 and β̂ ≥ 1 is used in the last inequality. When n is even,

2

m

(⌊
n − 1

2

⌋
− k

)
=

1

m
(n − 2 − 2k) = gcd(α, β)(α̂2 + β̂2) − 2

m
− 2α̂.

If n̂ is odd, we have m even since n is even and

2

m

(⌊
n − 1

2

⌋
− k

)
≥ (α̂2 + β̂2) − 1 − 2α̂ = α̂(α̂ − 2) + β̂2 − 1 ≥ 0.

If n̂ is even,

2

m

(⌊
n − 1

2

⌋
− k

)
≥ (α̂2 + β̂2) − 2 − 2α̂ = [α̂(α̂ − 2) + β̂2 − 1] − 1 ≥ 0

because [α̂(α̂ − 2) + β̂2 − 1 ≥ 1 as (α̂, β̂) = (2, 1), which gives n̂ = 5, is excluded by n̂ even. □

Square patterns of type T appear in Cases 3 and 4 in Proposition 5.20, and these two cases are

characterized by a single condition

GCD-div : 2 gcd(k̂, ℓ̂) is not divisible by gcd(k̂2 + ℓ̂2, n̂). (5.97)

This observation yields the following statement.

Proposition 5.27. A bifurcating solution of type T exists if and only if GCD-div holds.

In addition, we have the following statement for some concrete cases.

Proposition 5.28. A bifurcating solution of type T does not exist for the cases (n̂, k̂, ℓ̂) = (4k̂, k̂, ℓ̂),

(4ℓ̂, k̂, ℓ̂), and (2k̂ + 2ℓ̂, k̂, ℓ̂).

Proof. First, we show that (n̂, k̂, ℓ̂) = (4k̂, k̂, ℓ̂) contradicts the condition GCD-div in (5.97). Let

gcd(k̂, ℓ̂) = α. Then, we have n̂ = 4k̂ = 4α(k̂/α). Recall that gcd(k̂, ℓ̂, n̂) = 1. If α , 1, then

n̂, k̂, and ℓ̂ have a common divisor α ≥ 2. This contradicts gcd(k̂, ℓ̂, n̂) = 1. Hence, we have

gcd(k̂, ℓ̂) = α = 1. Thus, we rewrite (5.97) as

GCD-div for (n̂, k̂, ℓ̂) = (4k̂, k̂, ℓ̂) : 2 is not divisible by gcd(k̂2 + ℓ̂2, 4k̂). (5.98)

This condition is equivalent to that k̂2 + ℓ̂2 and 4k̂ have 4 or a prime number m ≥ 3 as a common

divisor.
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• For the case that k̂2 + ℓ̂2 and 4k̂ have 4 as a common divisor, we have

k̂2 + ℓ̂2 = 4p. (5.99)

Here, p is a positive integer. Using k̂2 + ℓ̂2 = (k̂ − ℓ̂)2 + 2k̂ℓ̂, we have

(k̂ − ℓ̂)2 + 2k̂ℓ̂ = 4p. (5.100)

Recall that gcd(k̂, ℓ̂) = 1. Hence, either k̂ or ℓ̂, or both are odd. When we consider either k̂

or ℓ̂ is odd, we see that k̂ − ℓ̂ is odd. Hence, (k̂ − ℓ̂)2 is odd. Thus, (k̂ − ℓ̂)2 + 2k̂ℓ̂ is odd. This

contradicts (5.100). On the other hand, when we consider both k̂ and ℓ̂ are odd, we see that

k̂ − ℓ̂ is even. Hence, (k̂ − ℓ̂)2 is divisible by 4. Since k̂ℓ̂ is odd, 2k̂ℓ̂ is not divisible by 4.

Hence, (k̂ − ℓ̂)2 + 2k̂ℓ̂ is not divisible by 4. This contradicts (5.100).

• For the case that k̂2 + ℓ̂2 and 4k̂ have a prime number m ≥ 3 as a common divisor, we have

k̂2 + ℓ̂2 = mp, (5.101)

4k̂ = mq. (5.102)

Here, p and q are positive integers. Multiplying the both sides of (5.101) by q, we have

q(k̂2 + ℓ̂2) = mpq. (5.103)

Multiplying the both sides of (5.102) by p, we have

4pk̂ = mpq. (5.104)

Combining (5.103) and (5.104), we have q(k̂2+ ℓ̂2) = 4pk̂. Hence, we have qℓ̂2 = k̂(4p−qk̂).

Since gcd(k̂, ℓ̂) = 1, q is divisible by k̂. Hence, we have q = rk̂ with some positive integer

r. Substituting this into (5.102), we have m = 4/r. Recall that m ≥ 3. From this, we have

r = 1. Hence, we have m = 4/r = 4. Thus, we have q = rk̂ = k̂. Substituting this into

(5.103), we have k̂2 + ℓ̂2 = 4p. Using k̂2 + ℓ̂2 = (k̂ − ℓ̂)2 + 2k̂ℓ̂, we have

(k̂ − ℓ̂)2 + 2k̂ℓ̂ = 4p. (5.105)

This condition is equivalent to (5.100) in the above case. Hence, we have contradiction in a

similar manner to the above case.

Thus, we see that (n̂, k̂, ℓ̂) = (4k̂, k̂, ℓ̂) contradicts GCD-div. In the same way, we can see that

(n̂, k̂, ℓ̂) = (4ℓ̂, k̂, ℓ̂) contradicts GCD-div.

Next, we show that (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂) contradicts the condition GCD-div in (5.97). Let

gcd(k̂, ℓ̂) = α. Then, n̂ = 2k̂+2ℓ̂ = 2α(k̂+ ℓ̂)/α. Recall that gcd(k̂, ℓ̂, n̂) = 1. If α , 1, then n̂, k̂, and

ℓ̂ have a common divisor α. This contradicts gcd(k̂, ℓ̂, n̂) = 1. Hence, we have gcd(k̂, ℓ̂) = α = 1.

Thus, we rewrite GCD-div as

GCD-div for (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂) : 2 is not divisible by gcd(k̂2 + ℓ̂2, 2k̂ + 2ℓ̂). (5.106)

This condition is equivalent to that k̂2 + ℓ̂2 and 2k̂ + 2ℓ̂ have 4 or a prime number m ≥ 3 as a

common divisor.
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• For the case that k̂2 + ℓ̂2 and 2k̂ + 2ℓ̂ have 4 as a common divisor, we have

k̂2 + ℓ̂2 = 4p, (5.107)

2k̂ + 2ℓ̂ = 4q. (5.108)

Here, p and q are positive integers. From (5.108), we have k̂+ ℓ̂ = 2q. Since gcd(k̂, ℓ̂) = α =

1, k̂ and ℓ̂ are not both even. Hence, we have

k̂ = 2r + 1, (5.109)

ℓ̂ = 2s + 1. (5.110)

Here, r and s are positive integers. Substituting (5.109) and (5.110) into (5.107), we have

(2r + 1)2 + (2s + 1)2 = 4p. Rearranging this, we have

p − r(r + 1) − s(s + 1) = 1/2. (5.111)

This equality has contradiction since p − r(r + 1) − s(s + 1) is an integer.

• For the case that k̂2 + ℓ̂2 and 2k̂ + 2ℓ̂ have a prime number m ≥ 3 as a common divisor, we

have

k̂2 + ℓ̂2 = mp, (5.112)

2k̂ + 2ℓ̂ = mq. (5.113)

Here, p and q are positive integers. Using k̂2 + ℓ̂2 = (k̂ + ℓ̂)2 − 2k̂ℓ̂, we have

(k̂ + ℓ̂)2 − 2k̂ℓ̂ = mp. (5.114)

Substituting (5.113) into (5.114), we have q2m2/4 − 2k̂ℓ̂ = mp. Rearranging this, we have

8k̂ℓ̂/m = −4p + mq2. (5.115)

Hence, k̂/m or ℓ̂/m is an integer. When we consider k̂/m is an integer, we have k̂ = mr with

some positive integer r. From (5.113), we have ℓ̂ = m(q − r). Hence, ℓ̂ and k̂ has m as a

common divisor. This contradicts gcd(k̂, ℓ̂) = 1. When we consider ℓ̂/m is an integer, we

have contradiction in a similar manner.

Thus, we see that (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂) contradicts GCD-div. □

Remark 5.12. The compatibility condition (5.12) for Σ0(α, β) is satisfied as

n = m
D(α, β)

gcd(α, β)

with m = gcd(k, ℓ, n) by (5.68) with (5.67). □
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Table 5.11: Square patterns of types V, M, and T arising from critical points of multiplicity 8 for the n × n square

lattices with n = 5, 6, 10, 13, 17, and 18 (D̂ is defined in (5.72))

n (k, ℓ) in (8; k, ℓ) n̂ z (α, β) D D̂ Type

5 (2, 1) 5 z(1) (5, 0) 25 1 V

5 z(2) (2, 1) 5 5 T

5 z(3) (1, 2) 5 5 T

6 (2, 1) 6 z(1) (6, 0) 36 1 V

10 (4, 2) 5 z(1) (5, 0) 25 1 V

z(2) (2, 1) 5 5 T

z(3) (1, 2) 5 5 T

(3, 1) 10 z(1) (5, 5) 50 2 M

z(2) (3, 1) 10 10 T

z(3) (1, 3) 10 10 T

(2, 1) 10 z(1) (10, 0) 100 1 V

z(2) (4, 2) 20 20 T

z(3) (2, 4) 20 20 T

(4, 3) 10 z(1) (10, 0) 100 1 V

z(2) (2, 4) 20 20 T

z(3) (4, 2) 20 20 T

(3, 2), (4, 1) 10 z(1) (10, 0) 100 1 V

13 (3, 2), (6, 4) 13 z(1) (13, 0) 169 1 V

z(2) (3, 2) 13 13 T

z(3) (2, 3) 13 13 T

(5, 1) 13 z(1) (13, 0) 169 1 V

z(2) (2, 3) 13 13 T

z(3) (3, 2) 13 13 T

other (k, ℓ)’s 13 z(1) (13, 0) 169 1 V

17 (4, 1), (7, 6), (8, 2) 17 z(1) (17, 0) 172 1 V

z(2) (4, 1) 17 17 T

z(3) (1, 4) 17 17 T

(5, 3) 17 z(1) (17, 0) 172 1 V

z(2) (1, 4) 17 17 T

z(3) (4, 1) 17 17 T

other (k, ℓ)’s 17 z(1) (17, 0) 172 1 V

18 (6, 3) 6 z(1) (6, 0) 36 1 V

(4, 2), (6, 2), (6, 4), (8, 2), (8, 4), (8, 6) 9 z(1) (9, 0) 81 1 V

(2, 1), (3, 2), (4, 1), (4, 3), (5, 2), (5, 4), (6, 1), (6, 5) 18 z(1) (18, 0) 182 1 V

(7, 2), (7, 4), (7, 6), (8, 1), (8, 3), (8, 5), (8, 7)

(3, 1), (5, 1), (5, 3), (7, 1), (7, 3), (7, 5) 18 z(1) (9, 9) 162 2 M
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Table 5.12: Square patterns of types V, M, and T arising from critical points of multiplicity 8 for the n × n square

lattice with n = 20 and 24 (D̂ is defined in (5.72))

n (k, ℓ) in (8; k, ℓ) n̂ z (α, β) D D̂ Type

20 (8, 4) 5 z(1) (5, 0) 25 1 V

z(2) (2, 1) 5 5 T

z(3) (1, 2) 5 5 T

(6, 2) 10 z(1) (5, 5) 50 2 M

z(2) (3, 1) 10 10 T

z(3) (1, 3) 10 10 T

(4, 2) 10 z(1) (10, 0) 100 1 V

z(2) (4, 2) 20 20 T

z(3) (2, 4) 20 20 T

(8, 6) 10 z(1) (10, 0) 100 1 V

z(2) (2, 4) 20 20 T

z(3) (4, 2) 20 20 T

(3, 1), (9, 3) 20 z(1) (10, 10) 200 2 M

z(2) (6, 2) 40 40 T

z(3) (2, 6) 40 40 T

(7, 1), (9, 7) 20 z(1) (10, 10) 200 2 M

z(2) (2, 6) 40 40 T

z(3) (6, 2) 40 40 T

(4, 3), (7, 4), (8, 1), (9, 8) 20 z(1) (20, 0) 400 1 V

z(2) (8, 4) 80 80 T

z(3) (4, 8) 80 80 T

(2, 1), (6, 3), (7, 6), (9, 2) 20 z(1) (20, 0) 400 1 V

z(2) (4, 8) 80 80 T

z(3) (8, 4) 80 80 T

(6, 4), (8, 2) 10 z(1) (10, 0) 100 1 V

(3, 2), (4, 1), (5, 2), (5, 4), (6, 1), (6, 5) 20 z(1) (20, 0) 400 1 V

(7, 2), (8, 3), (8, 5), (8, 7), (9, 4), (9, 6)

(5, 1), (5, 3), (7, 3), (7, 5), (9, 1), (9, 5) 10 z(1) (10, 10) 200 2 M

24 (8, 4) 6 z(1) (6, 0) 36 1 V

(6, 3), (9, 6) 8 z(1) (8, 0) 64 1 V

(4, 2), (6, 4), (8, 2), (8, 6), (10, 4), (10, 8) 12 z(1) (12, 0) 144 1 V

(2, 1), (3, 2), (4, 1), (4, 3), (5, 2), (5, 4), (6, 1), (6, 5) 24 z(1) (24, 0) 242 1 V

(7, 2), (7, 4), (7, 6), (8, 1), (8, 3), (8, 5), (8, 7), (9, 2)

(9, 4), (9, 8), (10, 1), (10, 3), (10, 5), (10, 7), (10, 9)

(11, 2), (11, 4), (11, 6, (11, 8), (11, 10)

(9, 3) 8 z(1) (4, 4) 32 2 M

(6, 2), (10, 2), (10, 6) 12 z(1) (6, 6) 72 2 M

(3, 1), (5, 1), (5, 3), (7, 1), (7, 3), (7, 5), (9, 1) 24 z(1) (12, 12) 288 2 M

(9, 5), (9, 7), (11, 1), (11, 3), (11, 5), (11, 7), (11, 9)
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5.6.8. Possible Square patterns for Several Lattice Sizes

In Sections 5.6.5–5.6.7 we have investigated possible occurrences of square patterns for each

of the three types V, M, and T, and have enumerated all possible combinations of lattice size n

and irreducible representation (8; k, ℓ) that can potentially engender square patterns. By compiling

these results, we can capture, for each n, all square patterns that can potentially arise from critical

points of multiplicity 8. The results are given in Tables 5.11 and 5.12 for several lattice sizes.

The results are also incorporated in Table 5.1. Recall from Proposition 5.20 in Section 5.6.4 that

bifurcating square patterns are associated with

z =



z(1) = c(1, 1, 1, 1) corresponding to type V or type M,

z(2) = c(1, 1, 0, 0) corresponding to type T,

z(3) = c(0, 0, 1, 1) corresponding to type T.

For n = 5, square patterns of type T exist for the irreducible representation (8; k, ℓ) = (8; 2, 1)

with Σ0(α, β) = Σ0(2, 1) and Σ0(1, 2). No hexagon of type M or T exists for the lattice sizes of

n = 6. For a composite number n = 20 with several divisors, square patterns of various kinds

exist. Subgroups of D4 ⋉ (Zn × Zn) expressing square patterns satisfy the inclusion relations given

below.

Example 5.5. For n = 20, possible square patterns are of type V, M, and T. Subgroups for square

patterns of type T have inclusion relations

Σ0(2, 1) ⊃
{
Σ0(1, 3) ⊃ Σ0(2, 6)

Σ0(4, 2) ⊃ Σ0(8, 4)

}
⊃ Σ0(20, 0) = ⟨r⟩,

Σ0(1, 2) ⊃
{
Σ0(3, 1) ⊃ Σ0(6, 2)

Σ0(2, 4) ⊃ Σ0(4, 8)

}
⊃ Σ0(20, 0) = ⟨r⟩,

and satisfy

Σ0(3, 1) ∩ Σ0(1, 3) = Σ0(5, 5),

Σ0(4, 2) ∩ Σ0(2, 4) = Σ0(10, 0),

Σ0(6, 2) ∩ Σ0(2, 6) = Σ0(10, 10),

Σ0(8, 4) ∩ Σ0(4, 8) = Σ0(20, 0) = ⟨r⟩.
In addition, subgroups for square patterns of type V and type M satisfy

Σ(1, 0) ⊃
{
Σ(1, 1) ⊃ Σ(2, 0) ⊃ Σ(2, 2) ⊃ Σ(4, 0) ⊃ Σ(4, 4)

Σ(5, 0) ⊃ Σ(5, 5) ⊃ Σ(10, 0) ⊃ Σ(10, 10)

}

⊃ Σ(20, 0) = ⟨r, s⟩.

□

In particular, possible square patterns for n = 18, 20, and 24 for critical points of all kinds of

multiplicity (M = 1, 2, 4, 8) are classified in Tables 5.13 and 5.14.

5.6.9. Appendix: Construction of the Function Φ

A systematic construction procedure of the function Φ in (5.85) is given here.
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Table 5.13: Square patterns of types V and M arising from for critical points of all kinds of multiplicity (M = 1, 2, 4, 8)

for the n × n square lattice with n = 18 and 24

n µ or (k, ℓ) in (4; k, ℓ) or (k, ℓ) in (8; k, ℓ) (α, β) D Type M

18 (1;+,+,−) (1, 1) 2 M 1

(2;+,+) (2, 0) 4 V 2

(6, 0) (3, 0) 9 V 4

(6, 6)

(3, 0) (6, 0) 36 V

(9, 6)

(2, 0), (4, 0), (8, 0) (9, 0) 81 V

(2, 2), (4, 4), (8, 8)

(1, 0), (5, 0), (7, 0) (18, 0) 324 V

(9, 2), (9, 4), (9, 8)

(3, 3) (3, 3) 18 M

(9, 3) 18 M

(1, 1), (5, 5), (7, 7) (9, 9) 162 M

(9, 1), (9, 5), (9, 7) 162 M

(6, 3) (6, 0) 36 V 8

(4, 2), (6, 2), (6, 4), (8, 2), (8, 4), (8, 6) (9, 0) 81 V

(2, 1), (3, 2), (4, 1), (4, 3), (5, 2), (5, 4), (6, 1), (6, 5) (18, 0) 182 V

(7, 2), (7, 4), (7, 6), (8, 1), (8, 3), (8, 5), (8, 7)

(3, 1), (5, 1), (5, 3), (7, 1), (7, 3), (7, 5) (9, 9) 162 M

24 (1;+,+,−) (1, 1) 2 M 1

(2;+,+) (2, 0) 4 V 2

(8, 0) (3, 0) 9 V 4

(8, 8)

(6, 0) (4, 0) 16 V

(12, 6)

(4, 0) (6, 0) 36 V

(12, 8)

(3, 0), (9, 0) (8, 0) 64 V

(12, 3), (12, 9)

(2, 0), (10, 0) (12, 0) 144 V

(12, 2), (12, 10)

(1, 0), (5, 0), (7, 0), (11, 0) (24, 0) 576 V

(12, 1), (12, 5), (12, 7)(12, 11)

(6, 6) (2, 2) 8 M

(4, 4) (3, 3) 18 M

(12, 4)

(3, 3), (9, 9) (4, 4) 32 M

(2, 2), (10, 10) (6, 6) 72 M

(1, 1), (5, 5), (7, 7), (11, 11) (12, 12) 288 M

(8, 4) (6, 0) 36 V 8

(6, 3), (9, 6) (8, 0) 64 V

(4, 2), (6, 4), (8, 2), (8, 6), (10, 4), (10, 8) (12, 0) 144 V

(2, 1), (3, 2), (4, 1), (4, 3), (5, 2), (5, 4), (6, 1), (6, 5) (24, 0) 242 V

(7, 2), (7, 4), (7, 6), (8, 1), (8, 3), (8, 5), (8, 7), (9, 2)

(9, 4), (9, 8), (10, 1), (10, 3), (10, 5), (10, 7), (10, 9)

(11, 2), (11, 4), (11, 6), (11, 8), (11, 10)

(9, 3) (4, 4) 32 M

(6, 2), (10, 2), (10, 6) (6, 6) 72 M

(3, 1), (5, 1), (5, 3), (7, 1), (7, 3), (7, 5), (9, 1) (12, 12) 288 M

(9, 5), (9, 7), (11, 1), (11, 3), (11, 5), (11, 7), (11, 9)
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Table 5.14: Square patterns of types V, M, and T arising from for critical points of all kinds of multiplicity (M =

1, 2, 4, 8) for the n × n square lattice with n = 20

n µ or (k, ℓ) in (4; k, ℓ) or (k, ℓ) in (8; k, ℓ) (α, β) D Type M

20 (1;+,+,−) (1, 1) 2 M 1

(2;+,+) (2, 0) 4 V 2

(5, 0) (4, 0) 16 V 4

(10, 5)

(4, 0), (8, 0) (5, 0) 25 V

(4, 4), (8, 8)

(2, 0), (6, 0) (10, 0) 100 V

(10, 4), (10, 8)

(1, 0), (3, 0), (7, 0), (9, 0) (20, 0) 400 V

(10, 1), (10, 3), (10, 7), (10, 9)

(5, 5) (2, 2) 8 M

(2, 2), (6, 6) (5, 5) 50 M

(10, 2), (10, 6)

(1, 1), (3, 3), (7, 7), (9, 9) (10, 10) 200 M

(8, 4) (5, 0) 25 V 8

(2, 1) 5 T

(1, 2) 5 T

(6, 2) (5, 5) 50 M

(3, 1) 10 T

(1, 3) 10 T

(4, 2) (10, 0) 100 V

(4, 2) 20 T

(2, 4) 20 T

(8, 6) (10, 0) 100 V

(2, 4) 20 T

(4, 2) 20 T

(3, 1), (9, 3) (10, 10) 200 M

(6, 2) 40 T

(2, 6) 40 T

(7, 1), (9, 7) (10, 10) 200 M

(2, 6) 40 T

(6, 2) 40 T

(4, 3), (7, 4), (8, 1), (9, 8) (20, 0) 400 V

(8, 4) 80 T

(4, 8) 80 T

(2, 1), (6, 3), (7, 6), (9, 2) (20, 0) 400 V

(4, 8) 80 T

(8, 4) 80 T

(6, 4), (8, 2) (10, 0) 100 V

(3, 2), (4, 1), (5, 2), (5, 4), (6, 1), (6, 5) (20, 0) 400 V

(7, 2), (8, 3), (8, 5), (8, 7), (9, 4), (9, 6)

(5, 1), (5, 3), (7, 3), (7, 5), (9, 1), (9, 5) (10, 10) 200 M
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Basic Facts about Integer Matrices

We present here some basic facts about integer matrices9 that are used in the construction of

the correspondence Φ and in the proofs in Section 5.6.10.

A square integer matrix U is called unimodular if its determinant is equal to ±1; U is uni-

modular if and only if its inverse U−1 exists and is an integer matrix. For an integer matrix A,

the kth determinantal divisor, denoted dk(A), is the greatest common divisor of all k × k minors

(subdeterminants) of A. By convention we put d0(A) = 1.

The first theorem states that every integer matrix can be brought to the Smith normal form by

a bilateral unimodular transformation.

Theorem 5.1. Let A be an m × n integer matrix. There exist unimodular matrices U and V such

that

UAV =



α1 0
. . . 0r,n−r

0 αr

0m−r,r 0m−r,n−r


, (5.116)

where r = rank A and α1 ≤ α2 ≤ · · · ≤ αr are positive integers with the divisibility property:10

α1 | α2 | · · · | αr.

Such integers α1, α2, . . . , αr are uniquely determined by A, and are expressed as

αk =
dk(A)

dk−1(A)
, k = 1, . . . , r,

in terms of the determinantal divisors d1(A), d2(A), . . . , dr(A) of A.

The second theorem gives a solvability criterion for a system of linear equations in unknown

integer vectors.

Theorem 5.2. Let A be an m × n integer matrix and b an m-dimensional integer vector. The

following two conditions (a) and (b) are equivalent.

(a) The system of equations Ax = b admits an integer solution x.

(b) Two matrices A and [A | b] share the same determinantal divisors, i.e., rank A = rank [A | b]

and dk(A) = dk([A | b]) for all k.

As a corollary of Theorem 5.2 we can obtain the following facts.

Proposition 5.29. Let a1, . . . , an be integers.

(i) gcd(a1, . . . , an) = 1 if and only if there exist some integers x1, . . . , xn such that a1x1 + · · · +
anxn = 1.

(ii) An integer b is divisible by gcd(a1, . . . , an) if and only if there exist some integers x1, . . . , xn

such that a1x1 + · · · + anxn = b.

9See Schrijver, 1986 [29] for more details on integer matrices.
10Notation “a | b” means that a divides b, that is, b is a multiple of a.
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The third theorem is a kind of duality theorem, which is sometimes referred to as the integer

analogue of the Farkas lemma.

Theorem 5.3. Let A be an m × n integer matrix and b an m-dimensional integer vector. The

following two conditions (a) and (b) are equivalent.

(a) The system of equations Ax = b admits an integer solution x.

(b) We have “y⊤A ∈ Zn =⇒ y⊤b ∈ Z” for any m-dimensional vector y.

Construction of Φ via the Smith Normal Form

The correspondence Φ : (k, ℓ) 7→ (α, β) can be constructed with the aid of the Smith normal

form. Recall notations

k̂ =
k

gcd(k, ℓ, n)
, ℓ̂ =

ℓ

gcd(k, ℓ, n)
, n̂ =

n

gcd(k, ℓ, n)

in (5.67), for which

gcd(k̂, ℓ̂, n̂) = 1. (5.117)

By the definition of the correspondence Φ of (5.85) in Proposition 5.17, we have

A(k, ℓ, n) = L(α, β) for (α, β) = Φ(k, ℓ, n), (5.118)

where

A(k, ℓ, n) = {(a, b) ∈ Z2 | k̂a + ℓ̂b ≡ 0, ℓ̂a − k̂b ≡ 0 mod n̂}, (5.119)

L(α, β) = {(a, b) ∈ Z2 | (a, b) = n1(α, β) + n2(−β, α), n1, n2 ∈ Z}. (5.120)

The condition in the definition ofA(k, ℓ, n) can be rewritten in a matrix form as

[
k̂ ℓ̂

ℓ̂ −k̂

] [
a

b

]
≡

[
0

0

]
mod n̂. (5.121)

We define matrices K and A as

K =

[
k̂ ℓ̂

ℓ̂ −k̂

]
, A =

[
α −β
β α

]
, (5.122)

which play the key role in our analysis. Note that

L(α, β) =
{
(a, b) |

[
a

b

]
= A

[
n1

n2

]
; n1, n2 ∈ Z

}
(5.123)

by (5.120).

The condition for A(k, ℓ, n) in (5.121) is equivalent to the existence of integers p and q such

that

[
k̂ ℓ̂ −n̂ 0

ℓ̂ −k̂ 0 −n̂

]


a

b

p

q


=

[
0

0

]
. (5.124)
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Since the determinantal divisors d1 and d2 of this 2 × 4 coefficient matrix are

d1 = gcd(k̂, ℓ̂, n̂) = 1,

d2 = gcd(k̂2 + ℓ̂2, k̂n̂, ℓ̂n̂, n̂2) = gcd(k̂2 + ℓ̂2, n̂ gcd(k̂, ℓ̂, n̂))

= gcd(k̂2 + ℓ̂2, n̂),

the Smith normal form of that matrix is given (see Theorem 5.1) as

U

[
k̂ ℓ̂ −n̂ 0

ℓ̂ −k̂ 0 −n̂

]
V =

[
1 0 0 0

0 κ 0 0

]
, (5.125)

where U and V are unimodular matrices and

κ = gcd(k̂2 + ℓ̂2, n̂). (5.126)

The 4 × 4 matrix V for the Smith normal form in (5.125) affords an explicit representation

of the correspondence Φ that is defined rather implicitly by the relationship in (5.118). As stated

in the following proposition, the correspondence (α, β) = Φ(k, ℓ, n) is encoded in the upper-right

block of a suitably chosen matrix V . Partition the matrix V into 2 × 2 submatrices as

V =

[
V11 V12

V21 V22

]
,

and recall the matrix A in (5.122) that is parameterized by (α, β).

Proposition 5.30. We can take V such that V12 = A for some (α, β) with α > β ≥ 0. Then

Φ(k, ℓ, n) = (α, β).

Proof. Putting

a =

[
a

b

]
, p =

[
p

q

]
,

[
x

y

]
= V−1

[
a

p

]

and using (5.125), we can rewrite (5.124) as

U[K | −n̂I]V · V−1

[
a

p

]
=

[
1 0 0 0

0 κ 0 0

] [
x

y

]
= 0.

This shows that x = 0 and y is free. Therefore, the solutions of (5.124) are given as
[
a

p

]
= V

[
0

y

]
=

[
V12

V22

]
y, y ∈ Z2.

This means, by (5.118), that

L(α, β) = {a = (a, b)⊤ | a = V12y, y ∈ Z2}.
By comparing this with (5.123), we see that the column vectors of V12 and those of A are both

basis vectors of the same lattice. As is well-known, this implies that the matrices V12 and A are

related as V12W = A for some unimodular matrix W. Therefore,

Ṽ = V

[
I O

O W

]
=

[
Ṽ11 Ṽ12

Ṽ21 Ṽ22

]

is also a valid choice for the Smith normal form (5.125), with the property that Ṽ12 = A. □
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In what follows we assume V12 = A, i.e.,

V =

[
V11 V12

V21 V22

]
=

[
V11 A

V21 V22

]
. (5.127)

Remark 5.13. In Remark 5.5 in Section 5.6.3, we indicated a simpler construction ofΦ that works

when n̂/(k̂2 + ℓ̂2) is an integer. This simpler construction can also be understood in the framework

of the general method here. Let U and V11 be some unimodular matrices that transform the matrix

K in (5.122) to its Smith normal form: UKV11 = diag (1, κ). By choosing

V12 =
n̂

k̂2 + ℓ̂2

[
k̂ −ℓ̂
ℓ̂ k̂

]
, V21 =

[
0 0

0 0

]
, V22 =

[
1 0

0 −1

]

in (5.127), we obtain a unimodular matrix V since | det V | = | det V11| · | det V22| = 1. Then we have

(5.125), and therefore (α, β) = Φ(k, ℓ, n) is obtained from the first column of V12, i.e., (α, β) =

m(k̂, ℓ̂) with m = n̂/(k̂2 + ℓ̂2). □

The use of the Smith normal form is demonstrated below when n̂/(k̂2 + ℓ̂2) is not an integer,

whereas when n̂/(k̂2 + ℓ̂2) is an integer, the simpler method of construction in Remark 5.5 in Sec-

tion 5.6.3 is used.

The example is a case with a solution of type V and without one of type T.

Example 5.6. [Case 1 of Proposition 5.19] For (k, ℓ, n) = (2m,m, 6m) with m ≥ 1, we have

(k̂, ℓ̂, n̂) = (2, 1, 6), k̂2 + ℓ̂2 = 5, and κ = gcd(5, 6) = 1. The transformation to the Smith normal

form in (5.125) is given as

[
−1 0

0 −1

] [
2 1 −6 0

1 −2 0 −6

]


2 1 6 0

1 −2 0 6

1 0 2 1

0 1 1 −2


=

[
1 0 0 0

0 1 0 0

]
.

This shows A(2m,m, 6m) = L(6, 0), i.e., Φ(2m,m, 6m) = (6, 0) = (α, β). We have α = n̂ = 6 and

(α′, β′) = (6, 0) by (5.81). This is a case of (α, β) = (α′, β′), and we have

Σ0(α, β) = Σ0(α′, β′) = Σ0(α, β) ∩ Σ0(α′, β′) = Σ0(6, 0).

When m = 1, Σ0(6, 0) reduces to ⟨r⟩. We have (α̂, β̂) = (1, 0), D̂ = 1 < 2Z, gcd(k̂ − ℓ̂, n̂) =

gcd(1, 6) = 1 < 2Z, and GCD-div since 2 gcd(k̂, ℓ̂) = 2 gcd(2, 1) = 2 is divisible by κ = 1. □

5.6.10. Appendix: Proofs of Propositions 5.11, 5.13, and 5.14

In this section we establish a series of propositions, which together serve as the proofs of

Propositions 5.11, 5.13, and 5.14 presented in Section 5.6.2.

We first focus on Proposition 5.14.

Proposition 5.31.

(i) gcd(α̂ + β̂, α̂ − β̂) ∈ {1, 2}.
(ii) gcd(α̂ + β̂, α̂ − β̂) = 2 ⇐⇒ D̂ ∈ 2Z.

(iii) gcd(α̂ + β̂, α̂ − β̂) = 1 ⇐⇒ D̂ < 2Z.
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Proof. (i) Since gcd(α̂, β̂) = 1, Proposition 5.29(i) implies the existence of integers x and y such

that xα̂ + yβ̂ = 1. For p = x + y, q = x − y, we have

p(α̂ + β̂) + q(α̂ − β̂) = 2(xα̂ + yβ̂) = 2.

Then Proposition 5.29(ii) shows that 2 is divisible by gcd(α̂ + β̂, α̂ − β̂), which is equivalent to the

statement of (i) of this proposition.

(ii) We have {1, 2} ∋ gcd(α̂ + β̂, α̂ − β̂) = gcd(α̂ + β̂, 2α̂). Therefore, gcd(α̂ + β̂, α̂ − β̂) = 2 if

and only if α̂+ β̂ ∈ 2Z. Finally we note a simple identity D̂ = (α̂+ β̂)2 − 2α̂β̂ to see that α̂+ β̂ ∈ 2Z

if and only if D̂ ∈ 2Z.

(iii) This is obvious from (i) and (ii) above. □

Proposition 5.32.

Σ0(α, β) ∩ Σ0(β, α) =

{
Σ0(α′′, 0) if D̂ < 2Z,

Σ0(β′′, β′′) if D̂ ∈ 2Z
(5.128)

with

α′′ =
D(α, β)

gcd(α, β)
, β′′ =

D(α, β)

2 gcd(α, β)
. (5.129)

Proof. First note that Σ0(α, β) ∩ Σ0(β, α) is the subgroup generated by r and pa
1
pb

2
for (a, b) ∈

L(α, β) ∩ L(β, α). In considering L(α, β) of (5.120), it is convenient to have H(α, β) of (5.4)

in mind, as it has a natural correspondence with L(α, β). The set H(α, β) ∩ H(β, α) is a square

sublattice with the reflection symmetry with respect to the x-axis, and hence it can be represented

asH(α′′, 0) orH(β′′, β′′) for some α′′ or β′′. Such α′′ is determined as the minimum α′′ satisfying

L(α′′, 0) ⊆ L(α, β), and β′′ as the minimum β′′ satisfying L(β′′, β′′) ⊆ L(α, β). Then L(α, β) ∩
L(β, α) coincides with the larger of L(α′′, 0) and L(β′′, β′′).

The parameter α′′ is determined as follows. The inclusionL(α′′, 0) ⊆ L(α, β) holds if and only

if integers n1 and n2 exist such that

[
α −β
β α

] [
n1

n2

]
=

[
α′′

0

]
.

By the solvability criterion using determinantal divisors given in Theorem 5.2, this holds if and

only if

d1

([
α −β α′′
β α 0

])
equals d1

([
α −β
β α

])
= gcd(α, β),

d2

([
α −β α′′
β α 0

])
equals d2

([
α −β
β α

])
= D(α, β).

The former condition is equivalent to α′′ being a multiple of gcd(α, β), and the latter to α′′ being

a multiple of D(α, β)/ gcd(α, β). Hence we have α′′ = D(α, β)/ gcd(α, β), which is a multiple of

gcd(α, β) since D(α, β)/ gcd(α, β) = D̂ gcd(α, β).
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The parameter β′′ is determined as follows. The inclusion L(β′′, β′′) ⊆ L(α, β) holds if and

only if integers n1 and n2 exist such that

[
α −β
β α

] [
n1

n2

]
=

[
β′′

β′′

]
.

Again by Theorem 5.2, this holds if and only if

d1

([
α −β β′′
β α β′′

])
equals d1

([
α −β
β α

])
= gcd(α, β),

d2

([
α −β β′′
β α β′′

])
equals d2

([
α −β
β α

])
= D(α, β).

The former condition is equivalent to β′′ being a multiple of gcd(α, β), and the latter to β′′ being a

multiple of
D(α, β)

gcd(α + β, α − β) =
D(α, β)

gcd(α, β) gcd(α̂ + β̂, α̂ − β̂)
.

Then by Proposition 5.31, we obtain

β′′ =

{
D(α, β)/ gcd(α, β) if D̂ < 2Z,

D(α, β)/(2 gcd(α, β)) if D̂ ∈ 2Z.

We have L(α′′, 0) ⊃ L(β′′, β′′) (with β′′ = α′′) if D̂ < 2Z, and L(β′′, β′′) ⊃ L(α′′, 0) (with

β′′ = α′′/2) if D̂ ∈ 2Z. This completes the proof. □

Next we focus on Proposition 5.11(i). With this aim in mind, we rephrase (5.128) in Proposi-

tion 5.32 in terms of (k, ℓ) instead of (α, β).

Proposition 5.33.

(i) gcd(k̂ + ℓ̂, k̂ − ℓ̂, n̂) ∈ {1, 2}.
(ii) gcd(k̂ + ℓ̂, k̂ − ℓ̂, n̂) = 2 ⇐⇒ gcd(k̂ − ℓ̂, n̂) ∈ 2Z.

(iii) gcd(k̂ + ℓ̂, k̂ − ℓ̂, n̂) = 1 ⇐⇒ gcd(k̂ − ℓ̂, n̂) < 2Z.

Proof. (i) Since gcd(k̂, ℓ̂, n̂) = 1, Proposition 5.29(i) implies the existence of integers a, b, and c

such that ak̂ + bℓ̂ + cn̂ = 1. For p = a + b, q = a − b, r = 2c, we have

p(k̂ + ℓ̂) + q(k̂ − ℓ̂) + rn̂ = 2(ak̂ + bℓ̂ + cn̂) = 2.

Then Proposition 5.29(ii) shows that 2 is divisible by gcd(k̂+ ℓ̂, k̂− ℓ̂, n̂), which is equivalent to the

claim in (i).

(ii) We have {1, 2} ∋ gcd(k̂ + ℓ̂, k̂ − ℓ̂, n̂) = gcd(k̂ − ℓ̂, 2ℓ̂, n̂). Hence follows the claim.

(iii) This is obvious from (i) and (ii) above. □

Proposition 5.34.

Σ0(α, β) ∩ Σ0(β, α) =

{
Σ0(n̂, 0) if gcd(k̂ − ℓ̂, n̂) < 2Z,

Σ0(n̂/2, n̂/2) if gcd(k̂ − ℓ̂, n̂) ∈ 2Z.
(5.130)
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Proof. Recall the notation A(k, ℓ, n) in (5.119). By the same argument as in the proof of Propo-

sition 5.32, we compute the minimum α′′ satisfying (α′′, 0) ∈ A(k, ℓ, n) and the minimum β′′

satisfying (β′′, β′′) ∈ A(k, ℓ, n). Then L(α, β) ∩ L(β, α) coincides with the larger of L(α′′, 0) and

L(β′′, β′′).

By the definition ofA(k, ℓ, n) in (5.119) we have (α′′, 0) ∈ A(k, ℓ, n) if and only if

k̂α′′ ≡ 0, ℓ̂α′′ ≡ 0 mod n̂.

Since gcd(k̂, ℓ̂, n̂) = 1, the smallest α′′ satisfying this condition is given by α′′ = n̂. As for β′′, we

have (β′′, β′′) ∈ A(k, ℓ, n) if and only if

(k̂ + ℓ̂)β′′ ≡ 0, (k̂ − ℓ̂)β′′ ≡ 0 mod n̂.

The smallest β′′ satisfying this condition is given by

β′′ =
n̂

gcd(k̂ + ℓ̂, k̂ − ℓ̂, n̂)
=

{
n̂ if gcd(k̂ − ℓ̂, n̂) < 2Z,

n̂/2 if gcd(k̂ − ℓ̂, n̂) ∈ 2Z,

where Proposition 5.33 is used. We finally note L(n̂, n̂) ⊂ L(n̂, 0) and L(n̂, 0) ⊂ L(n̂/2, n̂/2) if

n̂ ∈ 2Z. This completes the proof. □

Proposition 5.35.

(i) gcd(k̂ − ℓ̂, n̂) ∈ 2Z ⇐⇒ D̂ ∈ 2Z.

(ii)

n̂ =
D(α, β)

gcd(α, β)
. (5.131)

Proof. This follows from a comparison of Proposition 5.32 with Proposition 5.34. □

We now focus on the second statement of Proposition 5.11.

Proposition 5.36.
n̂

gcd(k̂2 + ℓ̂2, n̂)
= gcd(α, β). (5.132)

Proof. We rely on the representation of Φ given in Proposition 5.30 in terms of the transformation

matrix V in the Smith normal form of [K | −n̂I] in (5.125) with (5.122). Let

W =

[
W11 W12

W21 W22

]

be the inverse of the matrix V in (5.125). We have | det V | = 1 since V is unimodular. By a

well-known formula in linear algebra and V12 = A in (5.127), we have

| det W12| = | det V12|/| det V | = | det A| = D(α, β). (5.133)

On the other hand, it follows from (5.125) with V = W−1 that

U

[
k̂ ℓ̂ −n̂ 0

ℓ̂ −k̂ 0 −n̂

]
=

[
1 0 0 0

0 κ 0 0

] [
W11 W12

W21 W22

]
.
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This implies

−n̂U =

[
1 0

0 κ

]
W12,

which shows

n̂2 = κ | det W12| (5.134)

since | det U | = 1.

Combining (5.133) and (5.134) with the expression (5.126) of κ, we obtain

n̂2 = κ D(α, β) = gcd(k̂2 + ℓ̂2, n̂) · D(α, β).

By eliminating D(α, β) using (5.131), we obtain (5.132). □

Propositions 5.37–5.40 below are concerned with the symmetry ofA(k, ℓ, n) of (5.119), or that

of Σ0(α, β). Interestingly, such symmetry consideration leads to the proof of Proposition 5.13 of

duality nature.

Proposition 5.37. The four conditions (a), (b), (c), and (d) below are equivalent.

(a) (u1, u2) ∈ Z2 exists such that

[
u1 u2

] [k̂ ℓ̂

ℓ̂ −k̂

]
≡

[
ℓ̂ k̂

]
mod n̂. (5.135)

(b) An integer matrix U exists such that

U

[
k̂ ℓ̂

ℓ̂ −k̂

]
≡

[
ℓ̂ k̂

k̂ −ℓ̂

]
mod n̂. (5.136)

(c) gcd(k̂2 − ℓ̂2, 2k̂ℓ̂) is divisible by gcd(k̂2 + ℓ̂2, n̂) .

(d) GCD-div in (5.70):

2 gcd(k̂, ℓ̂) is divisible by gcd(k̂2 + ℓ̂2, n̂) .

Proof. First, we show (a)⇔ (b). For (u1, u2) ∈ Z2 satisfying (5.135), the matrix U =

[
u1 u2

−u2 u1

]
is

an integer matrix that satisfies (5.136). This shows (a)⇒ (b), whereas (b)⇒ (a) is obvious.

Next, we show (a)⇔ (c). The condition (a) is equivalent to the existence of integers u1, u2, p,

and q that satisfy

[
k̂ ℓ̂ −n̂ 0

ℓ̂ −k̂ 0 −n̂

]


u1

u2

p

q


=

[
ℓ̂

k̂

]
.

By the solvability criterion using determinantal divisors given in Theorem 5.2, this holds if and

only if

d1

([
k̂ ℓ̂ −n̂ 0 ℓ̂

ℓ̂ −k̂ 0 −n̂ k̂

])
equals d1

([
k̂ ℓ̂ −n̂ 0

ℓ̂ −k̂ 0 −n̂

])
= 1,

d2

([
k̂ ℓ̂ −n̂ 0 ℓ̂

ℓ̂ −k̂ 0 −n̂ k̂

])
equals d2

([
k̂ ℓ̂ −n̂ 0

ℓ̂ −k̂ 0 −n̂

])
.
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The former condition imposes nothing and the latter reduces to (c). We have thus shown (a)⇔ (c).

Finally, we show (c)⇔ (d). Since k̂2 + ℓ̂2 is a multiple of κ = gcd(k̂2 + ℓ̂2, n̂), k̂2 − ℓ̂2 is divisible

by κ if and only if (k̂2 − ℓ̂2) + (k̂2 + ℓ̂2) = 2k̂2 is divisible by κ. Therefore, gcd(k̂2 − ℓ̂2, 2k̂ℓ̂) is

divisible by κ if and only if gcd(2k̂2, 2k̂ℓ̂) = 2k̂ gcd(k̂, ℓ̂) is divisible by κ. Since gcd(k̂, n̂) = 1,

gcd(k̂2 − ℓ̂2, 2k̂ℓ̂) is divisible by κ if and only if 2 gcd(k̂, ℓ̂) is divisible by κ. □

Proposition 5.38. The following two conditions are equivalent.

(a)A(k, ℓ, n) = A(ℓ, k, n).

(b) (a, b) ∈ A(k, ℓ, n) =⇒ (b, a) ∈ A(k, ℓ, n).

Proof. The defining equations in (5.119) forA(k, ℓ, n) are invariant under the change of variables

(a, b, k, ℓ) 7→ (b, a, ℓ, k), and therefore, A(ℓ, k, n) = {(b, a) | (a, b) ∈ A(k, ℓ, n)}. This shows the

equivalence of (a) and (b). □

Proposition 5.39. The following two conditions are equivalent.

(a)A(k, ℓ, n) = A(ℓ, k, n).

(b) An integer matrix U exists such that (5.136) holds.

Proof. Although the claim is intuitively obvious from symmetry, we provide here a rigorous proof

on the basis of Theorem 5.3 (the integer analogue of the Farkas lemma).

As in the proof of Proposition 5.37, the condition (b) is equivalent to the existence of integer

tuples (u1, u2, p, q) and (u′
1
, u′

2
, p′, q′) such that

[
k̂ ℓ̂ −n̂ 0

ℓ̂ −k̂ 0 −n̂

]


u1

u2

p

q


=

[
ℓ̂

k̂

]
,

[
k̂ ℓ̂ −n̂ 0

ℓ̂ −k̂ 0 −n̂

]


u′
1

u′
2

p′

q′


=

[
k̂

−ℓ̂

]
.

By Theorem 5.3, the existence of such (u1, u2, p, q) is equivalent to the following condition:

[
y1 y2

] [k̂ ℓ̂ −n̂ 0

ℓ̂ −k̂ 0 −n̂

]
∈ Z4 =⇒

[
y1 y2

] [ℓ̂
k̂

]
∈ Z,

which can be rewritten as

[k̂y1 + ℓ̂y2, ℓ̂y1 − k̂y2, −n̂y1, −n̂y2 ] ∈ Z4 =⇒ ℓ̂y1 + k̂y2 ∈ Z.

Integrality condition for the third and fourth components allows us to put y1 = a/n̂ and y2 = b/n̂

with integers a and b. Then we can rewrite the above as

k̂a + ℓ̂b ≡ 0, ℓ̂a − k̂b ≡ 0 mod n̂ =⇒ ℓ̂a + k̂b ≡ 0 mod n̂.

Similarly, the existence of (u′
1
, u′

2
, p′, q′) above is equivalent to the following condition:

k̂a + ℓ̂b ≡ 0, ℓ̂a − k̂b ≡ 0 mod n̂ =⇒ k̂a − ℓ̂b ≡ 0 mod n̂.

The above two conditions together are nothing but the statement that (a, b) ∈ A(k, ℓ, n) implies

(b, a) ∈ A(k, ℓ, n), which is equivalent to (a) by Proposition 5.38. □
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Proposition 5.40. Let (α, β) = Φ(k, ℓ, n).

(i) Σ0(α, β) = Σ0(β, α) ⇐⇒ β = 0 or α = β.

(ii) Σ0(α, β) = Σ0(β, α) ⇐⇒ GCD-div in (5.70).

Proof. (i) is obvious, and (ii) follows from Propositions 5.37 and 5.39. Note that Σ0(α, β) is the

subgroup generated by r and pa
1
pb

2
for (a, b) ∈ A(k, ℓ, n). □
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6. Bifurcating Solutions: Solving Bifurcation Equations

The n × n square lattice was introduced as a two-dimensional discretized space, and the group

G = D4 ⋉ (Zn × Zn) = ⟨r, s, p1, p2⟩ labeling the symmetry of the n × n square lattice was presented

in Chapter 2. The irreducible decomposition of the permutation representation of the group G was

obtained in Chapters 3 and 4 to identify the irreducible representations. The equivariant branching

lemma was presented in Chapter 5 as a pertinent and sufficient means to test the existence of a

bifurcating solution, and was used to show the existence of the square patterns for each irreducible

representation.

In this chapter, a bifurcation analysis by solving bifurcation equations is advanced as a more

informative means to investigate the properties of bifurcating solutions for each irreducible repre-

sentations. The expanded forms of bifurcation equations are derived by exploiting the symmetry

of the square lattice. The stability of the bifurcating solutions is evaluated asymptotically, and

stability conditions for the bifurcating solutions are presented.

This chapter is organized as follows. Fundamentals of an analysis are summarized in Sec-

tion 6.1. Bifurcation points of multiplicity M = 1, 2, 4, and 8 are studied in Sections 6.2–6.5,

respectively.

6.1. Procedure of an Analysis

Let us consider a governing equation

F (λ, ϕ) = 0 (6.1)

endowed with the equivariance to the group G = D4 ⋉ (Zn × Zn) formulated as

T (g)F (λ, ϕ) = F (T (g)λ, ϕ), g ∈ G. (6.2)

Recall that ϕ is a bifurcation parameter, λ ∈ RN is an N = n2 dimensional independent variable

vector expressing a distribution of mobile population, F : RN × R → RN is a nonlinear function,

and T is the N-dimensional permutation representation of the group G. Accordingly, the Jacobian

matrix of F is an N × N matrix expressed as

J(λ, ϕ) =

(
∂Fi

∂λ j

∣∣∣∣∣∣ i, j = 1, . . . ,N

)
. (6.3)

Let (λc, ϕc) be a critical point of multiplicity M (≥ 1), at which the Jacobian matrix of F has

a rank deficiency M. The critical point (λc, ϕc) is assumed to be G-symmetric in the sense of

T (g)λc = λc, g ∈ G. (6.4)

Moreover, it is assumed to be group-theoretic, which means, by definition, that the M-dimensional

kernel space of the Jacobian matrix at (λc, ϕc) is irreducible with respect to the representation T .

The critical point (λc, ϕc) is associated with one of the irreducible representations µ of G in Table

6.1. The multiplicity M corresponds to the dimension of µ, and a matrix representation for µ is

denoted by T µ(g).
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Table 6.1: Irreducible representations of D4 ⋉ (Zn × Zn) to be considered in bifurcation analysis

n \ M 1 2 4 8

2m (1;+,+,+), (1;+,+,−) (2;+,+) (4; k, 0;+), (4; k, k;+), (4; n/2, ℓ,+) (8; k, ℓ)

2m − 1 (1;+,+,+) (4; k, 0;+), (4; k, k;+) (8; k, ℓ)

(4; k, 0;+), (4; k, k;+) for k with 1 ≤ k ≤ ⌊(n − 1)/2⌋;
(4; n/2, ℓ;+) for k with 1 ≤ ℓ ≤ ⌊(n − 1)/2⌋;
(8; k, ℓ) for (k, ℓ) with 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤ ⌊(n − 1)/2⌋

By the Liapunov–Schmidt reduction with symmetry (Sattinger, 1979 [25]; Golubitsky et al.,

1988 [26]), the full system of the governing equation (6.1) is reduced, in the neighborhood of the

critical point (λc, ϕc), to a system of bifurcation equations

F̃ (w, ϕ̃) = 0 (6.5)

in w ∈ Ker(Jc), where F̃ : RM × R → RM is a function, ϕ̃ = ϕ − ϕc denotes the increment of

ϕ, Ker(Jc) is the kernel space of J(λc, ϕc). Here, we define variables w = (w1, . . . ,wM)⊤ in the

bifurcation equation (6.5) by using the column vectors of Qµ = [q
µ

1
, . . . , q

µ

M
] in Section 4.3 that

span Ker(Jc).

In this reduction process, the equivariance (6.2) of the full system is inherited by the reduced

system (6.5). With the use of the matrix representation T µ(g) for the associated irreducible repre-

sentation µ, the equivariance of the bifurcation equation can be expressed as

T µ(g)F̃ (w, ϕ̃) = F̃ (T µ(g)w, ϕ̃), g ∈ G. (6.6)

The reduced equation (6.5) can possibly admit multiple solutions w = w(ϕ̃) with w(0) = 0,

since (w, ϕ̃) = (0, 0) is a singular point of (6.5). This gives rise to bifurcation. Each w uniquely

determines a solution λ to the full system (6.1).

A group-theoretic bifurcation analysis to investigate the stability of a bifurcating solution for a

critical point proceeds as follows:

• Specify an irreducible representation µ of D4 ⋉ (Zn × Zn) in Table 6.1.

• Obtain the expanded form of the bifurcation equation by exploiting the symmetry.

• Obtain a bifurcating solution by using the equivariant branching lemma (Cicogna, 1981

[27]; Vanderbauwhede, 1982 [28]; Golubitsky et al., 1988 [26]) or solving the bifurcation

equation.

• Obtain the Jacobian matrix of F̃ .

• Substitute the bifurcating solution into the Jacobian matrix and evaluate the eigenvalues to

determine their stability as

{
linearly stable: every eigenvalue has a negative real part,

linearly unstable: at least one eigenvalue has a positive real part.
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Table 6.2: Theoretically predicted bifurcating solutions for critical points with multiplicity M

M Bifurcating solutions (w ∈ R) Existence conditions

1 w if n is even

2 wsq = (w,w) if n is even

wstripe = (w, 0) if n is even

4 wsq = (w, 0,w, 0) Always

wstripeI = (w, 0, 0, 0) Always

wstripeII = (0,w, 0, 0) if ň is even

8 wsqVM = (w, 0,w, 0,w, 0,w, 0) Always

wsqT = (w, 0,w, 0, 0, 0, 0, 0) if 2 gcd(k̂, ℓ̂) is not divisible by gcd(k̂2 + ℓ̂2, n̂)

wupside−downI = (w, 0, 0, 0,w, 0, 0, 0) if (k̂ + ℓ̂) gcd(k̂ + ℓ̂, k̂ − ℓ̂) is not divisible by gcd(2k̂ℓ̂, n̂)

wupside−downII = (0,w, 0, 0, 0,w, 0, 0) if n̂ is even and

(k̂ + ℓ̂) gcd(k̂ + ℓ̂, k̂ − ℓ̂) is not divisible by gcd(2k̂ℓ̂, n̂)

wstripeI = (w, 0, 0, 0, 0, 0, 0, 0) if k̂2 + ℓ̂2, 2k̂ℓ̂, and k̂2 − ℓ̂2 are not divisible by n̂

wstripeII = (0,w, 0, 0, 0, 0, 0, 0) if n̂ is even and

k̂2 + ℓ̂2, 2k̂ℓ̂, and k̂2 − ℓ̂2 are not divisible by n̂

ň = n/ gcd(k, n) for M = 4 in (6.40);

n̂ = n/ gcd(k, ℓ, n), k̂ = k/ gcd(k, ℓ, n), ℓ̂ = ℓ/ gcd(k, ℓ, n) for M = 8 in (6.176)

We showed the existence of the square patterns by using the equivariant branching lemma in

Chapter 5. Additionally, in this chapter, we show the existence of some other bifurcating solutions

by solving bifurcation equations. Theoretically predicted bifurcating solutions are summarized in

Table 6.2. A stability analysis for these solutions is also conducted in this chapter.

6.2. Bifurcation Point of Multiplicity 1

We consider a critical point associated with the one-dimensional irreducible representation

µ = (1;+,+,−) of the group D4 ⋉ (Zn × Zn). The actions in (1;+,+,−) on a variable w ∈ R are

expressed as

r, s : w 7→ w, p1, p2 : w 7→ −w. (6.7)

This case is nothing but pitchfork bifurcation and is well-known.

The bifurcation equation for the critical point of multiplicity 1 is a one-dimensional equation

over R as

F̃(w, ϕ̃) = 0, (6.8)

where (w, ϕ̃) = (0, 0) is assumed to correspond to the critical point. We expand F̃ into a power

series as

F̃(w, ϕ̃) =
∑

a=0

Aa(ϕ̃)wa (6.9)
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with coefficients Aa(ϕ̃) ∈ R. Since (w, ϕ̃) = (0, 0) corresponds to the critical point, we have

A0(0) = 0, A1(0) = 0.

Hence, we have

A1(ϕ̃) ≈ A′1(0)ϕ̃.

for A′
1
(0), which is generically nonzero.11

The equivariance of the bifurcation equation to the group D4 ⋉ (Zn × Zn) is identical to the

equivariance to the action of the four elements r, s, p1, and p2 generating this group. Hence, the

equivariance condition (6.6) of the bifurcation equation is written for (6.9) as

r, s : F̃(w, ϕ̃) = F̃(w, ϕ̃), (6.10)

p1, p2 : − F̃(w, ϕ̃) = F̃(−w, ϕ̃). (6.11)

From the equivariance condition (6.11), we have

∑

a=0

(−Aa(ϕ̃))wa =
∑

a=0

Aa(ϕ̃)(−w)a.

This condition implies (−1)a = −1, that is,

a = 2b + 1, b ∈ Z+,

where Z+ represents the set of nonnegative integers. Hence, (6.9) is restricted to

F̃(w, ϕ̃) = w
∑

b=0

A2b+1(ϕ̃)w2b. (6.12)

The form of (6.12) implies that F̃(w, ϕ̃) = 0 has the trivial solution and a bifurcating solution.

Note that F̃(w, ϕ̃) is an odd function in w. Thus, (w, ϕ̃) and (−w, ϕ̃) are conjugate solutions for

F̃ = 0. We hereafter call the two solutions that are conjugate as symmetric bifurcating solutions

and those that are not as asymmetric ones.

We evaluate the stability of the bifurcating solution by considering the asymptotic form of the

bifurcation equation. The asymptotic form of the bifurcation equation in (6.12) becomes

F̃(w, ϕ̃) ≈ w(A′1(0)ϕ̃ + A3(0)w2), (6.13)

and the Jacobian of F̃ becomes

J̃(w, ϕ̃) =
∂F̃

∂w
≈ A′1(0)ϕ̃ + 3A3(0)w2. (6.14)

11Notation A′
1
(0) means the derivative of A1(ϕ̃) with respect to ϕ̃, evaluated at ϕ̃ = 0. Generically we have A′

1
(0) , 0

since the group symmetry imposes no condition.
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Solving F̃ = 0, we have

ϕ̃ = ϕ̃sq ≈ −w2 A3(0)

A′
1
(0)
.

Substituting ϕ̃sq into (6.14), we have

J̃(w, ϕ̃sq) ≈ 2w2A3(0). (6.15)

Hence, the stability of the bifurcating solution in the neighborhood of the critical point depends

on the sign of A3(0), that is,

{
A3(0) < 0 : stable,

A3(0) > 0 : unstable.

6.3. Bifurcation Point of Multiplicity 2

We consider a critical point associated with the two-dimensional irreducible representation

µ = (2;+,+) of the group D4 ⋉ (Zn × Zn). The actions in (2;+,+) on a two-dimensional vector

(w1,w2) ∈ R2 are expressed as

r :

[
w1

w2

]
7→

[
w2

w1

]
, s :

[
w1

w2

]
7→

[
w1

w2

]
, (6.16)

p1 :

[
w1

w2

]
7→

[
−w1

w2

]
, p2 :

[
w1

w2

]
7→

[
w1

−w2

]
. (6.17)

The bifurcation equation for the critical point of multiplicity 2 is a two-dimensional equation

in w = (w1,w2) ∈ R2 expressed as

F̃i(w, ϕ̃) = 0, i = 1, 2, (6.18)

where (w1,w2, ϕ̃) = (0, 0, 0) is assumed to correspond to the critical point. Accordingly, the Jaco-

bian matrix of F̃ is an 2 × 2 matrix expressed as

J̃(w, ϕ̃) =


∂F̃i

∂w j

∣∣∣∣∣∣ i, j = 1, . . . , 2

 . (6.19)

We expand F̃1 into a power series as

F̃1(w1,w2, ϕ̃) =
∑

a=0

∑

b=0

Aab(ϕ̃)w1
aw2

b (6.20)

with coefficients Aab(ϕ̃) ∈ R. Since (w1,w2, ϕ̃) = (0, 0, 0) corresponds to the critical point, we have

A00(0) = 0, A10(0) = A01(0) = 0.

Since A′
10

(0) is generically nonzero, we have

A10(ϕ̃) ≈ A′10(0)ϕ̃.
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The equivariance of the bifurcation equation to the group D4 ⋉ (Zn × Zn) is identical to the

equivariance to the action of the four elements r, s, p1, and p2 generating this group. Hence, the

equivariance condition (6.6) of the bifurcation equation is written for (6.18) as

r : F̃2(w1,w2) = F̃1(w2,w1), (6.21)

F̃1(w1,w2) = F̃2(w2,w1), (6.22)

s : F̃1(w1,w2) = F̃1(w1,w2), (6.23)

F̃2(w1,w2) = F̃2(w1,w2), (6.24)

p1 : − F̃1(w1,w2) = F̃1(−w1,w2), (6.25)

F̃2(w1,w2) = F̃2(−w1,w2), (6.26)

p2 : F̃1(w1,w2) = F̃1(w1,−w2), (6.27)

− F̃2(w1,w2) = F̃2(w1,−w2). (6.28)

From the equivariance condition (6.25) or (6.28), we have
∑

a=0

∑

b=0

(−Aab(ϕ̃))w1
aw2

b =
∑

a=0

∑

b=0

Aab(ϕ̃)(−w1)aw2
b.

From the equivariance condition (6.26) or (6.27), we have
∑

a=0

∑

b=0

Aab(ϕ̃)w1
aw2

b =
∑

a=0

∑

b=0

Aab(ϕ̃)w1
a(−w2)b.

These conditions imply that a is odd, and b is even. Thus,

a = 2c + 1, c ∈ Z+,
b = 2d, d ∈ Z+.

where Z+ represents the set of nonnegative integers. Hence, F̃i (i = 1, 2) is restricted to

F̃1(w1,w2, ϕ̃) = w1

∑

c=0

∑

d=0

A2c+1,2d(ϕ̃)w1
2cw2

2d. (6.29)

F̃2(w1,w2, ϕ̃) = w2

∑

c=0

∑

d=0

A2c+1,2d(ϕ̃)w2
2cw1

2d. (6.30)

Therein, F̃2 is obtained by (6.21).

We have the following propositions on the existence and the symmetry of bifurcating solutions

by solving the bifurcation equation.

Proposition 6.1. For a critical point of multiplicity 2 associated with µ = (2;+,+), we have the

following bifurcating solutions:

Stripe pattern : wstripe = (w, 0) (w ∈ R),

Square pattern : wsq = (w,w) (w ∈ R).
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Proof. Substituting wstripe = (w, 0) into (6.29), we have

F̃1(w, 0, ϕ̃) = w

∞∑

a=0

A2a+1,0(ϕ̃)w2a ≈ w
{
A′10(0)ϕ̃ + A30(0)w2

}
(6.31)

with A′
10

(0) = ∂A10/∂ϕ̃(0). Thus, F̃1(w, 0, ϕ̃) = 0 represents ϕ̃ versus w relation for wstripe. Sub-

stituting wstripe into (6.30), we have F̃2(w, 0, ϕ̃) = 0. Thus, there is a bifurcating curve satisfying

F̃1 = F̃2 = 0 for wstripe. Similar discussion holds for wsq. □

Proposition 6.2. For a critical point of multiplicity 2 associated with µ = (2;+,+), the two bifur-

cating solutions (w, ϕ̃) and (−w, ϕ̃) are conjugate for w = wsq, wstripe.

Proof. Since wstripe = (w, 0) and −wstripe = (−w, 0) satisfy the same relation (cf., (6.31))

∞∑

a=0

A2a+1,0(ϕ̃)w2a = 0,

F̃1(w, 0, ϕ̃) is an odd function in w, that is,

F̃1(−w, 0, ϕ̃) = −F̃1(w, 0, ϕ̃).

Thus, (wstripe, ϕ̃) and (−wstripe, ϕ̃) are conjugate solutions for F̃1 = 0. Similar discussion holds for

(wsq, ϕ̃) and (−wsq, ϕ̃). □

We evaluate the stability of the bifurcating solutions by considering the asymptotic form of the

bifurcation equation. The asymptotic form of the bifurcation equation becomes

F̃1(w1,w2, ϕ̃) ≈ w1(A′10(0)ϕ̃ + A30(0)w1
2 + A12(0)w2

2), (6.32)

F̃2(w1,w2, ϕ̃) ≈ w2(A′10(0)ϕ̃ + A30(0)w2
2 + A12(0)w1

2), (6.33)

and the Jacobian matrix of F̃ in (6.19) becomes

J̃(w, ϕ̃) ≈
[

A′
10

(0)ϕ̃ + 3A30(0)w1
2 + A12(0)w2

2 2A12(0)w1w2

2A12(0)w1w2 A′
10

(0)ϕ̃ + 3A30(0)w2
2 + A12(0)w1

2

]
. (6.34)

Substituting wsq = (w,w) into (6.32) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sq ≈ −w2 A30(0) + A12(0)

A′
10

(0)
.

Evaluating the Jacobian matrix (6.34) at (wsq, ϕ̃sq), we have

J̃(wsq, ϕ̃sq) ≈ 2w2

[
A30(0) A12(0)

A12(0) A30(0)

]
. (6.35)
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The eigenvalues of J̃(wsq, ϕ̃sq) are given by

λ1, λ2 ≈ 2w2(A30(0) ± A12(0)).

Hence, the sign of the eigenvalues depends on the values of the coefficients A30(0) and A12(0).

Substituting wstripe = (w, 0) into (6.32) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripe ≈ −w2 A30(0)

A′
10

(0)
.

Evaluating the Jacobian matrix (6.34) at (wstripe, ϕ̃stripe), we have

J̃(wstripe, ϕ̃stripe) ≈ w2

[
2A30(0) 0

0 −A30(0) + A12(0)

]
. (6.36)

The eigenvalues of J̃(wstripe, ϕ̃stripe) are given by

λ1 ≈ 2w2A30(0),

λ2 ≈ 2w2(A12(0) − A30(0)).

Hence, the sign of the eigenvalues depends on the values of the coefficients A30(0) and A12(0).

To sum up, we have the following proposition:

Proposition 6.3. For a critical point of multiplicity 2 associated with µ = (2;+,+), suppose that

all eigenvalues of J(λc, ϕ) other than those for µ = (2;+,+) are negative. Then, we have the

following statements on the stability in the neighborhood of the critical point.

(i) If A30(0) < A12(0) < −A30(0) are satisfied, the square pattern wsq is stable.

(ii) If A12(0) < A30(0) < 0 are satisfied, the stripe pattern wstripe is stable.

(iii) The two solutions wsq and wstripe are not stable simultaneously.

Proof. The first and second statements are obtained by assuming that all the eigenvalues of the

Jacobian matrix at each bifurcating solution are negative. The last statement are obtained by the

fact that A30(0) < A12(0) and A12(0) < A30(0) cannot be satisfied simultaneously. □
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6.4. Bifurcation Point of Multiplicity 4

We consider a critical point associated with the four-dimensional irreducible representations µ

of the group D4 ⋉ (Zn × Zn):

(4; k, 0,+) with 1 ≤ k ≤
⌊
n − 1

2

⌋
, (6.37)

(4; k, k,+) with 1 ≤ k ≤
⌊
n − 1

2

⌋
, (6.38)

(4; n/2, ℓ,+) with 1 ≤ ℓ ≤ n

2
− 1, (6.39)

where n ≥ 3 and (4; n/2, ℓ,+) exists when n is even. For (4; k, 0,+) and (4; k, k,+), we use the

following notations:

ň =
n

gcd(k, n)
, ǩ =

k

gcd(k, n)
. (6.40)

For (4; n/2, ℓ,+), we use the following notations:

ñ =
n

gcd(ℓ, n)
, ℓ̃ =

ℓ

gcd(ℓ, n)
. (6.41)

The actions in (4; k, 0,+) on a four-dimensional vector (w1, . . . ,w4) ∈ R4 are expressed for a two-

dimensional vector (z1, z2) with complex variables z j = w2 j−1 + iw2 j ( j = 1, 2) as (cf., (5.38))

r :

[
z1

z2

]
7→

[
z2

z1

]
, s :

[
z1

z2

]
7→

[
z1

z2

]
, (6.42)

p1 :

[
z1

z2

]
7→

[
ωkz1

z2

]
, p2 :

[
z1

z2

]
7→

[
z1

ωkz2

]
(6.43)

with ω = exp(i2π/n). The actions in (4; k, k,+) can be expressed as (cf., (5.39))

r :

[
z1

z2

]
7→

[
z2

z1

]
, s :

[
z1

z2

]
7→

[
z2

z1

]
, (6.44)

p1 :

[
z1

z2

]
7→

[
ωkz1

ω−kz2

]
, p2 :

[
z1

z2

]
7→

[
ωkz1

ωkz2

]
, (6.45)

and the actions in (4; n/2, ℓ,+) can be expressed as (cf., (5.40))

r :

[
z1

z2

]
7→

[
z2

z1

]
, s :

[
z1

z2

]
7→

[
z1

z2

]
, (6.46)

p1 :

[
z1

z2

]
7→

[
−z1

ω−ℓz2

]
, p2 :

[
z1

z2

]
7→

[
ωℓz1

−z2

]
. (6.47)
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6.4.1. Derivation of Bifurcation Equation

The bifurcation equation for the critical point of multiplicity 4 is a four-dimensional equation

in w = (w1, . . . ,w4) ∈ R4 expressed as

F̃i(w, ϕ̃) = 0, i = 1, . . . , 4, (6.48)

where (w1, . . . ,w4, ϕ̃) = (0, . . . , 0, 0) is assumed to correspond to the critical point. Accordingly,

the Jacobian matrix of F̃ is a 4 × 4 matrix expressed as

J̃(w, ϕ̃) =


∂F̃i

∂w j

∣∣∣∣∣∣ i, j = 1, . . . , 4

 . (6.49)

The bifurcation equation (6.48) can be represented as a 2-dimensional equation in complex vari-

ables z j = w2 j−1 + iw2 j ( j = 1, 2) as

Fi(z1, z2, ϕ̃) = 0, i = 1, 2, (6.50)

where (z1, z2, ϕ̃) = (0, 0, 0) corresponds to the critical point, and there are the following relation-

ship:

F1(z1, z2, ϕ̃) = F̃1 + iF̃2, (6.51)

F2(z1, z2, ϕ̃) = F̃3 + iF̃4. (6.52)

We expand F1 into a power series as

F1(z1, z2, ϕ̃) =
∑

a=0

∑

b=0

∑

c=0

∑

d=0

Aabcd(ϕ̃)z1
az2

b z1
c

z2
d

(6.53)

with coefficients Aabcd(ϕ̃). Since (z1, z2, ϕ̃) = (0, 0, 0) corresponds to the critical point, we have

A0000(0) = 0, A1000(0) = A0100(0) = A0010(0) = A0001(0) = 0.

In addition, since a1 = A′
1000

(0) is generically nonzero, we have

A1000(ϕ̃) ≈ a1ϕ̃.

The equivariance of the bifurcation equation to the group D4⋉(Zn×Zn) is identical to the equiv-

ariance to the action of the four elements r, s, p1, and p2 generating this group. The equivariance

condition for (4; k, 0,+) is written as

r : F2(z1, z2) = F1(z2, z1), (6.54)

F1(z1, z2) = F2(z2, z1), (6.55)

s : F1(z1, z2) = F1(z1, z2), (6.56)

F2(z1, z2) = F2(z1, z2), (6.57)

p1 : ωkF1(z1, z2) = F1(ωkz1, z2), (6.58)

F2(z1, z2) = F2(ωkz1, z2), (6.59)

p2 : F1(z1, z2) = F1(z1, ω
kz2), (6.60)

ωkF2(z1, z2) = F2(z1, ω
kz2) (6.61)
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with ω = exp(i2π/n). The equivariance condition for (4; k, k,+) is written as

r : F2(z1, z2) = F1(z2, z1), (6.62)

F1(z1, z2) = F2(z2, z1), (6.63)

s : F2(z1, z2) = F1(z2, z1), (6.64)

F1(z1, z2) = F2(z2, z1), (6.65)

p1 : ωkF1(z1, z2) = F1(ωkz1, ω
−kz2), (6.66)

ω−kF2(z1, z2) = F2(ωkz1, ω
−kz2), (6.67)

p2 : ωkF1(z1, z2) = F1(ωkz1, ω
kz2), (6.68)

ωkF2(z1, z2) = F2(ωkz1, ω
kz2). (6.69)

The equivariance condition for (4; n/2, ℓ,+) is written as

r : F2(z1, z2) = F1(z2, z1), (6.70)

F1(z1, z2) = F2(z2, z1), (6.71)

s : F1(z1, z2) = F1(z1, z2), (6.72)

F2(z1, z2) = F2(z1, z2), (6.73)

p1 : − F1(z1, z2) = F1(−z1, ω
−ℓz2), (6.74)

ω−ℓF2(z1, z2) = F2(−z1, ω
−ℓz2), (6.75)

p2 : ωℓF1(z1, z2) = F1(ωℓz1,−z2), (6.76)

−F2(z1, z2) = F2(ωℓz1,−z2). (6.77)

The equivariance condition with respect to r is equivalent to

F2(z1, z2) = F1(z2, z1), (6.78)

F1(z1, z2) = F1(z1, z2) (6.79)

for each irreducible representation. Hence, we can obtain F2 from F1 by the condition (6.78) and

see that

Aabcd(ϕ̃) ∈ R (6.80)

by the condition (6.79).

The equivariance condition with respect to s is equivalent to F1(z1, z2) = F1(z1, z2) in (6.56),

which gives

Aabcd(ϕ̃) = Aadcb(ϕ̃) (6.81)

for each irreducible representation as explained below. For (4; k, 0,+), the condition (6.56) applies.

For (4; k, k,+), substituting (6.62) into (6.64), we have F1(z2, z1) = F1(z2, z1). This condition is

equivalent to F1(z1, z2) = F1(z1, z2). For (4; n/2, ℓ,+), the condition (6.72) gives F1(z1, z2) =

F1(z1, z2). Using (6.80), we have F1(z1, z2) = F1(z1, z2). Thus, we have F1(z1, z2) = F1(z1, z2).
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For (4; k, 0,+), the equivariance condition with respect to p1 and p2 is expressed as follows.

The equivariance condition (6.58) for p1 is expressed as

∑

a=0

∑

b=0

∑

c=0

∑

d=0

ωkAabcd(ϕ̃)z1
az2

b z1
c

z2
d
=

∑

a=0

∑

b=0

∑

c=0

∑

d=0

Aabcd(ϕ̃)(ωkz1)
a
z2

b(ω−k z1)
c

z2
d
,

which implies

ωk(a−c−1) = exp

[
i2π

n
k(a − c − 1)

]
= 1. (6.82)

The equivariance condition (6.60) for p2 is expressed as

∑

a=0

∑

b=0

∑

c=0

∑

d=0

Aabcd(ϕ̃)z1
az2

b z1
c

z2
d
=

∑

a=0

∑

b=0

∑

c=0

∑

d=0

Aabcd(ϕ̃)z1
a(ωkz2)

b
z1

c
(ω−k z2)

d
,

which implies

ωk(b−d) = exp

[
i2π

n
k(b − d)

]
= 1. (6.83)

Using (6.78), we rewrite the remaining equivariance conditions (6.59) and (6.61) as

F1(z2, z1) = F1(z2, ω
−k z1),

ωkF1(z2, z1) = F1(ωkz2, z1),

which are expressed as

∑

a=0

∑

b=0

∑

c=0

∑

d=0

Aabcd(ϕ̃)z2
a z1

b
z2

c
z1

d =
∑

a=0

∑

b=0

∑

c=0

∑

d=0

Aabcd(ϕ̃)z2
a(ω−k z1)

b
z2

c
(ωkz1)

d
,

∑

a=0

∑

b=0

∑

c=0

∑

d=0

ωkAabcd(ϕ̃)z2
a z1

b
z2

c
z1

d =
∑

a=0

∑

b=0

∑

c=0

∑

d=0

Aabcd(ϕ̃)(ωkz2)
a

z1
b
(ω−k z2)

c
z1

d.

Each of these conditions leads to the same result as (6.83) and (6.82), respectively. To sum up,

from (6.82) and (6.83), we have the following conditions for (4; k, 0,+):

k(a − c − 1) ≡ 0 mod n,

k(b − d) ≡ 0 mod n.

Using (6.40), we rewrite these conditions as

ǩ(a − c − 1) ≡ 0 mod ň,

ǩ(b − d) ≡ 0 mod ň,

which are equivalent to the following condition:

a = c + pň + 1, b = d + qň (p, q ∈ Z). (6.84)
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Then, F1 in (6.53) becomes

F1(z1, z2, ϕ̃) =

∞∑

c=0

∞∑

d=0

∑

p∈Z, c+pň+1≥0

∑

q∈Z, d+qň≥0

Ac+pň+1,d+qň,cd(ϕ̃)z1
c+pň+1z2

d+qň z1
c

z2
d
. (6.85)

Note that a = 0 and c = 0 are not satisfied simultaneously in (6.84):

a = 0⇒ c = −pň − 1 , 0, c = 0⇒ a = pň + 1 , 0.

Thus, F1 in (6.85) becomes

F1(z1, z2, ϕ̃) = z1

∞∑

c=0

∞∑

d=0

∑

p∈Z, c+pň+1>0

∑

q∈Z, d+qň≥0

Ac+pň+1,d+qň,cd(ϕ̃)z1
c+pňz2

d+qň z1
c

z2
d

+ z1

∞∑

d=0

∞∑

p=1

∑

q∈Z, d+qň≥0

A0,d+qň,pň−1,d(ϕ̃)z2
d+qň z1

pň−2
z2

d
. (6.86)

For (4; k, k,+), the equivariance condition (6.66) is expressed as
∑

a=0

∑

b=0

∑

c=0

∑

d=0

ωkAabcd(ϕ̃)z1
az2

b z1
c

z2
d
=

∑

a=0

∑

b=0

∑

c=0

∑

d=0

Aabcd(ϕ̃)(ωkz1)
a
(ω−kz2)

b
(ω−k z1)

c
(ωk z2)

d
,

which implies

ωk(a−b−c+d−1) = exp

[
i2π

n
k(a − b − c + d − 1)

]
= 1. (6.87)

The equivariance condition (6.68) is expressed as
∑

a=0

∑

b=0

∑

c=0

∑

d=0

ωkAabcd(ϕ̃)z1
az2

b z1
c

z2
d
=

∑

a=0

∑

b=0

∑

c=0

∑

d=0

Aabcd(ϕ̃)(ωkz1)
a
(ωkz2)

b
(ω−k z1)

c
(ω−k z2)

d
,

which implies

ωk(a+b−c−d−1) = exp

[
i2π

n
k(a + b − c − d − 1)

]
= 1. (6.88)

Using (6.78), we rewrite the remaining equivariance conditions (6.67) and (6.69) as

ω−kF1(z2, z1) = F1(ω−kz2, ω
−k z1),

ωkF1(z2, z1) = F1(ωkz2, ω
−k z1),

which are expressed as
∑

a=0

∑

b=0

∑

c=0

∑

d=0

ω−kAabcd(ϕ̃)z2
a z1

b
z2

c
z1

d

=
∑

a=0

∑

b=0

∑

c=0

∑

d=0

Aabcd(ϕ̃)(ω−kz2)
a
(ω−k z1)

b
(ωk z2)

c
(ωkz1)

d
,

∑

a=0

∑

b=0

∑

c=0

∑

d=0

ωkAabcd(ϕ̃)z2
a z1

b
z2

c
z1

d

=
∑

a=0

∑

b=0

∑

c=0

∑

d=0

Aabcd(ϕ̃)(ωkz2)
a
(ω−k z1)

b
(ω−k z2)

c
(ωkz1)

d
.
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Each of these conditions leads to the same result as (6.88) and (6.87), respectively. To sum up,

from (6.87) and (6.88), we have the following conditions for (4; k, k,+):

k(a − b − c + d − 1) ≡ 0 mod n,

k(a + b − c − d − 1) ≡ 0 mod n.

We rewrite these conditions as

ǩ(a − b − c + d − 1) ≡ 0 mod ň,

ǩ(a + b − c − d − 1) ≡ 0 mod ň,

which are equivalent to the following condition:

a − b − c + d − 1 = vň, a + b − c − d − 1 = wň (v,w ∈ Z).

Adding and subtracting the two equations from each other, we have

2(a − c − 1) = (v + w)ň, 2(b − d) = (w − v)ň.

This condition is equivalent to

a = c + (v + w)ň/2 + 1, b = d + (w − v)ň/2. (6.89)

Since the indices a, b, c, and d are integers, we have the following condition (p, q ∈ Z):

{
v + w = p, w − v = 2q − p for ň even,

v + w = 2p, w − v = 2(q − p) for ň odd.
(6.90)

Note that for ň odd, we can replace q − p as q (q ∈ Z). From (6.89) and (6.90), we have the

following condition:

{
a = c + pň/2 + 1, b = d + (2q − p)ň/2 for ň even,

a = c + pň + 1, b = d + qň for ň odd.
(6.91)

Note that for both cases in (6.91), a = 0 and c = 0 are not satisfied simultaneously:

{
a = 0⇒ c = −pň/2 − 1 , 0, c = 0⇒ a = pň/2 + 1 , 0 for ň even,

a = 0⇒ c = −pň − 1 , 0, c = 0⇒ a = pň + 1 , 0 for ň odd.

If ň is even, F1 in (6.53) becomes

F1(z1, z2, ϕ̃) = z1

∞∑

c=0

∞∑

d=0

∑

p,q∈Z, c+p ň
2
+1>0, d+(2q−p) ň

2
≥0

Ac+p ň
2
+1,d+(2q−p) ň

2
,cd(ϕ̃)z1

c+p ň
2 z2

d+(2q−p) ň
2 z1

c
z2

d

+ z1

∞∑

d=0

∞∑

p=1

∑

q∈Z, d+(2q+p) ň
2
≥0

A0,d+(2q+p) ň
2
,p ň

2
−1,d(ϕ̃)z2

d+(2q+p) ň
2 z1

p ň
2
−2

z2
d
. (6.92)
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If ň is odd, F1 in (6.53) becomes

F1(z1, z2, ϕ̃) = z1

∞∑

c=0

∞∑

d=0

∑

p∈Z, c+pň+1>0

∑

q∈Z, d+qň≥0

Ac+pň+1,d+qň,cd(ϕ̃)z1
c+pňz2

d+qň z1
c

z2
d

+ z1

∞∑

d=0

∞∑

p=1

∑

q∈Z, d+qň≥0

A0,d+qň,pň−1,d(ϕ̃)z2
d+qň z1

pň−2
z2

d
. (6.93)

For (4; n/2, ℓ,+), the equivariance condition (6.74) is expressed as

∑

a=0

∑

b=0

∑

c=0

∑

d=0

(−Aabcd(ϕ̃))z1
az2

b z1
c

z2
d
=

∑

a=0

∑

b=0

∑

c=0

∑

d=0

Aabcd(ϕ̃)(−z1)a(ω−ℓz2)
b
(−z1)

c
(ωℓ z2)

d
,

which implies

−1 = (−1)a+cωℓ(d−b).

We rewrite this condition as

exp

[
i2π

n

{
n

2
(a + c) + ℓ(d − b)

}]
= −1. (6.94)

Therein, we used

(−1)a+c = exp

[
iπ

n
(a + c)

]
(a, c ∈ Z+),

where Z+ represents the set of nonnegative integers. The equivariance condition (6.76) is expressed

as

∑

a=0

∑

b=0

∑

c=0

∑

d=0

(ωℓAabcd(ϕ̃))z1
az2

b z1
c

z2
d
=

∑

a=0

∑

b=0

∑

c=0

∑

d=0

Aabcd(ϕ̃)(ωℓz1)
a
(−z2)b(ω−ℓ z1)

c
(−z2)

d
,

which implies

ωℓ = (−1)b+dωℓ(a−c).

We rewrite this condition as

exp

[
i2π

n

{
n

2
(b + d) + ℓ(a − c − 1)

}]
= 1. (6.95)

Therein, we used

(−1)b+d = exp

[
iπ

n
(b + d)

]
(b, d ∈ Z+).

Using (6.78), we rewrite the remaining equivariance conditions (6.75) and (6.77) as

ω−ℓF1(z2, z1) = F1(ω−ℓz2,−z1),

−F1(z2, z1) = F1(−z2, ω
−ℓ z1),

123



which are expressed as

∑

a=0

∑

b=0

∑

c=0

∑

d=0

ω−ℓAabcd(ϕ̃)z2
a z1

b
z2

c
z1

d =
∑

a=0

∑

b=0

∑

c=0

∑

d=0

Aabcd(ϕ̃)(ω−ℓz2)
a
(−z1)

b
(ωℓ z2)

c
(−z1)d,

∑

a=0

∑

b=0

∑

c=0

∑

d=0

(−Aabcd(ϕ̃))z2
a z1

b
z2

c
z1

d =
∑

a=0

∑

b=0

∑

c=0

∑

d=0

Aabcd(ϕ̃)(−z2)a(ω−ℓ z1)
b
(−z2)

c
(ωℓz1)

d
.

Each of these conditions leads to the same result as (6.95) and (6.94), respectively.

To sum up, from (6.94) and (6.95), we have the following conditions for (4; n/2, ℓ,+):

n

2
(a + c − 1) + ℓ(d − b) ≡ 0 mod n,

n

2
(b + d) + ℓ(a − c − 1) ≡ 0 mod n.

We rewrite these conditions as

ñ(a + c − 1) + 2ℓ̃(d − b) ≡ 0 mod 2ñ,

ñ(b + d) + 2ℓ̃(a − c − 1) ≡ 0 mod 2ñ,

which are equivalent to the following condition:

ñ(a + c − 1) + 2ℓ̃(d − b) = 2pñ, ñ(b + d) + 2ℓ̃(a − c − 1) = 2qñ (p, q ∈ Z). (6.96)

We investigate this condition dependent on the parity of ñ.

When ñ is even, the condition (6.96) is equivalent to

(a + c − 1 − 2p)ñ/2 = (b − d)ℓ̃, (a − c − 1)ℓ̃ = −(b + d − 2q)ñ/2.

Since ℓ̃ and ñ are coprime, we have the following conditions (v,w ∈ Z):

b − d = vñ/2, b + d − 2q = wℓ̃, (6.97)

a + c − 1 − 2p = vℓ̃, a − c − 1 = −wñ/2. (6.98)

Adding and subtracting the two equations in (6.97) from each other, we have

2(b − q) = vñ/2 + wℓ̃, 2(d − q) = −vñ/2 + wℓ̃.

This condition is equivalent to

[
b

d

]
= q

[
1

1

]
+

1

2

[
vñ/2 + wℓ̃

−vñ/2 + wℓ̃

]
. (6.99)

Since the indices b and d in (6.99) are integers, we have

vñ/2 + wℓ̃ ∈ 2Z. (6.100)
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Note that if the condition (6.100) is satisfied, then −vñ/2 + wℓ̃ ∈ 2Z is also satisfied. Adding and

subtracting the two equations in (6.98) from each other, we have

2(a − 1 − p) = vℓ̃ − wñ/2, 2(c − p) = vℓ̃ + wñ/2.

This condition is equivalent to

[
a

c

]
= p

[
1

1

]
+

1

2

[
vℓ̃ − wñ/2

vℓ̃ + wñ/2

]
+

[
1

0

]
. (6.101)

Since the indices a and c in (6.101) are integers, we have

vℓ̃ + wñ/2 ∈ 2Z. (6.102)

Note that if the condition (6.102) is satisfied, then vℓ̃ − wñ/2 ∈ 2Z is also satisfied. Since ℓ̃ and

ñ are coprime, ℓ̃ is odd. Thus, the conditions (6.100) and (6.102) are equivalent to the following

condition (t, u, t′, u′ ∈ Z):

{
(v,w) = (2t, 2u) if ñ/2 is even,

(v,w) = (2t, 2u), (2t′ + 1, 2u′ + 1) if ñ/2 is odd.
(6.103)

If ñ/2 is even, the indices a, b, c, and d take the form



a

b

c

d


= p



1

0

1

0


+ q



0

1

0

1


+ t



ℓ̃

ñ/2

ℓ̃

−ñ/2


+ u



−ñ/2

ℓ̃

ñ/2

ℓ̃


+



1

0

0

0


. (6.104)

Note that a = 0 and c = 0 are not satisfied simultaneously:

a = 0⇒ c = uñ − 1 , 0, c = 0⇒ a = −uñ + 1 , 0.

With this result, we define disjoint sets U and V as

U = {(p, q, t, u) ∈ Z4 | a > 0, b ≥ 0, c ≥ 0, d ≥ 0},
V = {(p, q, t, u) ∈ Z4 | a = 0, b ≥ 0, c > 0, d ≥ 0},

which satisfy U ∪ V = ϕ and are rewritten as

U =


(p, q, t, u) ∈ Z4

∣∣∣∣∣∣∣∣∣∣∣

p + tℓ̃ − uñ/2 + 1 > 0

q + tñ/2 + uℓ̃ ≥ 0

p + tℓ̃ + uñ/2 ≥ 0

q − tñ/2 + uℓ̃ ≥ 0


, (6.105)

V =


(p, q, t, u) ∈ Z4

∣∣∣∣∣∣∣∣∣∣∣

p + tℓ̃ − uñ/2 + 1 = 0

q + tñ/2 + uℓ̃ ≥ 0

uñ − 1 > 0

q − tñ/2 + uℓ̃ ≥ 0


. (6.106)
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Then, F1 in (6.53) becomes

F1(z1, z2, ϕ̃) = z1

∑

(p,q,t,u)∈U
Ap+tℓ̃−u ñ

2
+1,q+t ñ

2
+uℓ̃,p+tℓ̃+u ñ

2
,q−t ñ

2
+uℓ̃(ϕ̃)z1

p+tℓ̃−u ñ
2 z2

q+t ñ
2
+uℓ̃ z1

p+tℓ̃+u ñ
2 z2

q−t ñ
2
+uℓ̃

+ z1

∑

(p,q,t,u)∈V
A0,q+t ñ

2
+uℓ̃,uñ−1,q−t ñ

2
+uℓ̃(ϕ̃)z2

q+t ñ
2
+uℓ̃ z1

uñ−2
z2

q−t ñ
2
+uℓ̃
. (6.107)

If ñ/2 is odd, the indices a, b, c, and d take the form



a

b

c

d


= p



1

0

1

0


+ q



0

1

0

1


+ t



ℓ̃

ñ/2

ℓ̃

−ñ/2


+ u



−ñ/2

ℓ̃

ñ/2

ℓ̃


+



1

0

0

0


, (6.108)



a

b

c

d


= p′



1

0

1

0


+ q′



0

1

0

1


+ t′



ℓ̃

ñ/2

ℓ̃

−ñ/2


+ u′



−ñ/2

ℓ̃

ñ/2

ℓ̃


+

1

2



ℓ̃ − ñ/2

ℓ̃ + ñ/2

ℓ̃ + ñ/2

ℓ̃ − ñ/2


+



1

0

0

0


. (6.109)

The first relation (6.108) is nothing but (6.104). Note that (6.108) and (6.109) take different vec-

tors. In fact, assuming (6.108) = (6.109), we have

(p′ − p)



1

0

1

0


+ (q′ − q)



0

1

0

1


+ (t′ − t)



ℓ̃

ñ/2

ℓ̃

−ñ/2


+ (u′ − u)



−ñ/2

ℓ̃

ñ/2

ℓ̃


+

1

2



ℓ̃ − ñ/2

ℓ̃ + ñ/2

ℓ̃ + ñ/2

ℓ̃ − ñ/2


=



0

0

0

0


.

Substituting the first equation into the third equation, we have (u′ − u + 1/2)ñ = 0. This is a con-

tradiction since u′ − u ∈ Z. In addition, note that a = 0 and c = 0 are not satisfied simultaneously:

{
a = 0⇒ c = uñ − 1 , 0, c = 0⇒ a = −uñ + 1 , 0 for (6.108),

a = 0⇒ c = (2u′ + 1)ň/2 − 1 , 0, c = 0⇒ a = −(2u′ + 1)ň/2 + 1 , 0 for (6.109).

With this result, we can define four disjoint sets U and V in (6.105) and (6.106) and U′ and V ′

from (6.109) as

U′ =


(p, q, t, u) ∈ Z4

∣∣∣∣∣∣∣∣∣∣∣

p + tℓ̃ − uñ/2 + (ℓ̃ − ñ/2)/2 + 1 > 0

q + tñ/2 + uℓ̃ + (ℓ̃ + ñ/2)/2 ≥ 0

p + tℓ̃ + uñ/2 + (ℓ̃ + ñ/2)/2 ≥ 0

q − tñ/2 + uℓ̃ + (ℓ̃ − ñ/2)/2 ≥ 0


, (6.110)

V ′ =


(p, q, t, u) ∈ Z4

∣∣∣∣∣∣∣∣∣∣∣

p + tℓ̃ − uñ/2 + (ℓ̃ − ñ/2)/2 + 1 = 0

q + tñ/2 + uℓ̃ + (ℓ̃ + ñ/2)/2 ≥ 0

(2u + 1)ñ/2 − 1 > 0

q − tñ/2 + uℓ̃ + (ℓ̃ − ñ/2)/2 ≥ 0


. (6.111)
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Then, F1 in (6.53) becomes

F1(z1, z2, ϕ̃) = z1

∑

(p,q,t,u)∈U
Ap+tℓ̃−u ñ

2
+1,q+t ñ

2
+uℓ̃,p+tℓ̃+u ñ

2
,q−t ñ

2
+uℓ̃(ϕ̃)z1

p+tℓ̃−u ñ
2 z2

q+t ñ
2
+uℓ̃ z1

p+tℓ̃+u ñ
2 z2

q−t ñ
2
+uℓ̃

+ z1

∑

(p,q,t,u)∈V
A0,q+t ñ

2
+uℓ̃,uñ−1,q−t ñ

2
+uℓ̃(ϕ̃)z2

q+t ñ
2
+uℓ̃ z1

uñ−2
z2

q−t ñ
2
+uℓ̃

+ z1

∑

(p,q,t,u)∈U′
Ap+tℓ̃−u ñ

2
+ 1

2
(ℓ̃− ñ

2
)+1,q+t ñ

2
+uℓ̃+ 1

2
(ℓ̃+ ñ

2
),p+tℓ̃+u ñ

2
+ 1

2
(ℓ̃+ ñ

2
),q−t ñ

2
+uℓ̃+ 1

2
(ℓ̃− ñ

2
)(ϕ̃)

× z1
p+tℓ̃−u ñ

2
+ 1

2
(ℓ̃− ñ

2
)z2

q+t ñ
2
+uℓ̃+ 1

2
(ℓ̃+ ñ

2
) z1

p+tℓ̃+u ñ
2
+ 1

2
(ℓ̃+ ñ

2
)

z2
q−t ñ

2
+uℓ̃+ 1

2
(ℓ̃− ñ

2
)

+ z1

∑

(p,q,t,u)∈V′
A0,q+t ñ

2
+uℓ̃+ 1

2
(ℓ̃+ ñ

2
),(2u+1) ñ

2
−1,q−t ñ

2
+uℓ̃+ 1

2
(ℓ̃− ñ

2
)(ϕ̃)

× z2
q+t ñ

2
+uℓ̃+ 1

2
(ℓ̃+ ñ

2
) z1

(2u+1) ñ
2
−2

z2
q−t ñ

2
+uℓ̃+ 1

2
(ℓ̃− ñ

2
)
. (6.112)

When ñ is odd, the condition (6.96) is rewritten as

(a + c − 1 − 2p)ñ = 2ℓ̃(b − d), 2ℓ̃(a − c − 1) = −(b + d − 2q)ñ.

Since 2ℓ̃ and ñ are coprime, we have the following conditions (v,w ∈ Z):

b − d = vñ, b + d − 2q = 2wℓ̃, (6.113)

a + c − 1 − 2p = 2vℓ̃, a − c − 1 = −wñ. (6.114)

Adding and subtracting the two equations in (6.113) from each other, we have

2(b − q) = vñ + 2wℓ̃, 2(d − q) = −vñ + 2wℓ̃.

This condition is equivalent to
[
b

d

]
= q

[
1

1

]
+

1

2
v

[
ñ

−ñ

]
+ w

[
ℓ̃

ℓ̃

]
. (6.115)

Since the indices b and d in (6.115) are integers, and ñ is odd, we have v ∈ 2Z. Therefore, we

replace v as 2t (t ∈ Z). Adding and subtracting the two equations in (6.114) from each other, we

have

2(a − 1 − p) = 2vℓ̃ − wñ, 2(c − p) = 2vℓ̃ + wñ.

This condition is equivalent to
[
a

c

]
= p

[
1

1

]
+ v

[
ℓ̃

ℓ̃

]
+

1

2
w

[
−ñ

ñ

]
+

[
1

0

]
. (6.116)

Since the indices a and c in (6.116) are integers, and ñ is odd, we have w ∈ 2Z. Therefore, we

replace w as 2u (u ∈ Z). To sum up, we have


a

b

c

d


= p



1

0

1

0


+ q



0

1

0

1


+ t



2ℓ̃

ñ

2ℓ̃

−ñ


+ u



−ñ

2ℓ̃

ñ

2ℓ̃


+



1

0

0

0


. (6.117)
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Note that a = 0 and c = 0 are not satisfied simultaneously:

a = 0⇒ c = 2uñ − 1 , 0, c = 0⇒ a = −uñ + 1 , 0.

Similarly to the case that ñ is even, we define sets U and V as

U =


(p, q, t, u) ∈ Z4

∣∣∣∣∣∣∣∣∣∣∣

p + 2tℓ̃ − uñ + 1 > 0

q + tñ + 2uℓ̃ ≥ 0

p + 2tℓ̃ + uñ ≥ 0

q − tñ + 2uℓ̃ ≥ 0


, (6.118)

V =


(p, q, t, u) ∈ Z4

∣∣∣∣∣∣∣∣∣∣∣

p + 2tℓ̃ − uñ + 1 = 0

q + tñ + 2uℓ̃ ≥ 0

2uñ − 1 > 0

q − tñ + 2uℓ̃ ≥ 0


. (6.119)

Then, F1 in (6.53) becomes

F1(z1, z2, ϕ̃) = z1

∑

(p,q,t,u)∈U
Ap+2tℓ̃−uñ+1,q+tñ+2uℓ̃,p+2tℓ̃+uñ,q−tñ+2uℓ̃(ϕ̃)z1

p+2tℓ̃−uñz2
q+tñ+2uℓ̃ z1

p+2tℓ̃+uñ
z2

q−tñ+2uℓ̃

+ z1

∑

(p,q,t,u)∈V
A0,q+tñ+2uℓ̃,2uñ−1,q−tñ+2uℓ̃(ϕ̃)z2

q+tñ+2uℓ̃ z1
2uñ−2

z2
q−tñ+2uℓ̃

. (6.120)

6.4.2. Symmetry of Square Patterns

For the irreducible representations µ = (4; k, 0,+), (4; k, k,+), (4; n/2, ℓ,+), a system of the

bifurcation equations F1 = F2 = 0 has a bifurcating solution, which represent the square pattern:

(z1, z2) = (w,w) (w ∈ R). In Section 5.5.2, we showed the existence of this bifurcating solution by

using the equivariant branching lemma (see Propositions 5.5–5.7). In this section, we discuss the

symmetry of this bifurcating solution.

Consider µ = (4; k, 0,+). Substituting the square pattern (z1, z2) = (w,w) into (6.86), we have

F1(w,w, ϕ̃) = w

∞∑

c=0

∞∑

d=0

∑

p∈Z, c+pň+1>0

∑

q∈Z, d+qň≥0

Ac+pň+1,d+qň,cd(ϕ̃)w2(c+d)+(p+q)ň

+ w

∞∑

d=0

∞∑

p=1

∑

q∈Z, d+qň≥0

A0,d+qň,pň−1,d(ϕ̃)w2d+(p+q)ň−2

≈ w
{
A′1000(0)ϕ̃ + (A1101(0) + A2010(0))w2 + A00,ň−1,0(0)wň−2

}
.

If ň is even, then F1(w,w, ϕ̃) becomes an odd function in w, and hence the two bifurcating solutions

(w,w, ϕ̃) and (−w,−w, ϕ̃) are conjugate. If ň is odd, the two solutions are not conjugate.

Consider µ = (4; k, k,+) with ň even. Substituting the square pattern (z1, z2) = (w,w) into
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(6.92), we have

F1(w,w, ϕ̃) = w

∞∑

c=0

∞∑

d=0

∑

p,q∈Z, c+p ň
2
+1>0, d+(2q−p) ň

2
≥0

Ac+p ň
2
+1,d+(2q−p) ň

2
,cd(ϕ̃)w2(c+d)+qň

+ w

∞∑

d=0

∞∑

p=1

∑

q∈Z, d+(2q+p) ň
2
≥0

A0,d+(2q+p) ň
2
,p ň

2
−1,d(ϕ̃)w2d+qň−2

≈ w{A′1000(0)ϕ̃ + (A1101(0) + A2010(0))w2

+ (A00,ň−1,0(0) + A0, ň
2
, ň

2
−1,0(0) + A00, ň

2
−1, ň

2
(0))wň−2}.

Since ň is even, F1(w,w, ϕ̃) is an odd function in w. Hence, the two bifurcating solutions (w,w, ϕ̃)

and (−w,−w, ϕ̃) are conjugate.

Consider µ = (4; k, k,+) with ň odd. Substituting the square pattern (z1, z2) = (w,w) into

(6.93), we have

F1(w,w, ϕ̃) = w

∞∑

c=0

∞∑

d=0

∑

p∈Z, c+pň+1>0

∑

q∈Z, d+qň≥0

Ac+pň+1,d+qň,cd(ϕ̃)w2(c+d)+(p+q)ň

+ w

∞∑

d=0

∞∑

p=1

∑

q∈Z, d+qň≥0

A0,d+qň,pň−1,d(ϕ̃)w2d+(p+q)ň−2

≈ w
{
A′1000(0)ϕ̃ + (A1101(0) + A2010(0))w2 + A00,ň−1,0(0)wň−2

}
.

Since ň is odd, F1(w,w, ϕ̃) is not an odd function in w. Hence, the two bifurcating solutions

(w,w, ϕ̃) and (−w,−w, ϕ̃) are not conjugate.

Consider µ = (4; n/2, ℓ,+) with ñ/2 even. Substituting the square pattern (z1, z2) = (w,w) into

(6.107), we have

F1(w,w, ϕ̃) = w
∑

(p,q,t,u)∈U
Ap+tℓ̃−u ñ

2
+1,q+t ñ

2
+uℓ̃,p+tℓ̃+u ñ

2
,q−t ñ

2
+uℓ̃(ϕ̃)w

2(p+q)+2(t+u)ℓ̃

+ w
∑

(p,q,t,u)∈V
A0,q+t ñ

2
+uℓ̃,uñ−1,q−t ñ

2
+uℓ̃(ϕ̃)w

2q+2u(ℓ̃+ ñ
2

)−2

≈ w
{
A′1000(0)ϕ̃ + (A1101(0) + A2010(0))w2 + A00,ñ−1,0(0)wñ−2

}
.

Then, F1(w,w, ϕ̃) is an odd function in w. Hence, the two bifurcating solutions (w,w, ϕ̃) and

(−w,−w, ϕ̃) are conjugate.

Consider µ = (4; n/2, ℓ,+) with ñ/2 odd. Substituting the square pattern (z1, z2) = (w,w) into
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(6.112), we have

F1(z1, z2, ϕ̃) = w
∑

(p,q,t,u)∈U1

Ap+tℓ̃−u ñ
2
+1,q+t ñ

2
+uℓ̃,p+tℓ̃+u ñ

2
,q−t ñ

2
+uℓ̃(ϕ̃)w

2(p+q)+2(t+u)ℓ̃

+ w
∑

(p,q,t,u)∈V1

A0,q+t ñ
2
+uℓ̃,uñ−1,q−t ñ

2
+uℓ̃(ϕ̃)w

2q+2u(ℓ̃+ ñ
2

)−2

+ w
∑

(p,q,t,u)∈U2

Ap+tℓ̃−u ñ
2
+ 1

2
(ℓ̃− ñ

2
)+1,q+t ñ

2
+uℓ̃+ 1

2
(ℓ̃+ ñ

2
),p+tℓ̃+u ñ

2
+ 1

2
(ℓ̃+ ñ

2
),q−t ñ

2
+uℓ̃+ 1

2
(ℓ̃− ñ

2
)(ϕ̃)

× w2(p+q)+2(t+u+1)ℓ̃

+ w
∑

(p,q,t,u)∈V2

A0,q+t ñ
2
+uℓ̃+ 1

2
(ℓ̃+ ñ

2
),(2u+1) ñ

2
−1,q−t ñ

2
+uℓ̃+ 1

2
(ℓ̃− ñ

2
)(ϕ̃)w

2q+(2u+1)(ℓ̃+ ñ
2

)−2

≈ w
{
A′1000(0)ϕ̃ + (A1101(0) + A2010(0))w2 + A00,ñ−1,0(0)wñ−2

}
.

Since ℓ̃ + ñ/2 is even, F1(w,w, ϕ̃) is an odd function in w. Hence, the two bifurcating solutions

(w,w, ϕ̃) and (−w,−w, ϕ̃) are conjugate.

Consider µ = (4; n/2, ℓ,+) with ñ odd. Substituting the square pattern (z1, z2) = (w,w) into

(6.120), we have

F1(w,w, ϕ̃) = w
∑

(p,q,t,u)∈U
Ap+2tℓ̃−uñ+1,q+tñ+2uℓ̃,p+2tℓ̃+uñ,q−tñ+2uℓ̃(ϕ̃)w

2(p+q)+4(t+u)ℓ̃

+ w
∑

(p,q,t,u)∈V
A0,q+tñ+2uℓ̃,2uñ−1,q−tñ+2uℓ̃(ϕ̃)w

2q+2u(2ℓ̃+ñ)−2

≈ w
{
A′1000(0)ϕ̃ + (A1101(0) + A2010(0))w2

}
.

Then, F1(w,w, ϕ̃) is an odd function in w. Hence, the two bifurcating solutions (w,w, ϕ̃) and

(−w,−w, ϕ̃) are conjugate.

To sum up, we have the following proposition on the symmetry of the square pattern.

Proposition 6.4. For a critical point of multiplicity 4, the two bifurcating solutions (w,w, ϕ̃) and

(−w,−w, ϕ̃) (w ∈ R) are conjugate for the following cases:

• µ = (4; k, 0,+), (4; k, k,+) with ň = n/ gcd(n, k) even,

• µ = (4; n/2, ℓ,+) for any ñ = n/ gcd(n, ℓ),

and are not conjugate for µ = (4; k, 0,+), (4; k, k,+) with ň odd.

6.4.3. Existence and Symmetry of Stripe Patterns

In this section, we would like to show the existence and the symmetry of two types of stripe

patterns, which are represented as

Type I stripe pattern : (z1, z2) = (w, 0) (w ∈ R),

Type II stripe pattern : (z1, z2) = (iw, 0) (w ∈ R).
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Consider µ = (4; k, 0,+). Substituting Type I stripe pattern (z1, z2) = (w, 0) into (6.86), we have

F1(w, 0, ϕ̃) = w

∞∑

c=0

∑

p∈Z, c+pň+1>0

Ac+pň+1,0c0(ϕ̃)w2c+pň + w

∞∑

p=1

A00,pň−1,0(ϕ̃)wpň−2

≈ w
{
A′1000(0)ϕ̃ + A2010(0)w2 + A00,ň−1,0(0)wň−2

}
.

Thus, F1(w, 0, ϕ̃) = 0 has the trivial solution w = 0 and a bifurcating solution. From (6.78), we

have F2(w, 0) = F1(0,w), and hence we have F1 = F2 = 0 for (z1, z2) = (w, 0). If ň is even, then

F1(w, 0, ϕ̃) becomes an odd function in w, and hence the two bifurcating solutions (w, 0, ϕ̃) and

(−w, 0, ϕ̃) are conjugate. If ň is odd, the two solutions are not conjugate. Next, substituting Type

II stripe pattern (z1, z2) = (iw, 0) into (6.86), we have

F1(iw, 0, ϕ̃) = iw

∞∑

c=0

∑

p∈Z, c+pň+1>0

Ac+pň+1,0c0(ϕ̃)ipňw2c+pň − iw

∞∑

p=1

A00,pň−1,0(ϕ̃)(−i)pň−2wpň−2

≈ iw
{
A′1000(0)ϕ̃ + A2010(0)w2 − A00,ň−1,0(0)(−i)ň−2wň−2

}
.

If ň is even (ipň and (−i)pň−2 are real), then F1(iw, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a

bifurcating solution, and a discussion similar to that for Type I stripe pattern holds.

Consider µ = (4; k, k,+) with ň even. Substituting Type I stripe pattern (z1, z2) = (w, 0) into

(6.92), we have

F1(w, 0, ϕ̃) = w

∞∑

c=0

∑

q∈Z, c+qň+1>0

Ac+qň+1,0c0(ϕ̃)w2c+qň + w

∞∑

p=1

A00,qň−1,0(ϕ̃)wqň−2

≈ w
{
A′1000(0)ϕ̃ + A2010(0)w2 + A00,ň−1,0(0)wň−2

}
.

Thus, F1(w, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating solution. From (6.78), we

have F2(w, 0) = F1(0,w), and hence we have F1 = F2 = 0 for (z1, z2) = (w, 0). Since ň is even,

F1(w, 0, ϕ̃) is an odd function in w, and hence the two bifurcating solutions (w, 0, ϕ̃) and (−w, 0, ϕ̃)

are conjugate. Next, substituting Type II stripe pattern (z1, z2) = (iw, 0) into (6.92), we have

F1(iw, 0, ϕ̃) = iw

∞∑

c=0

∑

q∈Z, c+qň+1>0

Ac+qň+1,0c0(ϕ̃)iqňw2c+qň − iw

∞∑

q=1

A00,qň−1,0(ϕ̃)(−i)qň−2wqň−2

≈ iw
{
A′1000(0)ϕ̃ + A2010(0)w2 − A00,ň−1,0(0)(−i)ň−2wň−2

}
.

Since ň is even (iqň and (−i)qň−2 are real), F1(iw, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a

bifurcating solution, and a discussion similar to that for Type I stripe pattern holds.

Consider µ = (4; k, k,+) with ň odd. Substituting Type I stripe pattern (z1, z2) = (w, 0) into

(6.93), we have

F1(w, 0, ϕ̃) = w

∞∑

c=0

∑

p∈Z, c+pň+1>0

Ac+pň+1,0c0(ϕ̃)w2c+pň + w

∞∑

p=1

A00,pň−1,0(ϕ̃)wpň−2

≈ w
{
A′1000(0)ϕ̃ + A2010(0)w2 + A00,ň−1,0(0)wň−2

}
.
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Thus, F1(w, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating solution. From (6.78),

we have F2(w, 0) = F1(0,w), and hence we have F1 = F2 = 0 for (z1, z2) = (w, 0). Since ň is

odd, F1(w, 0, ϕ̃) is not an odd function in w, and hence the two bifurcating solutions (w, 0, ϕ̃) and

(−w, 0, ϕ̃) are not conjugate. Next, substituting Type II stripe pattern (z1, z2) = (iw, 0) into (6.93),

we have

F1(iw, 0, ϕ̃) = iw

∞∑

c=0

∑

p∈Z, c+pň+1>0

Ac+pň+1,0c0(ϕ̃)ipňw2c+pň − iw

∞∑

p=1

A00,pň−1,0(ϕ̃)(−i)pň−2wpň−2.

Since ň is odd (ipň and (−i)pň−2 can be imaginary), F1(iw, 0, ϕ̃) = 0 cannot be solved for ϕ̃.

Consider µ = (4; n/2, ℓ,+) with ñ/2 even. In (6.104), we have

{
b = q + tñ/2 + uℓ̃ = 0

d = q − tñ/2 + uℓ̃ = 0
⇒

{
q = −uℓ̃

t = 0
.

Thus, we have

F1(z1, 0, ϕ̃) = z1

∑

p,u∈Z, p−u ñ
2
+1>0, p+u ñ

2
≥0

Ap−u ñ
2
+1,0,p+u ñ

2
,0(ϕ̃)z1

p−u ñ
2 z1

p+u ñ
2 + z1

∞∑

u=1

A00,uñ−1,0(ϕ̃)z1
uñ−2
.

(6.121)

Substituting Type I stripe pattern (z1, z2) = (w, 0) into (6.121), we have

F1(w, 0, ϕ̃) = w
∑

p,u∈Z, p−u ñ
2
+1>0, p+u ñ

2
≥0

Ap−u ñ
2
+1,0,p+u ñ

2
,0(ϕ̃)w2p + w

∞∑

u=1

A00,uñ−1,0(ϕ̃)wuñ−2

≈ w
{
A′1000(0)ϕ̃ + A2010(0)w2 + A00,ñ−1,0(0)wñ−2

}
.

Thus, F1(w, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating solution. From (6.78),

we have F2(w, 0) = F1(0,w). Thus, we have F1 = F2 = 0 for (z1, z2) = (w, 0). Since ñ is even,

F1(w, 0, ϕ̃) is an odd function in w. Hence, the two bifurcating solutions (w, 0, ϕ̃) and (−w, 0, ϕ̃)

are conjugate. Next, substituting Type II stripe pattern (z1, z2) = (iw, 0) into (6.121), we have

F1(iw, 0, ϕ̃)

= iw
∑

p,u∈Z, p−u ñ
2
+1>0, p+u ñ

2
≥0

Ap−u ñ
2
+1,0,p+u ñ

2
,0(ϕ̃)(−1)p+u ñ

2 i2pw2p − iw

∞∑

u=1

A00,uñ−1,0(ϕ̃)iuñ−2wuñ−2

≈ iw
{
A′1000(0)ϕ̃ + A2010(0)w2 − A00,ñ−1,0(0)iñ−2wñ−2

}
.

Since ñ is even (iuñ−2 is real), F1(iw, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating

solution. Then, a discussion similar to that for Type I stripe pattern holds.

Consider µ = (4; n/2, ℓ,+) with ñ/2 odd. In (6.109), we have

{
b = q + tñ/2 + uℓ̃ + (ℓ̃ + ñ/2)/2 = 0

d = q − tñ/2 + uℓ̃ + (ℓ̃ − ñ/2)/2 = 0
⇒ 2q + (2u + 1)ℓ̃ = 0.
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Since ℓ̃ is odd, this relation is a contradiction. Hence, b = 0 and d = 0 are not satisfied simultane-

ously. In (6.108), we have

{
b = q + uℓ̃ + tñ/2 = 0

d = q + uℓ̃ − tñ/2 = 0
⇒

{
q = −uℓ̃

t = 0
.

To sum up, we have

F1(z1, 0, ϕ̃) = z1

∑

p,u∈Z, p−u ñ
2
+1>0, p+u ñ

2
≥0

Ap−u ñ
2
+1,0,p+u ñ

2
,0(ϕ̃)z1

p−u ñ
2 z1

p+u ñ
2 + z1

∞∑

u=1

A00,uñ−1,0(ϕ̃)z1
uñ−2
.

Then, a discussion similar to that for µ = (4; n/2, ℓ,+) with (ℓ̃, ñ/2) = (odd, even) holds.

Consider µ = (4; n/2, ℓ,+) with ñ odd. In (6.117), we have

{
b = q + tñ + 2uℓ̃ = 0

d = q − tñ + 2uℓ̃ = 0
⇒

{
q = −2uℓ̃

t = 0
.

Thus, we have

F1(z1, 0, ϕ̃) = z1

∑

p,u∈Z, p−uñ+1>0, p+uñ≥0

Ap−uñ+1,0,p+uñ,0(ϕ̃)z1
p−uñ z1

p+uñ
+ z1

∞∑

u=1

A00,2uñ−1,0(ϕ̃)z1
2(uñ−1)

.

(6.122)

Substituting Type I stripe pattern (z1, z2) = (w, 0) into (6.122), we have

F1(w, 0, ϕ̃) = w
∑

p,u∈Z, p−uñ+1>0, p+uñ≥0

Ap−uñ+1,0,p+uñ,0(ϕ̃)w2p + w

∞∑

u=1

A00,2uñ−1,0(ϕ̃)w2(uñ−1)

≈ w
{
A′1000(0)ϕ̃ + A2010(0)w2

}
.

Thus, F1(w, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating solution. From (6.78), we

have F2(w, 0) = F1(0,w). Thus, we have F1 = F2 = 0 for (z1, z2) = (w, 0). We see that F1(w, 0, ϕ̃)

is an odd function in w. Hence, the two bifurcating solutions (w, 0, ϕ̃) and (−w, 0, ϕ̃) are conjugate.

Next, substituting Type II stripe pattern (z1, z2) = (iw, 0) into (6.122), we have

F1(w, 0, ϕ̃)

= iw
∑

p,u∈Z, p−uñ+1>0, p+uñ≥0

Ap−uñ+1,0,p+uñ,0(ϕ̃)(−1)p+uñi2pw2p − iw

∞∑

u=1

A00,2uñ−1,0(ϕ̃)i2(uñ−1)w2(uñ−1)

≈ iw
{
A′1000(0)ϕ̃ + A2010(0)w2

}
.

Since the indices of i are real, F1(iw, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating

solution. Then, a discussion similar to that for Type I stripe pattern holds.

To sum up, we have the following propositions on the existence and the symmetry of the stripe

patterns.
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Proposition 6.5. For a critical point of multiplicity 4, the stripe patterns z = (w, 0), (iw, 0) (w ∈ R)

exist for the following cases:

• µ = (4; k, 0,+), (4; k, k,+) of Type I for any ň = n/ gcd(n, k) and Type II with ň even,

• µ = (4; n/2, ℓ,+) of Type I and Type II for any ñ = n/ gcd(n, ℓ).

Proposition 6.6. For a critical point of multiplicity 4, the two bifurcating solutions (z, ϕ̃) and

(−z, ϕ̃) are conjugate for z = (w, 0), (iw, 0) (w ∈ R) for the following cases:

• µ = (4; k, 0,+), (4; k, k,+) with ň = n/ gcd(n, k) even,

• µ = (4; n/2, ℓ,+) for any ñ = n/ gcd(n, ℓ),

and are not conjugate for z = (w, 0) for µ = (4; k, 0,+), (4; k, k,+) with ň odd.

6.4.4. Stability of Bifurcating Solutions

In Section 5.5.2, we found square patterns for a critical point of multiplicity 4 by using the

equivariant branching lemma. In Section 6.4.3, we showed two kinds of stripe patterns by solving

the bifurcation equations. These bifurcating solutions are represented for the bifurcation equation

in real variables in (6.48) as follows (w ∈ R):

wsq = (w, 0,w, 0),

wstripeI = (w, 0, 0, 0),

wstripeII = (0,w, 0, 0).

We would like to evaluate the asymptotic stability of these bifurcating solutions.

We denote by S the set of nonnegative indices (a, b, c, d) as

S =



{(a, b, c, d) ∈ Z4
+ | (6.84)} for µ = (4; k, 0,+),

{(a, b, c, d) ∈ Z4
+ | (6.91)} for µ = (4; k, k,+),

{(a, b, c, d) ∈ Z4
+ | (6.96)} for µ = (4; n/2, ℓ,+),

(6.123)

where Z4
+ represents the set of nonnegative integers in Z4. Note that (a, b, c, d) must belong to S

when Aabcd(ϕ̃) , 0. Hence, we replace the power series (6.53) with

F1(z1, z2, ϕ̃) =
∑

S

Aabcd(ϕ̃)z1
az2

b z1
c

z2
d
. (6.124)

To obtain the asymptotic form of the bifurcation equation and the Jacobian matrix, we elucidate

the elements of S in (6.123) and specify the form of the power series in (6.124). In other words, we

investigate which coefficient Aabcd(ϕ̃) becomes nonzero in (6.124). We focus on the coefficients of

linear terms, quadratic terms, and cubic terms, which play a vital role as leading terms in (6.124).

For this purpose, we take (a, b, c, d) ∈ Z4
+ with a + b + · · · + h ≤ 3 exhaustively and investigate

whether it belongs to S or not. For (4; k, 0,+), (4; k, k,+), and (4; n/2, ℓ,+), we can see

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S .

134



In addition, for some specific cases, we can see

(0, 0, 2, 0) ∈ S for (4; k, 0,+) with ň = 3,

(0, 0, 3, 0) ∈ S for (4; k, 0,+) with ň = 4,

(0, 0, 2, 0) ∈ S for (4; k, k,+) with ň = 3,

(0, 0, 3, 0), (0, 2, 1, 0), (0, 0, 1, 2) ∈ S for (4; k, k,+) with ň = 4,

(0, 0, 3, 0) ∈ S for (4; n/2, ℓ,+) with ñ = 4.

Based on the above results, Fi (i = 1, 2) in (6.50) is restricted to the form of

Fi = a1ϕ̃zi + FC
i + (other terms), i = 1, 2, (6.125)

where

FC
1 = a2z1z2z2 + a3z1

2z1, (6.126)

FC
2 = a2z2z1z1 + a3z2

2z2 (6.127)

with the following notations:

a1 = A′1000(0), a2 = A1101(0), a3 = A2010(0). (6.128)

Therein, F2 is obtained by (6.78). The form of “(other terms)” depends on the type of the irre-

ducible representations in (6.123). Accordingly, F̃i (i = 1, . . . , 4) in (6.48) is restricted to the form

of

F̃i = a1ϕ̃wi + F̃C
i + (other terms), i = 1, . . . , 4 (6.129)

with

F̃C
1 = a2w1(w3

2 + w4
2) + a3w1(w1

2 + w2
2), (6.130)

F̃C
2 = a2w2(w3

2 + w4
2) + a3w2(w1

2 + w2
2), (6.131)

F̃C
3 = a2w3(w1

2 + w2
2) + a3w3(w3

2 + w4
2), (6.132)

F̃C
4 = a2w4(w1

2 + w2
2) + a3w4(w3

2 + w4
2). (6.133)

In (6.125), FC
i

corresponds to cubic terms, and the form of “(other terms)” varies with the

irreducible representations. For the case (4; k, 0,+) with ň = 3, we have quadratic terms as leading

terms. For any other cases, we have cubic terms as leading terms that vary with the irreducible

representations. From this point of view, we can classify the form of the bifurcation equation as

shown in Table 6.3 for each irreducible representation.

As mentioned earlier, the form of “(other terms)” in (6.129) depends on the type µ of the

irreducible representations in (6.123). Therefore, we checked all the possible cases numerically

and classified each case by the form of leading terms. All the possible cases and stability conditions

for the bifurcating solutions are summarized in Table 6.4. The main finding of this section is as

follows:

Proposition 6.7. For a critical point of multiplicity 4, we have the following statements:
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Table 6.3: Nonzero coefficients of leading terms which belong to ”other terms” in (6.125)

µ Cases Nonzero coefficients

(4; k, 0,+) General ň None

ň = 3 A0020(0)

ň = 4 A0030(0)

(4; k, k,+) General ň None

ň = 3 A0020(0)

ň = 4 A0030(0), A0210(0), A0012(0)

(4; n/2, ℓ,+) General ñ None

ñ = 4 A0030(0)

ň = n/ gcd(k, n) in (6.40); ñ = n/ gcd(ℓ, n) in (6.41)

• For µ = (4; k, 0,+) and µ = (4; k, k,+) with ň = 3, the bifurcating solutions wsq and wstripeI

are always unstable in the neighborhood of the critical point, and the bifurcating curve takes

the form ϕ̃ ≈ cw for some constant c.

• For any other cases, the stability of the bifurcating solutions wsq, wstripeI, and wstripeII de-

pends on the values of the coefficients of the power series expansion of the bifurcation equa-

tion in (6.124), and the bifurcating curve takes the form ϕ̃ ≈ cw2 for some constant c.

To show these results, we derive the asymptotic form of the bifurcation equation for each case and

conduct stability analysis for the bifurcating solutions in the remainder of this section.

Case 1: General (4; k, 0,+)

For general (4; k, 0,+), we have

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S ,

and the other elements of S correspond to higher order terms. Then, the asymptotic form of

Fi (i = 1, 2) in (6.125) becomes

F1(z1, z2, ϕ̃) ≈ a1ϕ̃z1 + FC
1 , (6.134)

F2(z1, z2, ϕ̃) ≈ a1ϕ̃z2 + FC
2 , (6.135)

where FC
i

(i = 1, 2) is given in (6.126) and (6.127). By (6.51) and (6.52), the asymptotic form of

F̃i (i = 1, . . . , 4) in (6.48) becomes

F̃1 ≈ a1ϕ̃w1 + F̃C
1 , (6.136)

F̃2 ≈ a1ϕ̃w2 + F̃C
1 , (6.137)

F̃3 ≈ a1ϕ̃w3 + F̃C
1 , (6.138)

F̃4 ≈ a1ϕ̃w4 + F̃C
1 , (6.139)
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Table 6.4: Stability conditions of bifurcating solutions for group-theoretic critical points with multiplicity 4

µ Cases Solutions Stability conditions

(4; k, 0,+) ň = 3 wsq Always unstable

wstripeI Always unstable

wstripeII Does not exist

ň = 4 wsq a3 < −a5 < 0, a3 + a5 < −|a2|
wstripeI a3 < −a5 < 0, a2 < a3 + a5

wstripeII a3 < −a5 < 0, a2 < a3 + a5

(4; k, k,+) ň = 3 wsq Always unstable

wstripeI Always unstable

wstripeII Does not exist

ň = 4 wsq a5 + a6 > 0, a3 + a5 < −|a2 + 2a6|
wstripeI a3 < −a5 < 0, −2|a6| < a3 + a5

wstripeII a3 < −a5 < 0, −2|a6| < a3 + a5

(4; n/2, ℓ,+) ñ = 4 wsq a3 < −a5 < 0, a3 + a5 < −|a2|
wstripeI a3 < −a5 < 0, a2 < a3 + a5

wstripeII a3 < −a5 < 0, a2 < a3 + a5

µ Cases Solutions Stability conditions (necessary condition)

(4; k, 0,+) General ň wsq a3 < −|a2|
wstripeI a2 < a3 < 0

wstripeII a2 < a3 < 0 if ň is even

Does not exist if ň is odd

(4; k, k,+) General ň wsq a3 < −|a2|
wstripeI a2 < a3 < 0

wstripeII a2 < a3 < 0 if ň is even

Does not exist if ň is odd

(4; n/2, ℓ,+) General ñ wsq a3 < −|a2|
wstripeI a2 < a3 < 0

wstripeII a2 < a3 < 0

ň = n/ gcd(k, n) in (6.40); ñ = n/ gcd(ℓ, n) in (6.41);

a2 = A1101(0), a3 = A2010(0), a4 = A0020(0), a5 = A0030(0), a6 = A0210(0) in (6.124)
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where F̃C
i

(i = 1, . . . , 4) is given in (6.130) – (6.133). Hence, the asymptotic form of the Jacobian

matrix in (6.49) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I4 + BC (6.140)

with

BC = a2B2 + a3B3, (6.141)

B2 =



w3
2 + w4

2 0 2w1w3 2w1w4

0 w3
2 + w4

2 2w2w3 2w2w4

2w1w3 2w2w3 w1
2 + w2

2 0

2w1w4 2w2w4 0 w1
2 + w2

2


,

B3 =



3w1
2 + w2

2 2w1w2 0 0

2w1w2 w1
2 + 3w2

2 0 0

0 0 3w3
2 + w4

2 2w3w4

0 0 2w3w4 w3
2 + 3w4

2


.

Substituting wsq into (6.136) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sq ≈ −
a2 + a3

a1

w2.

Evaluating the Jacobian matrix (6.140) at (wsq, ϕ̃sq), we have

J̃(wsq, ϕ̃sq) ≈ 2w2



a3 0 a2 0

0 0 0 0

a2 0 a3 0

0 0 0 0


+ O(w3). (6.142)

Then, the eigenvalues of the matrix J̃(wsq, ϕ̃sq) are given by

λ1, λ2 ≈ 2(a3 ± a2)w2,

λ3 ≈ O(w3) (repeated twice).

A necessary condition where wsq is stable is a3 < −|a2|. A more rigorous stability condition relies

on the concrete form of the terms of O(w3) for λ3. Thus, the stability of wsq depends on the values

of a2 and a3.

Substituting wstripeI into (6.136) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a3

a1

w2.

Evaluating the Jacobian matrix (6.140) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ w2



2a3 0 0 0

0 0 0 0

0 0 a2 − a3 0

0 0 0 a2 − a3


+ O(w3). (6.143)
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Then, the eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by the diagonal components, i.e.,

λ1 ≈ 2a3w2,

λ2 ≈ O(w3),

λ3 ≈ (a2 − a3)w2 (repeated twice).

Necessary conditions where wstripeI is stable are a2 < a3 < 0. A more rigorous stability condition

relies on the concrete form of the terms of O(w3) for λ2. Thus, the stability of wstripeI depends on

the values of a2 and a3.

Substituting wstripeII into (6.137) and solving F̃2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a3

a1

w2.

Evaluating the Jacobian matrix (6.140) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) ≈ w2



0 0 0 0

0 2a3 0 0

0 0 a2 − a3 0

0 0 0 a2 − a3


+ O(w3). (6.144)

The eigenvalues of the matrix J̃(wstripeII, ϕ̃stripeII) are equivalent to that for wstripeI. Hence, stability

conditions for wstripeII are equivalent to that for wstripeI.

Case 2: (4; k, 0,+) with ň = 3

For the case (4; k, 0,+) with ň = 3, we have

(0, 0, 2, 0) ∈ S

as well as

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S .

Then, the asymptotic form of Fi (i = 1, 2) in (6.125) becomes

F1(z1, z2, ϕ̃) ≈ a1ϕ̃z1 + a4z1
2
+ FC

1 , (6.145)

F2(z1, z2, ϕ̃) ≈ a1ϕ̃z2 + a4z2
2
+ FC

2 (6.146)

with a4 = A0020(0), where FC
i

(i = 1, 2) is given in (6.126) and (6.127). By (6.51) and (6.52), the

asymptotic form of F̃i (i = 1, . . . , 4) in (6.48) becomes

F̃1 ≈ a1ϕ̃w1 + a4(w1
2 − w2

2) + F̃C
1 , (6.147)

F̃2 ≈ a1ϕ̃w2 − 2a4w1w2 + F̃C
2 , (6.148)

F̃3 ≈ a1ϕ̃w3 + a4(w3
2 − w4

2) + F̃C
3 , (6.149)

F̃4 ≈ a1ϕ̃w4 − 2a4w3w4 + F̃C
4 , (6.150)
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where F̃C
i

(i = 1, . . . , 4) is given in (6.130) – (6.133). Hence, the asymptotic form of the Jacobian

matrix in (6.49) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I4 + a4B4 + BC (6.151)

with

B4 = 2



w1 −w2 0 0

−w2 −w1 0 0

0 0 w3 −w4

0 0 −w4 −w3


,

where BC is given in (6.141).

Substituting wsq into (6.147) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sq ≈ −
a4

a1

w.

Evaluating the Jacobian matrix (6.151) at (wsq, ϕ̃sq), we have

J̃(wsq, ϕ̃sq) ≈ a4w



1 0 0 0

0 −3 0 0

0 0 1 0

0 0 0 −3


. (6.152)

Then, the eigenvalues of the matrix J̃(wsq, ϕ̃sq) are given by the diagonal components, i.e., a4w

(repeated twice) and −3a4w (repeated twice). Since the eigenvalues a4w and −3a4w have opposite

signs, the bifurcating solution wsq is always unstable.

Substituting wstripeI into (6.147) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a4

a1

w.

Evaluating the Jacobian matrix (6.151) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ a4w



1 0 0 0

0 −3 0 0

0 0 −1 0

0 0 0 −1


. (6.153)

Then, the eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by the diagonal components, i.e.,

a4w, −3a4w and −a4w (repeated twice). Since the eigenvalues a4w and −3a4w have opposite signs,

the bifurcating solution wstripeI is always unstable.

Remark 6.1. Since ň is odd, wstripeII does not exist for the case (4; k, 0,+) with ň = 3. See

Proposition 6.5 in Section 6.4.3. □
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Case 3: (4; k, 0,+) with ň = 4

For the case (4; k, 0,+) with ň = 4, we have

(0, 0, 3, 0) ∈ S

as well as

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S .

Then, the asymptotic form of Fi (i = 1, 2) in (6.125) becomes

F1(z1, z2, ϕ̃) ≈ a1ϕ̃z1 + a5z1
3
+ FC

1 , (6.154)

F2(z1, z2, ϕ̃) ≈ a1ϕ̃z2 + a5z2
3
+ FC

2 (6.155)

with a5 = A0030(0), where FC
i

(i = 1, 2) is given in (6.126) and (6.127). By (6.51) and (6.52), the

asymptotic form of F̃i (i = 1, . . . , 4) in (6.48) becomes

F̃1 ≈ a1ϕ̃w1 + a5w1(w1
2 − 3w2

2) + F̃C
1 , (6.156)

F̃2 ≈ a1ϕ̃w2 + a5w2(w2
2 − 3w1

2) + F̃C
2 , (6.157)

F̃3 ≈ a1ϕ̃w3 + a5w3(w3
2 − 3w4

2) + F̃C
3 , (6.158)

F̃4 ≈ a1ϕ̃w4 + a5w4(w4
2 − 3w3

2) + F̃C
4 , (6.159)

where F̃C
i

(i = 1, . . . , 4) is given in (6.130) – (6.133). Hence, the asymptotic form of the Jacobian

matrix in (6.49) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I4 + a5B5 + BC (6.160)

with

B5 = 3



w1
2 − w2

2 −2w1w2 0 0

−2w1w2 w2
2 − w1

2 0 0

0 0 w3
2 − w4

2 −2w3w4

0 0 −2w3w4 w4
2 − w3

2


, (6.161)

where BC is given in (6.141).

Substituting wsq into (6.156) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sq ≈ −
a5 + a2 + a3

a1

w2.

Evaluating the Jacobian matrix (6.160) at (wsq, ϕ̃sq), we have

J̃(wsq, ϕ̃sq) ≈ 2w2



a5 + a3 0 a2 0

0 −2a5 0 0

a2 0 a5 + a3 0

0 0 0 −2a5


. (6.162)
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Then, the eigenvalues of the matrix J̃(wsq, ϕ̃sq) are given by

λ1, λ2 ≈ 2(a5 + a3 ± a2)w2,

λ3 ≈ −4a5w2 (repeated twice).

If a3 < −a5 < 0 and a5 + a3 < −|a2| are satisfied, wsq is stable. Otherwise, wsq is unstable. Thus,

the stability of wsq depends on the values of a2, a3 and a5.

Substituting wstripeI into (6.156) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a5 + a3

a1

w2.

Evaluating the Jacobian matrix (6.160) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ w2



2(a5 + a3) 0 0 0

0 −4a5 0 0

0 0 −a5 + a2 − a3 0

0 0 0 −a5 + a2 − a3


. (6.163)

Then, the eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by the diagonal components, i.e.,

λ1 ≈ 2(a5 + a3)w2,

λ2 ≈ −4a5w2,

λ3 ≈ −(a5 − a2 + a3)w2 (repeated twice).

If a3 < −a5 < 0 and a2 < a5+a3 are satisfied, wstripeI is stable. Thus, the stability of wstripeI depends

on the values of a2, a3 and a5.

Substituting wstripeII into (6.157) and solving F̃2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a5 + a3

a1

w2.

Evaluating the Jacobian matrix (6.160) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) ≈ w2



−4a5 0 0 0

0 2(a5 + a3) 0 0

0 0 −a5 + a2 − a3 0

0 0 0 −a5 + a2 − a3


. (6.164)

The eigenvalues of the matrix J̃(wstripeII, ϕ̃stripeII) are equivalent to that for wstripeI. Hence, stability

conditions for wstripeII are equivalent to that for wstripeI.

Case 4: General (4; k, k,+)

For general (4; k, k,+), we have

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S ,

and the other elements of S correspond to higher order terms. Then, the asymptotic form of F1 in

(6.130) is equivalent to that for the case 1: General (4; k, 0,+). Hence, a discussion similar to that

for the case 1 holds.
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Case 5: (4; k, k,+) with ň = 3

For the case (4; k, k,+) with ň = 3, we have

(0, 0, 2, 0) ∈ S

as well as

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S .

Then, the asymptotic form of F1 in (6.130) is equivalent to that for the case 2: (4; k, 0,+) with

ň = 3. Hence, a discussion similar to that for the case 2 holds, that is, wsq and wstripeI are always

unstable. Since ň is odd, wstripeII does not exist for this case (see Proposition 6.5 in Section 6.4.3).

Case 6: (4; k, k,+) with ň = 4

For the case (4; k, k,+) with ň = 4, we have

(0, 0, 3, 0), (0, 2, 1, 0), (0, 0, 1, 2) ∈ S

as well as

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S .

From the condition (6.81), we have A0210(0) = A0012(0). Then, the asymptotic form of Fi (i = 1, 2)

in (6.125) becomes

F1(z1, z2, ϕ̃) ≈ a1ϕ̃z1 + a5z1
3
+ a6z1(z2

2 + z2
2
) + FC

1 , (6.165)

F2(z1, z2, ϕ̃) ≈ a1ϕ̃z2 + a5z2
3
+ a6z2(z1

2
+ z1

2) + FC
2 (6.166)

with a6 = A0210(0), where FC
i

(i = 1, 2) is given in (6.126) and (6.127). By (6.51) and (6.52), the

asymptotic form of F̃i (i = 1, . . . , 4) in (6.48) becomes

F̃1 ≈ a1ϕ̃w1 + a5w1(w1
2 − 3w2

2) + 2a6w1(w3
2 − w4

2) + F̃C
1 , (6.167)

F̃2 ≈ a1ϕ̃w2 + a5w2(w2
2 − 3w1

2) + 2a6w2(w4
2 − w3

2) + F̃C
2 , (6.168)

F̃3 ≈ a1ϕ̃w3 + a5w3(w3
2 − 3w4

2) + 2a6w3(w1
2 − w2

2) + F̃C
3 , (6.169)

F̃4 ≈ a1ϕ̃w4 + a5w4(w4
2 − 3w3

2) + 2a6w4(w2
2 − w1

2) + F̃C
4 , (6.170)

where F̃C
i

(i = 1, . . . , 4) is given in (6.130) – (6.133). Hence, the asymptotic form of the Jacobian

matrix in (6.49) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I4 + a5B5 + a6B6 + BC (6.171)

with

B5 = 3



w1
2 − w2

2 −2w1w2 0 0

−2w1w2 w2
2 − w1

2 0 0

0 0 w3
2 − w4

2 −2w3w4

0 0 −2w3w4 w4
2 − w3

2


,
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B6 = 2



w3
2 − w4

2 0 2w1w3 −2w1w4

0 w4
2 − w3

2 −2w2w3 2w2w4

2w1w3 −2w2w3 w1
2 − w2

2 0

−2w1w4 2w2w4 0 w2
2 − w1

2


,

where B5 and BC are given in (6.161) and (6.141).

Substituting wsq into (6.167) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sq ≈ −
a2 + a3 + a5 + 2a6

a1

w2.

Evaluating the Jacobian matrix (6.171) at (wsq, ϕ̃sq), we have

J̃(wsq, ϕ̃sq) ≈ 2w2



a5 + a3 0 2a6 + a2 0

0 −2(a5 + a6) 0 0

2a6 + a2 0 a5 + a3 0

0 0 0 −2(a5 + a6)


. (6.172)

Then, the eigenvalues of the matrix J̃(wsq, ϕ̃sq) are given by

λ1, λ2 ≈ 2{(a5 + a3) ± (2a6 + a2)}w2,

λ3 ≈ −4(a5 + a6)w2 (repeated twice).

If a5 + a6 > 0 and a5 + a3 < −|2a6 + a2| are satisfied, wsq is stable. Otherwise, wsq is unstable.

Thus, the stability of wsq depends on the values of a2, a3, a5 and a6.

Substituting wstripeI into (6.167) and solving F̃1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a5 + a3

a1

w2.

Evaluating the Jacobian matrix (6.171) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ −w2



−2(a5 + a3) 0 0 0

0 4a5 0 0

0 0 a5 − 2a6 + a3 0

0 0 0 a5 + 2a6 + a3


. (6.173)

Then, the eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by the diagonal components, i.e.,

λ1 ≈ 2(a5 + a3)w2,

λ2 ≈ −4a5w2,

λ3, λ4 ≈ −(a5 + a3 ± 2a6)w2,

If a3 < −a5 < 0 and −2|a6| < a5 + a3 are satisfied, wstripeI is stable. Otherwise, wstripeI is unstable.

Thus, the stability of wstripeI depends on the values of a3, a5 and a6.
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Substituting wstripeII into (6.168) and solving F̃2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a5 + a3

a1

w2.

Evaluating the Jacobian matrix (6.171) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) ≈ −w2



4a5 0 0 0

0 −2(a5 + a3) 0 0

0 0 a5 − 2a6 + a3 0

0 0 0 a5 + 2a6 + a3


. (6.174)

The eigenvalues of the matrix J̃(wstripeII, ϕ̃stripeII) are equivalent to that for wstripeI. Hence, stability

conditions for wstripeII is equivalent to that for wstripeI.

Case 7: General (4; n/2, ℓ,+)

For general (4; n/2, ℓ,+), we have

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S ,

and the other elements of S correspond to higher order terms. Then, the asymptotic form of F1 in

(6.130) is equivalent to that for the case 1: General (4; k, 0,+). Hence, a discussion similar to that

for the case 1 holds.

Case 8: (4; n/2, ℓ,+) with ñ = 4

For the case (4; n/2, ℓ,+) with ñ = 4, we have

(0, 0, 3, 0) ∈ S

as well as

(1, 0, 0, 0), (1, 1, 0, 1), (2, 0, 1, 0) ∈ S .

Then, the asymptotic form of F1 in (6.130) is equivalent to that for the case 3: (4; k, 0,+) with

ň = 4. Hence, a discussion similar to that for the case 3 holds.
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6.5. Bifurcation Point of Multiplicity 8

We consider a critical point associated with eight-dimensional irreducible representations µ of

the group D4 ⋉ (Zn × Zn):

(8; k, ℓ) with 1 ≤ ℓ ≤ k − 1, 2 ≤ k ≤
⌊
n − 1

2

⌋
, (6.175)

where n ≥ 5. For (8; k, ℓ), we use the following notations:

k̂ =
k

gcd(k, ℓ, n)
, ℓ̂ =

ℓ

gcd(k, ℓ, n)
, n̂ =

n

gcd(k, ℓ, n)
. (6.176)

The actions in (8; k, ℓ) on an eight-dimensional vector (w1, . . . ,w8) ∈ R8 can be expressed for a

four-dimensional vector (z1, . . . , z4) with complex variables z j = w2 j−1 + iw2 j ( j = 1, . . . , 4) as (cf.,

(5.62) and (5.63))

r :



z1

z2

z3

z4


7→



z2

z1

z4

z3


, s :



z1

z2

z3

z4


7→



z3

z4

z1

z2


, (6.177)

p1 :



z1

z2

z3

z4


7→



ωkz1

ω−ℓz2

ωkz3

ω−ℓz4


, p2 :



z1

z2

z3

z4


7→



ωℓz1

ωkz2

ω−ℓz3

ω−kz4


(6.178)

with ω = exp(i2π/n).

6.5.1. Derivation of Bifurcation Equation

The bifurcation equation for the critical point of multiplicity 8 is an eight-dimensional equation

in w = (w1, . . . ,w8) ∈ R8 expressed as

F̃i(w, ϕ̃) = 0, i = 1, . . . , 8, (6.179)

where (w1, . . . ,w8, ϕ̃) = (0, . . . , 0, 0) is assumed to correspond to the critical point. Accordingly,

the Jacobian matrix of F̃ is an 8 × 8 matrix expressed as

J̃(w, ϕ̃) =


∂F̃i

∂w j

∣∣∣∣∣∣ i, j = 1, . . . , 8

 . (6.180)

The bifurcation equation (6.179) can be expressed as a four-dimensional equation in complex

variables z j = w2 j−1 + iw2 j ( j = 1, . . . , 4) as

Fi(z1, z2, z3, z4, ϕ̃) = 0, i = 1, . . . , 4, (6.181)
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where (z1, . . . , z4, ϕ̃) = (0, . . . , 0, 0) corresponds to the critical point. There are the following

relationships between (6.179) and (6.181):

F1(z1, z2, z3, z4, ϕ̃) = F̃1 + iF̃2, (6.182)

F2(z1, z2, z3, z4, ϕ̃) = F̃3 + iF̃4, (6.183)

F3(z1, z2, z3, z4, ϕ̃) = F̃5 + iF̃6, (6.184)

F4(z1, z2, z3, z4, ϕ̃) = F̃7 + iF̃8. (6.185)

We expand F1 into a power series as

F1(z1, z2, z3, z4, ϕ̃) =
∑

a=0

∑

b=0

∑

c=0

∑

d=0

∑

e=0

∑

f=0

∑

g=0

∑

h=0

Aabcde f gh(ϕ̃)z1
az2

bz3
cz4

d z1
e

z2
f

z3
g

z4
h
. (6.186)

Since (z1, z2, z3, z4, ϕ̃) = (0, 0, 0, 0, 0) corresponds to the critical point, we have

A00000000(0) = 0, A10000000(0) = A01000000(0) = · · · = A00000001(0) = 0.

Since a1 = A′
10000000

(0) is generically nonzero, we have

A10000000(ϕ̃) ≈ a1ϕ̃.

The equivariance of the bifurcation equation to the group D4⋉(Zn×Zn) is identical to the equiv-

ariance to the action of the four elements r, s, p1, and p2 generating this group. The equivariance

condition for (8; k, ℓ) is written as

r : F2(z1, z2, z3, z4) = F1(z2, z1, z4, z3), (6.187)

F1(z1, z2, z3, z4) = F2(z2, z1, z4, z3), (6.188)

F4(z1, z2, z3, z4) = F3(z2, z1, z4, z3), (6.189)

F3(z1, z2, z3, z4) = F4(z2, z1, z4, z3), (6.190)

s : F3(z1, z2, z3, z4) = F1(z3, z4, z1, z2), (6.191)

F4(z1, z2, z3, z4) = F2(z3, z4, z1, z2), (6.192)

F1(z1, z2, z3, z4) = F3(z3, z4, z1, z2), (6.193)

F2(z1, z2, z3, z4) = F4(z3, z4, z1, z2), (6.194)

p1 : ωkF1(z1, z2, z3, z4) = F1(ωkz1, ω
−ℓz2, ω

kz3, ω
−ℓz4), (6.195)

ω−ℓF2(z1, z2, z3, z4) = F2(ωkz1, ω
−ℓz2, ω

kz3, ω
−ℓz4), (6.196)

ωkF3(z1, z2, z3, z4) = F3(ωkz1, ω
−ℓz2, ω

kz3, ω
−ℓz4), (6.197)

ω−ℓF4(z1, z2, z3, z4) = F4(ωkz1, ω
−ℓz2, ω

kz3, ω
−ℓz4), (6.198)

p2 : ωℓF1(z1, z2, z3, z4) = F1(ωℓz1, ω
kz2, ω

−ℓz3, ω
−kz4), (6.199)

ωkF2(z1, z2, z3, z4) = F2(ωℓz1, ω
kz2, ω

−ℓz3, ω
−kz4), (6.200)

ω−ℓF3(z1, z2, z3, z4) = F3(ωℓz1, ω
kz2, ω

−ℓz3, ω
−kz4), (6.201)
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ω−kF4(z1, z2, z3, z4) = F4(ωℓz1, ω
kz2, ω

−ℓz3, ω
−kz4). (6.202)

The equivariance conditions with respect to r and s are expressed as follows. The equivariance

condition (6.188) for r implies

F2(z1, z2, z3, z4) = F1(z2, z1, z4, z3). (6.203)

The equivariance condition (6.191) and (6.192) for s implies

F3(z1, z2, z3, z4) = F1(z3, z4, z1, z2), (6.204)

F4(z1, z2, z3, z4) = F2(z3, z4, z1, z2). (6.205)

Combining (6.203) and (6.205), we have

F4(z1, z2, z3, z4) = F1(z4, z3, z2, z1). (6.206)

Hence, we obtain F2, F3 and F4 from F1 by using (6.203), (6.204) and (6.206). Combining (6.187)

and (6.203), we have

F1(z2, z1, z4, z3) = F1(z2, z1, z4, z3). (6.207)

Hence, we have

Aab···h(ϕ̃) ∈ R. (6.208)

It is ensured that the equivariance conditions (6.187) – (6.194) are satisfied by (6.203), (6.204),

(6.206), and (6.207).

The equivariance conditions with respect to p1 and p2 are expressed as follows. The equivari-

ance condition (6.195) for p1 is expressed as

∑

a=0

∑

b=0

· · ·
∑

h=0

ωkAab···h(ϕ̃)z1
az2

bz3
cz4

d z1
e

z2
f

z3
g

z4
h

=
∑

a=0

∑

b=0

· · ·
∑

h=0

ωk(a+c−e−g)−ℓ(b+d− f−h)Aab···h(ϕ̃)z1
az2

bz3
cz4

d z1
e

z2
f

z3
g

z4
h
,

which implies

ωk(a+c−e−g−1)−ℓ(b+d− f−h) = exp

[
2πi

n
{k(a + c − e − g − 1) − ℓ(b + d − f − h)}

]
= 1. (6.209)

The equivariance condition (6.199) for p2 is expressed as

∑

a=0

∑

b=0

· · ·
∑

h=0

ωℓAab···h(ϕ̃)z1
az2

bz3
cz4

d z1
e

z2
f

z3
g

z4
h

=
∑

a=0

∑

b=0

· · ·
∑

h=0

ωk(b−d− f+h)+ℓ(a−c−e+g)Aab···h(ϕ̃)z1
az2

bz3
cz4

d z1
e

z2
f

z3
g

z4
h
,
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which implies

ωk(b−d− f+h)+ℓ(a−c−e+g−1) = exp

[
2πi

n
{k(b − d − f + h) + ℓ(a − c − e + g − 1)}

]
= 1. (6.210)

Using (6.203), (6.204), or (6.206), we rewrite the equivariance conditions (6.196) – (6.198) for p1

as follows:

ω−ℓF1(z2, z1, z4, z3) = F1(ω−ℓz2, ω
−k z1, ω

ℓ z4, ω
kz3), (6.211)

ωkF1(z3, z4, z1, z2) = F1(ωkz3, ω
−ℓz4, ω

kz1, ω
−ℓz2), (6.212)

ω−ℓF1(z4, z3, z2, z1) = F1(ω−ℓz4, ω
−k z3, ω

ℓ z2, ω
kz1). (6.213)

Similarly, we rewrite the equivariance conditions (6.200) – (6.202) for p2 as follows:

ωkF1(z2, z1, z4, z3) = F1(ωkz2, ω
−ℓ z1, ω

k z4, ω
−ℓz3), (6.214)

ω−ℓF1(z3, z4, z1, z2) = F1(ω−ℓz3, ω
−kz4, ω

ℓz1, ω
kz2), (6.215)

ω−kF1(z4, z3, z2, z1) = F1(ω−kz4, ω
ℓ z3, ω

−k z2, ω
ℓz1). (6.216)

The equivariance conditions (6.211), (6.213), and (6.215) lead to the same result as (6.210). The

equivariance conditions (6.212), (6.214), and a complex conjugate of (6.216) lead to the same

result as (6.209). To sum up, we have the following conditions for (8; k, ℓ):

k(a + c − e − g − 1) − ℓ(b + d − f − h) ≡ 0 mod n,

k(b − d − f + h) + ℓ(a − c − e + g − 1) ≡ 0 mod n,

which are equivalent to

k̂(a + c − e − g − 1) − ℓ̂(b + d − f − h) ≡ 0 mod n̂, (6.217)

k̂(b − d − f + h) + ℓ̂(a − c − e + g − 1) ≡ 0 mod n̂. (6.218)

We rewrite the conditions (6.217) and (6.218) in a matrix form as

A

[
k̂

ℓ̂

]
≡

[
0

0

]
mod n̂ (6.219)

with

A =

[
a + c − e − g − 1 −b − d + f + h

b − d − f + h a − c − e + g − 1

]
. (6.220)

This condition is equivalent to the following condition:

∃p, q ∈ Z s.t. A

[
k̂

ℓ̂

]
= n̂

[
p

q

]
. (6.221)

For this condition, we define a set P as

P = {(a, b, . . . , h) ∈ Z8
+ | (6.221) with (6.220)}, (6.222)
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where Z+ represents the set of nonnegative integers. Note that (a, b, . . . , h) ∈ Z8
+ must belong to P

when Aab···h(ϕ̃) , 0 in (6.186). Hence, we replace the power series (6.186) with

F1(z1, z2, z3, z4, ϕ̃) =
∑

P

Aabcde f gh(ϕ̃) z1
az2

bz3
cz4

d z1
e

z2
f

z3
g

z4
h
. (6.223)

In addition, we have the following proposition:

Proposition 6.8. If n̂ = n/ gcd(n, k, ℓ) is even, then (a, b, . . . , h) ∈ P satisfies a + b + c + d + e +

f + g + h < 2Z.

Proof. Since n̂ is even, pn̂ (p ∈ Z) in (6.217) and qn̂ (q ∈ Z) in (6.218) are even. Since n̂, k̂, and

ℓ̂ do not have a common divisor, (k̂, ℓ̂) , (even, even). To prove the statement by contradiction,

assume a + b + c + d + e + f + g + h ∈ 2Z.

• For the case a + c + e + g ∈ 2Z and b + d − f − h ∈ 2Z, we have the following statements: If

(k̂, ℓ̂) = (odd, even), the left-hand side of (6.217) is odd since it takes the form:

(odd) × (odd) + (even) × (even).

If (k̂, ℓ̂) = (even, odd), the left-hand side of (6.218) is odd since it takes the form:

(even) × (even) + (odd) × (odd).

Thus, the condition (6.217) and (6.218) are cannot be satisfied simultaneously.

• For the case a + c + e + g < 2Z and b + d + f + h < 2Z, we have the following statements: If

(k̂, ℓ̂) = (odd, even), the left-hand side of (6.218) is odd since it takes the form: (odd)+(even).

If (k̂, ℓ̂) = (even, odd), the left-hand side of (6.217) is odd since it takes the form: (even) +

(odd). Thus, the condition (6.217) and (6.218) are cannot be satisfied simultaneously.

Hence, a + b + c + d + e + f + g + h ∈ 2Z is a contradiction. □

6.5.2. Symmetry of Square Patterns

For the irreducible representation µ = (8; k, ℓ), a system of the bifurcation equations F1 = F2 =

F3 = F4 = 0 has the following bifurcating solutions:

Type VM square pattern : (z1, z2, z3, z4) = (w,w,w,w) (w ∈ R),

Type T square pattern : (z1, z2, z3, z4) = (w,w, 0, 0) (w ∈ R).

In Section 5.6.4, we showed that the Type VM solution exists for any (n̂, k̂, ℓ̂), while the Type T

solution exists if the values of (n̂, k̂, ℓ̂) satisfies

GCD-div : 2 gcd(k̂, ℓ̂) is not divisible by gcd(k̂2 + ℓ̂2, n̂) (6.224)

(see Proposition 5.20).
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Substituting the Type VM solution (z1, z2, z3, z4) = (w,w,w,w) into (6.223), we have

F1(w,w,w,w, ϕ̃) =
∑

P

Aabcde f gh(ϕ̃)wa+b+d+e+ f+g+h.

Proposition 6.8 shows that if n̂ is even, then F1(w,w,w,w, ϕ̃) becomes an odd function in w. Thus,

the two bifurcating solutions (w,w,w,w, ϕ̃) and (−w,−w,−w,−w, ϕ̃) are conjugate. Substituting

the Type T solution (z1, z2, z3, z4) = (w,w, 0, 0) into (6.223), we have

F1(w,w, 0, 0, ϕ̃) =
∑

(a,b,0,0,e, f ,0,0)∈P

Aab00e f 00(ϕ̃)wa+b+e+ f .

Proposition 6.8 shows that if n̂ is even, then a + b + e + f < 2Z for (a, b, 0, 0, e, f , 0, 0) ∈ P.

Thus, F1(w,w, 0, 0, ϕ̃) becomes an odd function in w, and hence the two bifurcating solutions

(w,w, 0, 0, ϕ̃) and (−w,−w, 0, 0, ϕ̃) are conjugate.

To sum up, we have the following proposition on the symmetry of the square patterns.

Proposition 6.9. For a critical point of multiplicity 8 associated with µ = (8; k, ℓ), the two bi-

furcating solutions (z, ϕ̃) and (−z, ϕ̃) are conjugate for z = (w,w,w,w), (w,w, 0, 0) (w ∈ R) if

n̂ = n/ gcd(n, k, ℓ) is even and are not conjugate if n̂ is odd.

6.5.3. Existence and Symmetry of Stripe Patterns

We would like to show the existence and the symmetry of two types of stripe patterns, which

are represented as

Type I stripe pattern : (z1, z2, z3, z4) = (w, 0, 0, 0) (w ∈ R),

Type II stripe pattern : (z1, z2, z3, z4) = (iw, 0, 0, 0) (w ∈ R).

For both cases, we have (a, b, . . . , h) = (a, 0, 0, 0, e, 0, 0, 0), and hence (6.217) and (6.218) leads to

k̂(a − e − 1) ≡ 0, ℓ̂(a − e − 1) ≡ 0 mod n̂, (6.225)

which imply a = e + pn̂ + 1 (p ∈ Z). Then, F1 in (6.223) is rewritten as

F1(z1, 0, 0, 0, ϕ̃)

=

∞∑

q=0

Aq+1,q(ϕ̃)|z1|2qz1 +

∞∑

p=1

∞∑

q=0

[Aq+pn̂+1,q(ϕ̃)|z1|2qz1
pn̂+1 + Aq,q+pn̂−1(ϕ̃)|z1|2q z1

pn̂−1
] (6.226)

with Aae(ϕ̃) = Aa000e000(ϕ̃).

Substituting the Type I stripe pattern (z1, z2, z3, z4) = (w, 0, 0, 0) into (6.226), we have

F1(w, 0, 0, 0, ϕ̃) = w



∞∑

q=0

Aq+1,q(ϕ̃)w2q +

∞∑

p=1

∞∑

q=0

[Aq+pn̂+1,q(ϕ̃)w2q+pn̂ + Aq,q+pn̂−1(ϕ̃)w2q+pn̂−2]



≈ w
{
A′10(0)ϕ̃ + A21(0)w2 + A0,n̂−1(0)wn̂−2

}
.
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We see that F1(w, 0, 0, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating solution. Note

that F1(w, 0, 0, 0, ϕ̃) becomes an odd function in w if n̂ is even. Then, the two bifurcating solutions

(w, 0, 0, 0, ϕ̃) and (−w, 0, 0, 0, ϕ̃) are conjugate.

Substituting (z1, z2, z3, z4) = (w, 0, 0, 0) into the equivariance conditions (6.203)–(6.206), we

have
F2(w, 0, 0, 0) = F1(0,w, 0, 0),

F3(w, 0, 0, 0) = F1(0, 0,w, 0),

F4(w, 0, 0, 0) = F1(0, 0, 0,w).

(6.227)

With the use of P in (6.222), we have Fi = 0 (i = 2, 3, 4) in (6.227) if

(0, b, 0, 0, 0, f , 0, 0) < P,

(0, 0, c, 0, 0, 0, g, 0) < P,

(0, 0, 0, d, 0, 0, 0, h) < P.

The conditions in (6.217) and (6.218) lead to

k̂(b − f ) − ℓ̂, ℓ̂(b − f ) + k̂ ≡ 0 ≡ 0 mod n̂ for (a, b, c, d, e, f , g, h) = (0, b, 0, 0, 0, f , 0, 0),

k̂(c − g) − k̂ ≡ 0, ℓ̂(c − g) + ℓ̂ ≡ 0 mod n̂ for (a, b, c, d, e, f , g, h) = (0, 0, c, 0, 0, 0, g, 0),

k̂(d − h) + ℓ̂ ≡ 0, ℓ̂(d − h) + k̂ ≡ 0 mod n̂ for (a, b, c, d, e, f , g, h) = (0, 0, 0, d, 0, 0, 0, h).

These relations can be expressed in a matrix form as

Ax = b with A =

[
k̂ −n̂ 0

ℓ̂ 0 −n̂

]
. (6.228)

The vectors x and b vary with (a, b, c, d, e, f , g, h) as follows:

x =



b − f

p

q

 , b =
[
ℓ̂

−k̂

]
for (a, b, c, d, e, f , g, h) = (0, b, 0, 0, 0, f , 0, 0),

x =



c − g

p

q

 , b =
[

k̂

−ℓ̂

]
for (a, b, c, d, e, f , g, h) = (0, 0, c, 0, 0, 0, g, 0),

x =



d − h

p

q

 , b =
[
−ℓ̂
−k̂

]
for (a, b, c, d, e, f , g, h) = (0, 0, 0, d, 0, 0, 0, h).

The existence of an integer solution x of (6.228) is investigated by showing the two conditions

(6.229) in Remark 6.2 below. The first condition is satisfied since we have

rank A = rank

[
k̂ −n̂ 0

ℓ̂ 0 −n̂

]
= 2
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and

rank [A | b] = rank

[
k̂ −n̂ 0 ℓ̂

ℓ̂ 0 −n̂ −k̂

]
= 2 for (a, b, c, d, e, f , g, h) = (0, b, 0, 0, 0, f , 0, 0),

rank [A | b] = rank

[
k̂ −n̂ 0 k̂

ℓ̂ 0 −n̂ −ℓ̂

]
= 2 for (a, b, c, d, e, f , g, h) = (0, 0, c, 0, 0, 0, g, 0),

rank [A | b] = rank

[
k̂ −n̂ 0 −ℓ̂
ℓ̂ 0 −n̂ −k̂

]
= 2 for (a, b, c, d, e, f , g, h) = (0, 0, 0, d, 0, 0, 0, h).

For the second condition, we have

d1(A) = gcd(ℓ̂, k̂, n̂) = 1,

d1([A | b]) = gcd(ℓ̂, k̂, n̂) = 1,

d2(A) = gcd(k̂n̂, ℓ̂n̂, n̂2) = n̂.

The value of d2([A | b]) varies with (a, b, c, d, e, f , g, h) as follows:

d2([A | b]) = gcd(n̂, k̂2 + ℓ̂2) for (a, b, c, d, e, f , g, h) = (0, b, 0, 0, 0, f , 0, 0),

d2([A | b]) = gcd(n̂, 2k̂ℓ̂) for (a, b, c, d, e, f , g, h) = (0, 0, c, 0, 0, 0, g, 0),

d2([A | b]) = gcd(n̂, k̂2 − ℓ̂2) for (a, b, c, d, e, f , g, h) = (0, 0, 0, d, 0, 0, 0, h).

For (a, b, c, d, e, f , g, h) = (0, b, 0, 0, 0, f , 0, 0), we have d2(A) = d2([A | b]) when k̂2+ ℓ̂2 is divisible

by n̂. Then, the equation (6.228) has an integer solution x. Hence, we have (0, b, 0, 0, 0, f , 0, 0) ∈ P

and, in turn, F2 , 0. On the contrary, we have (0, b, 0, 0, 0, f , 0, 0) < P and, in turn, F2 = 0

when k̂2 + ℓ̂2 is not divisible by n̂. In a similar manner, we have (0, 0, c, 0, 0, 0, g, 0) < P and,

in turn, F3 = 0 when 2k̂ℓ̂ is not divisible by n̂. We have (0, 0, 0, d, 0, 0, 0, h) < P and, in turn,

F4 = 0 when k̂2 − ℓ̂2 is not divisible by n̂. Consequently, a system of the bifurcation equations

F1 = F2 = F3 = F4 = 0 holds for (z1, z2, z3, z4) = (w, 0, 0, 0) when k̂2 + ℓ̂2, 2k̂ℓ̂, and k̂2 − ℓ̂2 are not

divisible by n̂.

Remark 6.2. Let A be an m × n integer matrix and b an m-dimensional integer vector. A system

of equations Ax = b admits an integer solution x if and only if two matrices A and [A | b] share

the same determinantal divisors, i.e.,

rank A = rank [A | b], dk(A) = dk([A | b]) (6.229)

for all k. Here, dk(A) is the kth determinantal divisor, which is the greatest common divisor of all

k × k minors (subdeterminants) of the integer matrix A. □

Substituting Type II stripe pattern (z1, z2, z3, z4) = (iw, 0, 0, 0) into (6.226), we have

F1(iw, 0, 0, 0, ϕ̃)

= iw



∞∑

q=0

Aq+1,q(ϕ̃)w2q +

∞∑

p=1

∞∑

q=0

[Aq+pn̂+1,q(ϕ̃)ipn̂w2q+pn̂ + Aq,q+pn̂−1(ϕ̃)(−i)pn̂w2q+pn̂−2]



≈ iw
{
A′10(0)ϕ̃ + A21(0)w2 + A0,n̂−1(0)(−i)n̂wn̂−2

}
.
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Thus, F1(iw, 0, 0, 0, ϕ̃) = 0 has a bifurcating solution if n̂ is even (ipn̂ and (−i)pn̂ are real). Then, a

discussion similar to that for the Type I stripe pattern holds.

To sum up, we have the following propositions on the existence and the symmetry of the stripe

patterns.

Proposition 6.10. For a critical point of multiplicity 8 associated with µ = (8; k, ℓ), Type I stripe

pattern exists if the condition

k̂2 + ℓ̂2, 2k̂ℓ̂, and k̂2 − ℓ̂2 are not divisible by n̂ (6.230)

is satisfied. Therein, k̂ = k/ gcd(n, k, ℓ), ℓ̂ = ℓ/ gcd(n, k, ℓ), and n̂ = n/ gcd(n, k, ℓ). Type II stripe

pattern exists if the condition (6.230) is satisfied and n̂ is even.

Proposition 6.11. For a critical point of multiplicity 8 associated with µ = (8; k, ℓ), the two

bifurcating solutions (z, ϕ̃) and (−z, ϕ̃) are conjugate for z = (w, 0, 0, 0), (iw, 0, 0, 0) (w ∈ R) if

n̂ = n/ gcd(n, k, ℓ) is even and are not conjugate for z = (w, 0, 0, 0) if n̂ is odd.

6.5.4. Existence and Symmetry of Upside-down Patterns

We would like to show the existence and the symmetry of two types of upside-down patterns,

which are represented as

Type I upside-down pattern : (z1, z2, z3, z4) = (w, 0,w, 0) (w ∈ R),

Type II upside-down pattern : (z1, z2, z3, z4) = (iw, 0, iw, 0) (w ∈ R).

For both cases, we have (a, b, . . . , h) = (a, 0, c, 0, e, 0, g, 0), and hence (6.217) and (6.218) leads to

k̂(a − e − 1) + k̂(c − g) ≡ 0 mod n̂,

ℓ̂(a − e − 1) − ℓ̂(c − g) ≡ 0 mod n̂,

which imply a = e + pn̂ + 1 and c = g + qn̂ (p, q ∈ Z). Then, F1 in (6.223) is rewritten as

F1(z1, 0, z3, 0, ϕ̃) =

∞∑

e=0

∞∑

g=0

∑

p∈Z,e+pn̂+1≥0

∑

q∈Z,g+qn̂≥0

Ae+pn̂+1,g+qn̂,e,g(ϕ̃)z1
e+pn̂+1z3

g+qn̂ z1
e

z3
g

(6.231)

with Aaceg(ϕ̃) = Aa0c0e0g0(ϕ̃).

Substituting Type I upside-down pattern (z1, z2, z3, z4) = (w, 0,w, 0) into (6.231), we have

F1(w, 0,w, 0, ϕ̃) = w



∞∑

e=0

∞∑

g=0

∑

p∈Z,e+pn̂+1≥0

∑

q∈Z,g+qn̂≥0

Ae+pn̂+1,g+qn̂,e,g(ϕ̃)w2(e+g)+(p+q)n̂



≈ w
{
A′1000(0)ϕ̃ + (A2010(0) + A1101(0))w2

}
.

We see that F1(w, 0,w, 0, ϕ̃) = 0 has the trivial solution (w = 0) and a bifurcating solution. Note

that F1(w, 0,w, 0, ϕ̃) becomes an odd function in w if n̂ is even. Then, the two bifurcating solutions

(w, 0,w, 0, ϕ̃) and (−w, 0,−w, 0, ϕ̃) are conjugate.
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Substituting (z1, z2, z3, z4) = (w, 0,w, 0) into the equivariance conditions (6.203)–(6.206), we

have
F2(w, 0,w, 0) = F4(w, 0,w, 0) = F1(0,w, 0,w),

F3(w, 0,w, 0) = F1(w, 0,w, 0).
(6.232)

With the use of P in (6.222), we have Fi = 0 (i = 2, 4) in (6.232) if

(0, b, 0, d, 0, f , 0, h) < P.

The use of (a, b, . . . , h) = (0, b, 0, d, 0, f , 0, h) in (6.217) and (6.218) leads to

−k̂ − ℓ̂(b + d − f − h) ≡ 0 mod n̂,

k̂(b − d − f + h) − ℓ̂ ≡ 0 mod n̂.

This relation can be expressed in a matrix form as

Ax = b with A =

[
−ℓ̂ −ℓ̂ −n̂ 0

k̂ −k̂ 0 −n̂

]
, x =



b − f

d − h

p

q


, b =

[
k̂

ℓ̂

]
. (6.233)

The existence of an integer solution x of (6.233) is investigated by showing the two conditions

(6.229) in Remark 6.2. The first condition is satisfied since

rank A = rank

[
−ℓ̂ −ℓ̂ −n̂ 0

k̂ −k̂ 0 −n̂

]
= 2,

rank [A | b] = rank

[
−ℓ̂ −ℓ̂ −n̂ 0 −k̂

k̂ −k̂ 0 −n̂ ℓ̂

]
= 2.

For the second condition, we have

d1(A) = gcd(ℓ̂, k̂, n̂) = 1,

d1([A | b]) = gcd(ℓ̂, k̂, n̂) = 1,

d2(A) = gcd(2k̂ℓ̂, k̂n̂, ℓ̂n̂, n̂2) = gcd(2k̂ℓ̂, n̂),

d2([A | b]) = gcd(n̂, 2k̂ℓ̂, k̂2 + ℓ̂2, k̂2 − ℓ̂2).

Hence, d2(A) = d2([A | b]) is satisfied if

gcd(k̂2 + ℓ̂2, k̂2 − ℓ̂2) is divisible by gcd(n̂, 2k̂ℓ̂),

Then, the equation (6.233) has an integer solution x, and hence we have (0, b, 0, d, 0, f , 0, h) ∈ P

and, in turn, F2 = F4 , 0. On the contrary, we have (0, b, 0, d, 0, f , 0, h) < P and, in turn,

F2 = F4 = 0 if (k̂ + ℓ̂) gcd(k̂ + ℓ̂, k̂ − ℓ̂) is not divisible by gcd(n̂, 2k̂ℓ̂).
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Substituting Type II upside-down pattern (z1, z2, z3, z4) = (iw, 0, iw, 0) into (6.231), we have

F1(iw, 0, iw, 0, ϕ̃)

=

∞∑

e=0

∞∑

g=0

∑

p∈Z,e+pn̂+1≥0

∑

q∈Z,g+qn̂≥0

Ae+pn̂+1,g+qn̂,e,g(ϕ̃)(iw)e+pn̂+1(iw)g+qn̂(−iw)e(−iw)g

= iw



∞∑

e=0

∞∑

g=0

∑

p∈Z,e+pn̂+1≥0

∑

q∈Z,g+qn̂≥0

Ae+pn̂+1,g+qn̂,e,g(ϕ̃)ipn̂(−i)qn̂w2(e+g)+(p+q)n̂



≈ iw
{
A′1000(0)ϕ̃ + (A2010(0) + A1101(0))w2

}
.

Thus, F1(iw, 0, iw, 0, ϕ̃) = 0 has a bifurcating solution if n̂ is even (ipn̂ and (−i)qn̂ are real). Then, a

discussion similar to that for Type I stripe pattern holds.

To sum up, we have the following propositions on the existence and the symmetry of the

upside-down patterns.

Proposition 6.12. For a critical point of multiplicity 8 associated with µ = (8; k, ℓ), Type I upside-

down pattern exists if the condition

gcd(k̂2 + ℓ̂2, k̂2 − ℓ̂2) is not divisible by gcd(n̂, 2k̂ℓ̂) (6.234)

is satisfied. Therein, k̂ = k/ gcd(n, k, ℓ), ℓ̂ = ℓ/ gcd(n, k, ℓ), and n̂ = n/ gcd(n, k, ℓ). Type II upside-

down pattern exists if the condition (6.234) is satisfied and n̂ is even.

Proposition 6.13. For a critical point of multiplicity 8 associated with µ = (8; k, ℓ), the two

bifurcating solutions (z, ϕ̃) and (−z, ϕ̃) are conjugate for z = (w, 0,w, 0), (iw, 0, iw, 0) (w ∈ R) if

n̂ = n/ gcd(n, k, ℓ) is even and are not conjugate for z = (w, 0,w, 0) if n̂ is odd.

156



6.5.5. Stability of Bifurcating Solutions

In Section 5.6.4, we found the square patterns for a critical point of multiplicity 8 by using the

equivariant branching lemma. In Section 6.5.3 and 6.5.4, we showed the stripe and upside-down

patterns by solving the bifurcation equations. These bifurcating solutions are represented for the

bifurcation equation in real variables in (6.179) as follows (w ∈ R):

wsqVM = (w, 0,w, 0,w, 0,w, 0),

wsqT = (w, 0,w, 0, 0, 0, 0, 0),

wstripeI = (w, 0, 0, 0, 0, 0, 0, 0),

wstripeII = (0,w, 0, 0, 0, 0, 0, 0),

wupside−downI = (w, 0, 0, 0,w, 0, 0, 0),

wupside−downII = (0,w, 0, 0, 0,w, 0, 0)

We would like to evaluate the asymptotic stability of these bifurcating solutions.

To obtain the the asymptotic form of the bifurcation equation and the Jacobian matrix, we

first investigate which (a, b, . . . , h) ∈ Z8
+ belongs to P in (6.222). In other words, we investigate

which Aab···h(ϕ̃) becomes nonzero in (6.223). We focus on the coefficients of linear terms, quadratic

terms, and cubic terms, which play a vital role as leading terms in (6.223). For this purpose, we

exhaustively find (a, b, . . . , h) ∈ Z8
+ such as

(a, b, . . . , h) ∈ P with a + b + · · · + h ≤ 3.

Let us take some (a, b, . . . , h) ∈ Z8
+ and substitute it into the matrix A in (6.220). Then, A becomes

any one of twelve possible forms as shown in Table 6.5. The condition (6.221) varies with the

form of A.

For the case (i), the elements of A in (6.220) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = 0, (6.235)

−b − d + f + h = 0, b − d − f + h = 0. (6.236)

The condition in (6.221) is rewritten as

∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = 0. (6.237)

This condition is satisfied for any values of (n̂, k̂, ℓ̂) when p = q = 0. Recall that a+b+ . . .+h ≤ 3.

Then, (a, b, . . . , h) which satisfy (6.235) and (6.236) are enumerated as follows:

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),

(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P for any (n̂, k̂, ℓ̂). (6.238)

For the case (ii), the elements of A in (6.220) represent

a + c − e − g − 1 = α, a − c − e + g − 1 = 0, (6.239)

−b − d + f + h = 0, b − d − f + h = 0. (6.240)
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Table 6.5: Possible cases for A in (6.220)

Cases Conditions in (6.221)

(i) A = O ∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = 0

(ii) A =

[
α 0

0 0

]
∃p, q ∈ Z s.t. pn̂ = αk̂, qn̂ = 0

(iii) A =

[
0 β

0 0

]
∃p, q ∈ Z s.t. pn̂ = βℓ̂, qn̂ = 0

(iv) A =

[
0 0

γ 0

]
∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = γk̂

(v) A =

[
0 0

0 δ

]
∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = δℓ̂

(vi) A =

[
α 0

γ 0

]
∃p, q ∈ Z s.t. pn̂ = αk̂, qn̂ = γk̂

(vii) A =

[
0 β

0 δ

]
∃p, q ∈ Z s.t. pn̂ = βℓ̂, qn̂ = δℓ̂

(viii) A =

[
α β

0 0

]
∃p, q ∈ Z s.t. pn̂ = αk̂ + βℓ̂, qn̂ = 0

(ix) A =

[
0 0

γ δ

]
∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = γk̂ + δℓ̂

(x) A =

[
α 0

0 δ

]
∃p, q ∈ Z s.t. pn̂ = αk̂, qn̂ = δℓ̂

(xi) A =

[
0 β

γ 0

]
∃p, q ∈ Z s.t. pn̂ = βℓ̂, qn̂ = γk̂

(xii) A =

[
α β

γ δ

]
∃p, q ∈ Z s.t. pn̂ = αk̂ + βℓ̂, qn̂ = γk̂ + δℓ̂
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Table 6.6: Possible cases for (a, b, c, d, e, f , g, h) ∈ Z8
+

(a, b, c, d, e, f , g, h) α β γ δ A Existence of p, q ∈ Z in (6.220)

(0, 0, 0, 0, 0, 0, 0, 0) -1 0 0 -1 (x) -

(1, 0, 0, 0, 0, 0, 0, 0) 0 0 0 0 (i) p = 0, q = 0 for any (n̂, k̂, ℓ̂)

(0, 1, 0, 0, 0, 0, 0, 0) -1 -1 1 -1 (xii) -

(0, 0, 1, 0, 0, 0, 0, 0) 0 0 0 -2 (v) -

(0, 0, 0, 1, 0, 0, 0, 0) -1 -1 -1 -1 (xii) -

(0, 0, 0, 0, 1, 0, 0, 0) -2 0 0 -2 (x) -

(0, 0, 0, 0, 0, 1, 0, 0) -1 1 -1 -1 (xii) -

(0, 0, 0, 0, 0, 0, 1, 0) -2 0 0 0 (ii) -

(0, 0, 0, 0, 0, 0, 0, 1) -1 1 1 -1 (xii) -

(2, 0, 0, 0, 0, 0, 0, 0) 1 0 0 1 (x) -

(0, 2, 0, 0, 0, 0, 0, 0) -1 -2 2 -1 (xii) -

(0, 0, 2, 0, 0, 0, 0, 0) 1 0 0 -3 (x) -

(0, 0, 0, 2, 0, 0, 0, 0) -1 -2 -2 -1 (xii) -

(0, 0, 0, 0, 2, 0, 0, 0) -3 0 0 -3 (x) -

(0, 0, 0, 0, 0, 2, 0, 0) -1 2 -2 -1 (xii) p = 0, q = −1 for (n̂, k̂, ℓ̂) = (5, 2, 1)

(0, 0, 0, 0, 0, 0, 2, 0) -3 0 0 1 (x) -

(0, 0, 0, 0, 0, 0, 0, 2) -1 2 2 -1 (xii) -

(1, 1, 0, 0, 0, 0, 0, 0) 0 -1 1 0 (xi) -

(1, 0, 1, 0, 0, 0, 0, 0) 1 0 0 -1 (x) -

(1, 0, 0, 1, 0, 0, 0, 0) 0 -1 -1 0 (xi) -

(1, 0, 0, 0, 1, 0, 0, 0) -1 0 0 -1 (x) -

(1, 0, 0, 0, 0, 1, 0, 0) 0 1 -1 0 (xi) -

(1, 0, 0, 0, 0, 0, 1, 0) -1 0 0 1 (x) -

(1, 0, 0, 0, 0, 0, 0, 1) 0 1 1 0 (xi) -

(0, 1, 1, 0, 0, 0, 0, 0) 0 -1 1 -2 (xii) -

(0, 1, 0, 1, 0, 0, 0, 0) -1 -2 0 -1 (xii) -

(0, 1, 0, 0, 1, 0, 0, 0) -2 -1 1 -2 (xii) p = −1, q = 0 for (n̂, k̂, ℓ̂) = (5, 2, 1)

(0, 1, 0, 0, 0, 1, 0, 0) -1 0 0 -1 (x) -

(0, 1, 0, 0, 0, 0, 1, 0) -2 -1 1 0 (xii) -

(0, 1, 0, 0, 0, 0, 0, 1) -1 0 2 -1 (xii) -

α = a + c − e − g − 1; β = −b − d + f + h; γ = b − d − f + h; δ = a − c − e + g − 1
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Table 6.7: Possible cases for (a, b, c, d, e, f , g, h) ∈ Z8
+

(a, b, c, d, e, f , g, h) α β γ δ A Existence of p, q ∈ Z in (6.220)

(0, 0, 1, 1, 0, 0, 0, 0) 0 -1 -1 -2 (xii) -

(0, 0, 1, 0, 1, 0, 0, 0) -1 0 0 -3 (x) -

(0, 0, 1, 0, 0, 1, 0, 0) 0 1 -1 -2 (xii) -

(0, 0, 1, 0, 0, 0, 1, 0) -1 0 0 -1 (x) -

(0, 0, 1, 0, 0, 0, 0, 1) 0 1 1 -2 (xii) -

(0, 0, 0, 1, 1, 0, 0, 0) -2 -1 -1 -2 (xii) -

(0, 0, 0, 1, 0, 1, 0, 0) -1 0 -2 -1 (xii) -

(0, 0, 0, 1, 0, 0, 1, 0) -2 -1 -1 0 (xii) -

(0, 0, 0, 1, 0, 0, 0, 1) -1 0 0 -1 (x) -

(0, 0, 0, 0, 1, 1, 0, 0) -2 1 -1 -2 (xii) -

(0, 0, 0, 0, 1, 0, 1, 0) -3 0 0 -1 (x) -

(0, 0, 0, 0, 1, 0, 0, 1) -2 1 1 -2 (xii) -

(0, 0, 0, 0, 0, 1, 1, 0) -2 1 -1 0 (xii) -

(0, 0, 0, 0, 0, 1, 0, 1) -1 2 0 -1 (xii) -

(0, 0, 0, 0, 0, 0, 1, 1) -2 1 1 0 (xii) -

(3, 0, 0, 0, 0, 0, 0, 0) 2 0 0 2 (x) -

(0, 3, 0, 0, 0, 0, 0, 0) -1 -3 3 -1 (xii) p = −1, q = 1 for (n̂, k̂, ℓ̂) = (5, 2, 1)

(0, 0, 3, 0, 0, 0, 0, 0) 2 0 0 -4 (x) -

(0, 0, 0, 3, 0, 0, 0, 0) -1 -3 -3 -1 (xii) -

(0, 0, 0, 0, 3, 0, 0, 0) -4 0 0 -4 (x) -

(0, 0, 0, 0, 0, 3, 0, 0) -1 3 -3 -1 (xii) p = 0, q = 1 for (n̂, k̂, ℓ̂) = (10, 3, 1)

(0, 0, 0, 0, 0, 0, 3, 0) -4 0 0 2 (x) -

(0, 0, 0, 0, 0, 0, 0, 3) -1 3 3 -1 (xii) p = 0, q = −1 for (n̂, k̂, ℓ̂) = (8, 3, 1)

(2, 1, 0, 0, 0, 0, 0, 0) 1 -1 1 1 (xii) -

(2, 0, 1, 0, 0, 0, 0, 0) 2 0 0 0 (ii) -

(2, 0, 0, 1, 0, 0, 0, 0) 1 -1 -1 1 (xii) -

(2, 0, 0, 0, 1, 0, 0, 0) 0 0 0 0 (i) p = 0, q = 0 for any (n̂, k̂, ℓ̂)

(2, 0, 0, 0, 0, 1, 0, 0) 1 1 -1 1 (xii) -

(2, 0, 0, 0, 0, 0, 1, 0) 0 0 0 2 (v) -

(2, 0, 0, 0, 0, 0, 0, 1) 1 1 1 1 (xii) -

α = a + c − e − g − 1; β = −b − d + f + h; γ = b − d − f + h; δ = a − c − e + g − 1
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Table 6.8: Possible cases for (a, b, c, d, e, f , g, h) ∈ Z8
+

(a, b, c, d, e, f , g, h) α β γ δ A Existence of p, q ∈ Z in (6.220)

(1, 2, 0, 0, 0, 0, 0, 0) 0 -2 2 0 (xi) -

(0, 2, 1, 0, 0, 0, 0, 0) 0 -2 2 -2 (xii) -

(0, 2, 0, 1, 0, 0, 0, 0) -1 -3 1 -1 (xii) -

(0, 2, 0, 0, 1, 0, 0, 0) -2 -2 2 -2 (xii) -

(0, 2, 0, 0, 0, 1, 0, 0) -1 -1 1 -1 (xii) -

(0, 2, 0, 0, 0, 0, 1, 0) -2 -2 2 0 (xii) -

(0, 2, 0, 0, 0, 0, 0, 1) -1 -1 3 -1 (xii) -

(1, 0, 2, 0, 0, 0, 0, 0) 2 0 0 -2 (x) -

(0, 1, 2, 0, 0, 0, 0, 0) 1 -1 1 -3 (xii) -

(0, 0, 2, 1, 0, 0, 0, 0) 1 -1 -1 -3 (xii) -

(0, 0, 2, 0, 1, 0, 0, 0) 0 0 0 -4 (v) p = 0, q = −1 for n̂ = 4ℓ̂

(0, 0, 2, 0, 0, 1, 0, 0) 1 1 -1 -3 (xii) -

(0, 0, 2, 0, 0, 0, 1, 0) 0 0 0 -2 (v) -

(0, 0, 2, 0, 0, 0, 0, 1) 1 1 1 -3 (xii) -

(1, 0, 0, 2, 0, 0, 0, 0) 0 -2 -2 0 (xi) -

(0, 1, 0, 2, 0, 0, 0, 0) -1 -3 -1 -1 (xii) -

(0, 0, 1, 2, 0, 0, 0, 0) 0 -2 -2 -2 (xii) -

(0, 0, 0, 2, 1, 0, 0, 0) -2 -2 -2 -2 (xii) p = −1, q = −1 for n̂ = 2k̂ + 2ℓ̂

(0, 0, 0, 2, 0, 1, 0, 0) -1 -1 -3 -1 (xii) -

(0, 0, 0, 2, 0, 0, 1, 0) -2 -2 -2 0 (xii) -

(0, 0, 0, 2, 0, 0, 0, 1) -1 -1 -1 -1 (xii) -

(1, 0, 0, 0, 2, 0, 0, 0) -2 0 0 -2 (x) -

(0, 1, 0, 0, 2, 0, 0, 0) -3 -1 1 -3 (xii) p = −1, q = 0 for (n̂, k̂, ℓ̂) = (10, 3, 1)

(0, 0, 1, 0, 2, 0, 0, 0) -2 0 0 -4 (x) -

(0, 0, 0, 1, 2, 0, 0, 0) -3 -1 -1 -3 (xii) -

(0, 0, 0, 0, 2, 1, 0, 0) -3 1 -1 -3 (xii) p = −1, q = −1 for (n̂, k̂, ℓ̂) = (5, 2, 1)

(0, 0, 0, 0, 2, 0, 1, 0) -4 0 0 -2 (x) -

(0, 0, 0, 0, 2, 0, 0, 1) -3 1 1 -3 (xii) p = −1, q = 0 for (n̂, k̂, ℓ̂) = (8, 3, 1)

α = a + c − e − g − 1; β = −b − d + f + h; γ = b − d − f + h; δ = a − c − e + g − 1
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Table 6.9: Possible cases for (a, b, c, d, e, f , g, h) ∈ Z8
+

(a, b, c, d, e, f , g, h) α β γ δ A Existence of p, q ∈ Z in (6.220)

(1, 0, 0, 0, 0, 2, 0, 0) 0 2 -2 0 (xi) -

(0, 1, 0, 0, 0, 2, 0, 0) -1 1 -1 -1 (xii) -

(0, 0, 1, 0, 0, 2, 0, 0) 0 2 -2 -2 (xii) -

(0, 0, 0, 1, 0, 2, 0, 0) -1 1 -3 -1 (xii) -

(0, 0, 0, 0, 1, 2, 0, 0) -2 2 -2 -2 (xii) -

(0, 0, 0, 0, 0, 2, 1, 0) -2 2 -2 0 (xii) -

(0, 0, 0, 0, 0, 2, 0, 1) -1 3 -1 -1 (xii) -

(1, 0, 0, 0, 0, 0, 2, 0) -2 0 0 2 (x) -

(0, 1, 0, 0, 0, 0, 2, 0) -3 -1 1 1 (xii) -

(0, 0, 1, 0, 0, 0, 2, 0) -2 0 0 0 (ii) -

(0, 0, 0, 1, 0, 0, 2, 0) -3 -1 -1 1 (xii) -

(0, 0, 0, 0, 1, 0, 2, 0) -4 0 0 0 (ii) p = −1, q = 0 for n̂ = 4k̂

(0, 0, 0, 0, 0, 1, 2, 0) -3 1 -1 1 (xii) -

(0, 0, 0, 0, 0, 0, 2, 1) -3 1 1 1 (xii) -

(1, 0, 0, 0, 0, 0, 0, 2) 0 2 2 0 (xi) -

(0, 1, 0, 0, 0, 0, 0, 2) -1 1 3 -1 (xii) -

(0, 0, 1, 0, 0, 0, 0, 2) 0 2 2 -2 (xii) -

(0, 0, 0, 1, 0, 0, 0, 2) -1 1 1 -1 (xii) -

(0, 0, 0, 0, 1, 0, 0, 2) -2 2 2 -2 (xii) -

(0, 0, 0, 0, 0, 1, 0, 2) -1 3 1 -1 (xii) -

(0, 0, 0, 0, 0, 0, 1, 2) -2 2 2 0 (xii) -

(1, 1, 1, 0, 0, 0, 0, 0) 1 -1 1 -1 (xii) -

(1, 1, 0, 1, 0, 0, 0, 0) 0 -2 0 0 (iii) -

(1, 1, 0, 0, 1, 0, 0, 0) -1 -1 1 -1 (xii) -

(1, 1, 0, 0, 0, 1, 0, 0) 0 0 0 0 (i) p = 0, q = 0 for any (n̂, k̂, ℓ̂)

(1, 1, 0, 0, 0, 0, 1, 0) -1 -1 1 1 (xii) -

(1, 1, 0, 0, 0, 0, 0, 1) 0 0 2 0 (iv) -

α = a + c − e − g − 1; β = −b − d + f + h; γ = b − d − f + h; δ = a − c − e + g − 1
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Table 6.10: Possible cases for (a, b, c, d, e, f , g, h) ∈ Z8
+

(a, b, c, d, e, f , g, h) α β γ δ A Existence of p, q ∈ Z in (6.220)

(1, 0, 1, 1, 0, 0, 0, 0) 1 -1 -1 -1 (xii) -

(1, 0, 1, 0, 1, 0, 0, 0) 0 0 0 -2 (v) -

(1, 0, 1, 0, 0, 1, 0, 0) 1 1 -1 -1 (xii) -

(1, 0, 1, 0, 0, 0, 1, 0) 0 0 0 0 (i) p = 0, q = 0 for any (n̂, k̂, ℓ̂)

(1, 0, 1, 0, 0, 0, 0, 1) 1 1 1 -1 (xii) -

(1, 0, 0, 1, 1, 0, 0, 0) -1 -1 -1 -1 (xii) -

(1, 0, 0, 1, 0, 1, 0, 0) 0 0 -2 0 (iv) -

(1, 0, 0, 1, 0, 0, 1, 0) -1 -1 -1 1 (xii) -

(1, 0, 0, 1, 0, 0, 0, 1) 0 0 0 0 (i) p = 0, q = 0 for any (n̂, k̂, ℓ̂)

(1, 0, 0, 0, 1, 1, 0, 0) -1 1 -1 -1 (xii) -

(1, 0, 0, 0, 1, 0, 1, 0) -2 0 0 0 (ii) -

(1, 0, 0, 0, 1, 0, 0, 1) -1 1 1 -1 (xii) -

(1, 0, 0, 0, 0, 1, 1, 0) -1 1 -1 1 (xii) -

(1, 0, 0, 0, 0, 1, 0, 1) 0 2 0 0 (iii) -

(1, 0, 0, 0, 0, 0, 1, 1) -1 1 1 1 (xii) -

(0, 1, 1, 1, 0, 0, 0, 0) 0 -2 0 -2 (vii) -

(0, 1, 1, 0, 1, 0, 0, 0) -1 -1 1 -3 (xii) -

(0, 1, 1, 0, 0, 1, 0, 0) 0 0 0 -2 (v) -

(0, 1, 1, 0, 0, 0, 1, 0) -1 -1 1 -1 (xii) -

(0, 1, 1, 0, 0, 0, 0, 1) 0 0 2 -2 (ix) -

(0, 1, 0, 1, 1, 0, 0, 0) -2 -2 0 -2 (xii) -

(0, 1, 0, 1, 0, 1, 0, 0) -1 -1 -1 -1 (xii) -

(0, 1, 0, 1, 0, 0, 1, 0) -2 -2 0 0 (viii) p = −1, q = 0 for n̂ = 2k̂ + 2ℓ̂

(0, 1, 0, 1, 0, 0, 0, 1) -1 -1 1 -1 (xii) -

(0, 1, 0, 0, 1, 1, 0, 0) -2 0 0 -2 (x) -

(0, 1, 0, 0, 1, 0, 1, 0) -3 -1 1 -1 (xii) -

(0, 1, 0, 0, 1, 0, 0, 1) -2 0 2 -2 (xii) -

(0, 1, 0, 0, 0, 1, 1, 0) -2 0 0 0 (ii) -

(0, 1, 0, 0, 0, 1, 0, 1) -1 1 1 -1 (xii) -

(0, 1, 0, 0, 0, 0, 1, 1) -2 0 2 0 (vi) -

α = a + c − e − g − 1; β = −b − d + f + h; γ = b − d − f + h; δ = a − c − e + g − 1
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Table 6.11: Possible cases for (a, b, c, d, e, f , g, h) ∈ Z8
+

(a, b, c, d, e, f , g, h) α β γ δ A Existence of p, q ∈ Z in (6.220)

(0, 0, 1, 1, 1, 0, 0, 0) -1 -1 -1 -3 (xii) -

(0, 0, 1, 1, 0, 1, 0, 0) 0 0 -2 -2 (ix) -

(0, 0, 1, 1, 0, 0, 1, 0) -1 -1 -1 -1 (xii) -

(0, 0, 1, 1, 0, 0, 0, 1) 0 0 0 -2 (v) p = 0, q = −1 for n̂ = 2k̂ + 2ℓ̂

(0, 0, 1, 0, 1, 1, 0, 0) -1 1 -1 -3 (xii) -

(0, 0, 1, 0, 1, 0, 1, 0) -2 0 0 -2 (x) -

(0, 0, 1, 0, 1, 0, 0, 1) -1 1 1 -3 (xii) -

(0, 0, 1, 0, 0, 1, 1, 0) -1 1 -1 -1 (xii) -

(0, 0, 1, 0, 0, 1, 0, 1) 0 2 0 -2 (vii) -

(0, 0, 1, 0, 0, 0, 1, 1) -1 1 1 -1 (xii) -

(0, 0, 0, 1, 1, 1, 0, 0) -2 0 -2 -2 (xii) -

(0, 0, 0, 1, 1, 0, 1, 0) -3 -1 -1 -1 (xii) -

(0, 0, 0, 1, 1, 0, 0, 1) -2 0 0 -2 (x) -

(0, 0, 0, 1, 0, 1, 1, 0) -2 0 -2 0 (vi) -

(0, 0, 0, 1, 0, 1, 0, 1) -1 1 -1 -1 (xii) -

(0, 0, 0, 1, 0, 0, 1, 1) -2 0 0 0 (ii) -

(0, 0, 0, 0, 1, 1, 1, 0) -3 1 -1 -1 (xii) -

(0, 0, 0, 0, 1, 1, 0, 1) -2 2 0 -2 (xii) -

(0, 0, 0, 0, 1, 0, 1, 1) -3 1 1 -1 (xii) -

(0, 0, 0, 0, 0, 1, 1, 1) -2 2 0 0 (viii) -

α = a + c − e − g − 1; β = −b − d + f + h; γ = b − d − f + h; δ = a − c − e + g − 1
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The condition in (6.221) is rewritten as

∃p, q ∈ Z s.t. pn̂ = αk̂, qn̂ = 0. (6.241)

From the conditions for ℓ, k, and n in (6.175), we have necessary conditions 1 ≤ ℓ < k < n/2.

Dividing each side of these inequalities by gcd(k, ℓ, n), we have 1/ gcd(k, ℓ, n) ≤ ℓ̂ < k̂ < n̂/2.

Since ℓ̂, k̂, and n̂ are integers, we have 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |α| ≤ 2, we see that

pn̂ = αk̂ is not satisfied for any p. From this, we have |α| ≥ 3. The sum of equalities in (6.239)

leads to α = 2(a − e − 1). From this, α is even. Recall that a + b + . . . + h ≤ 3. From this,

α = a + c − e − g − 1 takes a value within the range of −4 ≤ α ≤ 2. From this and |α| ≥ 3, we

have α = −4. From (6.239) and (6.240), we have (a, b, c, d, e, f , g, h) = (0, 0, 0, 0, 1, 0, 2, 0). From

(6.241), we have −4k̂ = pn̂. This condition is satisfied for p = −1. Hence, we have

(0, 0, 0, 0, 1, 0, 2, 0) ∈ P for n̂ = 4k̂.

For the case (iii), the elements of A in (6.220) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = 0, (6.242)

−b − d + f + h = β, b − d − f + h = 0. (6.243)

The condition in (6.221) is rewritten as

∃p, q ∈ Z s.t. pn̂ = βℓ̂, qn̂ = 0. (6.244)

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |β| ≤ 2, we see that pn̂ = βℓ̂ is not satisfied for any

p. From this, we have |β| ≥ 3. The sum of equalities in (6.243) leads to β = −2(d − h). From this,

β is even. Recall that a + b + . . . + h ≤ 3. From this, β = −b − d + f + h takes a value within the

range of −3 ≤ β ≤ 3. Hence, we have β = ±2. This contradicts |β| ≥ 3.

For the case (iv), the elements of A in (6.220) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = 0, (6.245)

−b − d + f + h = 0, b − d − f + h = γ. (6.246)

The condition in (6.221) is rewritten as

∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = γk̂. (6.247)

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |γ| ≤ 2, we see that qn̂ = γk̂ is not satisfied for any

q. From this, we have |γ| ≥ 3. The sum of equalities in (6.246) leads to γ = −2(d − h). From this,

γ is even. Recall that a + b + . . . + h ≤ 3. From this, γ = b − d − f + h takes a value within the

range of −3 ≤ γ ≤ 3. Hence, we have γ = ±2. This contradicts |γ| ≥ 3.

For the case (v), the elements of A in (6.220) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = δ, (6.248)

−b − d + f + h = 0, b − d − f + h = 0. (6.249)
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The condition in (6.221) is rewritten as

∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = δℓ̂. (6.250)

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |δ| ≤ 2, we see that qn̂ = δℓ̂ is not satisfied for any

p. From this, we have |δ| ≥ 3. Recall that a + b + . . . + h ≤ 3. From this, δ = a − c − e + g − 1

takes a value within the range of −4 ≤ δ ≤ 2. From this and |δ| ≥ 3, we have δ = −4. From (6.248)

and (6.249), we have (a, b, c, d, e, f , g, h) = (0, 0, 2, 0, 1, 0, 0, 0). From (6.250), we have −4ℓ̂ = pn̂.

This condition is satisfied for p = −1. Hence, we have

(0, 0, 2, 0, 1, 0, 0, 0) ∈ P for n̂ = 4ℓ̂.

For the case (vi), the elements of A in (6.220) represent

a + c − e − g − 1 = α, a − c − e + g − 1 = 0, (6.251)

−b − d + f + h = 0, b − d − f + h = γ. (6.252)

The condition in (6.221) is rewritten as

∃p, q ∈ Z s.t. pn̂ = αk̂, qn̂ = γk̂.

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |γ| ≤ 2, we see that qn̂ = γk̂ is not satisfied for any

q. From this, we have |γ| ≥ 3. The sum of equalities in (6.252) leads to γ = −2(d − h). From this,

γ is even. Recall that a + b + . . . + h ≤ 3. From this, γ = b − d − f + h takes a value within the

range of −3 ≤ γ ≤ 3. Hence, we have γ = ±2. This contradicts |γ| ≥ 3.

For the case (vii), the elements of A in (6.220) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = δ, (6.253)

−b − d + f + h = β, b − d − f + h = 0. (6.254)

The condition in (6.221) is rewritten as

∃p, q ∈ Z s.t. pn̂ = βℓ̂, qn̂ = δℓ̂. (6.255)

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |β| ≤ 2, we see that pn̂ = βℓ̂ is not satisfied for any

p. From this, we have |β| ≥ 3. The sum of equalities in (6.254) leads to β = −2(d − h). From this,

β is even. Recall that a + b + . . . + h ≤ 3. From this, β = −b − d + f + h takes a value within the

range of −3 ≤ β ≤ 3. Hence, we have β = ±2. This contradicts |β| ≥ 3.

For the case (viii), the elements of A in (6.220) represent

a + c − e − g − 1 = α, a − c − e + g − 1 = 0, (6.256)

−b − d + f + h = β, b − d − f + h = 0. (6.257)

The condition in (6.221) is rewritten as

∃p, q ∈ Z s.t. pn̂ = αk̂ + βℓ̂, qn̂ = 0. (6.258)
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Recall that a + b + . . . + h ≤ 3. From this, α = a + c − e − g − 1 takes a value within the range

of −4 ≤ α ≤ 2. The sum of equalities in (6.256) leads to α = 2(a − e − 1). Thus, α is even.

Hence, we have α = ±2,−4. In a similar manner, β = −b − d + f + h takes a value within

the range of −3 ≤ β ≤ 3. The sum of equalities in (6.257) leads to β = −2(d − h). Thus, β

is even. Hence, we have β = ±2. When we consider α = −4, we have (a, b, c, d, e, f , g, h) =

(0, 0, 0, 0, 1, 0, 2, 0). Hence, we have β = 0. This contradicts β , 0. When we consider α = 2,

we have (a, b, c, d, e, f , g, h) = (2, 0, 1, 0, 0, 0, 0, 0). Hence, we have β = 0. This contradicts β , 0.

When we consider α = −2 with β = 2, we have (a, b, c, d, e, f , g, h) = (0, 0, 0, 0, 0, 1, 1, 1). From

(6.258), we have −2(k̂− ℓ̂) = pn̂. Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. From this, we have 1 ≤ k̂− ℓ̂ < n̂/2.

Thus, the condition −2(k̂ − ℓ̂) = pn̂ is not satisfied for any p. When we consider α = −2 with

β = −2, we have (a, b, c, d, e, f , g, h) = (0, 1, 0, 1, 0, 0, 1, 0). From (6.258), we have −2(k̂+ ℓ̂) = pn̂.

This condition is satisfied for p = −1. Hence, we have

(0, 1, 0, 1, 0, 0, 1, 0) ∈ P for n̂ = 2k̂ + 2ℓ̂.

For the case (ix), the elements of A in (6.220) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = δ, (6.259)

−b − d + f + h = 0, b − d − f + h = γ. (6.260)

The condition in (6.221) is rewritten as

∃p, q ∈ Z s.t. pn̂ = 0, qn̂ = γk̂ + δℓ̂. (6.261)

Recall that a + b + . . . + h ≤ 3. From this, α = a − c − e + g − 1 takes a value within the

range of −4 ≤ α ≤ 2. The sum of equalities in (6.259) leads to α = 2(a − e − 1). Thus, α is

even. Hence, we have α = ±2,−4. In a similar manner, β = b − d − f + h takes a value within

the range of −3 ≤ β ≤ 3. The sum of equalities in (6.260) leads to β = −2(d − h). Thus, β

is even. Hence, we have β = ±2. When we consider α = −4, we have (a, b, c, d, e, f , g, h) =

(0, 0, 2, 0, 1, 0, 0, 0). Hence, we have β = 0. This contradicts β , 0. When we consider α = 2,

we have (a, b, c, d, e, f , g, h) = (2, 0, 0, 0, 0, 0, 1, 0). Hence, we have β = 0. This contradicts β , 0.

When we consider α = −2 with β = 2, we have (a, b, c, d, e, f , g, h) = (0, 1, 1, 0, 0, 0, 0, 1). From

(6.261), we have −2(k̂− ℓ̂) = qn̂. Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. From this, we have 1 ≤ k̂− ℓ̂ < n̂/2.

Thus, the condition −2(k̂ − ℓ̂) = qn̂ is not satisfied for any q. When we consider α = −2 with

β = −2, we have (a, b, c, d, e, f , g, h) = (0, 0, 1, 1, 0, 1, 0, 0). From (6.261), we have −2(k̂+ ℓ̂) = qn̂.

This condition is satisfied for q = −1. Hence, we have

(0, 0, 1, 1, 0, 1, 0, 0) ∈ P for n̂ = 2k̂ + 2ℓ̂.

For the case (x), the elements of A in (6.220) represent

a + c − e − g − 1 = α, a − c − e + g − 1 = δ, (6.262)

−b − d + f + h = 0, b − d − f + h = 0. (6.263)
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The condition in (6.221) is equivalent to

∃p, q ∈ Z s.t. pn̂ = αk̂, qn̂ = δℓ̂. (6.264)

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |α| ≤ 2, we see that pn̂ = αk̂ is not satisfied

for any p. From this, we have |α| ≥ 3. Similarly, for the case |δ| ≤ 2, we see that qn̂ = δℓ̂ is

not satisfied for any q. From this, we have |δ| ≥ 3. According to the results in Table 6.11–6.11,

only (a, b, c, d, e, f , g, h) = (0, 0, 0, 0, 2, 0, 0, 0) corresponds to this case. From (6.264), we have

pn̂ = −3k̂ and qn̂ = −3ℓ̂. From 1 ≤ ℓ̂ < k̂ < n̂/2, we have p = −1 and q = −1. Thus, we have

n̂ = 3k̂ and n̂ = 3ℓ̂. This contradicts k̂ , ℓ̂.

For the case (xi), the elements of A in (6.220) represent

a + c − e − g − 1 = 0, a − c − e + g − 1 = 0, (6.265)

−b − d + f + h = β, b − d − f + h = γ. (6.266)

The condition in (6.221) is equivalent to

∃p, q ∈ Z s.t. pn̂ = βℓ̂, qn̂ = γk̂. (6.267)

Recall that 1 ≤ ℓ̂ < k̂ < n̂/2. Thus, for the case |β| ≤ 2, we see that pn̂ = βℓ̂ is not satisfied for

any p. From this, we have |β| ≥ 3. Similarly, for the case |γ| ≤ 2, we see that qn̂ = γk̂ is not

satisfied for any q. From this, we have |γ| ≥ 3. According to the results in Table 6.6–6.11, no

(a, b, c, d, e, f , g, h) corresponds to this case.

For the case (xii), the elements of A in (6.220) represent

a + c − e − g − 1 = α, a − c − e + g − 1 = δ, (6.268)

−b − d + f + h = β, b − d − f + h = γ. (6.269)

The condition in (6.221) is rewritten as

∃p, q ∈ Z s.t. pn̂ = αk̂ + βℓ̂, qn̂ = γk̂ + δℓ̂. (6.270)

All (a, b, c, d, e, f , g, h) that correspond to this case are shown in Table 6.6–6.11.

Based on the above discussion, Fi (i = 1, . . . , 4) is restricted to the form of

Fi = a1ϕ̃zi + FC
i + (other terms), i = 1, . . . , 4, (6.271)

where

FC
1 = z1(a2|z1|2 + a3|z2|2 + a4|z3|2 + a5|z4|2), (6.272)

FC
2 = z2(a2|z2|2 + a3|z1|2 + a4|z4|2 + a5|z3|2), (6.273)

FC
3 = z3(a2|z3|2 + a3|z4|2 + a4|z1|2 + a5|z2|2), (6.274)

FC
4 = z4(a2|z4|2 + a3|z3|2 + a4|z2|2 + a5|z1|2) (6.275)
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Table 6.12: Nonzero coefficients of leading terms which belong to ”other terms” in (6.271)

(n̂, k̂, ℓ̂) Nonzero coefficients

General (n̂, k̂, ℓ̂) None

(5, 2, 1) A01001000(0), A00000200(0), A03000000(0), A00002100(0)

(8, 3, 1) A01010010(0), A00110100(0), A00021000(0), A00002001(0), A00000003(0)

(10, 3, 1) A01002000(0), A00000300(0)

(4k̂, k̂, ℓ̂) A00001020(0)

(4ℓ̂, k̂, ℓ̂) A00201000(0)

(2k̂ + 2ℓ̂, k̂, ℓ̂) A01010010(0), A00110100(0), A00021000(0)

with (k̂, ℓ̂) , (3, 1)

Table 6.13: Stability conditions of bifurcating solutions for group-theoretic critical points with multiplicity 8

(n̂, k̂, ℓ̂) Solutions Stability conditions (necessary conditions)

General (n̂, k̂, ℓ̂) wstripeI, wstripeII max(a3, a4, a5) < a2 < 0

wupside-downI, wupside-downII a3 − a4 + a5 < a2 < −|a4|
wsqT −a3 + a4 + a5 < a2 < −|a3|
wsqVM a2 + a3 < −|a4 + a5|

a2 − a3 < −|a4 − a5|

with the following notations:12

a1 = A′10000000(0), a2 = A20001000(0), a3 = A11000100(0),

a4 = A10100010(0), a5 = A10010001(0). (6.276)

F2, F3, and F4 are obtained by (6.203), (6.204), and (6.206), respectively.

In (6.271), FC
i

corresponds to cubic terms, and the form of “(other terms)” varies with the

values of (n̂, k̂, ℓ̂). For the case (n̂, k̂, ℓ̂) = (5, 2, 1), we have quadratic terms as leading terms. For

any other cases, we have cubic terms as leading terms that vary with the values of (n̂, k̂, ℓ̂). From

this point of view, we classify the form of the bifurcation equation as shown in Table 6.12 by the

values of (n̂, k̂, ℓ̂).

The form of “(other terms)” in (6.271) depends on the values of (n̂, k̂, ℓ̂) in (6.176). All the

possible cases and stability conditions for the bifurcating solutions are summarized in Tables 6.13–

6.15. The main finding of this section is as follows:

Proposition 6.14. For a critical point of multiplicity 8 associated with µ = (8; k, ℓ), we have the

following statements:

12These notations are local and should not be confused with (6.128) used in Section 6.4.1.

169



Table 6.14: Stability conditions of bifurcating solutions for group-theoretic critical points with multiplicity 8

(n̂, k̂, ℓ̂) Solutions Stability conditions

(5, 2, 1) wstripeI, wstripeII Does not exist

wupside-downI, wupside-downII Does not exist

wsqT Always unstable

wsqVM



a6 + a7 < 0

3a6 + a7 > 0

2a6 + a7 > 0

if w > 0



a6 + a7 > 0

3a6 + a7 > 0

2a6 + a7 > 0

if w < 0

(8, 3, 1) wstripeI, wstripeII Does not exist

wupside-downI, wupside-downII Does not exist

wsqT Does not exist

wsqVM a2 + a3 + a4 + a5 + a10 + a11 + a12 + a13 + a14 < 0

a2 + a3 − a4 − a5 − a10 − a11 − a12 − 2a14 < 0

a2 − a3 + a4 − a5 − a10 − a11 − a12 − 2a14 < 0

a2 − a3 − a4 + a5 − a10 − a11 + a12 + a13 + a14 < 0

a10 + a11 + 2a12 + a13 − a14 > 0

a13 + a14 > 0

(10, 3, 1) wstripeI, wstripeII Does not exist

wupside-downI, wupside-downII Does not exist

wsqT a2 + a3 + a15 + a16 < 0

a2 − a3 − 2a16 < 0

3a15 + a16 > 0

a2 + a3 − a4 − a5 + a15 + a16 < 0

wsqVM a2 + a3 + a4 + a5 + a15 + a16 < 0

a2 + a3 − a4 − a5 − a15 − a16 < 0

a2 − a3 + a4 − a5 − 2a16 < 0

a2 − a3 − a4 + a5 − 2a16 < 0

3a15 + a16 > 0
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Table 6.15: Stability conditions of bifurcating solutions for group-theoretic critical points with multiplicity 8

(n̂, k̂, ℓ̂) Solutions Stability conditions (necessary conditions)

(4k̂, k̂, ℓ̂) wstripeI, wstripeII max(a3, a4 + |a17|, a5) < a2 < 0

wupside-downI, wupside-downII a3 − a4 + a5 − a17 < a2 < −|a4 + a17|
a4 > 0

wSqT Does not exist

wsqVM a2 + a3 + a4 + a5 + a17 < 0

a2 + a3 − a4 − a5 − a17 < 0

a2 − a3 + a4 − a5 + a17 < 0

a2 − a3 − a4 + a5 − a17 < 0

a17 > 0

(4ℓ̂, k̂, ℓ̂) wstripeI, wstripeII max(a3, a4 + |a18|, a5) < a2 < 0

wupside-downI, wupside-downII a3 − a4 + a5 + a17 < a2 < −|a4 + a18|
a18 > 0

wSqT Does not exist

wSqVM a2 + a3 + a4 + a5 + a18 < 0

a2 + a3 − a4 − a5 − a18 < 0

a2 − a3 + a4 − a5 + a18 < 0

a2 − a3 − a4 + a5 − a18 < 0

a18 > 0

(2k̂ + 2ℓ̂, k̂, ℓ̂) wstripeI, wstripeII max(a3, a4, a5 − |a12|) < a2 < 0

with (k̂, ℓ̂) , (3, 1) wupside-downI, wupside-downII a2 < −|a4|
a2 + a3 − a4 − a5 − a12 > −|a10 + a11|
a2 + a3 − a4 − a5 + a12 > −|a10 − a11|

wsqT Does not exist

wsqVM a2 + a3 + a4 + a5 + a10 + a11 + a12 < 0

a2 + a3 − a4 − a5 − a10 − a11 − a12 < 0

a2 − a3 + a4 − a5 − a10 − a11 − a12 < 0

a2 − a3 − a4 + a5 − a10 − a11 + a12 < 0

a10 + a11 + 2a12 > 0
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• For the case (n̂, k̂, ℓ̂) = (5, 2, 1), the bifurcating solution wsqT is always unstable in the

neighborhood of the critical point, and the bifurcating curve takes the form ϕ̃ ≈ cw for some

constant c.

• For any other cases, the stability of the bifurcating solutions wstripeI, wstripeII, wupside−downI,

wupside−downII, wsqT, and wsqVM depends on the values of the coefficients of the power series

expansion of the bifurcation equation in (6.223), and the bifurcating curve takes the form

ϕ̃ ≈ cw2 for some constant c.

To show these results, we focus on each case and study stability conditions for the bifurcating

solutions in the remainder of this section.

Case 1: General (n̂, k̂, ℓ̂)

For general cases, other than special cases to be treated in the sequel, the asymptotic form of

Fi (i = 1, . . . , 4) in (6.271) becomes

Fi ≈ a1ϕ̃zi + FC
i , (6.277)

where FC
i

(i = 1, . . . , 4) are given in (6.272) – (6.275). Then, the asymptotic form of F̃i (i =

1, . . . , 8) in (6.182) – (6.185) becomes

F̃i ≈ a1ϕ̃wi + F̃C
i (6.278)

with

F̃C
1 = w1{a2(w1

2 + w2
2) + a3(w3

2 + w4
2) + a4(w5

2 + w6
2) + a5(w7

2 + w8
2)}, (6.279)

F̃C
2 = w2{a2(w1

2 + w2
2) + a3(w3

2 + w4
2) + a4(w5

2 + w6
2) + a5(w7

2 + w8
2)}, (6.280)

F̃C
3 = w3{a2(w3

2 + w4
2) + a3(w1

2 + w2
2) + a4(w7

2 + w8
2) + a5(w5

2 + w6
2)}, (6.281)

F̃C
4 = w4{a2(w3

2 + w4
2) + a3(w1

2 + w2
2) + a4(w7

2 + w8
2) + a5(w5

2 + w6
2)}, (6.282)

F̃C
5 = w5{a2(w5

2 + w6
2) + a3(w7

2 + w8
2) + a4(w1

2 + w2
2) + a5(w3

2 + w4
2)}, (6.283)

F̃C
6 = w6{a2(w5

2 + w6
2) + a3(w7

2 + w8
2) + a4(w1

2 + w2
2) + a5(w3

2 + w4
2)}, (6.284)

F̃C
7 = w7{a2(w7

2 + w8
2) + a3(w5

2 + w6
2) + a4(w3

2 + w4
2) + a5(w1

2 + w2
2)}, (6.285)

F̃C
8 = w8{a2(w7

2 + w8
2) + a3(w5

2 + w6
2) + a4(w3

2 + w4
2) + a5(w1

2 + w2
2)}, (6.286)

Hence, the asymptotic form of the Jacobian matrix in (6.180) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + BC (6.287)

with the following notations:13

BC = a2B2 + a3B3 + a4B4 + a5B5, (6.288)

13The notations here are local and should not be confused with (6.141) used in Section 6.4.1.

172



B2 =

[
B2

1
O

O B2
2

]
, B3 =

[
B3

1
O

O B3
2

]
, B4 =

[
B4

1
B4

3

(B4
3
)
⊤

B4
2

]
, B5 =

[
B5

1
B5

3

(B5
3
)
⊤

B5
2

]
,

B2
1 =



3w1
2 + w2

2 2w1w2 0 0

2w1w2 w1
2 + 3w2

2 0 0

0 0 3w3
2 + w4

2 2w3w4

0 0 2w3w4 w3
2 + 3w4

2


,

B2
2 =



3w5
2 + w6

2 2w5w6 0 0

2w5w6 w5
2 + 3w6

2 0 0

0 0 3w7
2 + w8

2 2w7w8

0 0 2w7w8 w7
2 + 3w8

2


,

B3
1 =



w3
2 + w4

2 0 2w1w3 2w1w4

0 w3
2 + w4

2 2w2w3 2w2w4

2w1w3 2w2w3 w1
2 + w2

2 0

2w1w4 2w2w4 0 w1
2 + w2

2


,

B3
2 =



w7
2 + w8

2 0 2w5w7 2w5w8

0 w7
2 + w8

2 2w6w7 2w6w8

2w5w7 2w6w7 w5
2 + w6

2 0

2w5w8 2w6w8 0 w5
2 + w6

2


,

B4
1 =

[
(w5

2 + w6
2)I2 O

O (w7
2 + w8

2)I2

]
, B4

2 =

[
(w1

2 + w2
2)I2 O

O (w3
2 + w4

2)I2

]
,

B4
3 = 2



w1w5 w1w6 0 0

w2w5 w2w6 0 0

0 0 w3w7 w3w8

0 0 w4w7 w4w8


, B5

1 =

[
(w7

2 + w8
2)I2 O

O (w5
2 + w6

2)I2

]
,

B5
2 =

[
(w3

2 + w4
2)I2 O

O (w1
2 + w2

2)I2

]
, B5

3 = 2



0 0 w1w7 w1w8

0 0 w2w7 w2w8

w3w5 w3w6 0 0

w4w5 w4w6 0 0


.

Substituting wstripeI = (w, 0, 0, 0, 0, 0, 0, 0) into (6.278) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a2

a1

w2.
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Evaluating the Jacobian matrix (6.287) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) = J̃C

stripeI ≈ w2

[
C1 O

O C2

]
(6.289)

with

C1 =



2a2 0 0 0

0 0 0 0

0 0 −a2 + a3 0

0 0 0 −a2 + a3


, C2 =

[
(−a2 + a4)I2 O

O (−a2 + a5)I2

]
. (6.290)

The eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by

λ1 ≈ 2a2w2,

λ2 ≈ O(w3),

λ3 ≈ −(a2 − a3)w2 (repeated twice),

λ4 ≈ −(a2 − a4)w2 (repeated twice),

λ5 ≈ −(a2 − a5)w2 (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 < 0,

a2 − a3 > 0,

a2 − a4 > 0,

a2 − a5 > 0.

These conditions are equivalent to

max(a3, a4, a5) < a2 < 0. (6.291)

Thus, the stability of wstripeI is conditional and depends on the values of a2, . . . , a5.

Substituting wstripeII = (0,w, 0, 0, 0, 0, 0, 0) into (6.278) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a2

a1

w2.

Evaluating the Jacobian matrix (6.287) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) = J̃C

stripeII ≈ w2

[
C3 O

O C2

]
(6.292)

with

C3 =



0 0 0 0

0 2a2 0 0

0 0 −a2 + a3 0

0 0 0 −a2 + a3


, (6.293)
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where C2 is given in (6.290). The eigenvalues of the matrix J̃(wstripeII, ϕ̃stripeII) are equivalent to

that for wstripeI. Hence, stability conditions for wstripeII are equivalent to that for wstripeI.

Substituting wupside-downI = (w, 0, 0, 0,w, 0, 0, 0) into (6.278) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside-downI ≈ −
a2 + a4

a1

w2.

Evaluating the Jacobian matrix (6.287) at (wupside-downI, ϕ̃upside-downI), we have

J̃(wupside-downI, ϕ̃upside-downI) = J̃C

upside-downI ≈ w2

[
C4 C5

C5 C4

]
(6.294)

with

C4 =



2a2 0 0 0

0 0 0 0

0 0 −a2 + a3 − a4 + a5 0

0 0 0 −a2 + a3 − a4 + a5


, C5 =



2a4 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


. (6.295)

The eigenvalues of the matrix J̃(wupside-downI, ϕ̃upside-downI) are given by

λ1, λ2 ≈ 2(a2 ± a4)w2,

λ3 ≈ O(w3) (repeated twice),

λ4 ≈ −(a2 − a3 + a4 − a5)w2 (repeated 4 times).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 < −|a4|,
a2 − a3 + a4 − a5 > 0.

These conditions are equivalent to

a3 − a4 + a5 < a2 < −|a4|. (6.296)

Thus, the stability of wupside-downI is conditional and depends on the values of a2, . . . , a5.

Substituting wupside-downII = (0,w, 0, 0, 0,w, 0, 0) into (6.278) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside-downII ≈ −
a2 + a4

a1

w2.

Evaluating the Jacobian matrix (6.287) at (wupside-downI, ϕ̃upside-downI), we have

J̃(wupside-downII, ϕ̃upside-downII) = J̃C

upside-downII ≈ w2

[
C6 C7

C7 C6

]
(6.297)
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with

C6 =



0 0 0 0

0 2a2 0 0

0 0 −a2 + a3 − a4 + a5 0

0 0 0 −a2 + a3 − a4 + a5


, C7 =



0 0 0 0

0 2a4 0 0

0 0 0 0

0 0 0 0


. (6.298)

The eigenvalues of the matrix J̃(wupside-downII, ϕ̃upside-downII) are equivalent to that for wupside-downI.

Hence, stability conditions for wupside-downII are equivalent to that for wupside-downI.

Substituting wsqT = (w, 0,w, 0, 0, 0, 0, 0) into (6.278) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqT ≈ −
a2 + a3

a1

w2.

Evaluating the Jacobian matrix (6.287) at (wsqT, ϕ̃sqT), we have

J̃(wsqT, ϕ̃sqT) = J̃C

sqT ≈ w2

[
C8 O

O C9

]
(6.299)

C8 = 2



a2 0 a3 0

0 0 0 0

a3 0 a2 0

0 0 0 0


, C9 = −(a2 + a3 − a4 − a5)I4. (6.300)

The eigenvalues of the matrix J̃(wsqT, ϕ̃sqT) are given by

λ1, λ2 ≈ 2(a2 ± a3)w2,

λ3 ≈ O(w3) (repeated twice),

λ4 ≈ −(a2 + a3 − a4 − a5)w2 (repeated 4 times).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 < −|a3|,
a2 + a3 − a4 − a5 > 0.

These are equivalent to

−a3 + a4 + a5 < a2 < −|a3|. (6.301)

Thus, the stability of wsqT is conditional and depends on the values of a2, . . . , a5.

Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (6.278) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqVM ≈ −
a2 + a3 + a4 + a5

a1

w2.

Evaluating the Jacobian matrix (6.287) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) = J̃C

sqVM ≈ w2

[
C8 C10

C10 C8

]
(6.302)
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with

C10 = 2



a4 0 a5 0

0 0 0 0

a5 0 a4 0

0 0 0 0


, (6.303)

where C8 is given in (6.300). The eigenvalues of the matrix J̃(wsqVM, ϕ̃sqVM) are given by

λ1, λ2 ≈ 2{a2 + a3 ± (a4 + a5)}w2,

λ3, λ4 ≈ 2{a2 − a3 ± (a4 − a5)}w2,

λ5 ≈ O(w3) (repeated 4 times).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 + a3 < −|a4 + a5|, (6.304)

a2 − a3 < −|a4 − a5|. (6.305)

Thus, the stability of wsqVM is conditional and depends on the values of a2, . . . , a5.

Case 2: (n̂, k̂, ℓ̂) = (5, 2, 1)

For the case (n̂, k̂, ℓ̂) = (5, 2, 1), we have

(0, 1, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 2, 0, 0), (0, 3, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 2, 1, 0, 0) ∈ P

as well as

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),

(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P

in (6.238). Then, the asymptotic form of Fi (i = 1, . . . , 4) in (6.271) becomes

F1 ≈ a1ϕ̃z1 + a6z2z1 + a7z2
2
+ a8z2

3 + a9z1
2
z2 + FC

1 , (6.306)

F2 ≈ a1ϕ̃z2 + a6z1z2 + a7z1
2 + a8z1

3
+ a9z2

2
z1 + FC

2 , (6.307)

F3 ≈ a1ϕ̃z3 + a6z4z3 + a7z4
2
+ a8z4

3 + a9z3
2
z4 + FC

3 , (6.308)

F4 ≈ a1ϕ̃z4 + a6z3z4 + a7z3
2 + a8z3

3
+ a9z4

2
z3 + FC

4 (6.309)

with

a6 = A01001000(0), a7 = A00000200(0), a8 = A03000000(0), a9 = A00002100(0),

where FC
i

(i = 1, . . . , 4) is given in (6.272) – (6.275). Then, the asymptotic form of F̃i (i = 1, . . . , 8)

in (6.182) – (6.185) becomes

F̃1 ≈ a1ϕ̃w1 + a6(w1w3 + w2w4) + a7(w3
2 − w4

2)
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+ a8w3(w3
2 − 3w4

2) + a9{w3(w1
2 − w2

2) − 2w1w2w4} + F̃C
1 , (6.310)

F̃2 ≈ a1ϕ̃w2 + a6(w1w4 − w2w3) − 2a7w3w4

+ a8w4(3w3
2 − w4

2) + a9{−w4(w1
2 − w2

2) − 2w1w2w3} + F̃C
2 , (6.311)

F̃3 ≈ a1ϕ̃w3 + a6(w1w3 − w2w4) + a7(w1
2 − w2

2)

+ a8w1(w1
2 − 3w2

2) + a9{w1(w3
2 − w4

2) + 2w3w4w2} + F̃C
3 , (6.312)

F̃4 ≈ a1ϕ̃w4 + a6(−w1w4 − w2w3) + 2a7w1w2

+ a8w2(−3w1
2 + w2

2) + a9{w2(w3
2 − w4

2) − 2w3w4w1} + F̃C
4 , (6.313)

F̃5 ≈ a1ϕ̃w5 + a6(w5w7 + w6w8) + a7(w7
2 − w8

2)

+ a8w7(w7
2 − 3w8

2) + a9{w7(w5
2 − w6

2) − 2w5w6w8} + F̃C
5 , (6.314)

F̃6 ≈ a1ϕ̃w6 + a6(w5w8 − w6w7) − 2a7w7w8

+ a8w8(3w7
2 − w8

2) + a9{−w8(w5
2 − w6

2) − 2w5w6w7} + F̃C
6 , (6.315)

F̃7 ≈ a1ϕ̃w7 + a6(w5w7 − w6w8) + a7(w5
2 − w6

2)

+ a8w5(w5
2 − 3w6

2) + a9{w5(w7
2 − w8

2) + 2w7w8w6} + F̃C
7 , (6.316)

F̃8 ≈ a1ϕ̃w8 + a6(−w5w8 − w6w7) + 2a7w5w6

+ a8w6(−3w5
2 + w6

2) + a9{w6(w7
2 − w8

2) − 2w7w8w5} + F̃C
8 , (6.317)

where F̃C
i

(i = 1, . . . , 8) is given in (6.279) – (6.286). Hence, the asymptotic form of the Jacobian

matrix in (6.180) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + a6B6 + a7B7 + a8B8 + a9B9 + BC, (6.318)

where BC is given in (6.288) and

B6 =

[
B6

1
O

O B6
2

]
, B7 =

[
B7

1
O

O B7
2

]
, B8 =

[
B8

1
O

O B8
2

]
, B9 =

[
B9

1
O

O B9
2

]
,

B6
1 =



w3 w4 w1 w2

w4 −w3 −w2 w1

w3 −w4 w1 −w2

−w4 −w3 −w2 −w1


, B6

2 =



w7 w8 w5 w6

w8 −w7 −w6 w5

w7 −w8 w5 −w6

−w8 −w7 −w6 −w5


,

B7
1 = 2



0 0 w3 −w4

0 0 −w4 −w3

w1 −w2 0 0

w2 w1 0 0


, B7

2 = 2



0 0 w7 −w8

0 0 −w8 −w7

w5 −w6 0 0

w6 w5 0 0


,
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B8
1 = 3



0 0 w3
2 − w4

2 −2w3w4

0 0 2w3w4 w3
2 − w4

2

w1
2 − w2

2 −2w1w2 0 0

−2w1w2 −w1
2 + w2

2 0 0


,

B8
2 = 3



0 0 w7
2 − w8

2 −2w7w8

0 0 2w7w8 w7
2 − w8

2

w5
2 − w6

2 −2w5w6 0 0

−2w5w6 −w5
2 + w6

2 0 0


,

B9
1 =



2(w1w3 − w2w4) 2(−w1w4 − w2w3) w1
2 − w2

2 −2w1w2

2(−w1w4 − w2w3) 2(−w1w3 + w2w4) −2w1w2 −w1
2 + w2

2

w3
2 − w4

2 2w3w4 2(w1w3 + w2w4) 2(−w1w4 + w2w3)

−2w3w4 w3
2 − w4

2 2(−w1w4 + w2w3) 2(−w1w3 − w2w4)


,

B9
2 =



2(w5w7 − w6w8) 2(−w5w8 − w6w7) w5
2 − w6

2 −2w5w6

2(−w5w8 − w6w7) 2(−w5w7 + w6w8) −2w5w6 −w5
2 + w6

2

w7
2 − w8

2 2w7w8 2(w5w7 + w6w8) 2(−w5w8 + w6w7)

−2w7w8 w7
2 − w8

2 2(−w5w8 + w6w7) 2(−w5w7 − w6w8)


.

Substituting wsqT = (w, 0,w, 0, 0, 0, 0, 0) into (6.310) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqT ≈ −
a6 + a7

a1

w.

Evaluating the Jacobian matrix (6.318) at (wsqT, ϕ̃sqT), we have

J̃(wsqT, ϕ̃sqT) ≈ w

[
C11 O

O C12

]
(6.319)

with

C11 =



−a7 0 a6 + 2a7 0

0 −2a6 − a7 0 a6 − 2a7

a6 + 2a7 0 −a7 0

0 −a6 + 2a7 0 −2a6 − a7


, C12 = −(a6 + a7)I4. (6.320)

The eigenvalues of the matrix J̃(wsqT, ϕ̃sqT) are given by

λ1 ≈ (a6 + a7)w,

λ2 ≈ −(a6 + 3a7)w,

λ3, λ4 ≈ −(2a6 + a7)w ± i(a6 − 2a7)w,

λ5 ≈ −(a6 + a7)w (repeated 4 times).
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Since the eigenvalues λ1 and λ5 have opposite signs, there is at least one positive eigenvalue. Thus,

the bifurcating solution wsqT is always unstable.

Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (6.310) with (6.279) and solving F1 = 0 for ϕ̃,

we have

ϕ̃ = ϕ̃sqVM ≈ −
a6 + a7

a1

w.

Evaluating the Jacobian matrix (6.318) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) ≈ w

[
C11 O

O C11

]
, (6.321)

where C11 is given in (6.320). The eigenvalues of the matrix J̃(wsqVM, ϕ̃sqVM) are given by

λ1 ≈ (a6 + a7)w,

λ2 ≈ −(3a6 + a7)w,

λ3, λ4 ≈ −{2a6 + a7 ± i(a6 − 2a7)}w

and are all repeated twice. Assume that all eigenvalues have negative real parts. If w < 0, we have

the following stability conditions:

a6 + a7 < 0, (6.322)

3a6 + a7 > 0, (6.323)

2a6 + a7 > 0. (6.324)

If w < 0, we have the following stability conditions:

a6 + a7 > 0, (6.325)

3a6 + a7 < 0, (6.326)

2a6 + a7 < 0. (6.327)

Thus, the stability of wsqVM depends on the direction w of the bifurcating solution and the values

of a6 and a7.

Remark 6.3. For the case (n̂, k̂, ℓ̂) = (5, 2, 1), we have the following statements:

• The solutions wstripeI and wstripeII do not exist. See Proposition 6.10 in Section 6.5.3. In fact,

k̂2 + ℓ̂ = 5. This is divisible by n̂ = 5. Hence, the condition (6.230) is not satisfied.

• The solutions wupside-downI and wupside-downII do not exist. See Proposition 6.12 in Section

6.5.4. In fact, gcd(k̂2 + ℓ̂, k̂2 − ℓ̂) = gcd(5, 3) = 1. This is divisible by gcd(n̂, 2k̂ℓ̂) =

gcd(5, 4) = 1. Hence, the condition (6.234) is not satisfied.

□
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Case 3: (n̂, k̂, ℓ̂) = (8, 3, 1)

For the case of (n̂, k̂, ℓ̂) = (8, 3, 1), we have

(0, 1, 0, 1, 0, 0, 1, 0), (0, 0, 1, 1, 0, 1, 0, 0), (0, 0, 0, 2, 1, 0, 0, 0),

(0, 0, 0, 0, 2, 0, 0, 1), (0, 0, 0, 0, 0, 0, 0, 3) ∈ P

as well as

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),

(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P

in (6.238). Then, the asymptotic form of Fi (i = 1, . . . , 4) in (6.271) becomes

F1 ≈ a1ϕ̃z1 + a10z2z4z3 + a11z3z4z2 + a12z4
2z1 + a13z1

2
z4 + a14z4

3
+ FC

1 , (6.328)

F2 ≈ a1ϕ̃z2 + a10z1z3z4 + a11z4z3z1 + a12z3
2z2 + a13z2

2
z3 + a14z3

3
+ FC

2 , (6.329)

F3 ≈ a1ϕ̃z3 + a10z4z2z1 + a11z1z2z4 + a12z2
2z3 + a13z3

2
z2 + a14z2

3
+ FC

3 , (6.330)

F4 ≈ a1ϕ̃z4 + a10z3z1z2 + a11z2z1z3 + a12z1
2z4 + a13z4

2
z1 + a14z1

3
+ FC

4 (6.331)

with

a10 = A01010010(0), a11 = A00110100(0), a12 = A00021000(0),

a13 = A00002001(0), a14 = A00000003(0), (6.332)

where FC
i

(i = 1, . . . , 4) is given in (6.272) – (6.275). Then, the asymptotic form of F̃i (i = 1, . . . , 8)

in (6.182) – (6.185) becomes

F̃1 ≈ a1ϕ̃w1 + a10{w5(w3w7 − w4w8) + w6(w3w8 + w4w7)}
+ a11{w3(w5w7 − w6w8) + w4(w5w8 + w6w7)}
+ a12{w1(w7

2 − w8
2) + 2w2w7w8} + a13{w7(w1

2 − w2
2) − 2w8w1w2}

+ a14w7(w7
2 − 3w8

2) + F̃C
1 , (6.333)

F̃2 ≈ a1ϕ̃w2 + a10{w5(w3w8 + w4w7) − w6(w3w7 − w4w8)}
+ a11{w3(w5w8 + w6w7) − w4(w5w7 − w6w8)}
+ a12{−w2(w7

2 − w8
2) + 2w1w7w8} + a13{−w8(w1

2 − w2
2) − 2w7w1w2}

+ a14w8(−3w7
2 + w8

2) + F̃C
2 , (6.334)

F̃3 ≈ a1ϕ̃w3 + a10{w1(w5w7 − w6w8) + w2(w5w8 + w6w7)}
+ a11{w7(w1w5 − w2w6) + w8(w1w6 + w2w5)}
+ a12{w3(w5

2 − w6
2) + 2w4w5w6} + a13{w5(w3

2 − w4
2) − 2w6w3w4}

+ a14w5(w5
2 − 3w6

2) + F̃C
3 , (6.335)

F̃4 ≈ a1ϕ̃w4 + a10{w1(w5w8 + w6w7) − w2(w5w7 − w6w8)}
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+ a11{w7(w1w6 + w2w5) − w8(w1w5 − w2w6)}
+ a12{−w4(w5

2 − w6
2) + 2w3w5w6} + a13{−w6(w3

2 − w4
2) − 2w5w3w4}

+ a14w6(−3w5
2 + w6

2) + F̃C
4 , (6.336)

F̃5 ≈ a1ϕ̃w5 + a10{w1(w3w7 − w4w8) + w2(w3w8 + w4w7)}
+ a11{w7(w1w3 − w2w4) + w8(w1w4 + w2w3)}
+ a12{w5(w3

2 − w4
2) + 2w3w4w6} + a13{w3(w5

2 − w6
2) − 2w4w5w6}

+ a14w3(w3
2 − 3w4

2) + F̃C
5 , (6.337)

F̃6 ≈ a1ϕ̃w6 + a10{w1(w3w8 + w4w7) − w2(w3w7 − w4w8)}
+ a11{w7(w1w4 + w2w3) − w8(w1w3 − w2w4)}
+ a12{−w6(w3

2 − w4
2) + 2w3w4w5} + a13{−w4(w5

2 − w6
2) − 2w3w5w6}

+ a14w4(−3w3
2 + w4

2) + F̃C
6 , (6.338)

F̃7 ≈ a1ϕ̃w7 + a10{w5(w1w3 − w2w4) + w6(w1w4 + w2w3)}
+ a11{w3(w1w5 − w2w6) + w4(w1w6 + w2w5)}
+ a12{w7(w1

2 − w2
2) + 2w8w1w2} + a13{w1(w7

2 − w8
2) − 2w2w7w8}

+ a14w1(w1
2 − 3w2

2) + F̃C
7 , (6.339)

F̃8 ≈ a1ϕ̃w8 + a10{w5(w1w4 + w2w3) − w6(w1w3 − w2w4)}
+ a11{w3(w1w6 + w2w5) − w4(w1w5 − w2w6)}
+ a12{−w8(w1

2 − w2
2) + 2w7w1w2} + a13{−w2(w7

2 − w8
2) − 2w1w7w8}

+ a14w2(−3w1
2 + w2

2) + F̃C
8 , (6.340)

where F̃C
i

(i = 1, . . . , 8) is given in (6.279) – (6.286). Hence, the asymptotic form of the Jacobian

matrix in (6.180) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + a10B10 + a11B11 + a12B12 + a13B13 + a14B14 + BC, (6.341)

where BC is given in (6.288) and

B10 =


B10

1
B10

3

B10
4

B10
2

 , B11 =


B11

1
B11

3

B11
4

B11
2

 , B12 =


B12

1
B12

3

(B12
3

)
⊤

B12
2

 , (6.342)

B13 =


B13

1
B13

3

B13
4

B13
2

 , B14 =


O B14

1

B14
2

O

 ,

B10
1 =



0 0 w5w7 + w6w8 −w5w8 + w6w7

0 0 w5w8 − w6w7 w5w7 + w6w8

w5w7 − w6w8 w5w8 + w6w7 0 0

w5w8 + w6w7 −w5w7 + w6w8 0 0


,
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B10
2 =



0 0 w1w3 + w2w4 −w1w4 + w2w3

0 0 w1w4 − w2w3 w1w3 + w2w4

w1w3 − w2w4 w1w4 + w2w3 0 0

w1w4 + w2w3 −w1w3 + w2w4 0 0


,

B10
3 =



w3w7 − w4w8 w3w8 + w4w7 w3w5 + w4w6 w3w6 − w4w5

w3w8 + w4w7 −w3w7 + w4w8 −w3w6 + w4w5 w3w5 + w4w6

w1w7 + w2w8 −w1w8 + w2w7 w1w5 + w2w6 −w1w6 + w2w5

w1w8 − w2w7 w1w7 + w2w8 w1w6 − w2w5 w1w5 + w2w6


,

B10
4 =



w3w7 − w4w8 w3w8 + w4w7 w1w7 + w2w8 −w1w8 + w2w7

w3w8 + w4w7 −w3w7 + w4w8 w1w8 − w2w7 w1w7 + w2w8

w3w5 + w4w6 w3w6 − w4w5 w1w5 + w2w6 w1w6 − w2w5

−w3w6 + w4w5 w3w5 + w4w6 −w1w6 + w2w5 w1w5 + w2w6


,

B11
1 =



0 0 w5w7 − w6w8 w5w8 + w6w7

0 0 w5w8 + w6w7 −w5w7 + w6w8

w5w7 + w6w8 w5w8 − w6w7 0 0

−w5w8 + w6w7 w5w7 + w6w8 0 0


,

B11
2 =



0 0 w1w3 − w2w4 w1w4 + w2w3

0 0 w1w4 + w2w3 −w1w3 + w2w4

w1w3 + w2w4 w1w4 − w2w3 0 0

−w1w4 + w2w3 w1w3 + w2w4 0 0


,

B11
3 =



w3w7 + w4w8 −w3w8 + w4w7 w3w5 + w4w6 −w3w6 + w4w5

w3w8 − w4w7 w3w7 + w4w8 w3w6 − w4w5 w3w5 + w4w6

w1w7 + w2w8 w1w8 − w2w7 w1w5 − w2w6 w1w6 + w2w5

−w1w8 + w2w7 w1w7 + w2w8 w1w6 + w2w5 −w1w5 + w2w6


,

B11
4 =



w3w7 + w4w8 w3w8 − w4w7 w1w7 + w2w8 w1w8 − w2w7

−w3w8 + w4w7 w3w7 + w4w8 −w1w8 + w2w7 w1w7 + w2w8

w3w5 + w4w6 −w3w6 + w4w5 w1w5 − w2w6 w1w6 + w2w5

w3w6 − w4w5 w3w5 + w4w6 w1w6 + w2w5 −w1w5 + w2w6


,

B12
1 =



w7
2 − w8

2 2w7w8 0 0

2w7w8 −w7
2 + w8

2 0 0

0 0 w5
2 − w6

2 2w5w6

0 0 2w5w6 −w5
2 + w6

2


,
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B12
2 =



w3
2 − w4

2 2w3w4 0 0

2w3w4 −w3
2 + w4

2 0 0

0 0 w1
2 − w2

2 2w1w2

0 0 2w1w2 −w1
2 + w2

2


,

B12
3 = 2



0 0 w1w7 + w2w8 −w1w8 + w2w7

0 0 w1w8 − w2w7 w1w7 + w2w8

w3w5 + w4w6 −w3w6 + w4w5 0 0

w3w6 − w4w5 w3w5 + w4w6 0 0


,

B13
1 = 2



w1w7 − w2w8 −w1w8 − w2w7 0 0

−w1w8 − w2w7 −w1w7 + w2w8 0 0

0 0 w3w5 − w4w6 −w3w6 − w4w5

0 0 −w3w6 − w4w5 −w3w5 + w4w6


,

B13
2 = 2



w3w5 − w4w6 −w3w6 − w4w5 0 0

−w3w6 − w4w5 −w3w5 + w4w6 0 0

0 0 w1w7 − w2w8 −w1w8 − w2w7

0 0 −w1w8 − w2w7 −w1w7 + w2w8


,

B13
3 =



0 0 w1
2 − w2

2 −2w1w2

0 0 −2w1w2 −w1
2 + w2

2

w3
2 − w4

2 −2w3w4 0 0

−2w3w4 −w3
2 + w4

2 0 0


,

B13
4 =



0 0 w5
2 − w6

2 −2w5w6

0 0 −2w5w6 −w5
2 + w6

2

w7
2 − w8

2 −2w7w8 0 0

−2w7w8 −w7
2 + w8

2 0 0


,

B14
1 = 3



0 0 w7
2 − w8

2 −2w7w8

0 0 −2w7w8 −w7
2 + w8

2

w5
2 − w6

2 −2w5w6 0 0

−2w5w6 −w5
2 + w6

2 0 0


,

B14
2 = 3



0 0 w3
2 − w4

2 −2w3w4

0 0 −2w3w4 −w3
2 + w4

2

w1
2 − w2

2 −2w1w2 0 0

−2w1w2 −w1
2 + w2

2 0 0


.
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Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (6.333) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqVM ≈ −
a2 + a3 + a4 + a5 + a10 + a11 + a12 + a13 + a14

a1

w2.

Evaluating the Jacobian matrix (6.341) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) ≈ w2

[
C12 C13

C13 C12

]
+ J̃C

sqVM
, (6.343)

where J̃C

sqVM
is given in (6.302) and

C12 =



c1 0 c3 0

0 c2 0 c4

c3 0 c1 0

0 −c4 0 c2


, C13 =



c3 0 c5 0

0 −c4 0 c6

c5 0 c3 0

0 c6 0 c4


,

c1 = −a10 − a11 + a13 − a14, c2 = −a10 − a11 − 2a12 − 3a13 − a14,

c3 = a10 + a11, c4 = a10 − a11,

c5 = a10 + a11 + 2a12 + a13 + 3a14, c6 = a10 + a11 + 2a12 − a13 − 3a14.

The eigenvalues of the matrix J̃(wsqVM, ϕ̃sqVM) are given by

λ1, λ2 ≈ {(c1 + c3) ± (c5 + c6)}w2,

λ3, λ4 ≈ {(c1 − c3) ± (c5 − c6)}w2,

λ5, λ6 ≈ (c2 ± c7)w2 (repeated twice),

which are rewritten as

λ1 ≈ 2(a2 + a3 + a4 + a5 + a10 + a11 + a12 + a13 + a14)w2,

λ2 ≈ 2(a2 + a3 − a4 − a5 − a10 − a11 − a12 − 2a14)w2,

λ3 ≈ 2(a2 − a3 + a4 − a5 − a10 − a11 − a12 − 2a14)w2,

λ4 ≈ 2(a2 − a3 − a4 + a5 − a10 − a11 + a12 + a13 + a14)w2,

λ5 ≈ −2(a10 + a11 + 2a12 + a13 − a14)w2 (repeated twice),

λ6 ≈ −4(a13 + a14)w2 (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions:

a2 + a3 + a4 + a5 + a10 + a11 + a12 + a13 + a14 < 0, (6.344)

a2 + a3 − a4 − a5 − a10 − a11 − a12 − 2a14 < 0, (6.345)

a2 − a3 + a4 − a5 − a10 − a11 − a12 − 2a14 < 0, (6.346)

a2 − a3 − a4 + a5 − a10 − a11 + a12 + a13 + a14 < 0, (6.347)

a10 + a11 + 2a12 + a13 − a14 > 0, (6.348)

a13 + a14 > 0. (6.349)

Thus, the stability of wsqVM depends on the values of a2, . . . , a5 and a10, . . . , a14.
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Remark 6.4. For the case (n̂, k̂, ℓ̂) = (8, 3, 1), we have the following statements:

• The solutions wstripeI and wstripeII do not exist. See Proposition 6.10 in Section 6.5.3. In fact,

k̂2 − ℓ̂ = 8. This is divisible by n̂ = 8. Hence, the condition (6.230) is not satisfied.

• The solutions wupside-downI and wupside-downII do not exist. See Proposition 6.12 in Section

6.5.4. In fact, gcd(k̂2 + ℓ̂, k̂2 − ℓ̂) = 2 gcd(10, 8) = 2. This is divisible by gcd(n̂, 2k̂ℓ̂) =

gcd(8, 6) = 2. Hence, the condition (6.234) is not satisfied.

• The solution wsqT does not exist. See Proposition 5.28 in Section 5.6.7. This case corre-

sponds to the case (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂). In fact, 2 gcd(k̂, ℓ̂) = 2 gcd(3, 1) = 2. This is

divisible by gcd(k̂2 + ℓ̂2, n̂) = gcd(10, 8) = 2. Hence, GCD-div in (5.97) is not satisfied.

□

Case 4: (n̂, k̂, ℓ̂) = (10, 3, 1)

For the case of (n̂, k̂, ℓ̂) = (10, 3, 1), we have

(0, 1, 0, 0, 2, 0, 0, 0), (0, 0, 0, 0, 0, 3, 0, 0) ∈ P

as well as

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),

(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P

in (6.238). Then, the asymptotic form of Fi (i = 1, . . . , 4) in (6.271) becomes

F1 ≈ a1ϕ̃z1 + a15z2z1
2
+ a16z2

3
+ FC

1 , (6.350)

F2 ≈ a1ϕ̃z2 + a15z1z2
2
+ a16z1

3 + FC
2 , (6.351)

F3 ≈ a1ϕ̃z3 + a15z4z3
2
+ a16z4

3
+ FC

3 , (6.352)

F4 ≈ a1ϕ̃z4 + a15z3z4
2
+ a16z3

3 + FC
4 (6.353)

with

a15 = A01002000(0), a16 = A00000300(0),

where FC
i

(i = 1, . . . , 4) is given in (6.272) – (6.275). Then, the asymptotic form of F̃i (i = 1, . . . , 8)

in (6.182) – (6.185) becomes

F̃1 ≈ a1ϕ̃w1 + a15{w3(w1
2 − w2

2) + 2w4w1w2} + a16w3(w3
2 − 3w4

2) + F̃C
1 , (6.354)

F̃2 ≈ a1ϕ̃w2 + a15{w4(w1
2 − w2

2) − 2w3w1w2} + a16w4(−3w3
2 + w4

2) + F̃C
2 , (6.355)

F̃3 ≈ a1ϕ̃w3 + a15{w1(w3
2 − w4

2) − 2w2w3w4} + a16w1(w1
2 − 3w2

2) + F̃C
3 , (6.356)

F̃4 ≈ a1ϕ̃w4 + a15{−w2(w3
2 − w4

2) − 2w1w3w4} + a16w2(3w1
2 − w2

2) + F̃C
4 , (6.357)

F̃5 ≈ a1ϕ̃w5 + a15{w7(w5
2 − w6

2) + 2w8w5w6} + a16w7(w7
2 − 3w8

2) + F̃C
5 , (6.358)

F̃6 ≈ a1ϕ̃w6 + a15{w8(w5
2 − w6

2) − 2w7w5w6} + a16w8(−3w7
2 + w8

2) + F̃C
6 , (6.359)
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F̃7 ≈ a1ϕ̃w7 + a15{w5(w7
2 − w8

2) − 2w6w7w8} + a16w5(w5
2 − 3w6

2) + F̃C
7 , (6.360)

F̃8 ≈ a1ϕ̃w8 + a15{−w6(w7
2 − w8

2) − 2w5w7w8} + a16w6(3w5
2 − w6

2) + F̃C
8 , (6.361)

where F̃C
i

(i = 1, . . . , 8) is given in (6.279) – (6.286). Hence, the asymptotic form of the Jacobian

matrix in (6.180) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + a15B15 + a16B16 + BC, (6.362)

where BC is given in (6.288) and

B15 =

[
B15

1
O

O B15
2

]
, B16 =

[
B16

1
O

O B16
2

]
,

B15
1 =



2(w1w3 + w2w4) 2(w1w4 − w2w3) w1
2 − w2

2 2w1w2

2(w1w4 − w2w3) 2(−w1w3 − w2w4) −2w1w2 w1
2 − w2

2

w3
2 − w4

2 −2w3w4 2(w1w3 − w2w4) 2(−w1w4 − w2w3)

−2w3w4 −w3
2 + w4

2 2(−w1w4 − w2w3) 2(−w1w3 + w2w4)


,

B15
2 =



2(w5w7 + w6w8) 2(w5w8 − w6w7) w5
2 − w6

2 2w5w6

2(w5w8 − w6w7) 2(−w5w7 − w6w8) −2w5w6 w5
2 − w6

2

w7
2 − w8

2 −2w7w8 2(w5w7 − w6w8) 2(−w5w8 − w6w7)

−2w7w8 −w7
2 + w8

2 2(−w5w8 − w6w7) 2(−w5w7 + w6w8)


,

B16
1 = 3



0 0 w3
2 − w4

2 −2w3w4

0 0 −2w3w4 −w3
2 + w4

2

w1
2 − w2

2 −2w1w2 0 0

2w1w2 w1
2 − w2

2 0 0


,

B16
2 = 3



0 0 w7
2 − w8

2 −2w7w8

0 0 −2w7w8 −w7
2 + w8

2

w5
2 − w6

2 −2w5w6 0 0

2w5w6 w5
2 − w6

2 0 0


.

Substituting wsqT = (w, 0,w, 0, 0, 0, 0, 0) into (6.354) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqT ≈ −
a2 + a3 + a15 + a16

a1

w2.

Evaluating the Jacobian matrix (6.362) at (wsqT, ϕ̃sqT), we have

J̃(wsqT, ϕ̃sqT) ≈ w2

[
C14 O

O C15

]
+ J̃C

sqT
, (6.363)
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where J̃C

sqT
is given in (6.289) and

C14 =



a15 − a16 0 a15 + 3a16 0

0 −3a15 − a16 0 a15 − 3a16

a15 + 3a16 0 a15 − a16 0

0 −a15 + 3a16 0 −3a15 − a16


, (6.364)

C15 = −(a15 + a16)I4. (6.365)

The eigenvalues of the matrix J̃(wsqT, ϕ̃sqT) are given by

λ1 ≈ 2(a2 + a3 + a15 + a16)w2,

λ2 ≈ 2(a2 − a3 − 2a16)w2,

λ3, λ4 ≈ −{3a15 + a16 ± i(a15 − 3a16)}w2,

λ5 ≈ −(a2 + a3 − a4 − a5 + a15 + a16)w2 (repeated 4 times).

Assuming that all eigenvalues have negative real parts, we have the following stability conditions:

a2 + a3 + a15 + a16 < 0, (6.366)

a2 − a3 − 2a16 < 0, (6.367)

3a15 + a16 > 0, (6.368)

a2 + a3 − a4 − a5 + a15 + a16 < 0. (6.369)

Thus, the stability of wsqT depends on the values of a2, . . . , a5, a15 and a16.

Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (6.354) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqVM ≈ −
a2 + a3 + a4 + a5 + a15 + a16

a1

w2.

Evaluating the Jacobian matrix (6.362) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) ≈ w2

[
C14 O

O C14

]
+ J̃C

sqVM
, (6.370)

where C14 is given in (6.364), and J̃C

sqVM
is given in (6.302). The eigenvalues of the matrix

J̃(wsqVM, ϕ̃sqVM) are given by

λ1 ≈ 2(a2 + a3 + a4 + a5 + a15 + a16)w2,

λ2 ≈ 2(a2 + a3 − a4 − a5 − a15 − a16)w2,

λ3 ≈ 2(a2 − a3 + a4 − a5 − 2a16)w2,

λ4 ≈ 2(a2 − a3 − a4 + a5 − 2a16)w2,

λ5, λ6 ≈ −{3a15 + a16 ± i(a15 − 3a16)}w2 (repeated twice).
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Assuming that all eigenvalues have negative real parts, we have the following stability conditions:

a2 + a3 + a4 + a5 + a15 + a16 < 0, (6.371)

a2 + a3 − a4 − a5 − a15 − a16 < 0, (6.372)

a2 − a3 + a4 − a5 − 2a16 < 0, (6.373)

a2 − a3 − a4 + a5 − 2a16 < 0, (6.374)

3a15 + a16 > 0. (6.375)

Thus, the stability of wsqVM depends on the values of a2, . . . , a5, a15 and a16.

Remark 6.5. For the case (n̂, k̂, ℓ̂) = (10, 3, 1), we have the following statements:

• The solutions wstripeI and wstripeII do not exist. See Proposition 6.10 in Section 6.5.3. In fact,

k̂2 + ℓ̂ = 10. This is divisible by n̂ = 10. Hence, the condition (6.230) is not satisfied.

• The solutions wupside-downI and wupside-downII do not exist. See Proposition 6.12 in Section

6.5.4. In fact, gcd(k̂2 + ℓ̂, k̂2 − ℓ̂) = 2 gcd(10, 8) = 2. This is divisible by gcd(n̂, 2k̂ℓ̂) =

gcd(10, 6) = 2. Hence, the condition (6.234) is not satisfied.

□

Case 5: (n̂, k̂, ℓ̂) = (4k̂, k̂, ℓ̂)

For the case of (n̂, k̂, ℓ̂) with n̂ = 4k̂, we have

(0, 0, 0, 0, 1, 0, 2, 0) ∈ P

as well as

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),

(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P

in (6.238). Then, the asymptotic form of Fi (i = 1, . . . , 4) in (6.271) becomes

F1 ≈ a1ϕ̃z1 + a17z1z3
2
+ FC

1 , (6.376)

F2 ≈ a1ϕ̃z2 + a17z2z4
2 + FC

2 , (6.377)

F3 ≈ a1ϕ̃z3 + a17z3z1
2
+ FC

3 , (6.378)

F4 ≈ a1ϕ̃z4 + a17z4z2
2 + FC

4 (6.379)

with

a17 = A00001020(0),

where FC
i

(i = 1, . . . , 4) is given in (6.272) – (6.275). Then, the asymptotic form of F̃i (i = 1, . . . , 8)

in (6.182) – (6.185) becomes

F̃1 ≈ a1ϕ̃w1 + a17{ w1(w5
2 − w6

2) − 2w2w5w6)} + F̃C
1 , (6.380)
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F̃2 ≈ a1ϕ̃w2 + a17{−w2(w5
2 − w6

2) − 2w1w5w6} + F̃C
2 , (6.381)

F̃3 ≈ a1ϕ̃w3 + a17{ w3(w7
2 − w8

2) + 2w4w7w8} + F̃C
3 , (6.382)

F̃4 ≈ a1ϕ̃w4 + a17{−w4(w7
2 − w8

2) + 2w3w7w8} + F̃C
4 , (6.383)

F̃5 ≈ a1ϕ̃w5 + a17{ w5(w1
2 − w2

2) − 2w6w1w2} + F̃C
5 , (6.384)

F̃6 ≈ a1ϕ̃w6 + a17{−w6(w1
2 − w2

2) − 2w5w1w2} + F̃C
6 , (6.385)

F̃7 ≈ a1ϕ̃w7 + a17{ w7(w3
2 − w4

2) + 2w8w3w4} + F̃C
7 , (6.386)

F̃8 ≈ a1ϕ̃w8 + a17{−w8(w3
2 − w4

2) + 2w7w3w4} + F̃C
8 , (6.387)

where F̃C
i

(i = 1, . . . , 8) is given in (6.279) – (6.286). Hence, the asymptotic form of the Jacobian

matrix in (6.180) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + a17B17 + BC, (6.388)

where BC is given in (6.288) and

B17 =


B17

1
B17

3

(B17
3

)⊤ B17
2

 ,

B17
1 =



w5
2 − w6

2 −2w5w6 0 0

−2w5w6 −w5
2 + w6

2 0 0

0 0 w7
2 − w8

2 2w7w8

0 0 2w7w8 −w7
2 + w8

2


,

B17
2 =



w1
2 − w2

2 −2w1w2 0 0

−2w1w2 −w1
2 + w2

2 0 0

0 0 w3
2 − w4

2 2w3w4

0 0 2w3w4 −w3
2 + w4

2


,

B17
3 = 2



w1w5 − w2w6 −w1w6 − w2w5 0 0

−w1w6 − w2w5 −w1w5 + w2w6 0 0

0 0 w3w7 + w4w8 −w3w8 + w4w7

0 0 w3w8 − w4w7 w3w7 + w4w8


.

Substituting wstripeI = (w, 0, 0, 0, 0, 0, 0, 0) into (6.380) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a2

a1

w2.

Evaluating the Jacobian matrix (6.388) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ w2

[
O O

O C16

]
+ J̃C

stripeI
, (6.389)
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where J̃C

stripeI
is given in (6.289) and

C16 =



a17 0 0 0

0 −a17 0 0

0 0 0 0

0 0 0 0


.

The eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by

λ1 ≈ 2a2w2,

λ2 ≈ O(w3),

λ3, λ4 ≈ −(a2 − a4 ± a17)w2,

λ5 ≈ −(a2 − a3)w2 (repeated twice),

λ6 ≈ −(a2 − a5)w2 (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 < 0,

a2 − a4 ± a17 > 0,

a2 − a3 > 0,

a2 − a5 > 0.

These are equivalen to

max(a3, a4 + |a17|, a5) < a2 < 0. (6.390)

Thus, the stability of wstripeI depends on the values of a2, . . . , a5 and a17.

Substituting wstripeII = (0,w, 0, 0, 0, 0, 0, 0) into (6.380) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a2

a1

w2.

Evaluating the Jacobian matrix (6.388) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) ≈ w2

[
O O

O −C16

]
+ J̃C

stripeII
, (6.391)

where C16 is given in (6.5.5), and J̃C

stripeII
is given in (6.292). The eigenvalues of the matrix

J̃(wstripeII, ϕ̃stripeII) are equivalent to that for wstripeI. Hence, stability conditions for wstripeII are

equivalent to that for wstripeI.

Substituting wupside-downI = (w, 0, 0, 0,w, 0, 0, 0) into (6.278) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside-downI ≈ −
a2 + a4 + a17

a1

w2.
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Evaluating the Jacobian matrix (6.287) at (wupside-downI, ϕ̃upside-downI), we have

J̃(wupside-downI, ϕ̃upside-downI) ≈ w2

[
C17 C18

C18 C17

]
+ J̃C

upside-downI
(6.392)

with

C17 =



0 0 0 0

0 −2a17 0 0

0 0 −a17 0

0 0 0 −a17


, C18 =



2a17 0 0 0

0 −2a17 0 0

0 0 0 0

0 0 0 0


. (6.393)

The eigenvalues of the matrix J̃(wupside-downI, ϕ̃upside-downI) are given by

λ1, λ2 ≈ 2a2 ± (a4 + a17)w2,

λ3 ≈ −4a17w2,

λ4 ≈ O(w3),

λ5 ≈ −(a2 − a3 + a4 − a5 + a17)w2 (repeated 4 times).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 < −|a4 + a17|,
a17 > 0,

a2 − a3 + a4 − a5 + a17 > 0.

These conditions are equivalent to

a3 − a4 + a5 − a17 < a2 < −|a4 + a17|
a4 > 0.

Thus, the stability of wupside-downI is conditional and depends on the values of a2, . . . , a5 and a17.

Substituting wupside-downII = (0,w, 0, 0, 0,w, 0, 0) into (6.278) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside-downII ≈ −
a2 + a4 + a17

a1

w2.

Evaluating the Jacobian matrix (6.287) at (wupside-downII, ϕ̃upside-downII), we have

J̃(wupside-downII, ϕ̃upside-downII) = J̃C

upside-downII ≈ w2

[
C19 −C18

−C18 C19

]
(6.394)

with

C19 =



−2a17 0 0 0

0 0 0 0

0 0 −a17 0

0 0 0 −a17


, (6.395)
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where C18 is given in (6.393). The eigenvalues of the matrix J̃(wupside-downII, ϕ̃upside-downII) are equiv-

alent to that for wupside-downI. Hence, stability conditions for wupside-downII are equivalent to that for

wupside-downI.

Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (6.380) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqVM ≈ −
a2 + a3 + a4 + a5 + a17

a1

w2.

Evaluating the Jacobian matrix (6.388) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) ≈ w2

[
C20 C21

C21 C20

]
+ J̃C

sqVM
, (6.396)

where J̃C

sqVM
is given in (6.302) and

C20 = 2



0 0 0 0

0 −a17 0 0

0 0 0 0

0 0 0 −a17


, C21 = 2



a17 0 0 0

0 −a17 0 0

0 0 a17 0

0 0 0 a17


.

The eigenvalues of the matrix J̃(wsqVM, ϕ̃sqVM) are given by

λ1 ≈ 2(a2 + a3 + a4 + a5 + a17)w2,

λ2 ≈ 2(a2 + a3 − a4 − a5 − a17)w2,

λ3 ≈ 2(a2 − a3 + a4 − a5 + a17)w2,

λ4 ≈ 2(a2 − a3 − a4 + a5 − a17)w2,

λ5 ≈ −4a17w2, (repeated twice)

λ6 ≈ O(w3) (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 + a3 + a4 + a5 + a17 < 0, (6.397)

a2 + a3 − a4 − a5 − a17 < 0, (6.398)

a2 − a3 + a4 − a5 + a17 < 0, (6.399)

a2 − a3 − a4 + a5 − a17 < 0, (6.400)

a17 > 0. (6.401)

Thus, the stability of wsqVM depends on the values of a2, . . . , a5 and a17.

Remark 6.6. For the case (n̂, k̂, ℓ̂) = (4k̂, k̂, ℓ̂), wsqT does not exist. See Proposition 5.28 in Section

5.6.7. □
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Case 6: (n̂, k̂, ℓ̂) = (4ℓ̂, k̂, ℓ̂)

For the case of (n̂, k̂, ℓ̂) with n̂ = 4ℓ̂, we have

(0, 0, 2, 0, 1, 0, 0, 0) ∈ P

as well as

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),

(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P

in (6.238). Then, the asymptotic form of Fi (i = 1, . . . , 4) in (6.271) becomes

F1 ≈ a1ϕ̃z1 + a18z3
2z1 + FC

1 , (6.402)

F2 ≈ a1ϕ̃z2 + a18z4
2
z2 + FC

2 , (6.403)

F3 ≈ a1ϕ̃z3 + a18z1
2z3 + FC

3 , (6.404)

F4 ≈ a1ϕ̃z4 + a18z2
2
z4 + FC

4 (6.405)

with

a18 = A00201000(0).

where FC
i

(i = 1, . . . , 4) is given in (6.272) – (6.275). Then, the asymptotic form of F̃i (i = 1, . . . , 8)

in (6.182) – (6.185) becomes

F̃1 ≈ a1ϕ̃w1 + a18{ w1(w5
2 − w6

2) + 2w2w5w6)} + F̃C
1 , (6.406)

F̃2 ≈ a1ϕ̃w2 + a18{−w2(w5
2 − w6

2) + 2w1w5w6)} + F̃C
2 , (6.407)

F̃3 ≈ a1ϕ̃w3 + a18{ w3(w7
2 − w8

2) − 2w4w7w8)} + F̃C
3 , (6.408)

F̃4 ≈ a1ϕ̃w4 + a18{−w4(w7
2 − w8

2) − 2w3w7w8)} + F̃C
4 , (6.409)

F̃5 ≈ a1ϕ̃w5 + a18{ w5(w1
2 − w2

2) + 2w6w1w2)} + F̃C
5 , (6.410)

F̃6 ≈ a1ϕ̃w6 + a18{−w6(w1
2 − w2

2) + 2w5w1w2)} + F̃C
6 , (6.411)

F̃7 ≈ a1ϕ̃w7 + a18{ w7(w3
2 − w4

2) − 2w8w3w4)} + F̃C
7 , (6.412)

F̃8 ≈ a1ϕ̃w8 + a18{−w8(w3
2 − w4

2) − 2w7w3w4)} + F̃C
8 , (6.413)

where F̃C
i

(i = 1, . . . , 8) is given in (6.279) – (6.286). Hence, the asymptotic form of the Jacobian

matrix in (6.180) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + a18B18 + BC, (6.414)

where BC is given in (6.288) and

B18 =


B18

1
B18

3

(B18
3

)⊤ B18
2

 ,
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B18
1 =



w5
2 − w6

2 2w5w6 0 0

2w5w6 −w5
2 + w6

2 0 0

0 0 w7
2 − w8

2 −2w7w8

0 0 −2w7w8 −w7
2 + w8

2


,

B18
2 =



w1
2 − w2

2 2w1w2 0 0

2w1w2 −w1
2 + w2

2 0 0

0 0 w3
2 − w4

2 −2w3w4

0 0 −2w3w4 −w3
2 + w4

2


,

B18
3 = 2



w1w5 + w2w6 −w1w6 + w2w5 0 0

w1w6 − w2w5 w1w5 + w2w6 0 0

0 0 w3w7 − w4w8 −w3w8 − w4w7

0 0 −w3w8 − w4w7 −w3w7 + w4w8


.

Substituting wstripeI into (6.406) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a2

a1

w2.

Evaluating the Jacobian matrix (6.414) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ w2

[
O O

O C22

]
+ J̃C

stripeI
, (6.415)

where J̃C

stripeI
is given in (6.289) and

C22 =



a18 0 0 0

0 −a18 0 0

0 0 0 0

0 0 0 0


.

The eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by

λ1 ≈ 2a2w2,

λ2 ≈ O(w3),

λ3, λ4 ≈ −(a2 − a4 ± a18)w2,

λ5 ≈ −(a2 − a3)w2 (repeated twice),

λ6 ≈ −(a2 − a5)w2 (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 < 0,
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a2 − a4 ± a18 > 0,

a2 − a3 > 0,

a2 − a5 > 0.

These are equivalen to

max(a3, a4 + |a18|, a5) < a2 < 0. (6.416)

Thus, the stability of wstripeI depends on the values of a2, . . . , a5 and a18.

Substituting wstripeII = (0,w, 0, 0, 0, 0, 0, 0) into (6.380) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a2

a1

w2.

Evaluating the Jacobian matrix (6.414) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) ≈ w2

[
O O

O −C22

]
+ J̃C

stripeII
, (6.417)

where C22 is given in (6.5.5), and J̃C

stripeII
is given in (6.292). The eigenvalues of the matrix

J̃(wstripeII, ϕ̃stripeII) are equivalent to that for wstripeI. Hence, stability conditions for wstripeII are

equivalent to that for wstripeI.

Substituting wupside-downI = (w, 0, 0, 0,w, 0, 0, 0) into (6.278) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside-downI ≈ −
a2 + a4 + a18

a1

w2.

Evaluating the Jacobian matrix (6.287) at (wupside-downI, ϕ̃upside-downI), we have

J̃(wupside-downI, ϕ̃upside-downI) ≈ w2

[
C23 C24

C24 C23

]
+ J̃C

upside-downI
(6.418)

with

C23 =



0 0 0 0

0 −2a18 0 0

0 0 −a18 0

0 0 0 −a18


, C24 =



2a18 0 0 0

0 2a18 0 0

0 0 0 0

0 0 0 0


. (6.419)

The eigenvalues of the matrix J̃(wupside-downI, ϕ̃upside-downI) are given by

λ1, λ2 ≈ 2a2 ± (a4 + a18)w2,

λ3 ≈ −a18w2,

λ4 ≈ O(w3),

λ5 ≈ −(a2 − a3 + a4 − a5 + a18)w2 (repeated 4 times).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 < −|a4 + a18|,
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a18 > 0,

a2 − a3 + a4 − a5 + a18 > 0.

These conditions are equivalent to

a3 − a4 + a5 + a17 < a2 < −|a4 + a18|
a18 > 0.

Thus, the stability of wupside-downI is conditional and depends on the values of a2, . . . , a5 and a18.

Substituting wupside-downII = (0,w, 0, 0, 0,w, 0, 0) into (6.278) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside-downII ≈ −
a2 + a4 + a18

a1

w2.

Evaluating the Jacobian matrix (6.287) at (wupside-downII, ϕ̃upside-downII), we have

J̃(wupside-downII, ϕ̃upside-downII) = J̃C

upside-downII ≈ w2

[
C25 C24

C24 C25

]
(6.420)

with

C25 =



−2a18 0 0 0

0 0 0 0

0 0 −a18 0

0 0 0 −a18


, (6.421)

where C18 is given in (6.393). The eigenvalues of the matrix J̃(wupside-downII, ϕ̃upside-downII) are equiv-

alent to that for wupside-downI. Hence, stability conditions for wupside-downII are equivalent to that for

wupside-downI.

Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (6.406) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqVM ≈ −
a2 + a3 + a4 + a5 + a18

a1

w2.

Evaluating the Jacobian matrix (6.414) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) ≈ w2

[
C21 C22

C22 C21

]
+ J̃C

sqVM
, (6.422)

where J̃C

sqVM
is given in (6.302) and

C21 = 2



0 0 0 0

0 −a18 0 0

0 0 0 0

0 0 0 −a18


, C22 = 2



a18 0 0 0

0 a18 0 0

0 0 a18 0

0 0 0 −a18


.

The eigenvalues of the matrix J̃(wsqVM, ϕ̃sqVM) are given by

λ1 ≈ 2(a2 + a3 + a4 + a5 + a18)w2,
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λ2 ≈ 2(a2 + a3 − a4 − a5 − a18)w2,

λ3 ≈ 2(a2 − a3 + a4 − a5 + a18)w2,

λ4 ≈ 2(a2 − a3 − a4 + a5 − a18)w2,

λ5 ≈ −4a18w2 (repeated twice),

λ6 ≈ O(w3) (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 + a3 + a4 + a5 + a18 < 0, (6.423)

a2 + a3 − a4 − a5 − a18 < 0, (6.424)

a2 − a3 + a4 − a5 + a18 < 0, (6.425)

a2 − a3 − a4 + a5 − a18 < 0, (6.426)

a18 > 0. (6.427)

Thus, the stability of wsqVM depends on the values of a2, . . . , a5 and a18.

Remark 6.7. For the case (n̂, k̂, ℓ̂) = (4ℓ̂, k̂, ℓ̂), wsqT does not exist. See Proposition 5.28 in Section

5.6.7. □

Case 7: (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂), (k̂, ℓ̂) , (3, 1)

For the case of (n̂, k̂, ℓ̂) with n̂ = 2(k̂ + ℓ̂) and (k̂, ℓ̂) , (3, 1), we have

(0, 1, 0, 1, 0, 0, 1, 0), (0, 0, 1, 1, 0, 1, 0, 0), (0, 0, 0, 2, 1, 0, 0, 0) ∈ P.

as well as

(1, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 1, 0, 0),

(1, 0, 1, 0, 0, 0, 1, 0), (1, 0, 0, 1, 0, 0, 0, 1) ∈ P

in (6.238). Then, the asymptotic form of Fi (i = 1, . . . , 4) in (6.271) becomes

F1 ≈ a1ϕ̃z1 + a10z2z4z3 + a11z3z4z2 + a12z4
2z1 + FC

1 , (6.428)

F2 ≈ a1ϕ̃z2 + a10z1z3z4 + a11z4z3z1 + a12z3
2z2 + FC

2 , (6.429)

F3 ≈ a1ϕ̃z3 + a10z4z2z1 + a11z1z2z4 + a12z2
2z3 + FC

3 , (6.430)

F4 ≈ a1ϕ̃z4 + a10z3z1z2 + a11z2z1z3 + a12z1
2z4 + FC

4 (6.431)

with a10, a11, a12 given in (6.332), and FC
i

(i = 1, . . . , 4) given in (6.272) – (6.275). Then, the

asymptotic form of F̃i (i = 1, . . . , 8) in (6.182) – (6.185) becomes

F̃1 ≈ a1ϕ̃w1 + a10{w5(w3w7 − w4w8) + w6(w3w8 + w4w7)}
+ a11{w3(w5w7 − w6w8) + w4(w5w8 + w6w7)}
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+ a12{w1(w7
2 − w8

2) + 2w2w7w8} + F̃C
1 , (6.432)

F̃2 ≈ a1ϕ̃w2 + a10{w5(w3w8 + w4w7) − w6(w3w7 − w4w8)}
+ a11{w3(w5w8 + w6w7) − w4(w5w7 − w6w8)}
+ a12{−w2(w7

2 − w8
2) + 2w1w7w8} + F̃C

2 , (6.433)

F̃3 ≈ a1ϕ̃w3 + a10{w1(w5w7 − w6w8) + w2(w5w8 + w6w7)}
+ a11{w7(w1w5 − w2w6) + w8(w1w6 + w2w5)}
+ a12{w3(w5

2 − w6
2) + 2w4w5w6} + F̃C

3 , (6.434)

F̃4 ≈ a1ϕ̃w4 + a10{w1(w5w8 + w6w7) − w2(w5w7 − w6w8)}
+ a11{w7(w1w6 + w2w5) − w8(w1w5 − w2w6)}
+ a12{−w4(w5

2 − w6
2) + 2w3w5w6} + F̃C

4 , (6.435)

F̃5 ≈ a1ϕ̃w5 + a10{w1(w3w7 − w4w8) + w2(w3w8 + w4w7)}
+ a11{w7(w1w3 − w2w4) + w8(w1w4 + w2w3)}
+ a12{w5(w3

2 − w4
2) + 2w3w4w6} + F̃C

5 , (6.436)

F̃6 ≈ a1ϕ̃w6 + a10{w1(w3w8 + w4w7) − w2(w3w7 − w4w8)}
+ a11{w7(w1w4 + w2w3) − w8(w1w3 − w2w4)}
+ a12{−w6(w3

2 − w4
2) + 2w3w4w5} + F̃C

6 , (6.437)

F̃7 ≈ a1ϕ̃w7 + a10{w5(w1w3 − w2w4) + w6(w1w4 + w2w3)}
+ a11{w3(w1w5 − w2w6) + w4(w1w6 + w2w5)}
+ a12{w7(w1

2 − w2
2) + 2w8w1w2} + F̃C

7 , (6.438)

F̃8 ≈ a1ϕ̃w8 + a10{w5(w1w4 + w2w3) − w6(w1w3 − w2w4)}
+ a11{w3(w1w6 + w2w5) − w4(w1w5 − w2w6)}
+ a12{−w8(w1

2 − w2
2) + 2w7w1w2} + F̃C

8 , (6.439)

where F̃C
i

(i = 1, . . . , 8) is given in (6.279) – (6.286). Hence, the asymptotic form of the Jacobian

matrix in (6.180) becomes

J̃(w, ϕ̃) ≈ a1ϕ̃I8 + a10B10 + a11B11 + a12B12 + BC, (6.440)

with BC given in (6.288), B10, B11 and B12 given in (6.342).

Substituting wstripeI = (w, 0, 0, 0, 0, 0, 0, 0) into (6.432) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeI ≈ −
a2

a1

w2.

Evaluating the Jacobian matrix (6.440) at (wstripeI, ϕ̃stripeI), we have

J̃(wstripeI, ϕ̃stripeI) ≈ w2

[
O O

O C23

]
+ J̃C

stripeI
, (6.441)
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where J̃C

stripeI
is given in (6.289) and

C23 =



0 0 0 0

0 0 0 0

0 0 a12 0

0 0 0 −a12


.

The eigenvalues of the matrix J̃(wstripeI, ϕ̃stripeI) are given by

λ1 ≈ 2a2w2,

λ2, λ3 ≈ −(a2 − a5 ± a12)w2,

λ4 ≈ O(w3),

λ5 ≈ −(a2 − a3)w2, (repeated twice)

λ6 ≈ −(a2 − a4)w2, (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 < 0,

a2 − a5 > −|a12|,
a2 − a3 > 0,

a2 − a4 > 0.

These are equivalent to

max(a3, a4, a5 − |a12|) < a2 < 0. (6.442)

Thus, the stability of wstripeI depends on the values of a2, . . . , a5 and a12.

Substituting wstripeII = (0,w, 0, 0, 0, 0, 0, 0) into (6.432) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃stripeII ≈ −
a2

a1

w2.

Evaluating the Jacobian matrix (6.440) at (wstripeII, ϕ̃stripeII), we have

J̃(wstripeII, ϕ̃stripeII) ≈ w2

[
O O

O −C23

]
+ J̃C

stripeII
, (6.443)

where C23 is given in (6.5.5), and J̃C

stripeII
is given in (6.292). The eigenvalues of the matrix

J̃(wstripeII, ϕ̃stripeII) are equivalent to that for wstripeI. Hence, stability conditions for wstripeII are

equivalent to that for wstripeI.

Substituting wupside-downI = (w, 0, 0, 0,w, 0, 0, 0) into (6.432) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside-downI ≈ −
a2 + a4

a1

w2.
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Evaluating the Jacobian matrix (6.440) at (wupside-downI, ϕ̃upside-downI), we have

J̃(wupside-downI, ϕ̃upside-downI) ≈ w2

[
C24 C25

C25 C24

]
+ J̃C

upside-downI
(6.444)

with

C24 =



0 0 0 0

0 0 0 0

0 0 a12 0

0 0 0 −a12


, C25 =



0 0 0 0

0 0 0 0

0 0 a10 + a11 0

0 0 0 a10 − a11


. (6.445)

The eigenvalues of the matrix J̃(wupside-downI, ϕ̃upside-downI) are given by

λ1, λ2 ≈ 2(a2 ± a4)w2,

λ3, λ4 ≈ {−(a2 + a3 − a4 − a5 − a12) ± (a10 + a11)}w2,

λ5, λ6 ≈ {−(a2 + a3 − a4 − a5 + a12) ± (a10 − a11)}w2,

λ7 ≈ O(w3) (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 < −|a4|,
a2 + a3 − a4 − a5 − a12 > −|a10 + a11|,
a2 + a3 − a4 − a5 + a12 > −|a10 − a11|.

Thus, the stability of wupside-downI depends on the values of a2, . . . , a5 and a10, . . . , a12.

Substituting wupside-downII = (0,w, 0, 0, 0,w, 0, 0) into (6.278) and solving F2 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃upside-downII ≈ −
a2 + a4

a1

w2.

Evaluating the Jacobian matrix (6.287) at (wupside-downII, ϕ̃upside-downII), we have

J̃(wupside-downII, ϕ̃upside-downII) ≈ w2

[
−C24 C26

C26 −C24

]
+ J̃C

upside-downII
(6.446)

with

C26 =



0 0 0 0

0 0 0 0

0 0 a10 − a11 0

0 0 0 a10 + a11


. (6.447)

where C24 is given in (6.445). The eigenvalues of the matrix J̃(wupside-downII, ϕ̃upside-downII) are equiv-

alent to that for wupside-downI. Hence, stability conditions for wupside-downII are equivalent to that for

wupside-downI.
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Substituting wsqVM = (w, 0,w, 0,w, 0,w, 0) into (6.432) and solving F1 = 0 for ϕ̃, we have

ϕ̃ = ϕ̃sqVM ≈ −
a2 + a3 + a4 + a5 + a10 + a11 + a12

a1

w2.

Evaluating the Jacobian matrix (6.440) at (wsqVM, ϕ̃sqVM), we have

J̃(wsqVM, ϕ̃sqVM) ≈ w2

[
C27 C28

C28 C27

]
+ J̃C

sqVM
, (6.448)

where J̃C

sqVM
is given in (6.302) and

C27 =



−a10 − a11 0 a10 + a11 0

0 −a10 − a11 − 2a12 0 a10 − a11

a10 + a11 0 −a10 − a11 0

0 −a10 + a11 0 −a10 − a11 − 2a12


,

C28 =



a10 + a11 0 a10 + a11 + 2a12 0

0 −a10 + a11 0 a10 + a11 + 2a12

a10 + a11 + 2a12 0 a10 + a11 0

0 a10 + a11 + 2a12 0 a10 − a11


.

The eigenvalues of the matrix J̃(wsqVM, ϕ̃sqVM) are given by

λ1 ≈ 2(a2 + a3 + a4 + a5 + a10 + a11 + a12)w2,

λ2 ≈ 2(a2 + a3 − a4 − a5 − a10 − a11 − a12)w2,

λ3 ≈ 2(a2 − a3 + a4 − a5 − a10 − a11 − a12)w2,

λ4 ≈ 2(a2 − a3 − a4 + a5 − a10 − a11 + a12)w2,

λ5 ≈ −2(a10 + a11 + 2a12)w2 (repeated twice),

λ6 ≈ O(w3) (repeated twice).

Assuming that all eigenvalues are negative, we have the following stability conditions (necessary

conditions):

a2 + a3 + a4 + a5 + a10 + a11 + a12 < 0, (6.449)

a2 + a3 − a4 − a5 − a10 − a11 − a12 < 0, (6.450)

a2 − a3 + a4 − a5 − a10 − a11 − a12 < 0, (6.451)

a2 − a3 − a4 + a5 − a10 − a11 + a12 < 0, (6.452)

a10 + a11 + 2a12 > 0. (6.453)

Thus, the stability of wsqVM depends on the values of a2, . . . , a5 and a10, . . . , a12.

Remark 6.8. For the case (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂), wsqT does not exist. See Proposition 5.28 in

Section 5.6.7. □
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7. Bifurcating Solutions and Invariant Patterns for the Replicator Dynamic

In this chapter, we study bifurcation mechanisms for a spatial economic model with the repli-

cator dynamics on the square lattice. Direct and further bifurcating solutions from the uniform

state form a complicated network of solution curves. We aim to elucidate the mechanism of this

complicated network in the point of view of the symmetry of the square lattice.

We conduct a numerical bifurcation analysis for a spatial economic model and demonstrate

the emergence of theoretically predicted bifurcating solutions in Chapter 6. We search for these

bifurcating solutions and investigate their stability by using comparative static analysis with re-

spect to the trade freeness, which is one of the major parameter of a spatial economic model and

is employed here as a bifurcation parameter.

We futhermore focus on invariant patterns that retain their spatial distribution when the value

of a bifurcation parameter changes. The existence of invariant patterns is the special feature of

the replicator dynamics that hitherto has not been given much attention in nonlinear mathematics.

In fact, solution curves of invariant patterns are connected by those of non-invariant ones, thereby

forming a complicated mesh-like structure. From this point of view, we propose a bifurcation

analysis procedure using invariant patterns efficiently to find stable equilibria.

This chapter is organized as follows. A general framework of spatial economic models with

the replicator dynamics is represented in Section 7.1. The equivariance of the governing equation

for spatial economic models on the square lattice is expressed in Section 7.2. A theory of invariant

patterns for the replicator dynamics is introduced in Section 7.3. Numerical bifurcation analysis

are conducted in Section 7.4.

7.1. Spatial Economic Model with the Replicator Dynamics

We introduce a general framework of spatial economic models (e.g., see Fujita et al., 1999

[30]).

7.1.1. General Framework

Consider an economy composed of K regions. Each mobile agent, who can migrate between

regions, selects one region. A spatial distribution of mobile agents is denoted by λ = {λi ≥ 0 | i =
1, . . . ,K}. The indirect utility function of mobile agents is denoted by v ∈ RK

+ , which is defined as

a smooth function of λ and the trade freeness ϕ. A spatial equilibrium is denoted by λ∗, which is

defined as a spatial distribution that satisfies the following conditions:


v∗ − vi(λ, ϕ) = 0 if λi > 0,

v∗ − vi(λ, ϕ) ≥ 0 if λi = 0,
(7.1)

and
∑K

i=1 λi = 1, where v∗ denotes the equilibrium utility level. This condition means that there is

no incentive for mobile agents to change the location choice.

Spatial equilibria and their stability depend on the definition of the utility function of each

model. We focus on a multi-regional version of the FO model (Forslid and Ottaviano, 2003 [31])

as a specific example in the numerical bifurcation analysis The basic assumptions of this model is

introduced briefly.
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There are two factors of production: skilled and unskilled workers. The endowments of skilled

and unskilled workers are H (= 1) and L (= 1), respectively. Skilled workers are mobile and move

between regions. Unskilled workers are immobile and are evenly distributed across the K regions

with the population L/K in each region.

There are two sectors of production: A-sector (agriculture) and M-sector (manufacturing). A-

sector produces horizontally homogeneous goods, which require one unit of unskilled workers

to produce one unit of goods under constant returns to scale and perfect competition. M-sector

produces horizontally differentiated goods, which require a fixed requirement of α units of skilled

workers and a marginal input requirement of β units of unskilled workers under increasing returns

to scale and Dixit-Stiglitz monopolistic competition.

There are two major micro economic parameters for the FO model: σ (> 1) expresses the

constant elasticity of substitution between any two M-sector goods, and µ ∈ (0, 1) denotes the

constant expenditure share on M-sector goods.

Goods of both sectors are transported between regions and consumed in each region. The

transportation of A-sector goods is cost free, while the transportation of M-sector goods demands

the iceberg costs. In other words, for each unit of M-sector goods transported from a region i to

j (, i), only a fraction 1/τi j < 1 arrives. We assume that τii = 1 for all i ∈ {1, · · · ,K} and that

τi j = τi j (τ) is a function in the transportation cost parameter τ > 0 as

τi j = exp[τm(i, j)], (7.2)

where m(i, j) represents the shortest distance between region i and j. The trade freeness is defined

by

ϕ = exp[−(σ − 1)dτ], ϕ ∈ (0, 1), (7.3)

where d denotes the nominal distance. The trade freeness ϕ is inversely proportional to the trans-

portation cost parameter τ.

7.1.2. Replicator Dynamics

Mobile agents migrate to a region where they achieve the highest indirect utility. In order to

describe the process of the migration of mobile agents, we consider the replicator dynamics:

dλ

dt
= F (λ, ϕ), (7.4)

where

F (λ, ϕ) = (Fi(λ, ϕ) | i = 1, . . . ,K) (7.5)

with

Fi(λ, ϕ) = (vi(λ, ϕ) − v̄(λ, ϕ))λi, (7.6)

and v̄ is the average utility defined by

v̄ =

K∑

i=1

λivi. (7.7)
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The population of mobile agents in a region is determined by the indirect utility vi, the average

utility v̄, and the number λi of mobile agents in the region.

We can convert a problem to find a set of stable equilibria of spatial economic models into

another problem to find a set of stable stationary points of the replicator dynamics (see Sandholm,

2010 [32]). Stationary points λ∗(ϕ) of the replicator dynamics are defined as points which satisfy

a static governing equation

F (λ∗, ϕ) = 0. (7.8)

Using the eigenvalues of the Jacobian matrix J(λ∗, ϕ) = ∂F /∂λ(λ∗, ϕ), we evaluate the stability

of a stationary point as
{

linearly stable: every eigenvalue has a negative real part,

linearly unstable: at least one eigenvalue has a positive real part.

A stationary point is asymptotically stable or unstable according to whether it is linearly stable or

unstable.

7.2. Equivariance of the Governing Equation on the Square Lattice

The n×n square lattice provides uniformly distributed n×n discrete regions (K = n2), which are

connected by links of the same length d forming a square mesh. As represented in the following

proposition, the FO model with the replicator dynamics to which applied the n × n square lattice

satisfies the equivariance.

Proposition 7.1. The FO model with (7.6) on the square lattice is equivariant to G = D4 ⋉ (Zn ×
Zn), that is,

T (g)F (λ, ϕ) = F (T (g)λ, ϕ), g ∈ G (7.9)

for the N-dimensional permutation representation T (g) of G.14

Proof. Each element g of G acts as a permutation of place numbers (1, . . . ,K), and the action of

g ∈ G is expressed as g : i 7→ i∗. For the FO model, we have νi(T (g)λ, ϕ) = νi∗(λ, ϕ) because

of the form of the transport cost parameter in (7.2). We also have ν(T (g)λ, ϕ) = ν(λ, ϕ) by (7.7).

Therefore, we have

Fi(T (g)λ, ϕ) = (νi∗(λ, ϕ) − ν(λ, ϕ))λi∗ = Fi∗(λ, ϕ)

for the function Fi in (7.6). This proves the equivariance (7.9). □

Note that the uniform state

λuniform = (1/K, . . . , 1/K)⊤ (7.10)

satisfies the governing equation (7.8) for any ϕ, and hence this solution is one of the invariant

patterns (see Proposition 7.4). The symmetry of the uniform state is represented as

T (g)λuniform = λuniform, g ∈ G, (7.11)

and hence this solution is G-symmetric. Critical points on the uniform state are investigated nu-

merically in Section 7.4.3.

14The concrete form of T (g) was given in Section 4.1.
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7.3. Invariant Patterns on the Square Lattice

Stationary points form solution curves (λ∗(ϕ), ϕ). In general, a spatial distribution λ∗(ϕ)

changes as the value of ϕ along a solution curve. In contrast, there can be a special solution

curve (λ∗(ϕ), ϕ) = (λ̄, ϕ) that has a constant spatial distribution λ̄ along a solution curve.15 Such

a distribution λ̄ is called an invariant pattern, and (λ̄, ϕ) is a solution for any ϕ. In contrast, a

solution curve with distribution λ∗(ϕ) that varies with ϕ is called a non-invariant pattern. Thus, the

spatial patterns for stationary points are classified into

{
invariant pattern: λ∗ = λ̄,

non-invariant pattern: λ∗ = λ∗(ϕ).

Rearranging the order of the components of λ∗, we introduce (λ+,λ0) with λ+ = {λi > 0 | i =
1, . . . ,m} and λ0 = 0 for later discussion of invariant patterns. As a candidate of invariant patterns,

we consider a spatial distribution of a special form

(λ+,λ0) =

(
1

m
1,0

)
, 1 ≤ m ≤ K (7.12)

with an m-dimensional vector 1 = (1, . . . , 1)⊤. This distribution expresses equal complete ag-

glomeration to m places and can be an invariant pattern under some symmetry conditions in the

following proposition:

Proposition 7.2. A spatial distribution (λ+,λ0) = ( 1
m
1, 0) is an invariant pattern if this distribution

satisfies

(i) (λ+,λ0) = ( 1
m
1, 0) is invariant to some subgroup G′ of G.

(ii) The set of points for λ+ belongs to an orbit of G′.

Proof. Since the m places of λ+ belong to an orbit, we have v1 = · · · = vm. Then, we have

v̄ =
∑m

i=1 λivi = vi and vi − v̄ = 0 (i = 1, . . . ,m). Hence, we have Fi(
1
m
1, 0, ϕ) = 0 (i = 1, . . . ,m).

For K − m places with no population, we have λ j = 0 ( j = m + 1, . . . ,K). Hence, we have

Fi(
1
m
1, 0, ϕ) = 0 (i = m + 1, . . . ,K). This shows that (λ+,λ0, ϕ) = ( 1

m
1, 0, ϕ) is a solution for any

ϕ. Hence, ( 1
m
1, 0) is an invariant pattern. □

Spatial distributions for m = 1, 2, and K in (7.12) are called mono-centric, duo-centric, and

uniform distribution, respectively.16 We have the following propositions for these distributions.

Proposition 7.3. A mono-centric distribution at any place is an invariant pattern for any economy.

Proof. Consider λ1 = 1 and λi = 0 (i = 2, . . . ,K). Then, we have v̄ =
∑m

i=1 λivi = v1. Thus, we

have v1 − v̄ = 0. Hence, we have F1(1, 0, ϕ) = 0. For K − 1 places with no population, we have

λi = 0. Hence, we have Fi(1, 0, ϕ) = 0 (i = 2, . . . ,K). This shows that (λ+,λ0, ϕ) = (1, 0, ϕ) serves

as a solution for any ϕ. Hence, a mono-center at one place is an invariant pattern. □

15Such a solution curve observed in the two-place economy (Fujita et al., 1999 [30]).
16These three distributions are proved to be invariant patterns for the hexagonal lattice (Ikeda et al., 2019 [10]).
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Proposition 7.4. The uniform and a duo-centric distribution are invariant patterns for an n × n

square lattice.

Proof. Consider two nodes (n1, n2) and (n′
1
, n′

2
). Then, we have

r2 p1
i p2

j · (n1, n2) ≡ (−n1 − i,−n2 − j) mod n.

Hence, for any pair of (n1, n2) and (n′
1
, n′

2
), we see that

g · (n1, n2) ≡ (n′1, n
′
2), g · (n′1, n′2) ≡ (n1, n2) mod n

by g = r2 p1
i p2

j with i = −n1 − n′
1

and j = −n2 − n′
2
. By choosing G′ = ⟨r3 p1

i p2
j⟩, we see

that a duo-center (m = 2) at any places is an invariant pattern by Proposition 7.2. The uniform

distribution can be shown as an invariant pattern by extending the proof for the duo-center. □

We search for invariant patterns on the n × n square lattice by finding a set of m nodal points

and a subgroup G′ that satisfy Proposition 7.2 for the group G = D4 ⋉ (Zn × Zn). We propose the

following procedure to obtain all invariant patterns.

• Choose a set of m nodal points among a total of n2 nodal points.

• Find elements of G that retain the set of points invariant.

• If these elements form a group and permute any two of the m nodal points, this group is

chosen as G′ in Proposition 7.2 to ensure that the set of points gives an invariant pattern.

In this procedure, it is convenient to note that the number m of agglomerated places is not arbitrary

but depends on the lattice size n as explained in the following proposition:

Proposition 7.5. If a spatial distribution (λ+,λ0) = ( 1
m
1, 0) is an invariant pattern on an n × n

square lattice, then the number m (1 ≤ m ≤ n2) divides 8n2.

Proof. Since G′ is a subgroup of G with |G| = |⟨r, s, p1, p2⟩| = 8n2, |G′| divides 8n2 by Lagrange’s

theorem. The number m of elements of an orbit divides |G′| (Kochendörfer, 1970 [33, §3.1.2]).

Hence, 8n2 is divisible by m. □

For example, list of all invariant patterns for n = 6 are depicted in Figures. 7.1 and 7.2.

7.4. Bifurcation Analysis of the 6 × 6 Square Lattice

We focus on the 6 × 6 square lattice that accommodates various kinds of bifurcating solutions.

We conduct a numerical bifurcation analysis for the FO model and investigate the connectivity of

bifurcating solutions to invariant patterns.
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1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

Figure 7.1: List of invariant patterns for the 6× 6 square lattice. The size of a circle represents the mass of population

in each place.
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43 44 45 46 47 48

49 50 51 52 53 54

55 56 57 58 59 60

61 62 63 64 65 66

67 68 69 70 71 72

73 74 75 76 77 78

79 80 81 82 83

Figure 7.2: List of invariant patterns for the 6× 6 square lattice. The size of a circle represents the mass of population

in each place.
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w wsq wstripe wsq wstripeI

(a) µ = (1;+,+,−) (b) µ = (2;+,+) (c) µ = (4; 1, 0,+)

wsq wstripeI wsq wstripeI wsq wstripeI

(d) µ = (4; 2, 0,+) (e) µ = (4; 1, 1,+) (f) µ = (4; 2, 2,+)

wsq wstripeI wstripeII wsq wstripeI wstripeII

(g) µ = (4; 3, 1,+) (h) µ = (4; 3, 2,+)

wsqVM wstripeI wstripeII wupside-downI wupside-downII

(i) µ = (8; 2, 1)

Figure 7.3: Bifurcating solutions for the 6× 6 square lattice. A black circle denotes a positive component, and a white

circle denotes a negative component. The size of a circle represents the magnitude of the associated component.
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Table 7.1: Bifurcating solutions for the 6 × 6 square lattice

µ Bifurcating solutions (w ∈ R)

(1;+,+,−) w

(2;+,+) wsq = (w,w), wstripe = (w, 0)

(4; 1, 0,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)

(4; 2, 0,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)

(4; 1, 1,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)

(4; 2, 2,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0)

(4; 3, 1,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0), wstripeII = (0,w, 0, 0)

(4; 3, 2,+) wsq = (w, 0,w, 0), wstripeI = (w, 0, 0, 0), wstripeII = (0,w, 0, 0)

(8; 2, 1) wsqVM = (w, 0,w, 0,w, 0,w, 0),

wupside-downI = (w, 0, 0, 0,w, 0, 0, 0), wupside-downII = (0,w, 0, 0, 0,w, 0, 0),

wstripeI = (w, 0, 0, 0, 0, 0, 0, 0), wstripeII = (0,w, 0, 0, 0, 0, 0, 0),

7.4.1. Bifurcating Solutions from the Uniform distribution

As a consequence of the irreducible decomposition (4.11) of the permutation representation T

for this lattice, the irreducible representation µ of the group G = D4 ⋉ (Z6 × Z6) to be considered

in bifurcation analysis is restricted to

µ = (1;+,+,+), (1;+,+,−), (2;+,+), (4; 1, 0,+), (4; 2, 0,+),

(4; 1, 1,+), (4; 2, 2,+), (4; 3, 1,+), (4; 3, 2,+), (8; 2, 1). (7.13)

Theoretically possible bifurcating solutions associated with µ in (7.13) are listed in Table 7.1 and

depicted in Figure 7.3. Note that for µ = (4; 2, 0,+) and (4; 2, 2,+), the two solutions wsq and

−wsq, which have opposite signs, represent different physical behaviour. The same holds for the

solutions wstripeI and −wstripeI. Other bifurcating solutions with opposite signs represent the same

physical behaviour.

Remark 7.1. For the 6 × 6 square lattice, we have the following statements:

• For µ = (4; 1, 0,+), (4; 2, 0,+), (4; 1, 1,+), (4; 2, 2,+), the solution wstripeII = (0,w, 0, 0)

does not exist. See Proposition 6.5 in Section 6.4.3. Note that the condition in Proposition

6.5 is not satisfied since ň is odd for these cases.

• For µ = (8; 2, 1), the solution wsqT = (w, 0,w, 0, 0, 0, 0, 0) does not exist. See Proposition

5.28 in Section 5.6.7. This case corresponds to the case (n̂, k̂, ℓ̂) = (2k̂ + 2ℓ̂, k̂, ℓ̂). In fact,

2 gcd(k̂, ℓ̂) = 2 gcd(2, 1) = 2. This is divisible by gcd(k̂2 + ℓ̂2, n̂) = gcd(6, 6) = 1. Hence,

GCD-div in (5.97) is not satisfied.

□

211



→ →

∑
i=1,3 q

(4;1,0,+)

i
Mono-centric (1)

∑
i=1,5 q

(8;2,1)

i
Duo-centric (4)

→ →

∑
i=1,3 q

(4;1,1,+)

i
Duo-centric (10)

∑
i=2,6 q

(8;2,1)

i
Quad-centric (30)

→ →

q
(4;1,0,+)

1
6-centric (38) q

(4;3,2,+)

1
6-centric (44)

→ →

q
(4;3,1,+)

1
6-centric (45) q

(8;2,1)

1
6-centric (47)

Figure 7.4: Invariant patterns that are engendered through asymmetric bifurcating solutions from the uniform state

for the 6 × 6 square lattice. The figures to the left represent bifurcating solutions, and the ones to the right represent

corresponding invariant patterns. The number in the label of each invariant pattern corresponds to Figures 7.1 and 7.2.
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→ →

q
(4;1,1,+)

1
6-centric (48)

∑
i=1,2 q

(2;+,+)

i
9-centric (64)

→ →

q
(8;2,1)

2
12-centric (71) q

(4;3,1,+)

2
12-centric (72)

→ →

q
(4;3,2,+)

2
12-centric (73) q

(2;+,+)

1
18-centric (79)

→

q
(1;+,+,−)

1
18-centric (80)

Figure 7.5: Invariant patterns that are engendered through asymmetric bifurcating solutions from the uniform state

for the 6 × 6 square lattice. The figures to the left represent bifurcating solutions, and the ones to the right represent

corresponding invariant patterns. The number in the label of each invariant pattern corresponds to Figures 7.1 and 7.2.
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∑
i=1,3 q

(4;2,0,+)

i

↗

↘

Quad-centric (29)

16-centric (77)

q
(4;2,0,+)

1

↗

↘

12-centric (67)

24-centric (81)

∑
i=1,3 q

(4;2,2,+)

i

↗

↘

Quad-centric (29)

16-centric (78)

q
(4;2,2,+)

2

↗

↘

12-centric (76)

24-centric (82)

Figure 7.6: Invariant patterns that are engendered through asymmetric bifurcating solutions from the uniform state

for the 6 × 6 square lattice. The figures to the left represent bifurcating solutions, and the ones to the right represent

corresponding invariant patterns. The number in the label of each invariant pattern corresponds to Figures 7.1 and 7.2.
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7.4.2. Connectivity of Bifurcating Solutions to Invariant Patterns

We investigate the connectivity of the uniform state to invariant patterns via bifurcating solu-

tions presented in Figure 7.3. Figures 7.4–7.6 present several pairs of the eigenvector of a bifurcat-

ing solution in the left and the associated invariant pattern in the right connected by an arrow→.

Each pair displays similar geometrical patterns. Moreover, we explain below such similarity arises

from bifurcation mechanism. In the numerical bifurcation analysis of the FO model presented in

Section 7.1, population in places with the positive components of bifurcating solutions tended to

increase, while population in places with the negative components of bifurcating solutions tended

to decrease along all bifurcating curves from the uniform state. Based on this tendency, we propose

the following conjecture that explains the connectivity between the pairs in Figures 7.4–7.6.

Conjecture 1. Population is agglomerated completely to places with the largest positive compo-

nents of the eigenvalues for the bifurcating solutions.

Under this conjecture, we predict that invariant patterns shown in Figures 7.4–7.6 can be en-

gendered from the uniform state as consequence of direct bifurcations. For example, a mono-

center can be engendered from a critical point associated with q
(4;1,0)

1
+ q

(4;1,0)

3
(see the top-left of

Figure 7.4). Such connectivity is also observed for the other pairs connected by the arrow →.

This conjecture is fairly in line with the bifurcation and the agglomeration behaviour of the FO

model to be investigated in Section 7.4.3 and is insightful in the understanding of spatial economic

agglomerations.

A remark is on the symmetry/asymmetry of the bifurcating solutions. When the solutions in

the positive and the negative directions from the bifurcation point are conjugate, these solutions

can arrive at the same invariant pattern (see Figures 7.4 and 7.5). When the two solutions are not

conjugate, these solutions can arrive at two different patterns (see Figure 7.6).

7.4.3. Stability of Bifurcating Solutions and Invariant Patterns

We conducted the comparative static analysis with respect to the trade freeness ϕ of the FO

model. Parameter values for the FO model were chosen as (σ, µ) = (6.0, 0.4), following Fujita et

al., 1999 [30]. The nominal distance of the square lattice was chosen as d = 1/n = 1/6.

We found stable invariant patterns engendered by direct bifurcation from the uniform state and

computed solution curves for non-invariant patterns that connect the invariant patterns with the

uniform state. Figure 7.7 shows that 9 invariant patterns are engendered by direct bifurcations

from the uniform state and have become stable. When the trade freeness ϕ is increased from a

small value, the uniform state loses stability at the critical point A associated with µ = (1;+,+,−).

Then, the bifurcating solution (Figure 7.3 (a)) is engendered from A. The bifurcating solution

curve is connected to an invariant pattern of 18 places and regains stability. As we expected in the

previous section, population is agglomerated completely to places with the positive components

of the bifurcating solution. The same holds for the solution curves from the critical points B,

C, D, E, F, and G associated with µ = (4; 2, 2,+), (4; 3, 1,+), (8; 2, 1), (4; 2, 0,+), (4; 1, 1,+),

and (4; 1, 0,+), respectively. For these solution curves, we see that almost all the non-invariant

patterns are unstable. Accordingly, we find out a mesh-like structure of the solution curves for

stable invariant patterns and unstable non-invariant ones. Hence, a knowledge of invariant patterns

is useful in the understanding of the mechanism of such a bifurcation behaviour.
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0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Mono-centric (1) 

Duo-centric (10) 

Quad-centric (30)

6-centric (47)

12-centric (76)

18-centric (80)

Uniform (83)

AB C FD G

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Quad-centric (29)

6-centric (45)

12-centric (71)

M = 4M = 1 M = 8

B C ED

Figure 7.7: Stable invariant patterns engendered by direct bifurcation for the 6 × 6 square lattice. The vertical axis

shows λmax = max(λ1, . . . , λK). M represents the multiplicity of critical points. Solid curves represent stable equilib-

ria, and dashed ones represent unstable ones. The number in the label of each invariant pattern corresponds to Figures

7.1 and 7.2.

We investigate the stability of all invariant patterns for the 6×6 square lattice. Figure 7.8 shows

invariant patterns that become stable for some ϕ. As shown in this figure, as many as 22 patterns

are stable for some ϕ including other patterns than that are connected to the uniform state. We see

a tendency that when the trade freeness ϕ is increased from a small value, the number of places

that have population is decreased.

We identified group-theoretic critical points on the uniform state λuniform = (1/36, . . . , 1/36)⊤

for all the irreducible representations µ in (7.13) and computed bifurcating solution curves from

these points. Figures 7.9–7.17 shows bifurcating solution curves for each µ. From these results,

we have demonstrated the emergence of each bifurcating solution that was theoretically predicted

in Chapters 5 and 6. We see that all the bifurcating solutions are unstable just after bifurcation

although stable ones are theoretically possible. For almost all the bifurcating solution curves,

population tend to be agglomerated completely to places with the largest positive or negative

components of the bifurcating solution after the bifurcation. Note that wsq with µ = (4; 3, 2,+)

in Figure 7.16 and wsqVM with µ = (8; 2, 1) in Figure 7.17 are exceptions to this tendency. These

solutions have a common property that some places have a zero component. For solutions with

such a property, computing the bifurcating solution curves is troublesome since we cannot predict

increase and decrease in population in places with a zero component.

The main contribution of this chapter is not only demonstrating the emergence of bifurcating

solutions for the FO model but also proposing a general framework to understand bifurcation

behaviour for any spatial economic model with symmetry. Through the same procedure conducted

in this chapter, we can completely figure out bifurcation behaviour for any model.
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Figure 7.8: The ranges of ϕ for stable invariant patterns for the 6 × 6 square lattice. The number in the label of each

invariant pattern corresponds to Figures 7.1 and 7.2.
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Figure 7.9: Bifurcating curves for µ = (1;+,+,−). Solid curves represent stable stationary points, and dashed curves

represent unstable ones.
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Figure 7.10: Bifurcating curves for µ = (2;+,+). Solid curves represent stable stationary points, and dashed curves

represent unstable ones.
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Figure 7.11: Bifurcating curves for µ = (4; 1, 0,+). Solid curves represent stable stationary points, and dashed curves

represent unstable ones.
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Figure 7.12: Bifurcating curves for µ = (4; 2, 0,+). Solid curves represent stable stationary points, and dashed curves

represent unstable ones.
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Figure 7.13: Bifurcating curves for µ = (4; 1, 1,+). Solid curves represent stable stationary points, and dashed curves

represent unstable ones.
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Figure 7.14: Bifurcating curves for µ = (4; 2, 2,+). Solid curves represent stable stationary points, and dashed curves

represent unstable ones.
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Figure 7.15: Bifurcating curves for µ = (4; 3, 1,+). Solid curves represent stable stationary points, and dashed curves

represent unstable ones.
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Figure 7.16: Bifurcating curves for µ = (4; 3, 2,+). Solid curves represent stable stationary points, and dashed curves

represent unstable ones.
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Figure 7.17: Bifurcating curves for µ = (8; 2, 1). Solid curves represent stable stationary points, and dashed curves

represent unstable ones.
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8. Concluding Remarks

This paper developed a group-theoretic methodology for analyzing spatial economic models

on a square lattice in collaboration with nonlinear mathematics and new economic geography.

Such a methodology provides an effective approach to elucidate the complicated agglomeration

behaviour of spatial economic models systematically.

Chapters 2–4 provided preparation of fundamental issues for the group-theoretic bifurcation

analysis. Chapter 2 introduced an n × n square lattice and a group D4 ⋉ (Zn × Zn) expressing

the symmetry of this lattice. Chapter 3 gave a series of irreducible representations of the group

D4 ⋉ (Zn × Zn). Chapter 4 presented matrix representations of this group.

Chapters 5 and 6 revealed the mechanism of the self-organization of square patterns as bifurca-

tion phenomena in a system of equations modeled on the square lattice. Two different approaches,

using the equivariant branching lemma and solving the bifurcation equation, proceeded.

Chapter 7 applied the group-theoretic methodology to a prototype of spatial economic mod-

els. Square agglomeration patterns, which are consistent with bifurcating solutions revealed in the

previous chapters, emerged from the uniform population distribution. Under the replicator dynam-

ics, invariant patterns, which are connected with the bifurcating solutions via bifurcating curves,

played a vital role in the elucidation of agglomeration behaviour as a solutions to the governing

equation irrespective of the trade freeness.

As the theoretical contribution of this paper, we presented a complete list of typical bifurcat-

ing solutions from the uniform distribution on the square lattice for an arbitrary lattice size n (see

Figure 7.3 for n = 6). As another kind of possible agglomeration patterns, we obtained invari-

ant patterns on the square lattice. Invariant patterns display characteristic population distribution

depicted in Figures 7.4–7.6.

In the numerical analysis of a prototype spatial economic model, the Forslid and Ottaviano

model, we showed the connectivity between bifurcating solutions and invariant patterns via bi-

furcating solutions from the uniform state (Conjecture 1). We found a mesh-like structure of the

solution curves for stable invariant patterns and unstable non-invariant ones. A knowledge of

such a bifurcation mechanism would make a substantial contribution to the understanding of two-

dimensional economic agglomerations. It is emphasized that this paper not only demonstrated

the emergence of bifurcating solutions for the Forslid and Ottaviano model but also proposed a

general framework to understand bifurcation behaviour applicable to any spatial economic model.
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