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Abstract

Mechanization (or automation) has proceeded continuously since the Industrial Revo-
lution and seems to have accelerated recently due to the rapid advancement of information
technology. This paper theoretically examines long-run trends of mechanization, shifts of
tasks humans perform, and earnings levels and inequality. Speci�cally, the paper develops
a Ricardian model of task assignment and analyzes how improvements of productivities of
machines and an increase in the relative supply of skilled workers a¤ect task assignment
(which factor performs which task), earnings levels and inequality, and aggregate output.
The model succeeds in capturing the great majority of the long-run trends. The paper also
explores possible future trends of the variables when information technology continues to
grow rapidly.
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1 Introduction

Mechanization (or automation)�the replacement by machines of humans (and animals) en-
gaged in production tasks�has proceeded continuously since the Industrial Revolution and
seems to have accelerated recently due to the rapid advancement of information technology.
This paper theoretically examines long-run trends of mechanization, shifts of tasks humans
perform, and earnings levels and inequality. Speci�cally, the paper develops a Ricardian
model of task assignment and analyzes how improvements of productivities of machines and
an increase in the relative supply of skilled workers a¤ect task assignment (which factor
performs which task), earnings levels and inequality, and aggregate output. The model suc-
ceeds in capturing the great majority of the long-run trends. The paper also explores possible
future trends of the variables when information technology continues to grow rapidly.

Facts. The long-run trends the paper focuses on are as follows.
Mechanization: During the Industrial Revolution, mechanization progressed in tasks

intensive in manual labor: in manufacturing (particularly, textile and metal working), ma-
chines and factory workers replaced artisans and farmers engaged as a side job; in transporta-
tion, railroads and steamboats supplanted wagons and sailboats; in agriculture, threshing
machines and reapers reduced labor input.1 During the Second Industrial Revolution (from
the second half of the 19th century to World War I), with the utilization of electric power
and internal combustion engines, mechanization proceeded further in manual tasks: in man-
ufacturing, broader sectors and production processes were automated with the introduction
of mass production system; a wider range of tasks were mechanized with tractors in agricul-
ture and with automobiles and trucks in transportation. Some analytical (cognitive) tasks
too were automated: tabulating machines substituted data-processing workers at large or-
ganizations. In the post World War II era, especially since the 1970s, analytical tasks in
much wider areas have been automated because of the progress of information technology:
computers replaced clerical workers engaged in information processing tasks; sensors auto-
mated inspection processes in manufacturing and services; and simple troubleshooting tasks
were automated with the construction of databases of known troubles.2

Task shifts: As a result of mechanization, humans have shifted to tasks machines cannot
perform e¢ciently. The general trend until about the 1960s is the shift from manual tasks
to analytical tasks: initially, humans shifted from manual tasks at farms, cottages, and
workshops to manual tasks at factories and analytical tasks at o¢ces and factories (generally
associated with clerical, management, and technical jobs); after mechanization deepened in
manufacturing, they shifted from manual tasks at factories as well as at farms to analytical
tasks (Katz and Margo, 2013).3 Since the 1970s, humans have shifted from routine analytical

1Works on the two revolutions by economic historians include Landes (2003) and Mokyr (1985, 1999).
2Case studies of e¤ects of information technology on the workplace include Autor, Levy, and Murnane

(2002) on a commercial bank and Bartel, Ichniowski, and Shaw (2007) on a bulb manufacturing factory.
3Although it has been widely thought that technical change during the 19th century is unskill -biased,

Katz and Margo (2013) show that this is not the case for the U.S.: while the share of middle-skill workers
(artisans and agricultural operators) fell and shares of low-skill workers (unskilled workers and laborers)
and high-skill workers (white collar) rose in manufacturing, for the whole economy, shares of low-skill and
middle-skill workers fell and high-skill workers rose from 1850 to 1910. (Further, the share of middle-skill
workers changed little if clerical/sales workers are classi�ed as middle-skilled.) They also �nd that the same
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tasks (e.g., simple information processing tasks performed by clerks) as well as manual tasks
toward non-routine analytical tasks (mainly associated with professional and technical jobs)
and non-routine manual tasks in services (e.g., personal care and protective service), owing
to the advancement of information technology (Autor, Levy, and Murnane, 2003; Autor,
2019).4 ;5 Since the 1990s, due to the large shift from routine analytical tasks, the growth
of middle-wage jobs has been weak relative to both low-wage and high-wage jobs, i.e., job
polarization has been observed (Goos, Manning, and Salomons, 2014; Autor, 2019).
Earnings levels and inequality: Mechanization has a¤ected relative demands for workers

of di¤erent skill levels and thus earnings levels and inequality. In the early stage of indus-
trialization, earnings of unskilled workers grew very moderately and the inequality between
skilled and unskilled workers enlarged (Feinstein, 1998; Katz and Margo, 2013).6 In later
periods, unskilled workers have bene�ted more from automation, except in the 1980-early
1990s and in the mid-late 2000s of the U.S. (Autor, 2019), while, as before, the rising in-
equality has been the norm in economies with lightly regulated labor markets (such as the
U.S.), except in periods of rapid growth of the relative supply of skilled or educated workers
(such as the 1970s) and in the wartime 1940s, when the inequality fell (Goldin and Katz,
2008).7 Since the 1990s, associated with job polarization, earnings of workers with skills for
middle-wage jobs have decreased relative to earnings of those with skills for low-wage jobs
and those with skills for high-wage jobs at least in the U.S. (Böhm, 2020).8

The model. The model economy is a static small-open competitive economy where
three kinds of factors of production�skilled workers, unskilled workers, and machines�
are available. Each factor is characterized by analytical ability and manual ability. Skilled
workers have a higher level of analytical ability than unskilled workers, while both types

pattern is observed for the whole economy from 1920 to 1980 and main contributors of the declining share
of low-skill workers were farm laborers until around 1950 and are unskilled workers and laborers (largely in
manufacturing) thereafter.

4Similarly to Autor, Levy, and Murnane (2003), routine tasks refer to tasks whose procedures are orga-
nized so that they can be performed by machines after relevant technologies are developed.

5Autor, Levy, and Murnane (2003) examine changes in the composition of tasks in the U.S. from 1960
to 1998 and �nd that the growth of information technology is important in explaining the changes after the
1970s. Autor (2019) presents changes in occupational composition for 1970�2016.

6Feinstein (1998) �nds that real wages of British manual workers rose very moderately from the 1770s to
the 1850s (stagnated until the 1830s), implying a large increase in the disparity with skilled workers. Katz
and Margo (2013) �nd a secular rise in the wage premium for white-collar workers for 1820�80 in the U.S..

7Goldin and Katz (2008) document that, after plummeting in the 1940s, the wage premium of college
graduates in the U.S. kept rising except in the 1970s when the relative supply of college graduates grew
rapidly. As for the wage premium of high school graduates, which is a good measure of inequality between
skilled and unskilled workers until the 1940s (judging from a low elasticity of substitution between high
school graduates and dropouts), it fell greatly from 1914 to 1939, when high school enrollment rates rose
dramatically (from 20% to over 70%) and in the 1940s.

8Böhm (2020) �nds that task prices (earnings per unit of skill) polarized between 1984�1992 and 2007�
2009 in the U.S.: task prices of middle-wage jobs (such as clerical, sales, and production jobs) fell relative
to high-wage jobs (managerial, professional, and technical jobs) and low-wage jobs (service jobs). Further,
he showed that wages of those with comparative advantages in middle-wage jobs fell compared to wages
of those with comparative advantages in high-wage or low-wage jobs. By contrast, wage polarization (the
slower wage growth of middle-wage jobs relative to low-wage and high-wage jobs) is observed during the
1990s only in the U.S. and its evidence is weak in Europe (Autor, 2015; Naticchioni, Massari, and Ragusa,
2014).
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of workers have the same level of manual ability, re�ecting the fact that there is no strong
correlation between the two abilities.
The �nal good is produced from inputs of a continuum of tasks that are di¤erent in

the importance of analytical ability, a; and the ease of codi�cation (routinization); c; using
a Leontief technology.9 In the real economy, low a and high c tasks are those involving
repetitive motions such as assembling or sorting objects and typical in production jobs; low
a and low c tasks are those entailing non-repetitive motions such as driving vehicles and
caring for the elderly and usual in low-wage service jobs; high a and high c tasks entail
simple information processing such as calculation and recording information and are typical
in clerical jobs; and high a and low c tasks involve complex analysis and judgement mainly
associated with management, professional, and technical jobs.
The three factors are perfectly substitutable at each task. Both abilities contribute to

production at each task (except the most manual and the most analytical tasks), but the
relative contribution of analytical ability is larger in tasks of the greater importance of the
ability (higher a). Among tasks with given a, machines are more productive in tasks of the
greater ease of codi�cation (higher c), while workers� productivities do not depend on c.
Task assignment, factor prices, task prices, and output of a competitive equilibrium

are considered. Comparative advantages of factors determine task assignment: unskilled
(skilled) workers are assigned to relatively manual (analytical) tasks and machines are as-
signed to tasks that are easier to codify. Among tasks a given factor is employed, it is
employed intensively in tasks in which its productivities are low.

Main results. Based on the model, the paper examines how task assignment, earnings
levels and inequality, and output change over time, when analytical and manual abilities of
machines and the relative supply of skilled workers grow exogenously over time.
Section 4 examines a simpler case (many of the results can be derived from a graphical

analysis) in which the two abilities grow proportionately and machines have comparative
advantages in relatively manual tasks. The analysis shows that tasks and workers strongly
a¤ected by mechanization and e¤ects of the productivity growth on wage levels and inequal-
ity change over time. Mechanization starts from tasks that are highly manual and easy to
routinize, and gradually spreads to tasks that are more analytical and di¢cult to routinize.
Eventually, automation proceeds in highly analytical tasks previously performed by skilled
workers too. Accordingly, unskilled workers shift to tasks that are more di¢cult to codify,
so do skilled workers in later stages of mechanization, and both types shift to more ana-
lytical tasks except at the �nal stage. Skilled workers always bene�t from the productivity
growth, whereas the e¤ect on earnings of unskilled workers is ambiguous while mechaniza-
tion mainly a¤ects them and the e¤ect turns positive afterwards. Earnings inequality rises
except in the �nal stage of mechanization, where it is constant. The output of the �nal good
always increases. In contrast, an increase in the relative supply of skilled workers raises
(lowers) earnings of unskilled (skilled) workers and lowers the inequality, countervailing the
inequality-enhancing e¤ect of productivity growth. (It also raises output.)
The results are consistent with the long-run trends of task shifts, wage levels, and its

inequality described earlier, except the developments of earnings levels and inequality in the

9In this paper, the term codify/routinize means "organize procedures of tasks systematically so that tasks
can be performed by machines after relevant technologies are developed".
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wartime 1940s during which institutional factors are likely to be important (Goldin and Katz,
2008; Farber et al., 2021), their developments after the 1980s, and job polarization after the
1990s. However, the assumption that the two abilities of machines grow proportionately,
which makes the analysis relatively simple, is rather restrictive, considering that the growth
of the manual ability of machines was faster than their analytical ability for most periods
of time, while the opposite seems to be true recently.
Hence, Section 5 analyzes the general case in which the two abilities may grow at di¤erent

rates. Under realistic productivity growth, the model does much better jobs in explaining
the developments after the 1980s, such as stagnant earnings of unskilled workers and the
rising inequality in the 1980-early 1990s, than under the special case. Notably, the model
shows that skilled workers shift from non-routine analytical tasks to manual tasks when
the growth of analytical ability of machines is fast, consistent with the development after
around the year 2000 in the U.S. (Beaudry, Green, and Sand, 2016).10 Although the present
model with two types of workers cannot capture the whole picture of the falling relative wage
of workers with skills for middle-wage jobs after the 1990s (Böhm, 2020) (the model with
three types of workers is analytically intractable), the decreasing inequality predicted by the
model captures a part of the development, the falling disparity between workers with skills
for low-wage jobs and those with skills for middle-wage jobs (and moderately high-wage jobs
more recently).11

Finally, the model is used to examine possible future trends of the variables when in-
formation technology and thus the analytical ability of machines continue to grow rapidly.
It is found that earnings of both types of workers increase and earnings inequality falls
over time. Although the analysis based on the model with two types of workers may not
capture the whole picture considering the recent widening inequality between moderately
and extremely skilled workers (Alvaredo et al., 2013), the stagnant wage premium of college
graduates in the 2010s (Autor, Goldin, and Katz, 2020) and episodes such as the increasing
use of big data in marketing, management, and other decisions suggest that machines would
replace many tasks presently performed by skilled workers in the not-distant future and thus
possible e¤ects on a great majority of the population might be captured by the model.

Related literature. The paper belongs to the literature on task (job) assignment model,
which has been developed to analyze the distribution of earnings in labor economics (see
Sattinger, 1993, for a review), and recently is used to examine broad issues, such as e¤ects
of technology on the labor market (Acemoglu and Autor, 2011; Acemoglu and Restrepo,
2018; Hémous and Olsen, 2020), on cross-country productivity di¤erences (Acemoglu and
Zilibotti, 2001), and on organizational structure and wages (Garicano and Rossi-Hansberg,
2006), e¤ects of international trade and o¤shoring on the labor market (Grossman and Rossi-
Hansberg, 2008; Costinot and Vogel, 2010; Grossman, Helpman, and Kircher, 2017), and
inter-industry wage di¤erentials and the e¤ect of trade on wages (Sampson, 2016).

10Beaudry, Green, and Sand (2016) �nd that the employment growth of non-routine analytical jobs stalled
after around 2000 despite the continuing growth of the supply of high-skill workers, suggesting a decrease
in the demand for such jobs. Further, they show that the average intensity of non-routine analytical tasks
for college graduates increased from the early 1980s until around 2000 but decreased thereafter.
11The quantitative model with three type of workers who di¤er in levels of analytical ability would yield

the rising disparity between workers with skills for high-wage jobs and other workers as well.
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The most closely related is Acemoglu and Autor (2011), who argue that the conventional
non-assignment model cannot examine shifts in tasks workers with a given skill level perform
and fails to capture a large part of recent trends of task shifts, earnings levels and inequality,
particularly job and wage polarization and stagnant or negative earnings growth of less-
educated workers in the U.S.,12 and develop a task assignment model with three types of
workers (high-skill, middle-skill, low-skill). The �nal good is produced from inputs of a
continuum of tasks that are di¤erent in the degree of �complexity� using a Cobb-Douglas
technology. High (middle) skill workers have comparative advantages in more complex tasks
against middle (low) skill workers. They analyze the situation where a part of tasks initially
performed by middle-skill workers are mechanized exogenously, and show that a fraction of
them shift to tasks previously performed by the other types of workers and relative earnings
of high-skill workers to middle-skill workers rise and those of middle-skill workers to low-skill
workers fall, reproducing job and wage polarization.13

The present paper builds on their work, particularly in the modeling, but there are sev-
eral important di¤erences. First, the paper is interested in the long-run trends of task shifts,
earnings levels and inequality since the Industrial Revolution, while they focus on the re-
cent development, especially job and wage polarization after the 1990s. Second, the paper
examines how tasks and workers strongly a¤ected by mechanization and its e¤ects on earn-
ings levels and inequality change endogenously over time with improvements of manual and
analytical abilities of machines, whereas, because of their focus on job and wage polariza-
tion, they assume that mechanization occurs at tasks previously performed by middle-skill
workers. Third, the present model assumes that tasks are di¤erent in two dimensions, the
importance of analytical ability and the ease of codi�cation (routinization); while, in their
model, tasks are di¤erent in one dimension, the degree of �complexity�, which is also the case
in the dynamic model of Acemoglu and Restrepo (2018).14 ;15 Because of the characteriza-

12Limitations of the conventional model, in which workers with di¤erent skill levels are imperfect sub-
stitutes in a macro production function, pointed out by them and relevant to this paper are: (i) technical
change is factor-augmenting, thus it does not model mechanization through technical change, which is also
pointed out in the literature on growth models with mechanization reviewed below, (ii) the model cannot ex-
plain stagnant or negative earnings growth of particular groups in a growing economy, (iii) since all workers
with a given skill level have the same �job�, shifts in jobs and tasks performed by particular groups cannot
be examined, (iv) systematic changes in the composition of employment by job (task) cannot be analyzed.
13They also examine the situation where a part of tasks initially performed by middle-skill workers are

o¤shored exogenously. Further, they analyze the e¤ect of changes in factor supplies on technical change
using a version of the model with endogenous factor-augmenting technical change.
14Acemoglu and Restrepo (2018) develop a dynamic task assignment model with two types of techno-

logical changes, the automation of tasks (the replacement of labor by capital) and the development of new
tasks replacing the least �complex� existing tasks. Their main interests are to characterize conditions for
asymptotically stable balanced growth for a version of the model with directed technological changes and one
type of labor (and capital and intermediates embodying technologies) and to examine the e¤ect of shocks
to technologies on factor prices and factor shares in employment and income. In an extension, they also
consider a version of the model with exogenous technological changes and two types of labor (skilled labor
has a comparative advantage in more �complex� tasks) and examine the e¤ect of technological changes on
wage inequality. In particular, they show that automation raises wage inequality.
15Hémous and Olsen (2020) develop a dynamic model with two types of technological changes a la Ace-

moglu and Restrepo (2018) and with high- and low-skill workers. Unlike Acemoglu and Restrepo (2018) and
the present paper, di¤erent tasks are symmetric (except whether they are automated or not), and unlike this
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tion of tasks by the two variables, which is a natural extension of the analytical/manual and
routine/non-routine classi�cation of tasks standard in empirical works initiated by Autor,
Levy, and Murnane (2003), types of workers displaced by machines and e¤ects of mecha-
nization on earnings levels and inequality change over time.
The paper is also related to the literature that examines the interaction between mech-

anization and economic growth, such as Zeira (1998, 2010), Givon (2006), Zuleta (2008),
Acemoglu (2010), Peretto and Seater (2013), Aghion, Jones, and Jones (2019), and Ray
and Mookherjee (2020). The literature is mainly interested in whether persistent growth
is possible in models where economies grow through mechanization and whether the dy-
namics are consistent with stylized facts of growth. While the standard model assumes
labor-augmenting technical change, which is labor-saving but not capital-using (thus does
not capture mechanization), these papers (except Zeira, 2010; Ray and Mookherjee, 2020)
consider technical change that is labor-saving and capital-using.16 Such technical change
yields a declining share of labor income or a long-run constant share, depending on produc-
tion technologies. By contrast, for given technologies, Zeira (2010) examines interactions
among capital accumulation, changes in factor prices, and mechanization. His model can be
interpreted as a dynamic task assignment model after a slight modi�cation of the production
technology. Unlike the present model, the model assumes homogenous labor and constant
productivity of machines. Ray and Mookherjee (2020) develop a general dynamic model
of task assignment with physical and human capital accumulations and provide conditions
for the long-run labor income share to converge to 0. They are not concerned with the
transitional dynamics and the personal distribution of income

Organization of the paper. The paper is organized as follows. Section 2 presents
the model and Section 3 derives equilibrium allocations for given machine abilities. Section
4 examines e¤ects of improved machine abilities and increased relative supply of skilled
workers on task assignment, earnings levels and inequality, and aggregate output, when the
two abilities improve proportionately. Section 5 examines the general case in which the
abilities may improve at di¤erent rates, and Section 6 concludes. Appendix A presents
lemmas. Appendix B contains proofs of lemmas and propositions of Section 4, while proofs
of propositions of the general case, which are very lengthy, are contained in Web Appendix.17

2 Model

Consider a small open economy where three types of factors of production�skilled workers,
unskilled workers, and machines�are available. All markets are perfectly competitive.
Factors of production and tasks: Each factor is characterized by analytical ability

and manual ability. Denote analytical abilities of a skilled worker, an unskilled worker, and

paper, the production technology is such that only low-skill workers can be displaced by machines. They
show that an increase in the share of automated tasks raises skilled wage and skill premium, lowers labor
income share, and has an ambiguous e¤ect on unskilled wage. They examine quantitatively how well the
model can explain evolutions of wages, wage inequality, and labor income share of the U.S. after the 1960s.
16Acemoglu (2010) examines whether labor scarcity encourages technological advances and shows that it

does if technology is strongly labor saving. He also shows that models with mechanization-type technological
change have a tendency for strongly labor-saving technology, based on the Zeira (1998) model.
17The address is http://www.econ.kyoto-u.ac.jp/~yuki/english.html.
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Figure 1: A continuum of tasks

a machine by h; la, and ka, respectively, where h > la, and their manual abilities by lm, lm,
and km; respectively. Skilled and unskilled workers have the same level of manual ability,
re�ecting the fact that there is no strong correlation between the two abilities.
The �nal good is produced from inputs of a continuum of tasks that are di¤erent in

the importance of analytical ability, a 2 [0; 1], and the ease of codi�cation (routinization),
c 2 [0; 1] (Figure 1). In the real economy, low a and high c tasks are those involving
repetitive motions such as assembling or sorting objects and are typical in production jobs;
low a and low c tasks are those entailing non-repetitive motions such as driving vehicles
and caring for the elderly and are important in low-wage service jobs; high a and high c
tasks entail simple information processing such as calculation and recording information and
are typical in clerical jobs; high a and low c tasks involve complex analysis and judgement
mainly associated with management, professional, and technical jobs. The characterization
of tasks by the two variables, a and c; is a natural extension of the analytical/manual and
routine/non-routine classi�cation of tasks standard in empirical works initiated by Autor,
Levy, and Murnane (2003).
Tasks are uniformly distributed over the (a; c) space. Productivities of a skilled worker,

an unskilled worker, and a machine in task (a; c) are given by:

Ah(a) = ah+ (1� a)lm; (1)

Al(a) = ala + (1� a)lm; (2)

cAk(a) = c[aka + (1� a)km]: (3)

Except the most manual tasks (a = 0) and the most analytical tasks (a = 1), both abilities
contribute to the production of each task, but the relative contribution of analytical ability is
greater in tasks with higher a.18 Since h > la, skilled workers have comparative advantages
in more analytical tasks relative to unskilled workers. For given a, machines are more
productive in tasks with higher c, while workers are assumed to be equally productive for
any c. Because of the multiplicative form of (3), irrespective of levels of ka and km, humans

18One interpretation of the linear speci�cation is that task (a; c) is composed of the proportion a of
analytical subtasks, where only analytical ability matters, and the proportion 1� a of manual ones, and the
two types of subtasks requiring di¤erent abilities are perfectly substitutable in the production of the task.
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are more productive than machines in tasks with very low c; ensuring that humans can
always �nd tasks to engage in.19

Production: At each task, factors are perfectly substitutable as in Acemoglu and Autor
(2011) and Acemoglu and Restrepo (2018), thus the production function of task (a; c) equals:

y(a; c) = Ah(a)nh(a; c) + Al(a)nl(a; c) + cAk(a)nk(a; c); (4)

where ni(a; c) (i = h; l; k) is the amount of factor i engaged in the task. The output of the
task, y(a; c), may be interpreted as either an intermediate good or a direct input in �nal
good production, which is produced by either �nal good producers or separate entities.
The �nal good production function is Leontief with equal weights on all tasks, that is,

all tasks are equally essential in the production:

Y = min
a;c
fy(a; c)g: (5)

The Leontief speci�cation is assumed for simplicity. Similar results would be obtained as
long as di¤erent types of tasks are complementary in the production, though more general
speci�cations seem to be analytically intractable.20

To summarize, di¤erent tasks are complementary in �nal good production, but di¤erent
factors are perfectly substitutable at each task. Because of this speci�cation and the two
dimensional task space, types of workers displaced by machines and e¤ects of mechanization
on earnings levels and inequality change over time.
Factor markets: A unit of each factor supplies a unit of time inelastically. Let the

�nal good be the numeraire and let the relative price of (the output of) task (a; c) be p(a; c).
Then, from cost minimization problems,

p(a; c) = min

�

wh
Ah(a)

;
wl
Al(a)

;
r

cAk(a)

�

; (6)

where wh (wl) is earnings of a skilled (an unskilled) worker and r is exogenous interest rate.
21

That is, �rms choose a factor(s) so that a unit cost of task production becomes lowest.
From (6), the basic pattern of task assignment can be derived (details are explained

later). Since the relative productivity of skilled to unskilled workers Ah(a)
Al(a)

increases with a,

there exists unique a�2(0; 1) satisfying Ah(a
�)

Al(a�)
= wh

wl
and skilled (unskilled) workers are chosen

over unskilled (skilled) workers in tasks with a> (<)a�, i.e., tasks satisfying Ah(a)
Al(a)

> (<)wh
wl
.

That is, skilled (unskilled) workers are assigned to relatively analytical (manual) tasks.

For a < a�, unskilled workers (machines) are assigned to tasks satisfying Al(a)
cAk(a)

> (<)wl
r
,

19The maximum value of c is set to be 1 for simplicity. Qualitative results do not change if it is any
other �nite number. The maximum c must be �nite to explain the fact that highly analytical tasks were
not mechanized at least before the Second Industrial Revolution.
20Also, the model with a Cobb-Douglas technology seems to be very di¢cult to analyze. An advantage

of the Leontief speci�cation over the Cobb-Douglas is that, as shown below, it yields a realistic result
that, among tasks in which a given factor is employed, it is employed intensively in tasks in which their
productivities are low.
21The closed economy model is analytically intractable. Considering that the real interest rate has been

stable in the U.K. and the U.S. over the long-run, main results would not be a¤ected much by the assumption
of the small open economy.
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and for a > a�, skilled workers (machines) are assigned to tasks satisfying Ah(a)
cAk(a)

> (<)wh
r
.

Comparative advantages of factors and relative factor prices determine task assignment.
Task (intermediate good) markets: Because each task (intermediate good) is equally

essential in �nal good production, y(a; c) = Y must hold for any (a; c). Thus, the following
is true for any (a; c) with nh(a; c) > 0, any (a

0; c0) with nl(a
0; c0) > 0, and any (a00; c00) with

nk(a
00; c00) > 0, except for the set of measure 0 tasks in which multiple factors are employed:

Ah(a)nh(a; c) = Al(a
0)nl(a

0; c0) = c00Ak(a
00)nk(a

00; c00) = Y: (7)

Among tasks in which a given factor is employed, it is employed intensively in tasks in which
its productivity is low, e.g., nh(a; c) is large in tasks with low Ah(a).
Denote the amount of total supply of factor i (i = h; l; k) by Ni; where Nk is endogenous.

Then, by substituting (7) into
RR

ni(a;c)>0
ni(a; c)dadc = Ni,

Nh
RR

nh(a;c)>0
1

Ah(a)
dadc

=
Nl

RR

nl(a;c)>0
1

Al(a)
dadc

=
Nk

RR

nk(a;c)>0
1

cAk(a)
dadc

= Y: (8)

The �rst equality of (8) is one of the two key equations, which holds when task assignment
is determined so that market clearing conditions are satis�ed for both type of workers.
Since a unit of the �nal good is produced from inputs of a unit of every task and the

�nal good is the numeraire,
ZZ

p(a; c)dadc = 1 (9)

, wl

ZZ

nl(a;c)>0

1

Al(a)
dadc+ wh

ZZ

nh(a;c)>0

1

Ah(a)
dadc+ r

ZZ

nk(a;c)>0

1

cAk(a)
dadc = 1; (10)

where the second equation is from (6). (10) is the other key equation, which states that task
assignment must be such that the unit production cost of the �nal good equals 1.
Equilibrium: A competitive equilibrium is de�ned by (6)�(8), (10), and task assign-

ment conditions such as Ah(a
�)

Al(a�)
= wh

wl
that are derived explicitly in the next section. As

explained next, task assignment and wages wh, wl are determined by the �rst equality of
(8), (10), and the task assignment conditions. Then, Nk and Y (= y(a; c)) are determined
from the second and third equalities of (8), respectively; ni(a; c) (i = h; l; k) is determined
from (7); p(a; c) is determined from (6).

3 Analysis

This section derives task assignment and wages explicitly for given levels of machine abilities
ka and km. So far, no assumptions are imposed on comparative advantages of machines
to workers. Until Section 5, it is assumed that ka

km
< la

lm
(< h

lm
), that is, machines have

comparative advantages in relatively manual tasks. Then, Al(a)
Ak(a)

and Ah(a)
Ak(a)

increase with a.
With this assumption, the task assignment conditions can be stated explicitly.

3.1 Task assignment conditions

Remember that, for a < a�, unskilled workers (machines) perform tasks (a; c) with Al(a)
cAk(a)

>

(<)wl
r
, and for a > a�, skilled workers (machines) perform tasks (a; c) with Ah(a)

cAk(a)
> (<)wh

r
,

where a� is de�ned by

9



(a) When c� = ca = 1 (b) When c� < ca = 1 (c) When c� < ca < 1

Note: c� � minfcl(a
�); 1g; ca � minfch(1); 1g

Figure 2: Examples of task assignment when ka
km
< la

lm

Ah(a
�)

Al(a�)
=
wh
wl
: (11)

Further, since ka
km

< la
lm
(< h

lm
); machines (humans) perform tasks with relatively low

(high) a and high (low) c; thus, for given c, machines perform tasks with a > a� only if
they perform all tasks with a � a�. Based on these results, critical variables and functions
determining task assignment, cm; c

�; ca; cl(a); and ch(a), are de�ned next. Figure 2, which
illustrates task assignment when ka

km
< la

lm
, is useful for understanding the following.

Unskilled workers vs. machines: From the above discussion, if nk(a; c) > 0 for some
(a; c), nk(0; 1) > 0, i.e., whenever machines are used, they are employed in the most manual
and easiest-to-codify task. Thus, there exists the level of c 2 (0; 1); denoted cm; such that
�rms are indi¤erent between using machines and using unskilled workers for task (0; cm) (see
Figure 2).22 Formally, cm is de�ned by

Al(0)

cmAk(0)
=

lm
cmkm

=
wl
r
: (12)

From this equation, the similar condition for a > 0, Al(a)
cAk(a)

= wl
r
; is expressed as Al(a)

cAk(a)
=

lm
cmkm

, c = km
lm

Al(a)
Ak(a)

cm. Let cl(a) �
km
lm

Al(a)
Ak(a)

cm. Given a, using machines and unskilled

workers are indi¤erent at c = cl(a) and machines (unskilled workers) are employed for
c > (<)cl(a). If there exists c < 1 such that the two choices are indi¤erent at task (a

�; c),
i.e., cl(a

�) < 1, machines perform some tasks with a > a� (Figure 2 (b) and (c)). If cl(a
�) � 1;

machines do not perform tasks for skilled workers (Figure 2 (a)): Let c� � min fcl(a
�); 1g :

Skilled workers vs. machines: When c� < 1, the choice between machines and skilled
workers arises. From Ah(a

�)
Al(a�)

= wh
wl
and (12), the condition Ah(a)

cAk(a)
= wh

r
can be expressed as

Ah(a)
cAk(a)

= lm
km

Ah(a
�)

Al(a�)
1
cm
, c = ch(a) �

km
lm

Al(a
�)

Ah(a�)
Ah(a)
Ak(a)

cm: Given a, employing either factor is

22When machines are not employed in any task, cm is set to be equal 1.
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indi¤erent at c = ch(a). If there exists c < 1 such that either choice is indi¤erent at
task (1; c), i.e., ch(1) < 1, machines perform some tasks with a = 1 (Figure 2 (c)). Let
ca � min fch(1); 1g :
Patterns of task assignment are clear from Figure 2. Given a, machines perform tasks

with relatively high c. From the assumption that machines have comparative advantages in
relatively manual tasks, given c; they perform tasks with relatively low a and the proportion
of tasks performed by machines decreases with a, i.e., cl(a) and ch(a) are upward sloping.

3.2 Key equations determining equilibrium, (HL) and (P)
From their de�nitions, cl(a), ch(a); c

�; and ca are functions of a
� and cm:

cl(a) =
km
lm

Al(a)

Ak(a)
cm; ch(a) =

km
lm

Al(a
�)

Ah(a�)

Ah(a)

Ak(a)
cm; (13)

c� � min fcl(a
�); 1g , ca � min fch(1); 1g : (14)

From (12) and (11); wages are expressed as functions of a� and cm:

wl =
lm
km

r

cm
; wh =

lm
km

Ah(a
�)

Al(a�)

r

cm
: (15)

Hence, the two key equations determining equilibrium, the �rst equality of (8) and (10),
can be expressed as (see Figure 2 for the ranges of integrations):

Nh
Nl

Z a�

0

Z minfcl(a);1g

0

1

Al(a)
dcda =

Z 1

a�

Z minfch(a);1g

0

1

Ah(a)
dcda; (HL)

lm
km

r

cm

Z a�

0

Z minfcl(a);1g

0

1

Al(a)
dcda+

lm
km

Ah(a
�)

Al(a�)

r

cm

Z 1

a�

Z minfch(a);1g

0

1

Ah(a)
dcda

+r

�
Z a�

0

Z 1

minfcl(a);1g

1

cAk(a)
dcda+

Z 1

a�

Z 1

minfch(a);1g

1

cAk(a)
dcda

�

= 1; (P)

(HL) and (P) determine values of a� and cm. Then, cl(a); ch(a); c
�; ca; and thus task

assignment are determined from (13) and (14), earnings are determined from (15), and the
remaining variables are determined as stated at the end of Section 2.

3.3 Illustration of the determination of equilibrium a� and cm

The determination of equilibrium a� and cm can be illustrated using a �gure depicting graphs
of (HL) and (P) on the (a�; cm) space. Since the shape of (HL) di¤ers depending on whether
c� and ca equal 1 or not, as shown in Figure 3, the (a

�; cm) space is divided into three

regions based on values of a� and cm: when cm � lm
km

Ak(a
�)

Al(a�)
, c� = ca = 1 holds;23 when

cm2
h

lm
km

ka
h

Ah(a
�)

Al(a�)
; lm
km

Ak(a
�)

Al(a�)

�

, c� < ca = 1 holds;
24 when cm <

lm
km

ka
h

Ah(a
�)

Al(a�)
, c� < ca < 1 holds.

23This is because cm �
lm

km

Ak(a
�)

Al(a�)
, Al(a

�)
1�Ak(a�)

� lm

cmkm
= wl

r
from (15), that is, unskilled workers are weakly

chosen over machines at task (a�; 1); which implies that machines are not used in any tasks with a > a�:
24This is because cm < lm

km

Ak(a
�)

Al(a�)
, Al(a

�)
1�Ak(a�)

< wl

r
and cm � lm

km

ka

h

Ah(a
�)

Al(a�)
, h

1�ka
� lm

cmkm

Ah(a
�)

Al(a�)
= wh

r

from (15), that is, machines are strictly chosen over unskilled workers at task (a�; 1) and skilled workers are
weakly chosen over machines at task (1; 1), which implies that machines are employed in some tasks with
a > a� but not in tasks with a = 1 and c < 1:

11



Figure 3: Values of c� and ca on the (a
�; cm) space when

ka
km
< la

lm

(a) Relation of (HL) with Nh
Nl

(b) Relation of (HL) with ka
km

Figure 4: Shape of (HL) and its relations with Nh
Nl
and ka

km

3.3.1 Shape of (HL) and its relations with exogenous variables

The shape of (HL) and its relations with exogenous variables, Nh
Nl
and ka

km
, are illustrated

in Figure 4, based on Lemmas 1�3 in Appendix A.25 The left �gure shows that (HL) is

25The shape and the relations do not depend on the assumption ka

km
< la

lm
, though the case c� = ca = 1

(the upper region in the �gures) does not arise when ka

km
� la

lm
and the case c� < ca = 1 (the middle region)
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Figure 5: Shape of (P) and its relations with km; ka; and r

negatively sloped when ca=1 and is vertical when ca< 1 on the (a
�; cm) space. The shape

can be explained intuitively as follows. A decrease in cm lowers cl(a) and ch(a) from (13)
and raises the proportion of tasks performed by machines (see Figure 2). When ca=1; i.e.,
machines do not perform any tasks with a=1 and c< 1, the mechanization mainly a¤ects
unskilled workers engaged in relatively manual tasks and thus they shift to more analytical
tasks, i.e., a� increases. By contrast, when ca<1, both types of workers are equally a¤ected
and thus a� remains unchanged.
The left and right �gures illustrate the relations of (HL) with Nh

Nl
and ka

km
, respectively.

An increase in Nh
Nl
implies that a higher portion of tasks must be performed by skilled workers

and thus (HL) shifts to the left, i.e., for given cm; a
� decreases. Less straightforward is the

e¤ect of an increase in ka
km
, which shifts the locus to the right (left) when cm is high (low),

de�nitely so when c�=1 (when ca<1). An increase in
ka
km
weakens comparative advantages

of humans in analytical tasks and thus lowers, particularly for relatively high a, cl(a), ch(a),
and the portion of tasks performed by humans (see Figure 2). When cm (thus c

� and ca)
is high, such mechanization mainly a¤ects unskilled workers and thus a� must increase,26

while the opposite is true when cm is low.

3.3.2 Shape of (P) and its relations with exogenous variables

Figure 5 illustrates the shape of (P) and its relations with exogenous variables, km ka; and r,
based on Lemma 4 in Appendix A. Remember that, in order for (P) to hold, task assignment
must be such that the unit production cost of the �nal good equals 1. cm satisfying (P)
increases with a�, that is, (P) is upward-sloping on the (a�; cm) plane. This is because, if

does not arise when ka

km
� h

lm
:

26For example, when c� = ca = 1, cl(a) intersects with c = 1 at a � a
� on the (a; c) plane (Figure 2 (a)).

In this case, it would be clear that the mechanization mainly a¤ects unskilled workers.
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Figure 6: Determination of equilibrium a� and cm

an increase in a� lowers cm, both wl =
lm
km

r
cm
and wh =

Ah(a
�)

Al(a�)
wl increase and thus the unit

production cost exceeds 1. An increase in r; which raises the cost of hiring machines, shifts
the locus upward, i.e., cm increases for given a

�. This implies that cl(a) and ch(a) increase
and thus a higher portion of tasks are assigned to humans. The opposite holds when abilities
of machines, km and ka; increase.

27

3.3.3 Determination of equilibrium (a�; cm)

As Figure 6 illustrates, equilibrium (a�; cm) is determined at the intersection of the two loci.
Of course, the position of the intersection depends on exogenous variables such as km and
ka. The next two sections examine how increases in km, ka; and

Nh
Nl
a¤ect the equilibrium,

particularly, task assignment, earnings levels and inequality, and aggregate output.

4 Mechanization with constant ka
km

Suppose that abilities of machines, km and ka, and thus their productivities cAk(a) increase
exogenously over time. This section examines e¤ects of the productivity growth and of an
increase in Nh

Nl
on task assignment, earnings levels and inequality, and output, when km and

ka satisfying
ka
km
< la

lm
grow proportionally. Since (HL) does not shift under constant ka

km

(Figure 4 (b)); the analysis is much simpler than the general case examined in Section 5.
The next proposition presents the dynamics of the critical variables and functions deter-

mining task assignment. (Proofs of the propositions of this section are in Appendix B.)

Proposition 1 Suppose that km and ka satisfying
ka
km
< la

lm
grow proportionally over time.

27The locus never intersects with cm = 0; because machines are completely useless and thus hiring machines
are prohibitively expensive at the hardest-to-codify tasks.
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(a) Equilibrium (b) Task assignment

Figure 7: Equilibrium and task assignment when cm = c
� = ca = 1

(i)When initial km is very low, cm = c� = ca = 1 is satis�ed at �rst;28 at some point,
cm<c

�= ca=1 holds and thereafter cm falls over time; then, cm<c
�<ca=1 and c

� too

falls; �nally, cm<c
�<ca<1 and ca falls as well.

(ii) a� increases over time when cm < ca = 1, while a
� is time-invariant when cm = 1 and

when ca < 1.

(iii) cl(a) and ch(a) (when c
�<1) decrease over time when cm<1.

The results of this proposition can be understood using �gures similar to Figure 6. When
the level of km is very low, there are no (a

�; cm) satisfying (P); or (P) is located at the left
side of (HL) on the (a�; cm) plane (Figure 7 (a)). Hence, the two loci do not intersect
and an equilibrium with cm< 1 does not exist. Because the manual ability of machines is
very low, using machines is not rewarding and all tasks are performed by humans. Figure
7 (a) illustrates an example of the determination of equilibrium cm and a� in this case.
Equilibrium a� is determined at the intersection of (HL) with cm=1. Figure 7 (b) illustrates
the corresponding task assignment on the (a; c) plane, which shows that unskilled (skilled)
workers perform all tasks with a< (>)a�:
When km becomes high enough that (P) is located at the right side of (HL) at cm =

1, the two loci intersect and thus machines begin to be used, i.e., cm < 1. Note that
the level of ka is not important for the initiation of mechanization, because mechanization
starts from the most manual tasks in which analytical ability is of no use. Because of low
machine productivities, they perform only highly manual and easy-to-codify tasks that were
previously performed by unskilled workers, i.e., c�=ca=1. Indeed, large-scale mechanization
originated in tasks associated with simple repetitive motions in textile during the Industrial
Revolution. Figure 8 (a) and (b) respectively illustrate the determination of equilibrium cm

28As noted in footnote 22, the value of cm when all tasks are performed by humans is set to be equal 1.
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(a) Equilibrium (b) Task assignment (c) E¤ect of productivity growth
with constant ka

km

Figure 8: Equilibrium, task assignment, and the e¤ect of productivity growth with constant
ka
km
when cm < c

� = ca = 1

and a� and task assignment. Figure 8 (c) presents the e¤ect of small increases in km and ka
on task assignment. Since machines perform a greater portion of highly manual and easy-
to-codify tasks, a� increases and cl(a) decreases, that is, workers shift to more analytical
and, as for unskilled workers, harder-to-routinize tasks. Consistent with the model, during
early stages of industrialization, humans shifted from manual tasks at farms, cottages, and
workshops toward analytical tasks at o¢ces and factories (generally associated with clerical,
management, and technical jobs) as well as manual tasks at factories, and manual workers
shifted to tasks involving more complex motions machines were not good at.
As km and ka grow over time, automation spreads to relatively analytical tasks, and

eventually, machines come to perform highly analytical tasks, those previously performed
by skilled workers. In the real economy, the new phase of mechanization started during the
Second Industrial Revolution�e.g., teleprinters replaced Morse code operators and tabu-
lating machines substituted data-processing workers at large organizations�and has pro-
gressed on a large scale in the post World War II era, especially since the 1970s, because of
the advancement of information technology. Figure 9 (a) and (b) respectively illustrate the
determination of equilibrium cm and a

� and task assignment when cm<c
�<ca=1. Machines

perform some tasks with a> a� but not the most analytical ones, i.e., c�<ca=1. Produc-
tivity growth lowers ch(a) as well as cl(a) (and raises a

�), thus skilled workers too shift to
more di¢cult-to-codify tasks (Figure 9 (c)). Congruent with the model, since the 1970s, hu-
mans have shifted from routine analytical tasks (such as simple information processing tasks
typical in clerical jobs) as well as manual tasks toward non-routine analytical tasks mainly
associated with professional and technical jobs and non-routine manual tasks in services.
Finally, the economy reaches the case cm < c

� < ca < 1, which is illustrated in Figure
10. Machines perform a portion of the most analytical tasks, i.e., ca<1: In fact, currently,
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(a) Equilibrium (b) Task assignment (c) E¤ect of productivity growth
with constant ka

km

Figure 9: Equilibrium, task assignment, and the e¤ect of productivity growth with constant
ka
km
when cm < c

� < ca = 1

(a) Equilibrium (b) Task assignment (c) E¤ect of productivity growth
with constant ka

km

Figure 10: Equilibrium, task assignment, and the e¤ect of productivity growth with constant
ka
km
when cm < c

� < ca < 1
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machines are engaged in some tasks involving analysis and decision-making, such as auto-
mated trading in �nancial markets. Unlike the previous cases, productivity growth a¤ects
two type of workers equally and thus a� does not change, while ch(a) and cl(a) decrease and
thus workers shift to more di¢cult-to-codify tasks.
In sum, when the two abilities of machines with ka

km
< la

lm
improve proportionally over

time, mechanization starts from highly manual and easy-to-codify tasks and gradually
spreads to more analytical and harder-to-codify tasks. Eventually, machines come to per-
form highly analytical tasks previously performed by skilled workers. Accordingly, unskilled
workers shift to tasks that are more di¢cult to codify, so do skilled workers in later stages
of mechanization, and both types shift to more analytical tasks except at the �nal stage.
The dynamics of task assignment accord with the long-run trends of mechanization and

of shifts in tasks performed by humans except job polarization after the 1990s, which are
detailed in the introduction and is summarized as: initially, mechanization proceeded in tasks
intensive in manual labor, while automation of tasks intensive in analytical labor started
during the Second Industrial Revolution and has progressed on a large scale in the post
World War II era, especially since the 1970s, because of the advancement of information
technology; humans shifted from manual tasks to analytical tasks until about the 1960s,
whereas, thereafter, they have shifted away from routine analytical tasks as well as routine
manual tasks toward non-routine analytical tasks and non-routine manual tasks in services.
E¤ects of the productivity growth on earnings levels and inequality, and aggregate output

are examined in the next proposition.

Proposition 2 Suppose that km and ka satisfying
ka
km
< la

lm
grow proportionately over time

when cm<1.

(i) Earnings of skilled workers increase over time. When c� < ca < 1, earnings of unskilled
workers too increase.

(ii) Earnings inequality, wh
wl
, rises over time when ca=1 and is time-invariant when ca<1.

(iii) The output of the �nal good, Y; increases over time.

The proposition shows that, while skilled workers always bene�t from mechanization,
the e¤ect on earnings of unskilled workers is ambiguous when mechanization mainly a¤ects
them, i.e., when ca = 1; and the e¤ect turns positive when ca < 1. Because di¤erent tasks
are complementary in �nal good production, the increased productivity of machines raises
the demand for tasks that are not directly a¤ected by mechanization, shifts workers to these
tasks, in which they have greater comparative advantages, and increases output. This has
a positive e¤ect on earnings. But it also leads to the substitution of workers with speci�c
skill levels by machines and has a negative e¤ect on their earnings. When machines replace
only or mainly unskilled workers, i.e., when ca = 1; the negative substitution e¤ect could
dominate the positive complementarity e¤ect for unskilled workers and thus their earnings
could decrease, while when machines replace both types of workers similarly, i.e., when ca<1;
the complementarity e¤ect dominates and their wage increases.29 As for skilled workers, it is
always the case that the complementarity e¤ect dominates the substitution e¤ect and thus

29The complementarity e¤ect is relatively small when ca=1; because they shift not only to more di¢cult-
to-codify tasks, i.e., tasks with greater comparative advantages relative to machines, but also to more
analytical tasks, i.e., tasks with weaker comparative advantages relative to skilled workers.

18



(a) when cm< c
�=ca=1 (b) when cm< c

�< ca=1 (c) when cm< c
�< ca< 1

Figure 11: E¤ect of an increase in Nh
Nl
on task assignment when ka

km
< la

lm

their earnings increase. Mechanization worsens earnings inequality wh
wl
when ca=1; while it

has no e¤ect when ca<1. The output of the �nal good always increases, even if la<h<lm
and thus workers� productivities, Ah(a) and Al(a), fall as they shift to more analytical tasks.
So far, the ratio of skilled workers to unskilled workers, Nh

Nl
, is held constant, though it

has increased over time, particularly after the 20th century, in the real economy. Thus, the
next proposition examines e¤ects of the growth of Nh

Nl
for given machine qualities.

Proposition 3 Suppose that Nh
Nl
grows over time when ka

km
< la
lm
and cm<1.

(i) cm, a
�, c� (when c�<1); and cl(a) decrease, while ca (when ca<1) and ch(a) (when c

�<1)
increase over time.

(ii) wl (wh) rises (falls) and earnings inequality,
wh
wl
, shrinks over time.

(iii) Y increases over time under constant Nh+Nl.

Figure 11 illustrates the e¤ect of an increase in Nh
Nl
on task assignment. Since skilled

workers become abundant relative to unskilled workers, they take over a portion of tasks
previously performed by unskilled workers, i.e., a� decreases. Further, earnings of unskilled
workers rise and those of skilled workers fall, thus some tasks previously performed by
unskilled workers are mechanized, i.e., cl(a) decreases, while, when c

� < 1, skilled workers
take over some tasks performed by machines before, i.e., ch(a) increases. That is, skilled
workers shift to more manual tasks, and unskilled workers shift to harder-to-routinize tasks.
The wage of unskilled workers increases because of the positive complementarity e¤ect from
the increased number of workers with greater abilities. The wage of skilled workers decreases
because they have weaker comparative advantages in tasks they take over. Output increases
mainly because skilled workers are more productive than unskilled workers.
By combining the results on e¤ects of an increase in Nh

Nl
with those of the productivity

growth, the model can explain the long-run trends of earnings levels and inequality until the
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1970s,30 except the 1940s during which institutional factors such as the policy-induced sharp
increase in union membership and the wartime wage setting rules are likely to be important
(Goldin and Katz, 2008; Farber et al., 2021). The trends, which are described more in detail
in the introduction, are summarized as: in early stages of industrialization when mechaniza-
tion directly a¤ected unskilled workers only and the relative supply of skilled workers grew
slowly, earnings of unskilled workers grew very moderately and earnings inequality rose; in
later periods when skilled workers too were directly a¤ected by automation and the relative
supply of skilled workers grew faster, unskilled workers bene�ted more from mechanization,
while, as before, the rising inequality was the norm in economies with lightly regulated labor
markets (such as the U.S.), except in periods of a rapid increase in the relative supply of
educated workers (such as the 1970s) and in the 1940s, when the inequality fell.
The model, however, fails to capture the trends after the 1980s, which are: earnings of

unskilled workers fell or stagnated and those of skilled workers rose until the mid 1990s in
the U.S. (Autor, 2019);31 the overall inequality rose greatly after the 1980s (after the 1990s
in many European economies, OECD, 2008); since the 1990s, earnings of those with skills
for middle-wage jobs have fallen relative to earnings of those with skills for low-wage jobs
and those with skills for high-wage jobs at least in the U.S. (Böhm, 2020). By contrast, the
model predicts that earnings of unskilled workers increase and the inequality shrinks when
highly analytical tasks are a¤ected by automation, i.e., when ca<1, and the relative supply
of skilled workers rises.

5 Mechanization with time-varying ka
km

The previous section has examined the case in which km and ka grow proportionately. This
special case has been taken up �rst for analytical simplicity. However, the assumption of the
proportionate growth is rather restrictive, because, according to the trend of mechanization
described in the introduction, the growth of km was apparently faster than that of ka for most
periods of time (major technological developments before the 1970s increased productivities
of machines to perform production and transportation tasks), while ka seems to have been
growing faster than km recently (because of the rapid advance of information technology).

32

This section examines the general case in which the machine abilities may grow at dif-
ferent rates. This case is much more di¢cult to analyze because a change in ka

km
shifts the

graph of (HL) as well as that of (P) (see Figures 4 and 5 in Section 3). Under realistic
productivity growth, the model does much better jobs in explaining the development after
the 1980s than under the constant ka

km
case.

Unlike the previous case, shapes of graphs in Figures 2 and 3 may change qualitatively

30The combined e¤ect of an increase in Nh

Nl

and improvements of machine qualities on task assignment
accords with the trend of task shifts in the real economy when c�=1: When c�<1, it is consistent with the
fact, unless the negative e¤ect of an increase in Nh

Nl

on ch(a) is very strong (see Figure 11).
31According to Autor (2019), composition-adjusted real wages are lower in 1995 than in 1980 for full-time

male workers without graduate degrees and for full-time female workers without college degrees.
32Note that ka was positive even before the Industrial Revolution. Various machines had automatic control

systems whose major examples are: �oat valve regulators used in ancient Greece and in the medieval Arab
world to control the level of water in tanks and devices such as water clocks and oil lamps; temperature
regulators of furnaces invented in early 17th century Europe.
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(a) when ka
km
2( la

lm
; h
lm
) (b) when ka

km
> h
lm
(> la

lm
)

Figure 12: c� and ca when
ka
km
2( la

lm
; h
lm
) and when ka

km
> h
lm
(> la

lm
)

with productivity growth. Starting from the situation where ka
km
< la
lm
(< h

lm
) holds, if ka keeps

growing faster than km, i.e., the rapid growth of information technology continues,
ka
km
2

( la
lm
; h
lm
), then ka

km
> h

lm
(> la

lm
) hold eventually. That is, comparative advantages of machines

to two type of workers change over time. As illustrated in Figure 12, when ka
km
2 ( la

lm
; h
lm
);

c� < 1 always holds, and when ka
km
> h
lm
(> la

lm
); ca < c

� < 1 always holds.33

(a) when ka
km
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lm
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km
> h
lm

Figure 13: cl(a) and ch(a) when
ka
km
2( la

lm
; h
lm
) (ca<1 is assumed) and when

ka
km
> h
lm

Figure 13 illustrates cl(a) and ch(a) and task assignment on the (a; c) space when
ka
km
2

33This is because c� = min
n

km

lm

Al(a
�)

Ak(a�)
cm;1

o

and ca = min
n

h

ka

km

lm

Al(a
�)

Ah(a�)
cm;1

o

.
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( la
lm
; h
lm
) (the �gure is drawn assuming ca < 1) and when

ka
km
> h

lm
. Unlike the original case

ka
km
< la
lm
, cl(a) is downward-sloping and, when

ka
km
> h
lm
, ch(c) too is downward-sloping. Hence,

when ka
km
2( la

lm
; h
lm
); for given c; machines tend to perform tasks with intermediate a and the

proportion of tasks performed by machines is highest at a = a�. When ka
km
> h
lm
, for given c;

machines tend to perform relatively analytical tasks and the proportion of tasks performed
by machines increases with a.

5.1 E¤ects of changes in km, ka; and
Nh
Nl

Now, e¤ects of changes in km and ka on task assignment, earnings levels and inequality, and
output are examined. Since results are di¤erent depending on whether c� and ca equal 1 or
not (Figure 3), they are presented in three propositions.34 ;35 The next proposition analyzes
the e¤ects in the �rst stage of mechanization, c�=ca=1; which arises only when

ka
km
< la

lm
.

Proposition 4When cm�
lm
km

Ak(a
�)

Al(a�)
, c�=ca=1 (possible only when

ka
km
< la

lm
),

(i) cm decreases and a
� increases with km and ka:

(ii) cl(a) decreases with km and ka.

(iii) wh,
wh
wl
, and Y increase with km and ka: wl increases with ka.

The only di¤erence from the constant ka
km
case is that wl increases when ka rises with km

unchanged, an unlikely situation. As before, with improved machine qualities, cm and cl(a)
decrease and a� increases, i.e., workers shift to more analytical and, for unskilled workers,
harder-to-codify tasks (see Figure 8 (c) in Section 4), and earnings of skilled workers, earnings
inequality wh

wl
, and output rise.

The next proposition examines the e¤ects in the second stage of mechanization, c�<ca=
1, which is possible only when ka

km
< h
lm
:

Proposition 5When cm2
h

lm
km

ka
h

Ah(a
�)

Al(a�)
; lm
km

Ak(a
�)

Al(a�)

�

,c�<ca=1 (possible only when
ka
km
< h
lm
),

(i) cm decreases with km and ka. a
� increases when ka

km
non-increases.

(ii) cl(a) and ch(a) decrease with km and ka.

(iii) wh and Y increase with km and ka, while wl increases with ka.
wh
wl
increases when ka

km

non-increases.

There are several di¤erences from the constant ka
km
case. First, e¤ects of productivity

growth with increasing ka
km
on a� and earnings inequality are ambiguous, and wl increases

with ka: Second, although cl(a) (thus cm) and ch(a) decrease and thus workers shift to
harder-to-routinize tasks as in the original case, workers may not shift to more analytical
tasks when a� decreases (possible when ka

km
increases) and when ka

km
2 ( la

lm
; h
lm
) (Figure 13

(a)).36 Remaining results are same as before, that is, when ka
km
non-increases, a� and earnings

inequality increase; when ka
km
� la

lm
too holds, workers shift to more analytical tasks; and

earnings of skilled workers and output always increase.
Proposition 6 examines the e¤ects in the �nal stage of mechanization, c�; ca<1:

37

34When ka

km
> la

lm
, cm = 1 is possible with c� or ca < 1. However, such situation�the most manual and

easy-to-codify task is not mechanized while some of other tasks are�is unrealistic and thus is not examined.
35Proofs of these propositions and Proposition 7 are very lengthy and thus are relegated to Web Appendix

posted on the author�s web site (http://www.econ.kyoto-u.ac.jp/~yuki/english.html).
36For relatively high c, unskilled workers shift to more manual tasks when ka

km
2( la

lm
; h
lm
).

37c�<(>)ca when
ka

km
<(>) h

lm
:
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Figure 14: E¤ect of productivity growth with increasing ka
km
when c�; ca < 1

Proposition 6When cm <
lm
km

ka
h

Ah(a
�)

Al(a�)
, c�; ca < 1,

(i) cm and ca decrease with km and ka; and a
� decreases with ka

km
.

(ii) cl(a) and ch(a) decrease with km and ka:

(iii) wh and Y increase with km and ka, while wl increases when
ka
km

non-decreases. wh
wl

decreases with ka
km
.

Unlike the constant ka
km
case, in which a� and thus wh

wl
are constant and wl increases over

time, a� and wh
wl
decrease with ka

km
and the e¤ect on wl is ambiguous when

ka
km
decreases. As

for task assignment, while cl(a) (thus cm) and ch(a) decrease as in the original case (thus
workers shift to harder-to-routinize tasks), tasks performed by humans change in the skill
dimension as well. In particular, when ka

km
rises (falls), that is, when productivity growth is

such that comparative advantages of machines to humans in analytical (manual) tasks rise,
unskilled workers shift to more manual (analytical) tasks under ka

km
> (<) la

lm
, and skilled

workers too shift to such tasks under ka
km
> (<) h

lm
.38 Figure 14 illustrates the e¤ect of

productivity growth with increasing ka
km
on task assignment for this case. Earnings of skilled

workers and output rise as before.
Finally, Proposition 7 examines e¤ects of an increase in Nh

Nl
when ka

km
� la

lm
is allowed.

Proposition 7 Suppose that Nh
Nl
grows over time when cm<1.

(i) cm, a
�; and cl(a) decrease, while ca (when ca < 1) and ch(a) (when c

�<1) increase over
time. c� (when c�<1) falls (rises) when ka

km
� la

lm
( ka
km
� h

lm
).

(ii) wl (wh) rises (falls) and
wh
wl
shrinks over time.

(iii) Y increases over time under constant Nh+Nl.

38When ka

km
rises (falls) under ka

km
< (>) la

lm
, unskilled workers shift to more manual (analytical) tasks at

low c. The same is true for skilled workers under ka

km
< (>) h

lm
. (See Figure 14.) Hence, at low c; both types

of workers always shift to more manual (analytical) tasks when ka

km
rises (falls).
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Figure 15: E¤ect of an increase in Nh
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Figure 15 illustrates the e¤ect of an increase in Nh
Nl
on task assignment when ka

km
2( la

lm
; h
lm
)

and when ka
km
> h

lm
. (Note that c� = 1 does not occur in these cases and ca = 1 does not

occur when ka
km
> h

lm
:) As in the original case of ka

km
< la

lm
, skilled workers take over some

tasks previously performed by unskilled workers, i.e., a� decreases, and machines (skilled
workers) take over a portion of tasks performed by unskilled workers (machines) before, i.e.,
cl(a) decreases (ch(a) increases). However, unlike before, cl(a) is downward-sloping on the
(a; c) plane, and, when ka

km
> h

lm
, ch(a) too is downward-sloping. Thus, unskilled workers

shift to harder-to-routinize and more manual tasks, and skilled workers may not shift to
more manual tasks when ka

km
> h

lm
(see Figure 15 (c)). As in the original case, earnings of

unskilled (skilled) workers rise (fall), earnings inequality shrinks, and output increases.

5.2 Contrasting the model with facts

Based on the propositions, it is examined whether the model with realistic productivity
growth can explain the long-run trends of task shifts, earnings, and earnings inequality in
the real economy.
Two assumptions are imposed on comparative advantage of machines against humans

and the relative growth of the two abilities of machines. First, it would be plausible to
suppose that ka

km
< la

lm
has continued to hold until now (thus cl(a) and ch(a) are downward-

sloping on the (a; c) plane), because the proportion of tasks performed by machines seems to
be still higher in more manual tasks: consider the fact that the large majority of non-routine
analytical tasks generally associated with management, professional, and technical jobs and
of non-routine "middle a" tasks typical in occupations such as mechanics and nurses are yet
to be automated.
Second, the history of mechanization and task shifts described in the introduction sug-

gests that km seems to have grown faster than ka until sometime in the 1990s, after which
the growth of ka appears to be faster because of the ever-increasing application of infor-
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mation technology in wide areas.39 The supposed turning point would be not be far o¤
the mark considering that a decrease in the employment share of production occupations,
which are intensive in manual tasks, was greatest in the 1980s and slowed down consider-
ably after the 1990s, while a decrease in the share of clerical occupations intensive in routine
analytical tasks started in the 1980s and accelerated in the 1990s (Autor, 2019). Note also
that information technology seems to have contributed to the growth of km more than the
growth of ka initially: CNC [Computer Numerical Control] machines and industrial robots,
widely used since the 1970s and the 1980s respectively, raised productivities of machines to
perform manual and relatively non-routine tasks considerably. Hence, suppose that ka

km
falls

over time when ca=1; while when ca< 1, i.e., in the �nal stage of mechanization,
ka
km
falls

initially, then rises.
Now, the evolutions of earnings levels and inequality are examined. The result when

c� = ca = 1 is almost same as the constant
ka
km

case (Proposition 4), thus the model is
consistent with the actual trends in the early stage of mechanization. The model accords
with the trends in the intermediate stage too (except a decline of the inequality in the 1940s),
because the result of the case c�<ca=1 is same as before when

ka
km
falls (Proposition 5).

It is in the �nal stage of mechanization, i.e, when c� < ca < 1; that the model with
time-varying ka

km
explains the trends much better than the model with constant ka

km
: First,

the present model could be congruent with falling or stagnant earnings of U.S. unskilled
workers in the 1980s-early 1990s and a large increase in the overall inequality after the 1980s
(after the 1990s in many European nations). This is because the e¤ect of productivity growth
with decreasing ka

km
on their earnings is ambiguous and the e¤ect on the inequality is positive

when c�< ca< 1 (Proposition 6); and the growth of
Nh
Nl
; which contributes to raising their

earnings and lowering the inequality (Proposition 7), greatly slowed down during the period.
When the growth of manual ability of machines is higher than the growth of their analytical
ability, the negative substitution e¤ect of mechanization on earnings is relatively strong and
could dominate the positive complementarity e¤ect for unskilled workers, who are engaged
in relatively manual tasks; thus, their earnings could decrease and earnings inequality rises
even in the �nal stage of mechanization. Second, it is also consistent with the sound growth
of earnings of unskilled workers in the late 1990s-early 2000s and in the 2010s (Autor, 2019),
because their earnings increase when ka

km
rises under c�<ca<1:

40 Third, although the present
model with two types of workers cannot capture the whole picture of the falling relative wage
of workers with skills for middle-wage jobs after the 1990s (Böhm, 2020) (the model with
three types of workers is analytically intractable), it yields the decreasing inequality when
ka
km
rises under c�<ca<1 and thus captures a part of the development, the falling disparity

between workers with skills for low-wage jobs and those with skills for middle-wage jobs

39It is true that several components of the composite analytical ability ka, such as numeric ability, seems
to have been growing faster than the composite manual ability km for much longer periods. But remaining
components, such as analysis and decision-making abilities, seem to have grown slowly until recently.
40According to Autor (2019), composition-adjusted real wages of full-time workers of all education groups

exhibited sound growth in the late 1990s-early 2000s in the U.S. Thereafter, however, real wages fell or
stagnated, except for workers with post-college education, whose earnings also dropped after the Great
Recession. In the 2010s, all groups, particularly high school dropouts, have enjoyed strong earnings growth.
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(and moderately high-wage jobs more recently).41 ;42 When machines improve mainly in their
analytical ability, the substitution e¤ect is stronger for skilled than for unskilled workers
and thus the inequality decreases.
As for the dynamics of task shifts, the result under c�=ca=1 is same as the constant

ka
km

case, and so is the result under c�<ca=1 when
ka
km
< la

lm
holds and ka

km
falls (Propositions 4

and 5): cl(a) and ch(a) decrease and a
� increase over time, unless Nh

Nl
grows rapidly. Hence,

the dynamics accord with the long-run trend until recently, i.e., workers shift to harder-to-
routinize and more analytical tasks over time. By contrast, when c� < ca < 1; while cl(a)
and ch(a) decrease over time (unless

Nh
Nl
grows rapidly) as before, unlike the constant ka

km

case, a� increases (decreases) when ka
km
falls (rises) (Proposition 6). Hence, workers shift to

harder-to-codify and more analytical tasks while ka
km
falls, whereas after ka

km
starts to rise,

they shift to harder-to-codify tasks overall and shift to more manual tasks at low c (Figure
14 (a)). This is consistent with the shift from non-routine analytical tasks as well as routine
tasks to non-routine manual tasks after around the year 2000 in the U.S. (Beaudry, Green,
and Sand, 2016; see footnote 10 in the introduction for details).
In sum, unlike the proportionate growth case, the model with realistic productivity

growth is consistent with a large part of the developments after the 1980s. The result
suggests that mechanization driven by the rising productivity of machines and the increased
proportion of skilled workers are important in understanding the long-term evolution of
task shifts, earnings levels and inequality from the era of the Industrial Revolution until the
present. Of course, other factors, such as changes in union density (Farber et al., 2021) and
increased trade with and increased o¤shoring to developing countries after the 1990s (Firpo,
Fortin, and Lemieux, 2013; Ebenstein et al., 2014), too have signi�cant e¤ects,43 but only
the two changes considered in the paper seem to have in�uenced the evolution continuously.
If the rapid progress of information technology continues and ka

km
keeps rising, compara-

tive advantages of machines to two type of workers could change over time, i.e., �rst, from
ka
km
< la

lm
to ka

km
2 ( la

lm
; h
lm
), then to ka

km
> h

lm
. The model predicts what will happen to task

assignment, earnings, and earnings inequality under such situations. As before, both types
of workers shift to tasks that are more di¢cult to routinize (unless Nh

Nl
rises greatly, which

is very unlikely). By contrast, unlike before, unskilled workers shift to more manual tasks
(even at high c), and, when ka

km
> h
lm
, skilled workers too shift to such tasks (Figure 14 (c)).

That is, workers shift to relatively manual and di¢cult-to-codify tasks: the recent shift to
low-wage service occupations such as personal care and protective service may continue into

41As mentioned below, the wage premium of college graduates (a weighted average of the college and
post-college wage premium relative to high school graduates) is stagnant in the 2010s (Autor, Goldin, and
Katz, 2020), which suggests that the earnings disparity between workers with skills for low-wage jobs and
those with skills for moderately high-wage jobs is falling recently.
42The quantitative model with three type of workers, who di¤er in levels of analytical ability or ability to

perform non-routine tasks, would yield the rising inequality between workers with skills for high-wage jobs
and other workers as well.
43Farber et al. (2021) �nd negative e¤ects of union density on various measures of income inequality for

the U.S. economy, using data from 1936 to 2014. Firpo, Fortin, and Lemieux (2013) �nd that the e¤ect of
trade and o¤shoring on wage inequality is important after the 1990s and strong in the 2000s for the U.S.
economy. Ebenstein et al. (2014) �nd that the e¤ect of trade and o¤shoring on real wages and employment
is large after 1997 (until the end of the sample period, 2002).
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the future. However, the model predicts that earnings of unskilled workers as well as those
of skilled workers rise and earnings inequality shrinks over time. The analysis based on
the model with two types of workers would not capture the whole picture, considering the
recent widening inequality between moderately and extremely high-skill workers (Alvaredo
et al., 2013). And, the extended model with more than two types of workers, which is
not analytically tractable, may not be su¢cient to understand the evolution of the right
tail of the distribution at which, Alvaredo et al. (2013), based on international evidence,
argue that institutional and policy changes play important roles. However, the stagnant
wage premium of college graduates (a weighted average of the college and post-college wage
premium relative to high school graduates) in the 2010s (Autor, Goldin, and Katz, 2020)
and episodes such as declining newspaper industry, burgeoning online education, and the
increasing use of big data in marketing, trading, management and other decisions (such
as the diagnosis of diseases) suggest that machines would replace a large number of tasks
presently performed by highly skilled workers in the not-distant future and thus possible
e¤ects on a great majority of the population might be captured by the present model.44

6 Conclusion

Since the Industrial Revolution, mechanization (or automation) has a¤ected types of tasks
humans perform, relative demands for workers of di¤erent skill levels, earnings levels and
inequality, and aggregate output. This paper has developed a Ricardian model of task
assignment and examined how improvements of qualities of machines and an increase in
the relative supply of skilled workers a¤ect these variables. The analysis has shown that
tasks and workers strongly a¤ected by the productivity growth and the e¤ects on earnings
levels and inequality change over time. The model is consistent with long-run trends of these
variables in the real economy, except a decline of the inequality in the wartime 1940s and job
polarization and the fall of the relative wage of workers with skills for middle-wage jobs after
the 1990s, though the model does capture an important part of the latter development. The
model has also been employed to examine possible future trends of these variables when the
rapid growth of information technology continues. It is found that earnings of both skilled
and unskilled workers increase and earnings inequality falls over time.
Several extensions of the model would be fruitful for analyzing the recent evolutions

of the labor market quantitatively. First, in order to understand job polarization and the
related development of earnings more accurately, the model with more than two type of
workers, who di¤er in levels of analytical ability or ability to perform non-routine tasks,
could be developed. Second, empirical works �nd that international trade and o¤shoring
have important e¤ects on earnings inequality after the 1990s, thus it may be interesting to
examine e¤ects of these factors and productivity growth jointly.

44Autor, Goldin, and Katz (2020) �nd that the growth of the wage premium of college graduates slowed
down considerably after 2000 and the premium has stopped increasing in the 2010s, while the growth of the
wage premium of post-college graduates remains strong.
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Appendix A: Lemmas

This appendix presents lemmas examining the shape of (HL) and its relations with exogenous
variables illustrated in Figure 4 of Section 3, and a lemma examining the shape of (P) and
its relations with exogenous variables illustrated in Figure 5. Proofs are in Appendix B.
The next lemma presents the result when c�; ca < 1 (c

�< (>)ca when
ka
km
< (>) h

lm
), the

area below cm =
lm
km

ka
h

Ah(a
�)

Al(a�)
of Figure 3. Note that no assumptions are imposed on relations

of analytical abilities to manual abilities, although presentations in the lemmas might appear
to suppose h > lm, lm > la, and km > ka.

Lemma 1When cm<
lm
km

ka
h

Ah(a
�)

Al(a�)
,c�; ca < 1, (HL) is expressed as

Nh
Nl
ln

�

km
Ak(a�)

�

=
Al(a

�)

Ah(a�)
ln

�

Ak(a
�)

ka

�

; when
ka
km
6=1; (16)

Nh
Nl
a� =

Al(a
�)

Ah(a�)
(1�a�); when

ka
km
=1: (17)

a� satisfying the equation decreases with Nh
Nl
and ka

km
.

Unlike the cases below, (HL) is independent of cm. a
� satisfying the equation decreases

with Nh
Nl
and ka

km
. The next lemma presents the result when c� < ca = 1, the area below

cm = lm
km

Ak(a
�)

Al(a�)
and on or above cm = lm

km

ka
h

Ah(a
�)

Al(a�)
of Figure 3. This case arises only when

lm
km

Ak(a
�)

Al(a�)
> lm

km

ka
h

Ah(a
�)

Al(a�)
, ka

km
< h

lm
:

Lemma 2When cm2
h

lm
km

ka
h

Ah(a
�)

Al(a�)
; lm
km

Ak(a
�)

Al(a�)

�

, c� < ca = 1, which arises only when
ka
km
< h

lm
,

(HL) is expressed as

when
ka
km
6=1;

Nh
Nl

km
lm

cm
km�ka

ln

�

km
Ak(a�)

�

=
1

h�lm
ln

"

(km�ka)
lm
km

Ah(a
�)

Al(a�)
+(h�lm)cm

lm
km

Ah(a�)
Al(a�)

(hkm�lmka)
h

#

+
km
lm

Al(a
�)

Ah(a�)

cm
km�ka

ln

"

(km�ka)
lm
km

Ah(a
�)

Al(a�)
+(h�lm)cm

(hkm�lmka)cm
Ak(a�)

#

;

(18)

when
ka
km
=1;

Nh
Nl

cma
�

lm
=

1

h�lm

�

ln

�

h

lm

Al(a
�)

Ah(a�)
cm

�

�
Al(a

�)

lm
cm+1

�

: (19)
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a� satisfying the equation decreases with cm and Nh
Nl
( @a

�

@cm
= 0 at cm =

lm
km

ka
h

Ah(a
�)

Al(a�)
), and

decreases (increases) with ka
km
for small (large) cm.

Unlike the previous case, a� satisfying (HL) decreases with cm (except at cm=
lm
km

ka
h

Ah(a
�)

Al(a�)
;

where @a�

@cm
= 0); and it increases with ka

km
when cm is large. Finally, the next lemma presents

the result when c�=ca=1; the area on or above cm =
lm
km

Ak(a
�)

Al(a�)
of Figure 3. This case arises

only when lm
km

Ak(a
�)

Al(a�)
< 1, ka

km
< la

lm
:

Lemma 3When cm �
lm
km

Ak(a
�)

Al(a�)
, c� = ca = 1, which arises only when

ka
km
< la

lm
, (HL) is

expressed as
Nh
Nl

�

1

lm�la
ln

�

lakm�lmka
(km�ka)lm�(lm�la)kmcm

lm
Al(a�)

�

+
kmcm

(km�ka)lm
ln

�

(km�ka)lm�(lm�la)kmcm
(lakm�lmka)cm

��

=
1

h�lm
ln

�

h

Ah(a�)

�

; when
ka
km
6=1; (20)

Nh
Nl

1

la�lm

�

ln

�

cmAl(a
�)

lm

�

+1�cm

�

=
1

h�lm
ln

�

h

Ah(a�)

�

; when
ka
km
=1; (21)

where a� 2 (0; 1) holds for any cm. a
� satisfying the equation decreases with cm and

Nh
Nl
; and

it increases with ka
km
(limcm!1

@a�

@cm
=limcm!1

@a�

@ ka

km

=0).

a� satisfying (HL) decreases with cm as in the previous case, while it increases with
ka
km

(limcm!1
@a�

@cm
=limcm!1

@a�

@ ka

km

=0, though).

Finally, the next lemma presents the shape of (P) and its relations with km, ka; and r.

Lemma 4 cm satisfying (P ); which is positive, increases with a
� and r, and decreases with

km and ka.

7 Appendix B: Proofs of Lemmas and Propositions 1-3

Proof of Lemma 1. [Derivation of the LHS of the equation]: When cm <
lm
km

ka
h

Ah(a
�)

Al(a�)

and thus cm<
lm
km

Ak(a
�)

Al(a�)
, c�=cl(a

�)<1, the LHS of (HL) equals Nh
Nl
times

Z a�

0

Z cl(a)

0

1

Al(a)
dcda=

Z a�

0

cl(a)

Al(a)
da=

km
lm
cm

Z a�

0

da

Ak(a)
: (22)

Hence, when ka
km
6=1; the LHS of (HL) equals

Nh
Nl

km
lm

cm
km�ka

ln

�

km
Ak(a�)

�

: (23)

Applying l�Hôpital�s rule to the above equation, the LHS of (HL) when ka
km
=1 equals

�
Nh
Nl

1

lm

cm

lim ka

km
!1(1�

ka
km
)
lim
ka

km
!1
ln

�

a�
ka
km
+1�a�

�

=
Nh
Nl

cm
lm

lim
ka

km
!1

 

a�

a� ka
km
+1�a�

!

=
Nh
Nl

cma
�

lm
: (24)
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[Derivation of the RHS of the equation]: When cm <
lm
km

ka
h

Ah(a
�)

Al(a�)
, ca= ch(1)<1,

the RHS of (HL) is expressed as
Z 1

a�

Z ch(a)

0

1

Ah(a)
dcda=

Z 1

a�

ch(a)

Ah(a)
da=

km
lm

Al(a
�)

Ah(a�)
cm

Z 1

a�

da

Ak(a)
: (25)

Hence, when ka
km
6=1; the RHS of (HL) equals

km
lm

Al(a
�)

Ah(a�)

cm
km�ka

ln

�

Ak(a
�)

ka

�

: (26)

By applying l�Hôpital�s rule to the above equation, the LHS of (HL) when ka
km
=1 equals

Al(a
�)

Ah(a�)

1

lm

cm

lim ka

km
!1(1�

ka
km
)
lim
ka

km
!1
ln

�

a�+(1�a�)
km
ka

�

=�
Al(a

�)

Ah(a�)

cm
lm

lim
ka

km
!1

 

�(1�a�)( ka
km
)�2

a�+(1�a�)km
ka

!

=
Al(a

�)

Ah(a�)

cm
lm
(1�a�): (27)

[Relations of a� satisfying the equation with Nh
Nl
and ka

km
]: Clearly, a� satisfying

the equation decreases with Nh
Nl
. Noting that, from (23) and (26), (HL) when ka

km
6=1 can be

expressed as

km
lm

cm
km�ka

�

�
Nh
Nl
ln

�

a�
ka
km
+1�a�

�

�
Al(a

�)

Ah(a�)
ln

�

a�+(1�a�)
km
ka

��

=0; (28)

the derivative of the above equation with respect to ka
km
equals

km
lm

cm
km�ka

 

�
Nh
Nl

a�

a� ka
km
+1�a�

�
Al(a

�)

Ah(a�)

�(1�a�)( ka
km
)�2

a�+(1�a�)km
ka

!

=
km
lm

cm
km�ka

km
Ak(a�)

�

�
Nh
Nl
a�+

Al(a
�)

Ah(a�)
(1�a�)

km
ka

�

; (29)

where the expression inside the large bracket can be rewritten as

�
Nh
Nl
a�+

Al(a
�)

Ah(a�)
(1�a�)

km
ka
=

�

ln

�

Ak(a
�)

ka

���1
Nh
Nl

�

�a�ln

�

a�+(1�a�)
km
ka

�

�(1�a�)
km
ka
ln

�

a�
ka
km
+1�a�

��

=

�

ln

�

Ak(a
�)

ka

���1
Nh
Nl

km
ka

�

a�
ka
km
ln

�

ka
km

�

�

�

a�
ka
km
+1�a�

�

ln

�

a�
ka
km
+1�a�

��

: (30)

The expression inside the large bracket of the above equation is positive, because the
expression equals 0 at ka

km
= 1 and its derivative with respect to ka

km
equals

a�
�

ln

�

ka
km

�

�ln

�

a�
ka
km
+1�a�

��

; (31)

which is negative (positive) for ka
km
< (>)1: Thus, noting that ln

�

Ak(a
�)

ka

�

> (<)0 for ka
km
< (>

)1, (29) is positive. The derivative of (28) with respect to a� is positive from @ Al(a
�)

Ah(a�)
=@a� < 0.

Hence, a� satisfying (16) decreases with ka
km
when ka

km
6=1. When ka

km
! 1; (29) equals
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lim
ka

km
!1

(

1

lm

cm

1� ka
km

1

a� ka
km
+1�a�

�

�
Nh
Nl
a�+

Al(a
�)

Ah(a�)
(1�a�)

km
ka

�

)

= �
cm
lm

lim
ka

km
!1

8

>

<

>

:

�
�

a� ka
km
+1�a�

�

Al(a
�)

Ah(a�)
(1�a�)( ka

km
)�2 �

�

�Nh
Nl
a�+ Al(a

�)
Ah(a�)

(1�a�)km
ka

�

a�

�

a� ka
km
+1�a�

�2

9

>

=

>

;

=
cm
lm

Al(a
�)

Ah(a�)
(1�a�) > 0: (32)

where (17) is used to derive the last equality. Thus, the same result holds when ka
km
= 1 too.

Proof of Lemma 2. [Derivation of the equation]: Since c� < 1, the LHS of (HL) equals
(23) (when ka

km
6=1) and (24) (when ka

km
=1) in the proof of Lemma 1.

The RHS of (HL) when ca = 1, ch(1)�1, c
� < 1, ch(a

�)<1, and ka
km
6=1 is expressed

as
Z c�1

h
(1)

a�

Z ch(a)

0

dcda

Ah(a)
+

Z 1

c�1
h
(1)

Z 1

0

dcda

Ah(a)
=

Z c�1
h
(1)

a�

ch(a)

Ah(a)
da+

Z 1

c�1
h
(1)

da

Ah(a)

=
km
lm

Al(a
�)

Ah(a�)
cm

Z c�1
h
(1)

a�

da

Ak(a)
+

Z 1

c�1
h
(1)

da

Ah(a)

=
km
lm

Al(a
�)

Ah(a�)

cm
km�ka

ln

�

Ak(a
�)

Ak(c
�1
h (1))

�

+
1

h�lm
ln

�

h

Ah(c
�1
h (1))

�

; (33)

where c�1h (1); i.e., the value of a when ch(a) = 1, equals, from (1) and (3),

Ah(a)

Ak(a)
=
lm
km

Ah(a
�)

Al(a�)

1

cm
, a(h�lm) + lm =

lm
km

Ah(a
�)

Al(a�)

1

cm
[�a(km�ka) + km]

, a =
lm

�

Ah(a
�)

Al(a�)
� cm

�

(km�ka)
lm
km

Ah(a�)
Al(a�)

+ (h�lm)cm
: (34)

Hence, from (33) and

Ak(c
�1
h (1))=

�lm

�

Ah(a
�)

Al(a�)
�cm

�

(km�ka)+km

h

(km�ka)
lm
km

Ah(a
�)

Al(a�)
+ (h�lm)cm

i

(km�ka)
lm
km

Ah(a�)
Al(a�)

+ (h�lm)cm

=
(hkm�lmka)cm

(km�ka)
lm
km

Ah(a�)
Al(a�)

+ (h�lm)cm
; (35)

Ah(c
�1
h (1))=

lm

�

Ah(a
�)

Al(a�)
�cm

�

(h�lm)+lm

h

(km�ka)
lm
km

Ah(a
�)

Al(a�)
+ (h�lm)cm

i

(km�ka)
lm
km

Ah(a�)
Al(a�)

+ (h�lm)cm

=

lm
km

Ah(a
�)

Al(a�)
(hkm�lmka)

(km�ka)
lm
km

Ah(a�)
Al(a�)

+ (h�lm)cm
; (36)
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the RHS of (HL) when ka
km
6=1; equals

1

h�lm
ln

"

(km�ka)
lm
km

Ah(a
�)

Al(a�)
+(h�lm)cm

lm
km

Ah(a�)
Al(a�)

(hkm�lmka)
h

#

+
km
lm

Al(a
�)

Ah(a�)

cm
km�ka

ln

"

(km�ka)
lm
km

Ah(a
�)

Al(a�)
+(h�lm)cm

(hkm�lmka)cm
Ak(a�)

#

: (37)

By applying l�Hôpital�s rule to the above equation, the RHS when ka
km
=1 equals

1

h�lm
lim
ka

km
!1
ln

"

(1� ka
km
)lm

Ah(a
�)

Al(a�)
+(h�lm)cm

lm
Ah(a�)
Al(a�)

(h�lm
ka
km
)

h

#

+

1
lm

Al(a
�)

Ah(a�)
cm

lim ka

km
!1(1�

ka
km
)
lim
ka

km
!1
ln

2

6

4

(1� ka
km
)lm

Ah(a
�)

Al(a�)
+(h�lm)cm

(h�lm
ka

km
)cm

a� ka

km
+(1�a�)

3

7

5

=
1

h�lm
ln

�

h

lm

Al(a
�)

Ah(a�)
cm

�

�
1

lm

Al(a
�)

Ah(a�)
cm lim

ka

km
!1

"

a�

a� ka
km
+(1�a�)

+
lm

h�lm
ka
km

�
lm

Ah(a
�)

Al(a�)

(1� ka
km
)lm

Ah(a�)
Al(a�)

+(h�lm)cm

#

=
1

h�lm
ln

�

h

lm

Al(a
�)

Ah(a�)
cm

�

�
1

lm

Al(a
�)

Ah(a�)
cm

"

Ah(a
�)

h�lm
�
lm

Ah(a
�)

Al(a�)

(h�lm)cm

#

=
1

h�lm

�

ln

�

h

lm

Al(a
�)

Ah(a�)
cm

�

�
Al(a

�)

lm
cm+1

�

: (38)

[Relations of a� satisfying the equation with Nh
Nl
and cm]: When

ka
km
6= 1, the

derivative of the LHS�RHS of (18) with respect to a� equals

Nh
Nl

km
lm
cm

1
Ak(a�)

+ 1
h�lm

�

1
Ah(a

�)

Al(a
�)

�
(km�ka)

lm

km

(km�ka)
lm

km

Ah(a
�)

Al(a
�)
+(h�lm)cm

�

@
Ah(a

�)

Al(a
�)

@a�
+ km

lm
cm

Al(a
�)

Ah(a�)
1

Ak(a�)

�
cm

Al(a
�)

Ah(a
�)

(km�ka)
lm

km

Ah(a
�)

Al(a
�)
+(h�lm)cm

@
Ah(a

�)

Al(a
�)

@a�
� km

lm

cm
km�ka

@
Al(a

�)

Ah(a
�)

@a�
ln

�

(km�ka)
lm

km

Ah(a
�)

Al(a
�)
+(h�lm)cm

(hkm�lmka)cm
Ak(a

�)

�

= cm

2

6

6

4

Nh
Nl

km
lm

1
Ak(a�)

+
Al(a

�)

Ah(a
�)

(km�ka)
lm

km

Ah(a
�)

Al(a
�)
+(h�lm)cm

@
Ah(a

�)

Al(a
�)

@a�
+ km

lm

Al(a
�)

Ah(a�)
1

Ak(a�)

�
Al(a

�)

Ah(a
�)

(km�ka)
lm

km

Ah(a
�)

Al(a
�)
+(h�lm)cm

@
Ah(a

�)

Al(a
�)

@a�
� km

lm

1
km�ka

@
Al(a

�)

Ah(a
�)

@a�
ln

�

(km�ka)
lm

km

Ah(a
�)

Al(a
�)
+(h�lm)cm

(hkm�lmka)cm
Ak(a

�)

�

3

7

7

5

=
km
lm

cm
km�ka

8

<

:

�

Nh
Nl
+
Al(a

�)

Ah(a�)

�

km�ka
Ak(a�)

�
@ Al(a

�)
Ah(a�)

@a�
ln

2

41+
(km�ka)

Ah(a
�)

Ak(a�)

h

lm
km

Ak(a
�)

Al(a�)
�cm

i

(hkm�lmka)cm
Ak(a�)

3

5

9

=

;

> 0; (39)

where the last equality is derived by using

(km�ka)
lm
km

Ah(a
�)

Al(a�)
+(h�lm)cm

(hkm�lmka)cm
Ak(a�)

=
(km�ka)

lm
km

Ah(a
�)

Al(a�)
+(h�lm)cm�

(hkm�lmka)cm
Ak(a�)

+ (hkm�lmka)cm
Ak(a�)

(hkm�lmka)cm
Ak(a�)

= 1+
(km�ka)

Ah(a
�)

Ak(a�)

h

lm
km

Ak(a
�)

Al(a�)
�cm

i

(hkm�lmka)cm
Ak(a�)

>(<)1 when
ka
km
<(>)1 ( * cm<

lm
km

Ak(a
�)

Al(a�)
). (40)

The derivative of the LHS-RHS of (18) with respect to cm when
ka
km
6=1 equals
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1

(h�lm)cm
ln

�

(km�ka)
lm

km

Ah(a
�)

Al(a
�)
+(h�lm)cm

lm

km

Ah(a
�)

Al(a
�)
(hkm�lmka)

h

�

�
1+ km
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cm
km�ka

Al(a
�)

Ah(a�)
(h�lm)

(km�ka)
lm
km

Ah(a�)
Al(a�)

+(h�lm)cm
+
km
lm

1

km�ka

Al(a
�)

Ah(a�)

=
1

(h�lm)cm
ln

�

1+
(h�lm)hkm

h

cm�
lm

h

ka

km

Ah(a
�)

Al(a
�)

i

lm
Ah(a

�)

Al(a
�)
(hkm�lmka)

�

� 0 ( * cm�
lm
km

ka
h

Ah(a
�)

Al(a�)
); (41)

where the last equality is derived by using

(km�ka)lm
Ah(a

�)

Al(a
�)
+(h�lm)kmcm

lm
Ah(a

�)

Al(a
�)
(hkm�lmka)

h =

h

(km�ka)lm
Ah(a

�)

Al(a
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+(h�lm)kmcm

i
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Ah(a
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Al(a
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(hkm�lmka)+lm
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Al(a
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Al(a
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h
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ka

km

Ah(a
�)

Al(a
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i
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Ah(a

�)

Al(a
�)
(hkm�lmka)

: (42)

Hence, when ka
km
6= 1, a� satisfying (18) decreases with Nh

Nl
and cm ( @a

�

@cm
= 0 at cm =

lm
km

ka
h

Ah(a
�)

Al(a�)
).

The corresponding derivatives when ka
km
! 1 are

a� : lim
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km
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�
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@a�
ln

�

1+
(1� ka

km
)Ah(a

�)
h

(a� ka

km
+1�a�) lm

Al(a
�)
�cm

i

(h�lm
ka

km
)cm

�

)!

= �
cm
lm

lim
ka

km
!1

8

>

>

<

>

>

:

�

Nh
Nl
+ Al(a

�)
Ah(a�)

�

�(a� ka

km
+1�a�)�(1� ka
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=
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=
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+ Al(a
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Ah(a�)

�

�
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Ah(a�)
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�)
�
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�)
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> 0; (43)

cm :
1

(h�lm)cm
ln

�

1+
(h�lm)h

h

cm�
lm

h

Ah(a
�)

Al(a
�)

i

lm
Ah(a

�)

Al(a
�)
(h�lm)

�

� 0: (44)

Therefore, the same results hold when ka
km
= 1 as well.

[Relations of a� satisfying the equation with ka
km
]: Since (18) can be expressed as

�
Nh
Nl

1

lm

cm

1� ka
km

ln

�

a�
ka
km
+1�a�

�
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=
1
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km
)lm
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#

;

the derivative of the LHS�RHS of (18) with respect to ka
km
when ka

km
6=1 equals

�Nh
Nl

1
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1� ka

km

�

ln(a� ka

km
+1�a�)

1� ka

km

+ a�
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�

� 1
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)2
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�
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�)

Al(a
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�

+ lm
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�
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km

�
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�
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km
+1�a�

+ lm
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�
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�)
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(1� ka
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)lm
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�)
+(h�lm)cm

�
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= 1

(h�lm)(1�
ka

km
)
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�

(1� ka
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)lm
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�)
+(h�lm)cm

lm
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�)
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)

h

�

�Nh
Nl

1
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cm
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+
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�
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Al(a
�)
�cm

�

(h�lm
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)
h

(1� ka
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)lm
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�)

Al(a
�)
+(h�lm)cm

i

� 1
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1� ka

km
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�)
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�

a�

a� ka

km
+1�a�

�
lm(h�lm)

�
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�)

Al(a
�)
�cm

�

(h�lm
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km
)
h

(1� ka

km
)lm

Ah(a
�)

Al(a
�)
+(h�lm)cm

i

�
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km�ka

8

<

:

�
h

Nh
Nl
+ Al(a

�)
Ah(a�)

i

km
lm

a�

Ak(a�)
cm+

km

�

1�cm
Al(a

�)
Ah(a�)

�

hkm�lmka
+ 1
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�

(km�ka)lm
Ah(a

�)

Al(a
�)
+(h�lm)kmcm
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Ah(a

�)

Al(a
�)
(hkm�lmka)

h

�

9

=

;

: (46)

Since the derivative on (HL) is examined, by substituting (18) into the above equation

km
km�ka

8

>

>

<

>

>

:

�
h

Nh
Nl
+ Al(a

�)
Ah(a�)

i

km
lm

a�

Ak(a�)
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�

1�cm
Al(a
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Ah(a�)

�

hkm�lmka
+Nh
Nl

km
lm
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km�ka
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�
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Ak(a�)

�

�km
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km�ka
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�

(km�ka)
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Ah(a
�)

Al(a
�)
+(h�lm)cm

(hkm�lmka)cm
Ak(a

�)

�

9

>

>

=
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>

;

(47)

= kmcm
(km�ka)2

km
lm

8

>

<

>

:

Nh
Nl

h

ln
�

km
Ak(a�)

�

+1� km
Ak(a�)

i

� Al(a
�)

Ah(a�)

�

(km�ka)
Ah(a

�)
Al(a�)

1
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Al(a
�)kmcm�lmAk(a

�)
Ak(a�)(hkm�lmka)

+ln

�

(km�ka)
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km

Ah(a
�)

Al(a
�)
+(h�lm)cm

(hkm�lmka)cm
Ak(a

�)

��

9

>

=

>

;

: (48)

The above expression is positive at cm=
lm
km

ka
h

Ah(a
�)

Al(a�)
from (29) in the proof of Lemma 1 and

is negative at cm=
lm
km

Ak(a
�)

Al(a�)
from (59) in the proof of Lemma 3. Further, the derivative of

the expression inside the big bracket of the above equation with respect to cm equals

�(km�ka)
1
c2m

lm
hkm�lmka

� Al(a
�)

Ah(a�)

�

h�lm

(km�ka)
lm

km

Ah(a
�)

Al(a
�)
+(h�lm)cm

� 1
cm

�

= lm
km

km�ka
cm

�

� 1
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km
hkm�lmka

+ 1

(km�ka)
lm

km

Ah(a
�)

Al(a
�)
+(h�lm)cm

�

=� l2m
km

1
c2m

(km�ka)2
h

Ah(a
�)

Al(a
�)
�cm

i

(hkm�lmka)
h

(km�ka)
lm

km

Ah(a
�)

Al(a
�)
+(h�lm)cm

i ; (49)

which is negative for cm2
h

lm
km

ka
h

Ah(a
�)

Al(a�)
; lm
km

Ak(a
�)

Al(a�)

i

from Ah(a
�)

Al(a�)
�cm�

Ah(a
�)km�lmAk(a

�)
Al(a�)km

= (hkm�lmka)a�

Al(a�)km
>

0 ( lm
km

Ak(a
�)

Al(a�)
> lm

km

ka
h

Ah(a
�)

Al(a�)
, ka

km
< h

lm
): Hence, there exists a unique cm 2 (

lm
km

ka
h

Ah(a
�)

Al(a�)
; lm
km

Ak(a
�)

Al(a�)
)

such that (46) is positive (negative) for smaller (greater) cm.
When ka

km
! 1, (46) equals

lim
ka

km
!1

1

1� ka

km

(

�
h

Nh
Nl
+ Al(a

�)
Ah(a�)

i

1
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km
+1�a�

cm+
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h�lm
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+ 1
h�lm
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+(h�lm)cm
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<

:
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i

1
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+
lm

�
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Al(a
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�
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h�lm

�

�lm
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+(h�lm)cm
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km

�

9

=

;

= �

8

<

:

h

Nh
Nl
+ Al(a

�)
Ah(a�)

i

a�2cm
lm

�
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�

1�cm
Al(a

�)
Ah(a�)

�

�

1
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Ah(a
�)

Al(a
�)
�1
�

(h�lm)2

9

=

;

: (50)

The expression is positive at cm=
lm
h

Ah(a
�)

Al(a�)
from (32) in the proof of Lemma 1 and negative

at cm=
lm

Al(a�)
from (61) in the proof of Lemma 3. Further, the derivative of the expression

with respect to cm is negative. Hence, the same result holds when
ka
km
= 1 as well.
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Proof of Lemma 3. [Derivation of the equation]: The LHS of (HL) when c� = 1 ,
cl(a

�)�1 and ka
km
6=1 equals Nh

Nl
times

Z c�1
l
(1)

0

Z cl(a)

0

dcda

Al(a)
+

Z a�

c�1
l
(1)

Z 1

0
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Al(a)
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Z c�1
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(1)

0

cl(a)

Al(a)
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Z a�

c�1
l
(1)

da

Al(a)

=
km
lm
cm

Z c�1
l
(1)

0

da

Ak(a)
+

Z a�

c�1
l
(1)

da

Al(a)

=
km
lm

cm
km�ka
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�
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Ak(c
�1
l (1))

�

+
1

lm�la
ln

�

Al(c
�1
l (1))

Al(a�)

�

; (51)

where the value of c�1l (1); i.e., a when cl(a) = 1, equals, from (2) and (3),

Al(a)

Ak(a)
=
lm
km

1

cm
, �a(lm�la) + lm =

lm
km

1

cm
[�a(km�ka)+km]

, a =
lm(1�cm)

(km�ka)
lm
km
� (lm�la)cm

: (52)

Hence, from (51) and

Ak(c
�1
l (1))=

�lm(1�cm)(km�ka)+km

h

(km�ka)
lm
km
�(lm�la)cm

i

(km�ka)
lm
km
� (lm�la)cm

=
(lakm�lmka)cm

(km�ka)
lm
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� (lm�la)cm

; (53)

Al(c
�1
l (1))=

�lm(1�cm)(lm�la)+lm

h

(km�ka)
lm
km
�(lm�la)cm

i

(km�ka)
lm
km
� (lm�la)cm

=
lm
km
(lakm�lmka)

(km�ka)
lm
km
� (lm�la)cm

; (54)

the LHS of (HL) when ka
km
6=1 equals

Nh
Nl

�

1
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�
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�

(km�ka)lm�(lm�la)kmcm
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��

: (55)

Applying l�Hôpital�s rule to the above equation, the LHS of (HL) when ka
km
=1 equals
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1
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�
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lm

�
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[a� 2 (0; 1) for any cm]: a
� < 1 is obvious from the equation. Since cm�

lm
km

Ak(a
�)

Al(a�)
, a�=0

is possible only at cm = 1. However, at cm = 1, the equation becomes
Nh
Nl

1
lm�la

ln
�

lm
Al(a�)

�

=

1
h�lm

ln
�

h
Ah(a�)

�

and thus a�>0.

[Relations of a� satisfying the equation with Nh
Nl
; cm; and

ka
km
]: Since the derivative

of the LHS�RHS of (20) and (21) with respect to a� equals Nh
Nl

1
Al(a�)

+ 1
Ah(a�)

> 0; a� satisfying

the equation decreases with Nh
Nl
.

When ka
km
6=1, a� satisfying (20) decreases with cm, because the derivative of the expres-

sion inside the large curly bracket of (20) with respect to cm equals
�
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> 0: (57)

limcm!1
@a�

@cm
=0 is clear from the above equation.

Since (20) can be expressed as
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=
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�

; (58)

when ka
km
6= 1, the derivative of the expression inside the large curly bracket of (20) with

respect to ka
km
equals
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lm�la

� cm

1� ka

km

(1� ka
km
)lm�(lm�la)cm

�

lm
lm�la

� cm

1� ka

km

la�lm
ka
km

+
cm

(1� ka
km
)2lm

ln

"

(1� ka
km
)lm�(lm�la)cm

(la�lm
ka
km
)cm

#

= �

 

lm
lm�la

�
cm

1� ka
km

!

(lm�la)(1�cm)

[(1� ka
km
)lm�(lm�la)cm](la�lm

ka
km
)
+

cm

(1� ka
km
)2lm

ln

"

(1� ka
km
)lm�(lm�la)cm

(la�lm
ka
km
)cm

#

= �
cm

(1� ka
km
)2lm

 

1�cm
cm

(1� ka
km
)lm

la�lm
ka
km

� ln

"

1+
1�cm
cm

(1� ka
km
)lm

la�lm
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The derivative is negative because the expression inside the large parenthesis of (59) equals

0 at cm = 1 and, when ka
km

< (>)1, it increases (decreases) with 1�cm
cm

(1� ka

km
)lm

la�lm
ka

km

and thus

decreases with cm. Hence, a
� satisfying (20) increases with ka

km
when ka

km
6=1. limcm!1

@a�
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km

=0

is clear from the above equation.
The corresponding derivatives when ka
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! 1 are
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2
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where la�lm > 0 from
lm
km

Ak(a
�)

Al(a�)
< 1, 1 < la

lm
. Thus, the same results hold when ka

km
=1 too.

Proof of Lemma 4. [Relations of cm satisfying (P) with a
�; km; ka; and r]: Derivatives

of the LHS of (P) with respect to a�, cm; km; and ka equal

a� :
@Ah(a

�)
Al(a�)

@a�
lm
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r
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Z 1
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0
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> 0; (62)
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<0; (63)
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where cl(a
�) = ch(a

�) = c�; 1
cl(a)Ak(a)

= lm
km

1
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1
Al(a)

; and 1
ch(a)Ak(a)

= lm
km

Ah(a
�)

Al(a�)
1
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1
Ah(a)

are used
to derive the equations. The results are straightforward from the equations.
[(P) does not hold at cm = 0]: Noting that cl(a) =

km
lm

Al(a)
Ak(a)

cm and ch(a) =
km
lm

Al(a
�)

Ah(a�)
Ah(a)
Ak(a)

cm;

when cm!0, the LHS of (P) becomes
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r
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ln(
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c!0

ln c = +1 > 1: (66)

Hence, (P) does not hold at cm=0:

Proof of Proposition 1. At cm=1, cl(a); ch(a) >1 from (13), thus (P) equals

lm
km
r

Z a�

0

da

Al(a)
+
lm
km

Ah(a
�)

Al(a�)
r

Z 1

a�

da

Ah(a)
= 1: (67)

When km is very small, the LHS of the above equation is strictly greater than 1 for any
a� 2 [0; 1] (thus, (P) does not hold for any cm and a

� from Lemma 4), or a� satisfying the
equation is weakly smaller than a� 2 (0; 1) satisfying (HL) at cm =1 (a

� 2 (0; 1) holds on
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(HL) from Lemma 3). In such case, there is no a� 2 (0; 1) and cm<1 satisfying both (HL)
and (P), and thus machines are not employed, i.e., cm=1, in equilibrium, where equilibrium
a� is determined from (HL) with cm=1.
When km becomes large enough that a

� satisfying (67) is greater than a� 2 (0; 1) satis-
fying (HL) at cm=1, an equilibrium with cm< 1 exists from shapes of (HL) and (P). The
dynamics of cm and a

� are straightforward from shapes of the two loci. The dynamics of

c� and ca are from c�=min
n

km
lm

Al(a
�)

Ak(a�)
cm;1

o

, ca=min
n

h
ka

km
lm

Al(a
�)

Ah(a�)
cm;1

o

, and the assumptions

that ka
km
is time-invariant and satis�es ka

km
< la

lm
. The dynamics of cl(a) and ch(a) are from

those of the other variables.

Proof of Proposition 2. (i) When cm �
lm
km

ka
h

Ah(a
�)

Al(a�)
; earnings of skilled workers increase

over time from Propositions 4 (iii) and 5 (iii) in Web Appendix. Earnings of both types

of workers increase when cm<
lm
km

ka
h

Ah(a
�)

Al(a�)
from Proposition 6 (iii) in Web Appendix. (ii) is

straightforward from Proposition 1 and the earnings equations (eq. 15).
(iii) Y decreases with the LHS and RHS of (HL) from (8). When c� = ca = 1 and
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km
6= 1,

the RHS of (HL) equals 1
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�

h
Ah(a�)

�

from Lemma 3, which decreases with the growth of

km and ka with constant
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from Proposition 1. When c� < ca < 1 and
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6= 1, the RHS

equals km
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�)
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�

Ak(a
�)
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�

from (26) in the proof of Lemma 1, which decreases with the

productivity growth from Proposition 1. When c� < ca = 1 and
ka
km
6= 1, the derivative of

the RHS with respect to cm equals, from (41) in the proof of Lemma 2 and (18),
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> 0; (68)

and the derivative with respect to a� equals, from (39) in the proof of Lemma 2 ,
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< 0: (69)

From signs of the derivatives and Proposition 1, the RHS of (HL) decreases with the pro-
ductivity growth. Hence, Y increases over time when ka

km
6= 1. The result when ka

km
= 1 can

be proved similarly.

Proof of Proposition 3. Since an increase in Nh
Nl
shifts (HL) to the left on the (a�; cm)

space from Lemmas 1�3, the result that cm and a
� decrease is straightforward from Figures

8�10. Then, wl =
lm
km

r
cm
rises and wh

wl
= Ah(a

�)
Al(a�)

falls. Since c� � min
n

km
lm

Al(a
�)

Ak(a�)
cm;1

o

; c� falls

when c�<1 from ka
km
< la

lm
, da�

d
Nh

Nl

< 0; and dcm

d
Nh

Nl

< 0. cl(a) decreases from
dcm

d
Nh

Nl

< 0: Proofs of

the results for ch(a); ca, wh; and Y are in the proof of Proposition 7 in Web Appendix.
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