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Abstract

This paper studies the connections model (Jackson and Wolinsky, 1996) when
nodes may have di¤erent values. It is shown that e¢ciency is reached by a
strongly hierarchical structure that we call strong NSG-networks: Nested Split
Graph networks where the hierarchy or ranking of nodes inherent in any such
network is consistent with the rank of nodes according to their value, perhaps
leaving some of the nodes with the lowest values disconnected. A simple algo-
rithm is provided for calculating these e¢cient networks. We also introduce a
natural extension of pairwise stability assuming that players are allowed to agree
on how the cost of each link is split and prove that stability in this sense for
connected strong NSG-networks entails e¢ciency.
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1 Introduction

This paper is a further step in a project that has been ongoing for some years now,
building on the seminal papers of Jackson and Wolinsky (1996) and Bala and Goyal
(2000).1 The objective is to explore di¤erent extensions of some of the models intro-
duced in those papers in order to test the robustness of some of their results when the
setting is enriched in di¤erent directions. This paper focuses on an extension of the
connections model of Jackson and Wolinsky (1996) by introducing heterogeneity in the
values of nodes. In Jackson and Wolinsky�s connections model, nodes can create links
of a unique type, i.e. of a given decay factor, � (0 < � < 1), and a given cost c > 0,
which must be equally shared by the two nodes involved. Each node is endowed with
information of a given value v > 0, which is the same for all nodes, and can be partially
accessed through the network.
In this paper we introduce node heterogeneity into that model, i.e. nodes are not

assumed to be endowed with the same value, and study e¢ciency and stability in
this setting. We �rst address and solve thoroughly the question of e¢ciency in the
connections model with heterogeneous nodes, which to the best of our knowledge is an
open issue. The noteworthy result is that when nodes have di¤erent values, e¢ciency
is reached by a doubly hierarchical structure: The greater the value of a node the
greater the number of neighbors, perhaps leaving some of the nodes with the smallest
values disconnected. More precisely, e¢ciency is reached by a special type of nested
split graph (NSG-) networks that we have called �strong nested split graph networks�
or SNSG-networks, where the hierarchy or ranking of nodes inherent in any NSG-
network is consistent with the rank of nodes according to their value. When preserving
connectedness is a constraint, it is also proved that the optimal connected network
is a connected SNSG-network. It is also proved that for a certain range of values of
parameters c and �, an SNSG-network, which is neither complete nor a star network, is
sure to be e¢cient. In addition, a simple algorithm is provided for calculating e¢cient
networks, given the values of the nodes and parameters c and �. These results hold
independently of how the network forms, be it designed by a planner or by node-players
in a decentralized way under any assumptions whatsoever. They also solve thoroughly
the question of e¢ciency in the connections model with heterogeneous nodes, an issue
that has remained open for 25 years.
The question of stability in a decentralized context is addressed by introducing a

natural extension of pairwise stability (Jackson and Wolinsky, 1996). Instead of as-
suming as Jackson and Wolinsky (1996) do, that the cost of each link must be equally
shared by the two nodes connected by that link, we assume that upon forming a link
players are able to agree upon how its cost is split, and adapt Jackson and Wolinsky�s
pairwise stability conditions to this scenario. Necessary and su¢cient conditions for
the stability in this sense of an SNSG-network are obtained, leading to the result that
stability in this sense for connected SNSG-networks entails e¢ciency, and is generically

1Olaizola and Valenciano (2019, 2020a,b,c).
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equivalent to it when no node has the central node with the highest value as its only
neighbor. The relation between this notion and that of pairwise stability in the sense
of Jackson and Wolinsky (1996) is clear: Classical pairwise stability is the particular
case of pairwise stability under free cost sharing once cost sharing is no longer free
and only a particular type of investment pro�les is considered admissible (those where
the cost of each link is split equally). Why this should be so? There are two possible
interpretations or justi�cations of Jackson and Wolinsky�s simplifying assumption, one
technological and the other legal. The technological interpretation is not very convinc-
ing and is not usually found in real world examples, where free cost sharing is more
plausible. If it were imposed by law, pairwise stable networks could become unstable
because players may have incentives to make payments under the table. To compare
the two notions of stability in the two senses, they are applied in both heterogeneous
and homogeneous settings.
The paper is organized as follows. Section 2 reviews some related literature, Section

3 presents the model, Section 4 addresses e¢ciency, and Section 5 stability. Section 6
concludes, summing up and pointing out some lines for further work. All proofs are
relegated to an Appendix.

2 Related literature

There is a considerable body of research on network formation.2 In this brief review,
we concentrate on papers that explore di¤erent extensions of the seminal models of
Jackson and Wolinsky (1996) and Bala and Goyal (2000), where nodes receive utility
from direct and indirect connections, particularly those dealing with di¤erent forms of
heterogeneity.
Haller and Sarangi (2005) consider link heterogeneity in a model where links fail

with di¤erent probabilities. Galeotti (2006) studies a one-way �ow connections model
in which players are heterogeneous with respect to values and the costs of forming
links. Galeotti, Goyal and Kamphorst (2006) study an extension of the connections
model allowing for heterogeneity in values and costs of forming links, although most
of their results are without decay. They consider low levels of decay and focus on the
case of two groups. Their principal �nding is that high centrality and small average
distances are salient properties of equilibrium networks while center-sponsorship is not
a robust feature of equilibrium networks in the presence of decay. Kamphorst and Van
Der Laan (2007) investigate a model of network formation where players are divided
into groups and the costs of a link between any pair of players are increasing with
the distance between the groups to which those players belong. Billand, Bravard and
Sarangi (2012a) examine the existence of Nash networks in Bala and Goyal two-way
�ow model in the presence of partner heterogeneity. They show that Nash networks in

2Goyal (2007), Jackson (2008), and Vega-Redondo (2007) provide excellent overviews. See also
Bramoullé, Galeotti and Rogers (2016).
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pure strategies do not always exist in such model. They then impose restrictions on the
payo¤ function to �nd conditions under which Nash networks always exist. Billand,
Bravard and Sarangi (2012b) study Nash networks in the connections model under
heterogeneity in links and values. They prove that under heterogeneity in values or
decay involving only two degrees of freedom, all networks can be supported as Nash for
some values of the parameters, but they show also that Nash networks may not always
exist and that when heterogeneity is reduced both the earlier �anything goes� result and
the non-existence problem disappear. Vandenbossche and Demuynck (2010) present
a model of endogenous network formation with heterogeneous agents whose payo¤s
are determined by agent speci�c utility functions that depend on the number of direct
links, and show that the cost of a link depends on the social distance and the value of
the agents. Goyal (2018) discusses how heterogeneous networks give rise to very widely
varying forms of behavior and potentially signi�cant inequality, and how heterogeneous
network structures are a natural outcome in a wide range of circumstances.
In a di¤erent approach, Souma, Fujiwara and Aoyama (2005) study the Japanese

shareholding network at the end of March 2002 and suggest the existence of a hierar-
chical structure. They �nd that degree and company total assets correlate strongly.
Goeree, Riedl and Ulle (2009) reports results from a laboratory experiment on network
formation among heterogeneous agents. Their setting extends the Bala and Goyal
two-way �ow model, introducing agents with lower linking costs or higher bene�ts to
others. They �nd that equilibrium predictions fail with homogeneous agents, while
heterogeneity fosters network centrality, stability, and e¢ciency.
Nested split graph structures appear in the economic literature in Konig, Teasone

and Zenou (2014), where, in a dynamic model in the wake of the highly in�uential
paper by Ballester, Calvó-Armengol and Zenou (2006), they show that if individuals
form links to maximize centrality, then the linking process leads to nested split graph
networks in terms of stochastic stability.3 To the best of our knowledge, Olaizola and
Valenciano (2020a) contains the �rst result involving nested split graph networks in the
much simpler setting of connections models. Here also these structures play a central
role in a natural extension of Jackson and Wolinsky�s (1996) seminal setting.
Last but not least, Bloch and Jackson (2006) consider a �linking game with trans-

fers� which is very similar to the free cost sharing scenario that we consider here. In
Section 5 we discuss in detail the relation between these two models as well as the
relation between their pairwise Nash stability with transfers and our pairwise stability
under free cost sharing.

3See Mariani et al. (2019) for an excellent overview focused on nestedness in networks, its emergence
and implications in social, economic, and ecological contexts.
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3 The model

N = f1; 2; :::; ng (n � 3) is a set of nodes. Each node i 2 N is endowed with one piece
of information of value vi > 0. Nodes can be connected by only one type of undirected
link of cost c > 0 and strength or decay factor � (0 < � < 1). Once parameters c and
� are set, a network g can be speci�ed by an n � n symmetric matrix where gij = 1
if there is an undirected link connecting i and j, and gij = 0 otherwise. If gij = 1, ij
denotes the link between i and j, and we write ij 2 g. If gij = 0, we write ij =2 g.
Nevertheless, a network g can also be speci�ed by the triangular matrix bg = (gij)(i;j)2T ,
where T = f(i; j) : 1 � i < n & i < j � ng; with n(n� 1)=2 entries, corresponding to
the n(n� 1)=2 pairs of nodes, that is

bg =

2
6666666666664

g12 g13 g14 ::: g1j ::: g1;n�1 g1n
g23 g24 ::: g2j ::: g2;n�1 g2n

g34 ::: g3j ::: g3;n�1 g3n
. . .

...
...

gj�1;j :::
... gj�1;n

. . .
...

gn�2;n�1 gn�2;n
gn�1;n

3
7777777777775

:

Properly speaking, bg = (gij)(i;j)2T speci�es the only possibly non-zero entries of an
actual (n � 1) � (n � 1) triangular matrix, and contains the precise description of
the network without redundancies. In order to deal with e¢ciency we opt for this
representation instead of the n � n redundant symmetric matrix g, paying attention
only to the entries above the main diagonal of zeros in that matrix. That is why in the
next section we always show only the relevant entries, i.e. those gij with (i; j) 2 T .
Each node receives information from all nodes to which it is connected by a path.

Two nodes are connected by a path if they are the �rst and last of a sequence of distinct
nodes where every two consecutive nodes are connected by a link. The information
received by node i in network g is

Ii(g) :=
X

j2Nnfig

�d(i;j)vj;

where d(i; j) is the geodesic distance between i and j; which is assumed to be1 if there
is no path connecting them, so that �1 = 0: The net value of a network g, denoted by
v(g), is the sum of the information received by all the nodes minus its total cost, i.e.

v(g) :=
X

(i;j)2T

�d(i;j)(vi + vj)� C(g); (1)

where C(g) is the cost of the network, i.e. �(g)c; if �(g) is the number of links of
network g. Sums vi + vj play a crucial role in what follows, particularly in the proofs,
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so it is convenient to use the following notation:

sij := vi + vj:

Then (1) can be rewritten like this:

v(g) :=
X

(i;j)2T

�d(i;j)sij � C(g): (2)

A network is connected if any two nodes are connected by a path. A component of a
network is a maximal connected subnetwork. A trivial component is one that consists
of an isolated node.

4 E¢ciency

A network g dominates a network g0 if v(g) � v(g0). A network is e¢cient if it
dominates any other. As shown here, e¢ciency may be reached by a network that leaves
some nodes disconnected. A network is e¢cient-constrained-to-keep-connectedness if
it is connected and dominates any other connected network.

De�nition 1 A nested split graph network (NSG-network) is a network g such that
for all (i; j) 2 T ,

jNi(g)j � jNj(g)j ) Ni(g) � Nj(g) [ fjg;

where Ni(g) denotes the set of neighbors of i in g.

Thus, NSG-networks have hierarchical structures where nodes can be ranked by
the number of their neighbors. Note that NSG-networks have at most one non-trivial
component. Equivalently, an NSG-network can be de�ned as one where, for a certain
numbering of the nodes,

gij = 1) gkl = 1, for all (k; l) 2 T s.t. k � i and l � j:

NSG-networks of a special type play a central role in the results presented here, i.e.
those that rank nodes consistently with their values in the following sense:

De�nition 2 A strong NSG-network (SNSG-network) is a nested split graph network
g such that

vi > vj ) jNi(g)j � jNj(g)j : (3)

Thus, strong NSG-networks are NSG-networks where the hierarchy or ranking of
nodes according to their number of neighbors, inherent in any such network, is rein-
forced consistently by the rank of nodes according to their value.4

4An equivalent more condensed de�nition would be this one: A strong NSG-network is a network
g such that: vi > vj ) Ni(g) [ fig � Nj(g):
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Example 1. The two triangular matrices below specify two NSG-networks of 9
nodes, whatever their values. However, if they have di¤erent values, they are strong
NSG-networks only if (3) holds.5 This is so, for instance, if v1� v2 � ::: � v9: Matrix bg
corresponds to a connected NSG-network, where node 1 has 8 neighbors, nodes 2 and
3 have 6 neighbors, 4 has 5 neighbors, 5 and 6 have 4 neighbors, 7 has 3 neighbors,
and nodes 8 and 9 have 1 neighbor. Matrix bg0 corresponds to a non-connected NSG-
network, where nodes 1 and 2 have 7 neighbors, 3 has 6 neighbors, 4 has 5 neighbors,
5 and 6 have 4 neighbors, 7 has 3 neighbors, 8 has 2 neighbors, and node 9 has no
neighbors.

bg =

2
66666666664

1 1 1 1 1 1 1 1
(2) 1 1 1 1 1 0 0

(3) 1 1 1 1 0 0
(4) 1 1 0 0 0

(5) 0 0 0 0
(6) 0 0 0

(7) 0 0
(8) 0

3
77777777775

bg0 =

2
66666666664

1 1 1 1 1 1 1 0
(2) 1 1 1 1 1 1 0

(3) 1 1 1 1 0 0
(4) 1 1 0 0 0

(5) 0 0 0 0
(6) 0 0 0

(7) 0 0
(8) 0

3
77777777775

In what follows, whenever we refer to a network we assume nodes numbered so that
v1� v2 � ::: � vn:

Proposition 1 Any connected network with a positive net value is dominated by a
connected strong nested split graph network.

The procedure described in the proof constructively produces a connected NSG-
network g0 that ranks nodes consistently with their values, i.e. a strong NSG-network
which dominates the initial network g. The whole paper hinges upon this �nding, as all
the results presented here stem from this simple construction. Nevertheless, it may be
the case that g0 can be re�ned so that a network of the same type of still larger net value
is obtained. The following result re�nes Proposition 1 by characterizing the connected
SNSG-networks which maximize the net value, i.e. reach e¢ciency-constrained-to-
keep-connectedness.

Proposition 2 A connected strong nested split graph network g is e¢cient-constrained-
to-keep-connectedness if and only if it yields a positive net value and the following
conditions hold

max
(j;k)2T & gjk=0

(vj + vk)
(a)

�
c

� � �2
(b)

� min
(j;k)2T ; j 6=1 & gjk=1

(vj + vk): (4)

5The �rst row indicates the neighbors of node 1, and the last column those of node 9, while small
numbers (2), (3),..., (8) below the diagonal enable the neighbors of the others to be counted. For
instance, the �ve neighbors of node 4 in g correspond to the three 1-entries above (4) and the two
1-entries to its right.
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Thus, Propositions 1 and 2 establish how to reach e¢ciency under the constraint
of not leaving any node disconnected, i.e. under the constraint of connectedness. The
following corollary plays a role for computing the e¢cient network.

Corollary 1 If an n-node connected strong nested split graph network g is e¢cient-
constrained-to-keep-connectedness, then the (n�1)-node network that results from g by
eliminating the node with smallest value is e¢cient-constrained-to-keep-connectedness
among networks with those n� 1 nodes.

However, if connectedness is not a constraint, e¢ciency in absolute terms may be
reached while leaving some nodes disconnected.

Proposition 3 Any network is dominated by a strong nested split graph network which
is not necessarily connected s.t. condition (4) restricted to the only non-trivial compo-
nent holds.

This leads to the following characterization:

Proposition 4 A connected strong nested split graph network g is e¢cient if and only
if (4) and

c � �(v1 + vn) + �
2

X

k2Nnf1;ng

(vk + vn) if Nn(g) = f1g: (5)

Two structures appear in the seminal connections model of Jackson and Wolinsky
(1996) and some of its extensions as the only possibly non-empty e¢cient networks:
The complete network and the all-encompassing star. The complete network and all-
encompassing stars centered on a node with the highest value are extreme cases of
SNSG-networks. Only condition (4-(b)) of Proposition 2 applies for a complete net-
work, which is e¢cient if and only if

c

� � �2
� min

(j;k)2T
(vj + vk) = vn�1 + vn: (6)

Similarly, only conditions (4-(a)) of Proposition 2 and (5) of Proposition 4 apply to
the all-encompassing star centered on node 1. Thus such a star is e¢cient if and only
if

v2 + v3 = max
(j;k)2T s:t: gjk=0

(vj + vk) �
c

� � �2

and
c � �(v1 + vn) + �

2
X

k2Nnf1;ng

(vk + vn):

Therefore, neither the complete network nor any all-encompassing star is e¢cient
when

vn�1 + vn <
c

� � �2
< v2 + v3: (7)
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Note also that when all nodes have the same value this interval collapses to a point.
At one side the complete network is e¢cient and at the other the all-encompassing star,
i.e. the well-known e¢ciency result in the homogeneous case in Jackson and Wolinsky
(1996).
The following examples for a network with 4 nodes illustrate the results.

Example 2. Consider 4 nodes of values v1 = 4; v2 = 3; v3 = 2 and v4 = 1; and let
� = 0:5 and c = 1. Then

min
(j;k)2T

(vj + vk) = 3 <
c

� � �2
= 4 < 5 = max

j;k2Nnfig
(vj + vk):

There are 4 connected SNSG-networks, whose associated triangular matrices are

bg1 =

2
4
1 1 1
0 0
0

3
5 ; bg2 =

2
4
1 1 1
1 0
0

3
5 ; bg3 =

2
4
1 1 1
1 1
0

3
5 ; bg4 =

2
4
1 1 1
1 1
1

3
5 ;

which correspond to the four networks shown in Figure 1.
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Figure 1: Connected SNSG-netwoks for n = 4

Both the complete network and the star yield a net value of 9, while the other two
yield a net value of 9:25, thus both g2 and g3 are e¢cient because leaving disconnected
node 4 does not improve that net value.

Example 3. If � = 0:5 and c = 1 as in Example 2, but the values of the nodes are
v1 = 4; v2 = 3; v3 = 2:5 and v4 = 0:5; (7) holds and the net values of the complete
network, the star network, and network g3 yield the same net value as in the preceding
example, but the net value of g2 is 9:375, making it the only e¢cient one because
leaving node 4 disconnected cannot improve that net value.

Example 4. If the values are v1 = v2 = v3 = 10 and 0 < v4 < 1; with � = 0:2 and
c = 3, then the net value of g1 is 2:6 + 0:28v4, that of g3 is 1:4 + 0:44v4, and that of g4
is 0:6v4: Thus g2, whose net value is 2:8 + 0:28v4, is the e¢cient network constrained
to keep connectedness. However, if node 4 is left disconnected the complete network of
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nodes 1, 2 and 3 yields a net value of 3, greater than the net value of the three-node
star, which yields 2:08. Therefore, if v4 < 5=7, e¢ciency in absolute terms is reached
by the network with a component formed by nodes 1, 2 and 3 fully connected and
node 4 isolated.

In view of Propositions 2 and 3, e¢ciency is reached by an SNSG-network, perhaps
leaving some of the less valuable nodes disconnected. By Corollary 1, one way to �nd
the e¢cient SNSG-network is the following: First calculate an SNSG-network e¢cient-
constrained-to-keep-connectedness and eliminate the weakest node as long as the net
value of the resulting network increases. The following algorithm enables e¢cient-
constrained-to-keep-connectedness SNSG-networks to be calculated.

Algorithm for obtaining an e¢cient network constrained to keep connect-
edness
Assume n nodes, 1; 2; :::; n of values v1 � v2 � ::: � vn. As before, denote T =

f(i; j) : 1 � i < n & i < j � ng; and S = f(1; j) : 2 � j < n g. For each
(i; j) 2 T , denote sij = vi + vj, and order the pairs in T inversely to the values of the
corresponding sums of weights. More precisely, let � be the linear order in T de�ned,
for each (i; j); (k; l) 2 T , by6

(i; j) � (k; l)
DEF

, [ (sij > skl) or (sij = skl & ((i � k & j � l) or (i < k & j > l)))]:

To keep it as simple as possible the algorithm is based on only one variable: A
subset G � T , which implicitly speci�es a network g s.t. gij = 1 if and only if (i; j) 2 G
at each stage. Then proceed as follows:
1. Form the all-encompassing star centered at node 1, i.e. make G := S.
2. Take (i; j) := min T nG.
3. If �sij � c � �

2sij; make G := G[f(i; j)g, otherwise Stop.
4. If T nG = ? Stop, otherwise go to 2.

The algorithm obviously ends after at most (n�1)(n�2)
2

(the cardinality of T nS)
iterations. Note that after every cycle T nG loses one element. Moreover, if the �nal
output is G, at the end the associated network g (s.t. gij = 1 if and only (i; j) 2 G) is
e¢cient because after every cycle the current associated network is an NSG-network
that ranks nodes consistently with their values and s.t. for all (i; j) s.t. gij = 1;
�sij � c � �

2sij, thus at the end

c

� � �2
� min

(j;k)2T ; j 6=1 & gjk=1
(vj + vk)

necessarily, which is inequality (4-(b)). And inequality (4-(a)) holds also because if the
algorithm stops before T nG is empty, it does so because in the last repetition of step

6If sij 6= skl whenever (i; j) 6= (k; l), then (i; j) � (k; l)
DEF
, (sij � skl) is a linear order in T .

Otherwise, it is not antisymmetric. Hence the clause for the case when sij = skl, for breaking the
ties.
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(i; j) := minT nG
2

?

G := S
1

-

��
��

�
PP

PP
P

PPPPP
�����

�sij � c��
2sij

3

�no

?
yes

Stop

G := G[f(i; j)g

�
��

Q
QQ

Q
QQ

�
��

T nG=Ø
4

�

no

6

-yes Stop

Figure 2: Flowchart of the algorithm

3 it happens that �sij � c < �
2sij, but if this is so, for (i; j) then �skl � c < �

2skl holds
also for any (k; l) � (i; j). In other words, inequality (4-(b)) also holds. Moreover, by
construction, the resulting network is the only SNSG-network that satis�es (4) unless
in the �nal steps, for the last two or more elements added to G before the Stop, it
occurs that �sij � c = �2sij (see Example 2), and the sum sij remains the same for
them. In this case, the deletion of any such links does not change the net value.
This clari�es the question of uniqueness. In fact, uniqueness can be added to

Propositions 2 and 4, if �sij � c 6= �
2sij for all (i; j) 2 T . Otherwise, as shown in the

algorithm, a trivial form of multiplicity arises, and in some cases the SNSG-structure
may be broken. Uniqueness can be recovered either by adding a condition of minimum
cost, i.e. replacing condition �sij � c � �2sij by condition �sij � c > �2sij in the
algorithm, or, by contrast, by maximizing the aggregate information received, which is
in fact the outcome of the algorithm described.

5 Stability

To address the question of stability in a decentralized environment it is necessary to
specify how nodes cover the cost of each link in which they are involved. We consider a
natural extension of Jackson and Wolinsky�s (1996) pairwise stability notion, where the
cost of each link can be split in any way by the nodes connected by it. This contrasts
with Jackson and Wolinsky (1996), where it is assumed that the cost must be split
equally between the two nodes. An investment pro�le is a matrix of non-negative real
numbers c = (cij)i;j2N with cii = 0, where cij is the amount that node i invests in link
ij. A link connecting i and j actually forms if and only if cij + cji � c. That is, an
investment pro�le c = (cij)i;j2N supports the network g

c s.t.

gcij =

�
1, if cij + cji � c;
0, otherwise.

10



The payo¤ of node-player i is

�i(g
c) := Ii(g

c)�
X

j2Ni(gc)

cij =
X

j2Nnfig

�d(i;j)vj �
X

j2Ni(gc)

cij: (8)

We drop c in gc when the investment that supports network g is clear form the context.
Given a network g, g+ ij denotes the network found by adding link ij to g, and g� ij
the network found by deleting link ij from g. Then, inspired by the pairwise stability
notion of Jackson and Wolinsky (1996), we assume that an investment pro�le (cij)i;j2N
is pairwise stable if: (i) No node can increase its payo¤ by decreasing the amount
invested in any of its links; and (ii) If a new link increases the payo¤ of one of the
nodes that it connects, then the payo¤ of the other node decreases, however its cost is
split. An investment pro�le is tight if cij + cji = c or cij = cji = 0 for each i; j 2 N . To
be tight is an obvious necessary condition for an investment pro�le to be pairwise stable.
Under this condition, decreasing the amount invested in a link entails its elimination.
Then we have the following formal de�nition.

De�nition 3 An investment pro�le (cij)i;j2N that supports g is pairwise stable if it is
tight and
PSFC-(i) ij 2 g ) Ii(g)� cij � Ii(g � ij); and
PSFC-(ii) (ij =2 g & 0 � k � c & Ii(g+ ij)� k > Ii(g)) ) Ij(g+ ij)� (c� k) < Ij(g):

We say that a network is supportable in pairwise equilibrium (pairwise stable for
brief) under free cost sharing if there exists a pairwise stable investment pro�le that
supports it. It may be the case that a network can be supported by di¤erent pairwise
stable investment pro�les. Jackson and Wolinsky�s pairwise stability can be formulated
like this:

De�nition 4 (Jackson and Wolinsky, 1996) A network g is pairwise stable if
PS-(i) ij 2 g ) Ii(g)� c=2 � Ii(g � ij); and
PS-(ii) (ij =2 g & Ii(g + ij)� c=2 > Ii(g)) ) Ij(g + ij)� c=2 < Ij(g):

Note the similarity of de�nitions 3 and 4: Conditions PS -(i) and PS -(ii) for pair-
wise stability in the sense of Jackson and Wolinsky (1996) are the result of applying
conditions PSFC -(i) and PSFC -(ii), but constraining admissible investment pro�les to
be of the form

cij =

�
c=2 if gij = 1
0 if gij = 0:

(9)

This considerably constrains the possibilities of making a link stable by imposing equal
shares of the cost. By contrast, it broadens the stability of the gap of a non-existing link
by limiting the ways in which a stable link can bridge it. Thus there is no implication
in either direction between these two stability notions.7

7Alternatively, this free cost sharing setting can be interpreted as a specialization of Bloch and
Jackson�s (2006) linking game with transfers. To see this, let ui(g) be the payo¤ of node i in the
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Figure 3: Pairwise stability vs. pairwise stability under cost sharing

Figure 3 illustrates this situation. The lengths of the sides of the rectangle are
the increase of information that link ij means to i and to j. Straight lines of slope
�1 correspond to di¤erent values of the cost of a link: c; c0; c00; c000. The points in the
segments of the intersections of each of these lines with the rectangle correspond to
the ways in which that cost can be shared and PSFC -(i) be satis�ed; while the points
P; P 0; P 00 and P 000 (intersections of the straight line of slope 1 crossing the northwest
corner of the rectangle and those corresponding to the di¤erent costs) correspond to
equal share of di¤erent costs. This makes clear the wider rank of costs compatible with
PSFC -(i). Link ij 2 g can stabilized with an investment s.t. (9), when

c=2 � minfIi(g)� Ii(g � ij); Ij(g)� Ij(g � ij)g;

while under free cost sharing it can be stabilized for the wider range:

c � Ii(g)� Ii(g � ij) + Ij(g)� Ij(g � ij):

symmetric connections model of Jackson and Wolinsky (1996), i.e. ui(g) = Ii(g) � �i(g)c=2, where
�i(g) is the number of neighbors of node i. Assume that transfers in the sense of Bloch and Jackson�s
(2006) are allowed, with tiij := c=2� cji; and gij(t) = 1 i¤ t

i
ij + t

j
ij = 0 (i.e. cij + cji = c) and g = g(t);

the payo¤ of node i in the linking game with transfers is

�i(g) = ui(g)�
X

j2Ni(g(t))

tiij = Ii(g)� �i(g)c=2�
X

j2Ni(g(t))

tiij

= Ii(g)�
X

j2Ni(g(t))

(c=2� cji) = Ii(g)�
X

j2Ni(g(t))

cij ;

which is the payo¤ of node i given by (8). But this is consistent with our model only if �c=2 � tiij �
c=2, while Bloch and Jackson (2006) sets no bounds for the transfers and admit wasted transfers.
Assuming these bounds and no wasted transfers, our pairwise stability under free cost sharing is very
similar to their pairwise Nash equilibrium with transfers, although we do not assume Nash-stability.
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For the same reason, a gap ij =2 g is stable in the sense of PS -(ii) if

c=2 > minfIi(g)� Ii(g � ij); Ij(g)� Ij(g � ij)g;

while it is stable in the sense of PSFC -(ii) only for the narrower range:

c > Ii(g + ij)� Ii(g) + Ij(+ij)� Ij(g):

Thus pairwise stability in the sense of Jackson and Wolinsky (1996) is not stronger nor
weaker than pairwise stability under free cost sharing.8

We have the following characterization of connected strong nested split graph net-
works pairwise stable under free cost sharing.

Proposition 5 A connected strong nested split graph network is pairwise stable under
free cost sharing if and only if

max
(j;k)2T s:t: gjk=0

(vj + vk)
(a)
<

c

� � �2
(b)

� min
(j;k)2T ; j 6=1 & gjk=1

(vj + vk); (10)

and
c � �(v1 + vn) + �

2
X

k2Nnf1;ng

vk if Nn(g) = f1g: (11)

A comparison of conditions (4) and (5) in Proposition 4 with conditions (10) and
(11), immediately yields the following.

Corollary 2 A connected strong nested split graph network pairwise stable under free
cost sharing is e¢cient.

Note that the converse is not true in general. This can be seen clearly by comparing
condition (5) and condition (11), which is obviously stronger9. The reason is that
e¢ciency requires each link to contribute to the maximization of the aggregate payo¤,
while stability requires the nodes that support it to get the best from their investments.
As the following example shows, this leads to possible instability of the links in an
e¢cient network connecting some nodes with small values with the node with the
highest value and the center of an SNSG-network if it is their only neighbor.

Example 5. Consider 4 nodes of values v1 = v2 = v3 = 10 and 5=7 � v4 < 1;
connected by network g2 in Figure 1, and let � = 0:2 and c = 3. It is immediate to
check that conditions (4) and (5) hold and consequently network g2 is e¢cient. But g2
is not supportable in pairwise equilibrium under free cost sharing. The reason is that

8At the end of this section we compare these two notions in the homogeneous setting of Jackson
and Wolinsky (1996) and the heterogeneous one considered here.

9A less relevant trivial case may occur in the extreme case when (4-(a)) holds with equality and
consequently (10-(a)) does not.
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link 14 contributes to increase the net value of the network, but it is not supportable
in equilibrium under free cost sharing. If nodes 1 and 4 invest in c14 and c41 so that
c14 + c41 = 3; their increase of payo¤s due to link 14 are

�4 = �4(g2)� �4(g2 � 14) = �10 + 2�
210� c41 = 2:8� c41,

�1 = �1(g2)� �1(g2 � 14) = �v4 � c14 = 0:2v4 � c14:

But then
�1 +�4 = 2:8 + 0:2v4 � 3 = 0:2(v4 � 1) < 0:

In other words, however nodes 1 and 4 share the cost of the link, if one gains the
other loses, so g2 is not supportable in pairwise equilibrium under free cost sharing.
This shows that the reciprocal of Corollary 2 is not true. Moreover, the elimination
of link 14 in g2 yields a non-connected pairwise stable network under free cost sharing
which is not e¢cient. This shows that the corollary does not hold for non-connected
SNSG-networks.

For a connected SNSG-network with no nodes whose only neighbor is the center,
condition (5) for e¢ciency and condition (11) for pairwise stability cease to apply. This
leads to the following conclusion.

Corollary 3 A connected strong nested split graph network with no nodes whose only
neighbor is the center, generically, is e¢cient if and only if it is pairwise stable under
free cost sharing.

We conclude with a comparison of pairwise stability under free cost sharing and
classical pairwise stability. First, comparing them when they are applied in the ho-
mogeneous setting of Jackson and Wolinsky (1996); then when they are applied with
heterogeneous nodes.

Proposition 6 In the connections model with heterogeneous nodes:
(i) A network pairwise stable under free cost sharing has at most one non-trivial com-
ponent.
(ii) The complete network is pairwise stable under free cost sharing if and only if

c

� � �2
� vn�1 + vn: (12)

(iii) The all-encompassing star centered at node 1 is pairwise stable under free cost
sharing if and only if

(� � �2)(v2 + v3) < c � �(v1 + vn) + �
2

X

k2Nnf1;ng

vk: (13)
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In the homogeneous setting considered in Jackson and Wolinsky (1996), i.e. v1 =
v2 = ::: = vn = 1, condition (12) becomes

c=2 � � � �2;

while (13) becomes
� � �2 < c=2 � � + �2(n� 2)=2:

A comparison of these two conditions with parts (ii) and (iii) of Proposition 2 in
Jackson and Wolinsky (1996) relative to pairwise stability of these two networks shows
the following. The �rst one coincides (note that they consider only �interior� conditions
and their c is our c=2), i.e. the complete network is sustainable in pairwise equilibrium
under free cost sharing if and only if it is pairwise stable. However, the second condition
for the star di¤ers considerably because the interval for the star to be pairwise stable
is (Proposition 2 -(ii), Jackson and Wolinsky, 1996)

� � �2 < c=2 � �:

That is, the range of values for c is considerably narrower. The reason for the di¤erence
is clear. Considering as admissible only those investment pro�les where cij is 0 or c=2
considerably limits the stability of the star because the center is constrained to invest
c=2 in order to sustain a link with a spoke node however many there may be, while
under free cost sharing such a link may even be entirely supported by the spoke node
in equilibrium. Moreover, this is sure to be so however small the value of the nodes is
if there are enough of them. For the same reason, part (iv) of Proposition 2 in Jackson
and Wolinsky (1996) does not hold for pairwise stability under free cost sharing, while
part (i) does.
To complete the comparison with pairwise stability in the sense of Jackson and

Wolinsky (1996) we have the following result, parallel to Proposition 5, which charac-
terizes pairwise stable connected strong nested split graph networks (the proof, simple
and similar, is omitted).

Proposition 7 A connected strong nested split graph network is pairwise stable if and
only if

max
(j;k)2T s:t: gjk=0

minf2vj; 2vkg
(a)
<

c

� � �2
(b)

� min
(j;k)2T ; j 6=1 & gjk=1

f2vj; 2vkg; (14)

and
c � 2�vnifNn(g) = f1g: (15)

A comparison of the intervals determined by (10) and by (14) shows that, in general,
there is no inclusion between them in either direction. As to conditions (11) and (15),
the second condition for pairwise stability in the sense of Jackson and Wolinsky (1996)
is stronger, considerably constraining the possibility of stability of connected strong
nested split graph networks with nodes of small value connected only to the central
node of greatest value.
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6 Concluding remarks

We study a natural extension of the connections model of Jackson andWolinsky (1996),
introducing heterogeneity in the values of nodes. We characterize the type of structures
that enable e¢ciency to be reached, be it under the constraint of keeping connectedness
or unconstrained in absolute terms. These structures, which we call strong nested split
graph networks, are highly hierarchical. They are nested split graph networks in which
the ranking of nodes according to the number of neighbors is consistent with their
ranking according to their values, possibly leaving some nodes with the smallest values
disconnected. These structures include complete and star networks, but also a full
range of intermediate cases, which are illustrated with examples.10 A simple algorithm
for obtaining the e¢cient networks is also provided.
We also study a notion of pairwise stability under free cost sharing. If players are

able to coordinate to form a link it is only natural to assume that they are also able
to agreeing on how its cost is shared. This moderate dose of �cooperativeness� leads to
a crisp result: Under free cost sharing, connected strong nested split graph networks
pairwise stable are e¢cient. Moreover, a connected strong nested split graph network
were no node has the center as its only neighbor is pairwise stable under free cost
sharing generically if and only if it is e¢cient. We also discuss the relation between
this notion and that of pairwise stability in the sense of Jackson and Wolinsky (1996),
and show that this is the particular case of pairwise stability under free cost sharing
once cost sharing is no longer free, but only a particular type of investment pro�les is
considered admissible.
If the multiplicity of investment pro�les that support a pairwise stable network

under free cost sharing is considered undesirable, a more reasonable prescription than
equal splitting of the cost of each link would be to split it in proportion to the increase
in information that the link provides for each of the two nodes that it connects. This
would produce links which are stable under free cost sharing.11

This study is complementary of Olaizola and Valenciano (2020a,b,c), which deal
with extensions of the connections model where nodes are homogeneous, but links are
not only heterogeneous but of endogenous strength, based on a technology, so that the
strength of a link depends on the investment in it. A clear line for further work is to
combine the two approaches: Heterogeneity of nodes and heterogeneity of endogenous
links based on a technology as in Olaizola and Valenciano (2020c).

Appendix
10In contrast with what happens when nodes are homogeneous but links are heterogeneous and

endogenous (Olaizola and Valenciano, 2020c), where the complete network and the all-encompassing
star are the only possible nonempty e¢cient networks.
11In graphical terms, the interpretation of this prescription over Figure 3 is given by the intersection

of the diagonal of the rectangle with positive slope with the segment that represents stable ways of
sharing the cost. Note that this can be interpreted as the Kalai and Smorodinsky (1975) solution of
the bargaining problem every two players face in order to share the cost of a link.
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Proposition 1:
Proof. Let g be a connected network, with n nodes s.t. v1 � v2 � ::: � vn, and k
links of strength � > 0 and such that v(g) > 0. The proof is constructive and consists
of producing an SNSG-network g0 s.t. v(g0) � v(g): Arrange all n(n � 1)=2 sums
sij = vi + vj in a triangular matrix T of n� 1 rows, i.e.

T =

2
666666666664

s12 s13 s14 ::: s1j ::: s1n�1 s1n
s23 s24 ::: s2j ::: s2n�1 s2n

s34 ::: s3j ::: s3n�1 s3n
. . .

...
...

...
sj�1;j ::: sj�1n

. . .
...

sn�2;n�1 sn�2;n
sn�1;n

3
777777777775

:

That is, T = (sij)(i;j)2T , where T = f(i; j) : 1 � i < n & i < j � ng. In what follows
we use the following notation. Given a subset C � T ,

�(C) :=
X

(i;j)2C
sij:

Note that �(T nC) = �(T )��(C). The connectedness of g implies that k, the number
of links of g, is at least n � 1, i.e. k � n � 1. Decompose the set of n(n � 1)=2 sums
into two subsets, H and L, where H contains the k largest sums and L the smallest
(n(n�1)=2)�k sums, and let S be the sums in the �rst row, i.e. S = fs1i : i = 2; :::; ng.
Then denote by H, L and S the subsets of T corresponding to H, L and S. Then
proceed as follows to construct a connected network g0 s.t. v(g0) � v(g). Form an
all-encompassing star centered on node 1 (the node with the highest value) with n� 1
of the links, i.e. connect all pairs of nodes in S directly, and also connect the pairs of
nodes corresponding to the largest k � (n� 1) sums in HnS directly.
Let g0 be the resulting network. We prove that v(g0) � v(g): Decompose the

total information received by all nodes (i.e. net value + cost) of the initial network g
into two parts: Part A, the value generated by the direct connections (k summands
corresponding to a set of pairs K � T ); and Part B, the value generated by the indirect
connections ((n(n� 1)=2)� k summands corresponding to pairs in T nK). That is,

A = �
X

(i;j)2K
sij = ��(K)

and
B =

X
(i;j)2T nK

�d(i;j)sij � �
2�(T nK):

Decompose the total information received by all nodes of g0 in the same way, i.e.
the value generated by the direct connections (k summands corresponding to a set of
pairs K0 � T )

A0 = �
X

(i;j)2K0
sij = ��(K

0);
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and the value generated by the indirect connections ((n(n � 1)=2) � k summands
corresponding to pairs in T nK0)

B0 = �2
X

(i;j)2T nK0
sij = �

2�(T nK0):

We show that A0 +B0 � A+B:
Case 1: S � H. In this case K0 = H. Then,

A0 +B0 = ��(H) + �2�(T nH) = ��(H) + �2(�(T )� �(H));

A+B � ��(K) + �2�(T nK) = ��(K) + �2(�(T )� �(K)):

Then, given that �(H) � �(K),

(A0 +B0)� (A+B) � (��(H)� �2�(H))� (��(K)� �2�(K))

= (� � �2)(�(H)� �(K)) � 0:

Finally, the cost of both networks is the same so necessarily v(g0) � v(g):
Case 2: S ( H, i.e. v1 + vj =2 H for all j > r, for some r s.t. 3 � r � n.12 In

this case, the direct connection of node 1 with all j > r yields n � r summands of
the form �s1j, with (1; j) 2 L \ S. That is, unlike the preceding case, some of the
links corresponding to summands in A0 (these n� r exactly) in g0 connect nodes which
yield sums not in H, and by the choice of g0 only these summands in A0 are not in H.
Nevertheless, given that g is connected, for any such (1; j) 2 L \ S s.t. g01j = 1 there
must be some i s.t. gij = 1 whose contribution cannot be greater because sij � s1j:
Therefore,

�(K0) � �(K);

which, as in the �rst case, entails v(g0) � v(g).
It only remains to be shown that g0 is a strong nested split graph network. Note

�rst that H = fsij : (i; j) 2 Hg contains the k largest sums, and

sij 2 H ) skl 2 H; for all (k; l) 2 T s.t. k � i & l � j:

In Case 2, the n� r links that connect each of the worst n� r pairs of the k best are
eliminated, but network g0 remains connected by connecting node 1 with those n � r
nodes j s.t. s1j =2 H directly. Thus, in both cases g0 is a connected nested split graph
network. Moreover, the rank of the nodes according to degree or number of neighbors is
consistent with their rank according to their values, i.e. vi > vj ) jNi(g

0)j � jNj(g
0)j.

Thus, g0 is a connected strong nested split graph network.

Proposition 2:
Proof. By Proposition 1, an e¢cient-constrained-to-keep-connectedness network can
be found among those connected SNSG-networks whenever the empty network is not

12Notice that v1 + v2 and v1 + v3 necessarily belong to H.
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e¢cient. Let g be a connected SNSG-network. Then, if gjk = 1 for any (j; k) 2 T ;
with j 6= 1, and �2sjk > �sjk � c, the elimination of link jk increases the net value
because all other pairs of nodes continue to see each other as before the elimination.
Therefore, a necessary condition for g to be e¢cient-constrained-to-keep-connectedness
is that sij �

c

���2
for all (j; k) 2 T ; with j 6= 1: This yields the necessity of (4-(b)).

Now if gjk = 0 for any (j; k) 2 T , and �
2sjk < �sjk � c, connecting j and k by a link

would increase the net value of the network. This yields the necessity of (4-(a)).
These conditions are also su¢cient because any other SNSG-network can be reached

from this one by adding and/or deleting links, which in either case cannot increase the
net value of the network if (4) holds.

Corollary 1:
Proof. Observe that if (4) holds and the node with the smallest value is eliminated,
condition (4) implies the corresponding similar condition for the (n�1)-node networks
with the remaining n � 1 nodes with their values. Moreover, note that the inter-
val determined by condition (4) may only increase after the elimination of the node
with smallest value, because the right-hand side of (4-(b)) cannot decrease after that
elimination.

Proposition 3:
Proof. Let g be any network s.t. v(g) > 0. If g is connected the conclusion follows from
Proposition 2. Assume that g is not connected. If g has only one non-trivial component,
apply the construction in the proof of Propositions 1 and 2 to that component. If it
has 2 or more non-trivial components, apply the same procedure to the subnetwork h
formed by the union of all non-trivial components. Then the proof of Proposition 1
adapts easily to form a connected dominant SNSG-network with the nodes in h. There
are only two di¤erences. First, in Case 2, i.e. if S ( H, i.e. v1i = v1 + vi =2 H for all
i > r, for some r s.t. 3 � r � n; whenever (1; j) 2 L \ S, as j belongs to one of the
non-trivial components, there must be some i s.t. gij = 1 whose contribution cannot

be greater because sij � s1j. The second di¤erence is that
X

(i;j)2T nK
�d(i;j)sij contains

zeros (as �d(i;j) = 0 whenever i and j are not in the same component), but this implies

v(g) < ��(K) + �2�(T nK) = ��(K) + �2(�(T )� �(K)):

The rest follows the same steps. Let h0 be the optimal connected network s.t. (3) and
(4) with nodes in h. Then the network consisting of a unique non-trivial component
h0 plus the remaining isolated nodes in g (if g has isolated nodes) dominates g.
Finally, if v(g) � 0, then g is dominated by the empty network, which is a trivial

strong nested split graph network because it satis�es trivially all conditions for an
SNSG-network.

Proposition 4:
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Proof. (Necessity) Assume g is e¢cient. Then it is obviously e¢cient-constrained-to-
keep-connectedness, which implies (4) by Proposition 2. If Nn(g) = f1g and

c > �(v1 + vn) + �
2

X

k2Nnf1;ng

(vk + vn);

the elimination of link 1n would increase the net value, contradicting the e¢ciency of
g. Thus (5) must hold.
(Su¢ciency) Let g be a connected SNSG-network s.t. (4) and (5). By Proposi-

tion 2, g is e¢cient-constrained-to-keep-connectedness. Given the structure of g, it is
immediate to check that the smaller the value of a node, the smaller its contribution
to the net value of the network. If no node has node 1 as its only neighbor then the
contribution of node n is sure to be positive because then

�s1n � c � �s2n � c � �
2s2n > 0:

In that case, g is e¢cient. If there are nodes whose only neighbor is node 1, then the
smallest contribution is that of node n, which is

�(v1 + vn) + �
2

X

k2Nnf1;ng

(vk + vn)� c � 0;

by (5). Thus, the elimination of link 1n or any other link of node 1 cannot increase
the net value of the network.

Proposition 5:
Proof. Let g be a connected SNSG-network and (cij)i;j2N an investment pro�le that
supports g. Assume gjk = 0, then PSFC -(ii) requires that whenever 0 � ckj � c

�vj � ckj > �
2vj ) �vk � (c� ckj) < �

2vk:

In other words, there is no ckj (0 � ckj � c) s.t.

�vj � ckj > �
2vj & �vk � (c� ckj) � �

2vk;

which is so if and only if

�(vj + vk)� c < �
2(vj + vk):

Thus, there is no incentive for any pair of nodes not connected directly to form a link
if and only if

c

� � �2
> max

(j;k)2T s:t: gjk=0
(vj + vk);

which is (10-(a)).

20



Now assume (j; k) 2 T s.t. j 6= 1 and gjk = 1: For investment pro�le (cij)i;j2N to
support g in pairwise equilibrium under free cost sharing it is necessary that cjk+ckj = c
and

�vj � ckj � �
2vj and �vk � cjk � �

2vk;

otherwise at least one of the nodes j and k would have an incentive to withdraw support
for the link. But such a pair cjk and ckj do exist if and only if

�(vj + vk)� c � �
2(vj + vk):

Therefore, there exists stable support of a link (j; k) 2 T s.t. j 6= 1, if and only if
c

� � �2
� min

(j;k)2T ; j 6=1 & gjk=1
(vj + vk);

which is (10-(b)).
The conditions for the links of node 1 remain to be checked. If j 6= 1 has any other

neighbors, then by the SNSG-structure of g, node 2 is sure to be one of them. Link 2j
is stable if and only if �v2 � cj2 � �

2v2 and �vj � c2j � �
2vj, and cj2 + c2j = c. Such

cj2 and c2j are certain to exist because of (10-(b)). But v1 � v2; so this implies that
there exist also cj1 and c1j s.t. �v1� cj1 � �

2v1 and �vj � c1j � �
2vj, and cj1 + c1j = c.

Finally, if Nj(g) = f1g, link 1j is stable if and only if

cj1 � �v1 + �
2

X

k2Nnf1;jg

vk and c1j � �vj;

and such pair, cj1 and c1j, exists if and only if

c � �v1 + �vj + �
2

X

k2Nnf1;jg

vk:

Finally, this condition holds for all j s.t. Nj(g) = f1g if and only if it holds for j = n,
i.e. the node with smallest value, which yields (11).

Corollary 3:
Proof. Let g be a connected SNSG-network with no nodes whose only neighbor is
the center. Then condition (10) becomes necessary and su¢cient for pairwise stability
under free cost sharing, and the interval determined by this condition di¤ers from that
determined by (4), which becomes necessary and su¢cient condition for e¢ciency, in
just one point: the lower bound, included in the latter but not in the �rst one.

Proposition 6:
Proof. (i) The proof is similar to that of part (i) of Proposition 2 in Jackson and
Wolinsky (1996). Just choose ij and kl in di¤erent components and s.t. cij � c=2 and
clk � c=2:
(ii) For the complete network only condition (10-(b)) of Proposition 5 applies,

which becomes (12).
(iii) Only an all-encompassing star centered at a node of greatest value is an SNSG-

network. In this case only conditions (10-(a)) and (11) of Proposition 5 apply, which
yield (13).
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