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Abstract

We show how symmetric equilibria emerge in general two-player contests in

which skill and effort are combined to produce output according to a general pro-

duction technology and players have skills drawn from different distributions. We

also show how contests with heterogeneous production technologies, cost functions

and prizes can be analyzed in a surprisingly simple manner using a transformed

contest that has a symmetric equilibrium. Our paper provides intuition regarding

how the contest components interact to determine the incentive to exert effort, sheds

new light on classic comparative statics results, and discusses the implications for

the optimal composition of teams.
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1 Introduction

In a contest, two or more players invest effort or other costly resources to win a prize.

Many economic interactions can be modeled as a contest. Promotions, for example, rep-

resent an important incentive in many firms and organizations. Employees exert effort

to perform better than their colleagues and, thus, to be considered for promotion to a

more highly paid position. Litigation can also be understood as a contest, in which the

different parties spend time and resources to prevail in court. Procurement is a third

example, where different firms invest resources into developing a proposal or lobbying

politicians, thereby increasing the odds of being selected, receiving some rent in return.

Players participating in contests are typically heterogeneous in some respect. For

instance, employees differ with respect to their skills, the litigant parties differ with

respect to the quality of the available evidence, and firms differ with respect to their

capabilities of designing a proposal. When accounting for such heterogeneity in contest

models, equilibria are often asymmetric, meaning that players choose different levels of

effort. Due to this asymmetry, to keep the analyses tractable, researchers have often

imposed rather strict assumptions regarding the production technology and the distri-

butions of stochastic components of the contest.

In this paper, we consider a general contest model that allows players to be hetero-

geneous in terms of their skill distributions, production technologies, prizes, and cost

functions. We show that, despite players being heterogeneous, there is often a simple

relation between equilibrium efforts. In particular, we identify conditions, under which

there is a symmetric equilibrium in which players choose the same effort. We further

show that some contests that do not fulfill these conditions can be transformed in such

a way that the transformed contest has a symmetric equilibrium, enabling us to estab-

lish simple relationship between the asymmetric efforts of the original contest and the

symmetric efforts of the transformed contest.

The details of our model are as follows. Two players compete for a prize, deciding on

their effort. The output of each player, and thereby the player’s production or contribu-

tion to the contest, is determined according to a general function of individual effort and

the realization of a random variable. The player with the highest output wins the prize.

We refer to the random variable as the skill of the player (typically, and equivalently,

referred to as noise in the contest theory literature) and the statistical distributions of

possible skill realizations are allowed to be different for the competing players. The

model is general in terms of the production function and the skill distributions and in-
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cludes the well-known models by Tullock (1980) and Lazear and Rosen (1981) as special

cases.

The skill distributions of the competing players (including the expected values) are

assumed to be common knowledge, whereas the exact skill realizations are generally

(symmetrically) unknown (as, e.g., in Holmström 1982). These assumptions realistically

reflect that in a promotion contest, for example, the expected skill of a player may be

commonly known (e.g., the education, prior work experience, or CV of a player), whereas

the exact skill level for the particular job is unknown (e.g., there might be uncertainty

regarding how education translates into workplace performance and job match).

The main contribution of the paper is to show the existence of a symmetric (pure-

strategy equal-effort) equilibrium in a general two-player contest setting where play-

ers have heterogeneous skill distributions, and how simple equlibria can emerge also

when considering heterogeneity in additional dimensions, such as production technolo-

gies, prizes, and cost functions. We also make two additional contributions.

First, we provide intuition regarding how the different components of the contest

interact to determine the incentive to exert effort. More specifically, we highlight the

interaction between three factors. The first factor relates to the production technology

and is the ratio of the marginal product of effort and the marginal product of skill. The

intuition behind this factor is that the purpose of a marginal effort increase for an indi-

vidual player is to beat marginally more able rivals. The ratio describes how effective a

marginal effort increase is to overcome the output advantage of marginally more skilled

players. The second and third factors are represented by the product of the densities of

the skill distributions of the two competing players, evaluated at the same point. The

reason for the presence of this product is that a player only has a marginal incentive to

exert effort in cases where the skill realizations of the two players are exactly the same,

and the product describes the “likelihood” of this event to happen.

Second, we use the simple structure of the equilibrium to construct a link between

our contest model and standard models of decision-making under risk (expected utility

theory), allowing us to revisit important comparative statics results of contest theory.

In particular, we analyze how equilibrium effort is affected by making the skill distri-

butions of the competing players more heterogeneous, investigating both the role of dif-

ferences in expected skill (conceptualized by first-order stochastic dominance) and the

role of differences in the uncertainty of the skill distributions of the competing players

(conceptualized by second-order stochastic dominance), and how these relationships are
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affected by the production technology. The general message is that making contest par-

ticipants more heterogeneous can increase equilibrium effort. These findings contradict

certain “standard” results known from the Tullock contest and the Lazear-Rosen tourna-

ment. Thus, the comparative statics results derived from those standard models are not

representative of the conclusions derived in the more general model.

To shed further light on our results, we also provide two extensions to our main anal-

ysis. In a first extension, we study the behavior in contests when the number of players

n is greater than two and show that the existence of a symmetric equilibrium, and the

interpretation for the two-player case, extend to the n-player case when players have

identical skill distributions. We also show that, for a specific class of skill distributions, a

symmetric equilibrium exists when n−1 identical players compete against a player who

has a higher expected skill. Moreover, we show that increasing the number of contes-

tants can increase equilibrium effort, exploiting the fact that a contest with n > 2 players

can be interpreted as a two-player contest in which every player competes against the

strongest (i.e., the highest order statistic) of his or her opponents.1

In a second extension, we investigate the robustness of our results with respect to the

assumption of symmetric uncertainty by analyzing the consequences of letting players

be privately informed about their skills. In this case, equilibria are in general not sym-

metric, but focusing on symmetric players, we are able to draw interesting parallels with

respect to our baseline case, highlighting the role of our general production technology

in influencing the marginal incentive to exert effort.

We also discuss the implications of our findings for optimal team composition and

certain real-world applications in the context of labor and personnel economics. For in-

stance, our finding that efforts can increase if the skill distribution of one of the compet-

ing players becomes more uncertain (in the sense of second-order stochastic dominance)

has several interesting managerial implications. It indicates that contest organizers

might wish to increase the uncertainty regarding the skills of certain players in order

to induce higher effort. In a worker-firm context, employers could achieve this by, for

instance, hiring a worker for whom little prior information is available, or a minority

worker with a skill level drawn from a distribution that generally tends to be more un-

certain (as argued, e.g., by Bjerk 2008). This means that having diverse teams might be

desirable from an employer’s point of view.

1This result can be understood by the fact that as the number of contestants increases, the strongest
opponents grow stronger in the sense of first-order stochastic dominance, allowing us to apply our results
from the two-player case.
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The paper is organized as follows. In Section 2 below, we discuss related litera-

ture. Section 3 introduces the contest model and discusses how our model nests the

Tullock contest and the Lazear-Rosen tournament as special cases. Section 4 solves

the two-player model when players have different skill distributions, whereas Section

5 addresses different production functions, prizes, and cost functions. In Section 6, we

analyze the two-player case in greater detail and provide a set of comparative statics

results. We also discuss implications for organizational design and optimal team compo-

sition. Section 7 studies the n-player case and takes a look at the case of privately known

skills. Finally, Section 8 concludes.

2 Related Literature

There are three main approaches to the study of contests, the Tullock (or ratio-form)

contest, the Lazear-Rosen tournament, and the complete-information all-pay auction.2

In the Tullock contest, introduced by Tullock (1980), a player’s winning probability is

given by his/her contribution to the contest divided by the sum of the contributions of the

competing players, and the contribution of each player is typically defined as a function

of effort and sometimes also of skill.3 The Lazear-Rosen tournament assumes that the

player with the highest contribution wins with certainty, and contributions depend on

effort, some random factors (e.g., luck), and possibly on skills. The seminal paper is by

Lazear and Rosen (1981) who apply the model in a labor-market context.4 The all-pay

auction, finally, makes the same assumption as the Lazear-Rosen tournament, except

that contest contributions are deterministic and do not depend on random factors.5

2The theoretical contest literature has been surveyed in a number of books and papers. See, e.g.,
Konrad (2009) and Vojnović (2016) for recent textbooks and Chowdhury and Gürtler (2015), Chowdhury,
Esteve-Gonzalez, and Mukherjee (2019), and Fu and Wu (2019) for recent surveys.

3The Tullock contest has been analyzed by, e.g., Hillman and Riley (1989), Cornes and Hartley (2005),
Fu and Lu (2009a,b), Corchón and Dahm (2010), Schweinzer and Segev (2012), and Chowdhury and Kim
(2017). It has been axiomatized in various settings by Skaperdas (1996), Clark and Riis (1998b), and
Münster (2009).

4It has been further analyzed by, for example, Green and Stokey (1983), Malcomson (1984, 1986),
O’Keeffe, Viscusi, and Zeckhauser (1984), Lazear (1989), Schotter and Weigelt (1992), Zábojník and Bern-
hardt (2001), Hvide (2002), Grund and Sliwka (2005), Schöttner and Thiele (2010), Gürtler and Gürtler
(2015), and Imhof and Kräkel (2016).

5A detailed equilibrium characterization of the all-pay auction was developed by Baye, Kovenock, and
de Vries (1996). The complete-information all-pay auction (with mixed-strategy equilibria) is the most
commonly used in contest theory, but a private-values version can be found as well. The all-pay auction
has been further studied by, e.g., Clark and Riis (1998a), Barut and Kovenock (1998), Moldovanu and Sela
(2001, 2006), Moldovanu, Sela, and Shi (2007), Cohen, Kaplan, and Sela (2008), Siegel (2009, 2010), Sela
(2012), Morath and Münster (2013), Barbieri, Malueg, and Topolyan (2014), Olszewski and Siegel (2016),
and Fang, Noe, and Strack (2020).
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Most studies analyzing the Tullock contest and the Lazear-Rosen tournament impose

assumptions that ensure that equilibria in pure strategies exist. In contrast, only mixed-

strategy equilibria exist in the all-pay auction (when players are symmetrically informed

about the decision situation). As we indicated in the introduction, and as we explain

in more detail in Section 3, the Tullock contest and the Lazear-Rosen tournament are

special cases of our model, while the all-pay auction is not. Our main contribution is to

show that the simple structure of equilibria in the Tullock contest and the Lazear-Rosen

tournament extends to more general production functions and skill distributions, even if

players are heterogeneous along several dimensions.6

An additional contribution of our paper is to show that canonical results regarding

how player heterogeneity affects equilibrium effort in the Tullock contest and the Lazear-

Rosen tournament do not always extend to more general production functions and skill

distributions.7 For example, Schotter and Weigelt (1992) have shown that effort is higher

when players have homogeneous skills relative to when they are heterogeneous, since

disadvantaged players tend to give up and reduce their effort, whereas advantaged play-

ers can afford to reduce their effort. Moreover, several studies (e.g., Hvide 2002) have

shown that greater uncertainty regarding the contest outcome tends to reduce effort as,

intuitively, effort has a lower impact on who becomes the winner in a contest where the

outcome is heavily influenced by random factors. In our setting, the above results can

be overturned, as we find that greater heterogeneity in terms of the skill distributions of

the competing players and more uncertainty regarding the contest outcome can in many

cases result in higher equilibrium effort.8

3 Model

In this section, we describe the contest model. For simplicity, we start by focusing on

one type of player heterogeneity (i.e., heterogeneity in the skill distributions) and thus

impose symmetric production functions, prizes and cost functions. We further generalize

the model by allowing those to be asymmetric in Section 5.

6Kirkegaard (2020) has recently proposed a contest model similar to ours. However, as his focus is on
optimal contest design, we view his work as complementary to ours.

7Some exceptions to the standard results in the context of the Tullock contest and the Lazear-Rosen
tournament have already been documented in the literature. See, e.g., the work by Drugov and Ryvkin
(2017) and Fu and Wu (2020) on biases in contests, Lu, Wang, and Zhou (2021) on identity-dependent
prizes, and Ryvkin and Drugov (2020) on contests with more than two players.

8In an n-player extension of our model, we also show that effort can increase as the number of players
increases, which runs in contrast to the well-known discouragement effect in Tullock (1980).
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Consider a contest between two risk-neutral players i ∈ {1,2} who compete for a single

prize of value V > 0. Both players simultaneously choose effort e i ≥ 0, and the cost of

effort c(e i) is described by a continuously differentiable, strictly increasing and strictly

convex function satisfying c(0) = 0. The skill (type) of player i is denoted by Θi. There

is uncertainty about skills, which means that Θi is a random variable. The realization

of Θi is denoted by θi and it is not known to any of the players (not even player i).

It is commonly known, however, that Θi is independently and absolutely continuously

distributed according to the pdf f i (with cdf Fi) with finite mean µi. For a given density

f , we will use supp( f ) = {x ∈ R : f (x) > 0} to denote its support. We assume that the

supports of f1 and f2 overlap on a subset of R with positive measure.

Symmetric uncertainty regarding skills is typically imposed in the career-concerns

literature (e.g., Holmström 1982, Holmström and Ricard I Costa 1986, Dewatripont, Je-

witt, and Tirole 1999, Auriol, Friebel, and Pechlivanos 2002, and Bar-Isaac and Lévy

2021) and also in the literature on promotion signaling (e.g., Waldman 1984, Bernhardt

1995, Owan 2004, Ghosh and Waldman 2010, DeVaro and Waldman 2012, and Gürtler

and Gürtler 2019). This literature refers to firm-worker relationships, and the idea is

that both firms and workers are uncertain about how well workers perform when they

begin their working careers and that this uncertainty is reduced over time once perfor-

mance information becomes available. We adopt this idea, referring to Θi as a player’s

skill, but it is also common to interpret it as noise, luck, or measurement error.

The production of player i, and hence his or her contribution to the contest, is given

by the continuously differentiable production function g(θi, e i).9 Importantly, we assume

that ∂g

∂θi
> 0 for all e i > 0 which means (realistically) that each player’s contribution

to the contest is increasing with respect to his or her skill, for a given level of effort.

Player i wins the contest against the opponent player k ∈ {1,2}, k 6= i, if and only if

the contribution of player i is strictly higher than the contribution of player k, namely,

g(θi, e i) > g(θk, ek).10 We denote by Pi(e i, ek) player i’s probability of winning the con-

test (as a function of the efforts of both players) and we define the expected payoff as

πi(e i, ek) := Pi(e i, ek)V − c(e i). We also define ê := c−1(V ) and E := [0, ê]. A player’s equi-

librium effort will always belong to the set E as the probability of winning is bounded

above by unity.

9In the literature on contests, a player’s contribution to the contest is also denoted as a player’s score.
10Note that, as usual in such contest models, adding a common random shock to the players’ outputs

does not affect the event of winning and, therefore, does not have an effect on the equilibrium. Also notice
that g(θi, e i) = g(θk, ek) happens with probability zero. In the following, whenever we refer to two players
i and k, we (implicitly) assume that i,k ∈ {1,2}, i 6= k.
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We impose the following assumption:

Assumption 1. The primitives of the model are such that: (i) πi(e i, ek) is continuously

differentiable, and, (ii) any interior solution of the system of first-order conditions for

the players’ problems of maximizing πi(e i, ek) characterizes a pure-strategy Nash equilib-

rium.

The validity of the first-order approach is typically ensured by imposing assump-

tions on the primitives of the model that guarantee that the objective functions πi are

quasi-concave and increasing at e i = 0. Previous papers in the contest-theory literature,

however, have shown that the first-order approach may be valid even when the objec-

tive functions are neither quasi-concave nor increasing at e i = 0 (see, e.g., Figure 1 in

Schweinzer and Segev 2012). As we do not want to rule out such cases, we assume that

the Nash-equilibrium efforts are characterized by the players’ first-order conditions to

their maximization problems without restricting the shape of πi too much.

Each of the theoretical results we present will be accompanied by at least one exam-

ple for which we verify that the first-order conditions indeed characterize an equilibrium,

by verifying the appropriate second-order conditions. As we permit a wide range of pro-

duction functions and skill distributions, resulting in payoff functions that are not gen-

erally well-behaved, it is not feasible to pin down the exact set of parameters for which

Assumption 1 is satisfied. However, in some instances, it is easy to verify that the first-

order approach is valid, e.g., in the case of additive production functions and sufficiently

convex cost functions. Moreover, given that the Tullock contest and the Lazear-Rosen

tournament are special cases of our model, all that is known about equilibrium existence

for these two models continues to hold in our setting.

Finally, we assume that there exist ē i, ĕ i ∈ int E such that ∂πi(e i ,ek)
∂e i

|e i=ek=ē i
< 0 and

∂πi(e i ,ek)
∂e i

|e i=ek=ĕ i
> 0. This ensures that the first-order condition to player i’s maximiza-

tion problem can be fulfilled in a symmetric equilibrium.

Below we provide some examples of different contest models, skill distributions and

production technologies that can be captured in our model.

Tullock contest The well-studied rent-seeking contest of Tullock (1980) represents a

special case of our model. This is easily illustrated using the results in Jia (2008), who

considers a contest with a multiplicative production technology, in which player i wins

if and only if θi e i is highest among all players.11 It is shown that if Θi is distributed

11See also Clark and Riis (1996) and Fu and Lu (2012).
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according to the pdf

f i (x)= γimx−(m+1) exp
(

−γix
−m

)

I(x>0),

then player i wins the contest with probability

Pi (e i, ek)=
γi e

m
i

∑2
j=1γ j e

m
j

,

where γi ≥ 0 for both players i and m > 0.12 Hence, in our model, if g (θi, e i) = θi e i, and

Θi is distributed according to the above pdf, then we obtain the above Tullock contest-

success function. The literature contains a range of modifications and generalizations of

this form of contest-success function, some of which cannot be micro-founded in a similar

way. See the recent discussion in Kirkegaard (2020).13

Lazear-Rosen tournament Assuming the production technology g(θi, e i)= θi+e i, our

model includes the standard Lazear-Rosen tournament model (in the original Lazear and

Rosen 1981, it is assumed that µi = 0).

General production technologies Our model is general with respect to the set of

admissible production technologies g(θi, e i). For example, feasible technologies include

the CES production function g(θi, e i)=
(

αθ
ρ

i
+βe

ρ

i

)
1
ρ , with α,β> 0 (except for the limiting

case of perfect complements). Thus, the case of perfect substitutes, ρ = 1, is included as

well as technologies where effort and skill are complements to different degrees, such

as the standard Cobb-Douglas technology g (θi, e i)= θα
i

e
β

i
, with α,β> 0 (obtained when ρ

approaches zero). Another example of a feasible production technology featuring comple-

mentarities between skill and effort is given by g (θi, e i)=αθi+βe i+γθi e i, with α,β,γ> 0.

Skill distributions In our model, standard continuous skill distributions can be em-

ployed with both bounded and unbounded supports. Moreover, the distributions can

be different for the two players. Examples are the (truncated) Normal distribution, the

Exponential distribution, Student’s t-distribution, the Gamma distribution, and the Uni-

form distribution.
12This contest-success function is slightly more general than the one presented in Tullock (1980). From

the contest-theory literature, it is known that m must be sufficiently small for a pure-strategy equilibrium
to exist. This is covered by our Assumption 1.

13See Fullerton and McAfee (1999) for another example of a micro-foundation for the Tullock contest.
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4 Equilibrium Characterization

We focus on pure-strategy Nash equilibria in which both players choose the same level

of effort. The following lemma provides a sufficient condition for such a symmetric equi-

librium to exist.

Lemma 1. A sufficient condition for a symmetric equilibrium to exist is that
∂Pi(e i ,ek)

∂e i
|e i=ek=e

is the same for i,k ∈ {1,2}, i 6= k, and all e ∈ int E.

Proof. See Appendix A.1.

We will make use of Lemma 1 to prove the existence of a symmetric equilibrium by

checking the sufficient condition. Since this condition depends on the winning proba-

bility, we need to specify this probability first. For each e > 0, we define the function

ge : R→ R by ge (x) = g (x, e). The function ge(x) is strictly increasing in x and thus in-

vertible, and we denote the (strictly increasing) inverse by g−1
e . This notation can be

motivated by the fact that the event of player i winning over player k can be written as

g (θk, ek)< g (θi, e i)

⇔ gek
(θk)< ge i (θi)

⇔ θk < g−1
ek

(

ge i (θi)
)

.

Considering all potential realizations of Θi and Θk, the winning probability of player

i is

Pi(e i, ek)=
∫

R

Fk

(

g−1
ek

(

ge i (x)
))

f i (x)dx.

By symmetry, the winning probability of player k is

Pk(e i, ek)=
∫

R

Fi

(

g−1
e i

(

gek
(x)

))

fk (x)dx.

The derivative of player i’s winning probability with respect to e i is given by:14

∂Pi(e i, ek)

∂e i

=
∫

R

fk

(

g−1
ek

(

ge i (x)
)) d

de i

(

g−1
ek

(

ge i (x)
))

f i (x)dx. (1)

The derivative of player k’s winning probability with respect to ek is given by:

∂Pk(e i, ek)

∂ek

=
∫

R

f i

(

g−1
e i

(

gek
(x)

)) d

dek

(

g−1
e i

(

gek
(x)

))

fk (x)dx. (2)

14Notice that Fk is differentiable almost everywhere, since it is the cdf of the absolutely continuous
random variable Θk with fk as the corresponding pdf.
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It can immediately be seen that expressions (1) and (2) are equal when e i = ek = e ∈ int

E since, in this case, g−1
ek

(ge i
(x)) = g−1

e i
(gek

(x)) = x and d
dek

g−1
e i

(

gek
(x)

)

= d
de i

g−1
ek

(

ge i (x)
)

.

Thus, the sufficient condition for the existence of a symmetric equilibrium in Lemma 1

is satisfied. Hence, we have the following theorem.

Theorem 1. There exists a symmetric equilibrium in which both players choose the same

level of effort.

Proof. See Appendix A.2.

The theorem states that, even if the players are asymmetric (i.e., f1 6= f2), there

always exists a symmetric equilibrium of the contest game. This key result allows a

tractable analysis of contests between asymmetric players in a variety of different set-

tings. We define ae :R→R by

ae(x)=
d

de i

g−1
ek

(

ge i (x)
)

∣

∣

∣

∣

e i=ek=e

=
∂g(x, e)

∂e

/

∂g(x, e)

∂x
= MRTS(x, e), (3)

where the equality follows from an application of the inverse function theorem and

MRTS(x, e) denotes the marginal rate of technical substitution between skill and effort

in a symmetric equilibrium.15 Recognizing that the two players have the same cost func-

tion c(e), we can write the (identical) first-order condition for effort for the two players

in a symmetric equilibrium as

V

∫

R

ae∗(x) fk (x) f i (x)dx = c′(e∗). (4)

The key observation necessary to understand the intuition behind (4) is that a player

has a positive marginal incentive to supply effort if and only if g (θk, ek) = g (θi, e i). In

a symmetric equilibrium where ek = e i this implies that θk = θi. The reason a player

only has a marginal incentive to exert effort when θk = θi is that this is the only situ-

ation in which a marginal increase in output would be pivotal to winning the contest.

Accordingly, equation (4) contains the “collision density” fk(x) f i(x) that describes how

likely it is that the skill realizations of the two competing players are the same. The fact

that this term is the same for both players is due to our assumption of symmetric un-

certainty. Furthermore, the fact that ae(x) is the same for both players follows directly

from the assumption that the production function g(θ, e) is the same for both players,

15To see this, notice that d
de i

g−1
ek

(

ge i (x)
)

∣

∣

∣

e i=ek=e
= 1

g′
ek

(g−1
ek

(gei
(x)))

d
de i

ge i
(x)

∣

∣

∣

∣

e i=ek=e

=
d
de

ge(x)
g′

e(x) .
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and depends only on the level of effort e and the skill θ, both of which are the same for

both players in situations where players have a marginal incentive to supply effort in

symmetric equilibrium.

The function ae(x) describes how a marginal increase in effort by a player increases

output relative to his or her rival and is equal to the marginal rate of technical sub-

stitution between skill and effort. The purpose of raising effort is to beat players with

higher skill. The MRTS determines the range of additional types that the player can win

against through a small effort increase. The lower is the sensitivity of output to skill in

the production function, the smaller is the advantage of marginally more skilled rivals,

and the higher is the marginal incentive to exert effort. A direct implication is that the

marginal incentive to exert effort is higher in environments in which players’ outputs de-

pend to a large degree on effort than in those in which the output is mainly determined

by players’ skills. The reason is that the MRTS tends to be larger in the former than in

the latter environments, implying a greater impact of effort on the winning probability,

as just explained.

Additional intuition can be provided by considering specific functional forms. For

example, if g(θ, e)= e+θ we have that ae(x)= 1 since in this case both the numerator and

denominator are equal to unity. If, instead, g(θ, e)= θe, we have that ae(x)= x/e because

of the complementarity between skill and own effort in the production function. The fact

that ae(x) is an increasing function of x reflects that it is in this case more valuable to

increase effort the higher is the skill of the player. The fact that ae(x) is decreasing in

e reflects that the marginally more able individual is harder to beat the higher is the

baseline (symmetric) level of effort because of the complementarity between skill and

effort.

We end this section with an illustrative example. Consider the multiplicative pro-

duction technology g(θi, e i)= θi e i and the cost function c(e i)= e2
i
/2. Assume further that

the skill distribution of player 1 follows a Uniform distribution on [1,2], and the skill

distribution of player 2 is given by the Student’s t-distribution on support (−∞,∞), with

one degree of freedom, such that:

f1(x)=







1 1≤ x ≤ 2

0 otherwise
, f2(x)=

1

π(1+ x2)
, x ∈R.

The event of player 1 winning is described by g(θ1, e1)> g(θ2, e2) ⇐⇒ θ2 < g−1
e2

(ge1(θ1))=

12



θ1e1/e2. The probability of that event, and its first derivative with respect to e1, are

P1(e1, e2)=
∫∞

−∞
F2

(

x
e1

e2

)

f1(x)dx,

∂P1(e1, e2)

∂e1
=

∫∞

−∞
f2

(

x
e1

e2

)(

x

e2

)

f1(x)dx.

The first-order condition of player 1’s maximization problem is

∂P1(e1, e2)

∂e1
V = e1.

In a symmetric equilibrium with e1 = e2 = e, this can now be written as

V

∫∞

−∞
f2 (x) xf1(x)dx = e2.

For player 2 we obtain the same expression. Using our distributional assumptions, the

left-hand side becomes

V

∫∞

−∞
f2 (x) xf1(x)dx =V

∫2

1

x

π(1+ x2)
dx =V

1

2π
log

(

5

2

)

.

We thus have a symmetric equilibrium, and the corresponding effort is e∗ =
√

V log
( 5

2

)

2π ≈

0.38
p

V .

5 Generalizations

In our previous analysis, the symmetry of the equilibrium was derived under the as-

sumption that the production functions, prizes and cost functions were the same for

the competing players. We show next that these assumptions can, under certain con-

ditions, be relaxed. This allows us to deal with heterogeneity between players beyond

heterogeneity in skill distributions in a surprisingly simple manner. At the end of the

subsection, we will also provide an illustrative example that combines heterogeneity in

skill distributions, prizes, cost functions, and production functions.

We begin with the possibility to allow for heterogeneity in production technologies,

using the observation that, in some situations, different production functions can be

reinterpreted as different skill distributions. This allows us to show that a symmetric

equilibrium exists using the results of Theorem 1.

Corollary 1. Suppose that the production functions are different for the two competing

13



players and can be written as g i (θi, e i) = g̃ (hi (θi) , e i), i ∈ {1,2}. Then a symmetric equi-

librium of the contest game exists with effort determined by

V

∫

R

ae∗ (x) f̃ i (x) f̃k (x)dx = c′
(

e∗
)

,

where hi is a real-valued function, f̃ i denotes the pdf of the random variable Θ̃i := hi (Θi)

and ae∗ is calculated based on the production function g̃
(

θ̃i, e i

)

.

Proof. See Appendix A.3.

As a specific example, consider the additive production function g i (θi, e i) = ηi (θi)+

κ (e i), with ηi and κ being two strictly increasing functions. In this case, Corollary 1 can

be applied since we can write g̃ (hi (θi) , e i)= hi (θi)+κ (e i), with hi (θi)= ηi (θi). Likewise,

in the case of a multiplicative production function of the form g i (θi, e i) = ηi (θi)κ (e i)

(imposing the additional assumption that ηi and κ are non-negative), we can apply the

corollary noting that g̃ (hi (θi) , e i) = hi (θi)κ (e i), with hi (θi) = ηi (θi). Notice that in both

examples, the component κ(e i) is the same for both players.

Next, we consider a situation with heterogeneous prizes given by V1 = sV and V2 =V

with s > 0. In this case, provided that the cost functions are homogeneous, the contest

can be transformed into an equivalent contest, where the players have the same prizes,

but different production functions. This is shown in the following proposition.

Proposition 1. Consider a situation with heterogeneous prizes given by V1 = sV and

V2 = V with s > 0, and let c be homogeneous of degree δ > 0. Then, the contest can be

transformed into a contest where the players have the same prizes, but different produc-

tion functions. This is achieved by considering the transformed effort variables ξ1 = e1/s1/δ

and ξ2 = e2. Denote the equilibrium of the transformed contest by ξ∗1 and ξ∗2 . Then, the

equilibrium of the original contest is given by e∗1 = s1/δξ∗1 and e∗2, where ξ∗1 and e∗2 maxi-

mize
∫

R

F2
(

g−1
e2

(

gs1/δξ1
(x)

))

f1 (x)dxV − c (ξ1)

and
∫

R

F1

(

g−1
s1/δξ1

(

ge2 (x)
)

)

f2 (x)dxV − c (e2) ,

respectively.

Proof. See Appendix A.4.

Proposition 1 shows that, given homogeneity of the cost function, the equilibrium of

a contest with heterogeneous prizes is characterized by conditions abiding a structure

14



which is very similar to the structure of the conditions used to characterize the equilib-

rium in Theorem 1, although the equilibrium is in general no longer symmetric. How-

ever, as we shall see below, if the conditions of Corollary 1 are satisfied, we can derive a

very simple expression for the relationship between the equilibrium effort levels. Before

turning to this result, we first demonstrate that, in some situations, a contest with differ-

ent cost functions is equivalent to a contest with different prizes (in terms of equilibrium

effort choices) and hence can, according to Proposition 1, be transformed into a contest

with different production functions. This is formalized in the following remark.16

Remark 1. Suppose that players have heterogeneous cost functions that take the form

ci (e i)=ωi c (e i), with ωi > 0. Then, the objective of player i can be written as:

∫

R

Fk

(

g−1
ek

(

ge i (x)
))

f i (x)dxVi −ωi c (e i)=ωi

(∫

R

Fk

(

g−1
ek

(

ge i (x)
))

f i (x)dx
Vi

ωi

− c (e i)
)

.

This objective is equivalent to one in which prizes are given by
Vi

ωi
, but the cost functions

are the same for both players.

Proposition 1 and Remark 1 highlight how, in certain cases, contests with different

prizes or different cost functions can be transformed into equivalent contests with differ-

ent production technologies. We now turn to showing that, if the assumptions underlying

Corollary 1 are satisfied, these contests can be reinterpreted as contests with different

skill distributions, allowing us to apply the equilibrium characterization from our base-

line case.

Proposition 2 below provides results for two well-known production technologies that

satisfy the assumptions of Corollary 1. We first consider the Cobb-Douglas production

technology. In this case, we can show that the ratio of equilibrium efforts e∗1/e∗2 depends

only on the ratio of prizes and the degree of homogeneity of the cost function. We then

consider the additive production technology. In this case, we obtain a similar charac-

terization which applies to the ratio of efforts subject to an exponential transformation,

exp
(

e∗1
)

/exp
(

e∗2
)

.

Proposition 2. Let the two prizes be given by V1 = sV and V2 =V with s > 0.

(i) If the production technology is given by g (θ, e)= θαeβ, with α,β> 0, and c is homo-

geneous of degree δ > 0, an equilibrium exists with efforts given by e∗1 = s1/δe∗2 and

16Similar transformations between prizes and cost functions are standard in the literature.
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e∗2 being determined by

∫

R

f̃1 (x) f̃2 (x) xdxV = e∗2c′
(

e∗2
)

,

where f̃1 and f̃2 denote the pdfs of the random variables Θ̃1 := s
1
δΘ

α
β

1 and Θ̃2 :=Θ

α
β

2 ,

respectively.

(ii) If the production technology is given by g (θ, e) = αθ+βe, with α,β > 0, and c̃ :=

c ◦ ln is homogeneous of degree δ > 0, an equilibrium exists with efforts given by

e∗1 = ln
(

s
1
δ ẽ∗2

)

and e∗2 = ln
(

ẽ∗2
)

, where ẽ∗2 is determined by

∫

R

f̃1 (x) f̃2 (x) xdxV = ẽ∗2 c̃′
(

ẽ∗2
)

,

and f̃1 and f̃2 denote the pdfs of the random variables Θ̃1 := exp
(

α
β
Θ1

)

s1/δ and

Θ̃2 := exp
(

α
β
Θ2

)

, respectively.

Proof. See Appendix A.5.

We conclude this section by presenting an example in which players, in addition to

having different skill distributions as in our baseline case, have different production

functions and cost functions, and face different prizes. This example is equivalent to a

Tullock lottery contest with heterogeneous prizes and quadratic effort costs.

Example 1. Suppose that:

g1 (θ1, e1)=
θ1e1

2
, c1 (e1)= e2

1, V1 =
V

2
, f1 (x)= 2

exp
(

−2x−1
)

x2 I{x>0},

g2 (θ2, e2)= θ2e2, c2 (e2)=
e2

2

2
, V2 =V , f2 (x)=

exp
(

−x−1
)

x2 I{x>0},

implying that player 2 has a more efficient production technology, lower cost of exerting

effort and faces a higher prize. Define Θ̃1 := Θ1
2 , and denote by f̄1 (x) = exp(−x−1)

x2 I{x>0} and

F̄1 (t)=
∫t
−∞

exp(−x−1)
x2 I{x>0}dx the corresponding pdf and cdf.

The objective function of player 1 can then be stated as:

∫

R

F2

(

e1x

e2

)

f̄1 (x)dx
V

2
− e2

1 = 2

(

∫

R

F2

(

e1x

e2

)

f̄1 (x)dx
V

4
−

e2
1

2

)

.
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The objective function of player 2 can be stated as:

∫

R

F̄1

(

e2x

e1

)

f2 (x)dxV −
e2

2

2
.

Hence, we have transformed the original contest into a contest with different prizes Ṽ1 := V
4

and V2 = V , but identical production functions and cost functions. According to part (i)

of Proposition 2 (noting that s = 1
4 and δ= 2 in the transformed contest), an equilibrium

exists with efforts given by e∗1 =
e∗2p

4
= e∗2

2 where e∗2 is determined by

V

∫

R

f̃1 (x) f2 (x) xdx =
(

e∗2
)2 ⇐⇒ e∗2 =

√

V

∫

R

f̃1 (x) f2 (x) xdx,

with f̃1 (x)=
exp

(

− x−1
2

)

2x2 I{x>0} being the pdf corresponding to the random variable
Θ̃1
2 . Using

the specific density functions, we obtain

e∗2 =

√

√

√

√

V

∫∞

0

exp
(

− x−1

2

)

2x2

exp
(

−x−1
)

x2 xdx =

√

V

∫∞

0

exp
(

−3
2 x−1

)

2x3 dx =

√

2V

9
.

Notice that the same result as in Example 1 would be obtained by directly solving the

Tullock contest with different prizes and quadratic costs, in which players maximize the

objectives e1
e1+e2

V
4 − e2

1
2 and e2

e1+e2
V − e2

2
2 , respectively.

6 Comparative Statics Results

In this section, we investigate the consequences of player heterogeneity, in terms of the

statistical properties of the skill distributions of the competing players, on the incentive

to exert effort. To facilitate the derivation of these results, we define re,i :R→R given by

re,i(x)= ae(x) f i (x). Equation (4) can thus be written as:

V

∫

R

re∗,i(x) fk (x)dx = c′(e∗). (5)

The integral now has the same structure as a decision maker’s expected utility in deci-

sion theory (e.g., Levy 1992), where the function re,i corresponds to the decision maker’s

utility function. As we will see, this link proves useful in deriving several key results.

We also need one additional assumption:
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Assumption 2. The primitives of the model are such that q : E →R, defined by

q(e)=V

∫

R

re,i(x) fk (x)dx− c′(e),

is strictly decreasing.

As c is strictly convex, Assumption 2 is not very strong and is always satisfied if
∫

R
re,i(x) fk (x)dx is non-increasing in e. To give a specific example, consider the CES pro-

duction function g(θi, e i) =
(

αθ
ρ

i
+βe

ρ

i

)
1
ρ , with α,β > 0 and ρ ≤ 1. Here ae (x) = β

α

(

x
e

)1−ρ,

implying that
∫

R
ae(x) f1 (x) f2 (x)dx = eρ−1

∫

R

β

α
x1−ρ f1 (x) f2 (x)dx. For this specification,

Assumption 2 is satisfied in all cases where players have an incentive to exert positive

effort (i.e.,
∫

R

β

α
x1−ρ f1 (x) f2 (x)dx > 0). Furthermore, the assumption ensures that effort

is always increasing in the prize and that the considered equilibrium is unique in the

class of symmetric equilibria (the latter result follows from the assumption ensuring

that there is a unique e solving equation (5)).

6.1 First-Order Stochastic Dominance

A standard result in contest theory is that heterogeneity among players with respect to

their skills reduces the incentive to exert effort (see, e.g., Schotter and Weigelt 1992, or

Observation 1 in the survey by Chowdhury, Esteve-Gonzalez, and Mukherjee 2019). In

our model, this standard result is potentially reversed, as we will now show.

Consider a contest with two players with skills drawn from two distributions with

expected values µk and µi, respectively. If, from the outset, µk ≥ µi and the difference

µk−µi is increased, then the two players become more heterogeneous in terms of their ex-

pected skill. Based on this idea, we proceed by investigating the consequences of making

players more heterogeneous in the sense of first-order stochastic dominance, as captured

by the following definition.

Definition 1. Let µk and µi refer to the expected values of the skill distributions (Fk,Fi)

in an initial contest. Players in a contest with skill distributions (F̃k,Fi) are said to be

more heterogeneous (with respect to their skills) relative to players in the initial contest

with skill distributions (Fk,Fi), in a first-order sense, if either of the following conditions

hold:

(i) µk ≥µi and F̃k dominates Fk in the sense of first-order stochastic dominance.

(ii) µk ≤µi and F̃k is dominated by Fk in the sense of first-order stochastic dominance.
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Due to Assumption 2, equilibrium effort increases if a change in the primitives of the

model leads to an increase in
∫

R
re,i(x) fk (x)dx. As indicated before, this expression has

the same structure as a decision maker’s expected utility in decision theory, where the

function re,i is replaced by the decision maker’s utility function. Since the structure of

the problems is the same, we can make extensive use of results from decision theory in

our analysis. We obtain the following proposition.

Proposition 3. Consider two contests with skill distributions (F̃k,Fi) and (Fk,Fi) where

supp( f̃k) and supp( fk) both are subsets of supp( f i). Let ẽ∗ and e∗ denote, respectively, the

(symmetric) equilibrium efforts associated with these contests. Then, ẽ∗ > e∗ if either one

of the following statements hold:

(i) re,i(x) is strictly increasing for all x ∈ supp( f i) and all e ≥ 0, and F̃k dominates Fk

in the sense of first-order stochastic dominance.

(ii) re,i(x) is strictly decreasing for all x ∈ supp( f i) and all e ≥ 0, and F̃k is dominated

by Fk in the sense of first-order stochastic dominance.

Proof. See Appendix A.6.

Note that Proposition 3 holds independently of whether µk ≤µi or µk ≥µi. Combining

Definition 1 with Proposition 3, we have the following corollary.17

Corollary 2. Effort can be higher when contestants are more heterogeneous in a first-

order sense.

We illustrate the intuition behind Proposition 3 and Corollary 2 through two exam-

ples. In each example, we start from a situation of equal expected skills, and then intro-

duce a first-order stochastic dominance shift. In the first example, which has a somewhat

simpler intuition than the second, re,i(x) is strictly decreasing and effort gets higher as

player k becomes weaker, illustrating part (ii) of Proposition 3. In the second example,

re,i(x) is strictly increasing and effort gets higher as player k becomes stronger, illustrat-

ing part (i) of Proposition 3.

Example 2. Suppose that g(θ, e) = θ + e, Θi ∼ Exp
(4

3

)

, Θk ∼ U
[1

2 ,1
]

, Θ̃k ∼ U
[ 7

16 , 15
16

]

,

c(e)= e2

2 , V = 1. Then e∗ = 2
(

exp
( 2

3

)

−1
)

exp
( 4

3

) ≈ 0.499 and ẽ∗ = 2
(

exp
( 2

3

)

−1
)

exp
( 5

4

) ≈ 0.543.

17There is one small caveat to Corollary 2 that we should mention. If equilibrium effort increases as
contestants become more heterogeneous, then a symmetric equilibrium in which both players exert posi-
tive effort will fail to exist if the heterogeneity between players becomes too large. The reason is that the
weaker player would eventually receive a negative payoff, meaning that this player would prefer to choose
zero effort.
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In Example 2, the first thing to notice is that the additive production technology im-

plies that ae(x)= 1. This further implies that re,i(x) is strictly decreasing for all relevant

x, since f i(x) is the decreasing pdf of the exponential skill distribution. The fact that

ae(x) = 1 also implies that the incentive to supply effort, as given by (4), only depends

on the collision density fk(x) f i(x). Since f i(x) is decreasing, and fk(x) is uniform and

shifted to the left, the collision density between f̃k and f i is everywhere larger than the

collision density between fk and f i, see Figure 1 for an illustration. Thus, both players

have a higher incentive to exert effort. The simple intuition for the example is that the

marginal incentive to supply effort for both players is positive only in situations where

they have equal skill, and the considered shift in distributions makes such situations

unambiguously “more likely” to happen.

fk

f
˜
k

fi

0
7

16

1

2

15

16
1

x

1

2

Figure 1: Illustration of Example 2

Example 3. Suppose that g(θ, e) = θ · e, Θi ∼U[0,1], Θk ∼U
[1

4 , 3
4

]

, Θ̃k ∼U
[ 5

16 , 13
16

]

, c(e) =
e2

2 , V = 1. Then e∗ = 1p
2
≈ 0.707 and ẽ∗ = 3

4 = 0.75.

In Example 3, the multiplicative production technology implies that ae(x)= x/e which

is a strictly increasing function of x. This further implies that re,i(x) is strictly increasing

on [0,1] because f i is uniform. The shift in the skill distribution of player k from Fk to F̃k

implies that the expected skill of player k increases. However, the height of the density of

player k’s skill distribution does not change ( fk(x)= 2, x ∈
[1

4 , 3
4

]

and f̃k(x)= 2, x ∈
[ 5

16 , 13
16

]

).

Thus, since f i(x) = 1, we have that fk(x) f i(x) = f̃k(x) f i(x) = 2 at all points where these

collision densities are non-zero. However, due to the distributional shift, the subset of

R where the two uniform distributions overlap shifts to the right. Therefore, the two
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distributions collide at larger values of x (see Figure 2 for an illustration). This would

have no effect on the incentive to exert effort if ae(x) would be constant, as in Example

2. However, in the current example, we have that ae(x) = x/e. Thus, taking into account

the three terms in (4), the fact that the two distributions collide at larger values of x

increases the incentive to exert effort for both players. Intuitively, given that the only

relevant situations (where players have a positive marginal incentive to supply effort)

now occur at larger values of skill, the fact that there is a complementarity between skill

and effort in the production function implies that the incentive to supply effort is higher

for both players.

ae(x)

fk

f
˜
k

fi

0
1

4

5

16

3

4

13

16
1

x

1

2

Figure 2: Illustration of Example 3

Concluding this section, we note that the conditions in Proposition 3 are sufficient,

but not necessary for the result that effort can be higher when contestants are more

heterogeneous. To illustrate this, we present an additional result based on normal dis-

tributions where we first determine the marginal winning probability in a situation with

symmetric effort.

Proposition 4. Suppose that Θi ∼ N(µi,σ2
i
), Θk ∼ N(µk,σ2

k
), and g(θ, e) = θ · e. Then the

marginal winning probability when e1 = e2 = e is

∂Pi(e i, ek)

∂e i

|e i=ek=e =
(µiσ

2
k
+µkσ

2
i
)exp

(

− (µi−µk)2

2(σ2
i
+σ2

k
)

)

e(2π)
1
2 (σ2

i
+σ2

k
)

3
2

.

Proof. See Appendix A.7.
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In the upcoming example, it can be verified that re,i(x) = ae(x) f i (x) is neither always

increasing nor always decreasing, by virtue of the multiplicative production technology

combined with the bell-shaped normal distribution. Nonetheless, equilibrium effort in-

creases as players become more heterogeneous in the sense of increasing the distance

|µi −µk|.

Example 4. Consider Proposition 4 and assume that (σi,σk) = (1,1), (µi,µk) =
(1

2 , 1
2

)

,

V = 1, and c(e)= e2

2 . Then equilibrium effort is e∗ =
(

2π
1
4

)−1
≈ 0.38. If we increase µi from

1
2 to 3

2 , keeping µk constant, equilibrium effort increases to ẽ∗ =
(p

2exp
(1

8

)

π
1
4

)−1
≈ 0.47.

6.2 Second-Order Stochastic Dominance

The studies by Hvide (2002), Kräkel and Sliwka (2004), Kräkel (2008), Gilpatric (2009),

and DeVaro and Kauhanen (2016) investigate how “risk” or “uncertainty” affects players’

incentive to exert effort in contests. One result that is common to all of these analyses

is that in contests between equally able players, higher risk (as measured by a higher

variance of the random variables capturing the uncertainty of the contest outcome) leads

to lower efforts. We revisit this result in the context of our model, and show that effort

may increase as the skill distribution of one of the players becomes more uncertain.

The economic literature has identified different ways to conceptualize risk or uncer-

tainty. We follow Rothschild and Stiglitz 1970 by using second-order stochastic domi-

nance to measure the uncertainty regarding players’ skill distributions.18

Definition 2. The skill distribution F̃i is said to be more uncertain than the distribution

Fi if F̃i is a mean-preserving spread of Fi. This is equivalent to F̃i being dominated by Fi

in the sense of second-order stochastic dominance.

Equipped with this definition, we can use well-known results from decision theory to

obtain our next proposition:

Proposition 5. Consider two contests with skill distributions (F̃k,Fi) and (Fk,Fi) where

supp( f̃k) and supp( fk) both are subsets of supp( f i). Let ẽ∗ and e∗ denote, respectively, the

(symmetric) equilibrium efforts associated with these contests. Suppose that F̃k is more

uncertain than Fk. Then, the following results hold:

18Gerchak and He (2003) analyze how effort in two-player contests is determined by the Rényi entropy,
and Drugov and Ryvkin (2020) generalize their insights to the case of more than two players. Their
results, however, rely on the assumptions of an additive production function and homogeneous players
(i.e., players with the same skill distributions). It is not obvious how these results transfer to a model with
general production technologies and asymmetric skill distributions, which is the primary focus here.
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(i) If re,i(x) is strictly convex on supp( f i) for all e ≥ 0, then ẽ∗ > e∗.

(ii) If re,i(x) is linear on supp( f i) for all e ≥ 0, then ẽ∗ = e∗.

(iii) If re,i(x) is strictly concave on supp( f i) for all e ≥ 0, then ẽ∗ < e∗.

Proof. See Appendix A.8.

The key insight needed to understand Proposition 5 is that applying a mean-preserving

spread to the distribution Fk shifts probability mass from the center to the tails of the

distribution, and the impact of this change on the incentive to exert effort depends on

the curvature of re,i(x). Notice that Proposition 5 also holds if players have the same

expected skill, namely µi = µk. This means that, in a contest with two players who are

expected to be equally able, higher uncertainty regarding players’ skills may increase

the incentive to exert effort.

Next, we illustrate and provide intuition for Proposition 5 by presenting an example

set in the context of the Lazear-Rosen model with an additive production technology. The

example demonstrates that increasing the uncertainty of the contest while keeping the

expected skill of both players unchanged, can increase equilibrium effort.

Example 5. Consider a contest with the additive production function g(θ, e) = θ+ e, the

parameter V = 1, and the cost function c(e) = e2

2 . Suppose Θi ∼ Exp(1) and Θk ∼U
[1

2 , 3
2

]

(implying µi = µk = 1). Equilibrium effort is then e∗ = exp(1)−1
exp

( 3
2

) ≈ 0.38. Now, consider a

mean-preserving spread of the skill distribution of player k, enlarging the support of the

uniform distribution, such that Θ̃k ∼U[0,2]. Then effort increases to ẽ∗ = exp(2)−1
2exp(2) ≈ 0.43.

In Example 5, we have imposed the additive production technology which implies

ae(x) = 1. Thus, the convexity of re,i(x) referred to in part (i) of Proposition 5 is de-

termined by the convexity of f i(x). To understand how the shift from fk to f̃k affects

the incentive to exert effort, we need to study how the integral in (4) is affected. Sim-

ilar to Example 2, given that ae(x) = 1, it is sufficient to compare
∫

f i(x) fk(x)dx with
∫

f i(x) f̃k(x)dx. The shift from fk to f̃k entails an enlargement of the support of the uni-

form distribution. This implies that the density decreases for intermediate values of x,

but increases for low and high values of x (see Figure 3 for an illustration). Given that

f i(x) is strictly decreasing, the part of the skill distribution of player k that is stretched

out to the left will collide with relatively large values of f i, whereas the the part of the

skill distribution of player k that is stretched out to the right will collide with relatively

small values of f i, creating a trade-off. The fact that f i is not only strictly decreasing,
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but also convex, resolves this trade-off, implying that the overall effect of the shift is to

increase the value of the integral expression. Thus, both players have a higher incentive

to exert effort as a result of the move from fk to f̃k. Intuitively, due to the change in

the distribution of player k, situations where the competing players have the same skill

become “more likely”, implying an increase in equilibrium effort.

fk

f
˜
k

fi

0
1

2
1

3

2
2

x

1

2

1

Figure 3: Illustration of Example 5

We conclude this section by defining contestant heterogeneity in a second-order sense

and we follow the structure of the corresponding definition of heterogeneity in a first-

order sense (Definition 1). In Definition 1, we used the ranking of players’ mean skills to

characterize the initial situation. In the new definition, we do so through the variances

of the skill distributions of the competing players (restricting attention to statistical dis-

tributions with finite variance). Notice, however, that variance is not always a good

measure of uncertainty or risk (see, e.g, Rothschild and Stiglitz 1970). Therefore one

should keep in mind, when applying the definition below, that higher variance entails

higher uncertainty only for certain skill distributions (e.g., the normal distribution).

Definition 3. Let V ark and V ar i refer to the variances of the skill distributions (Fk,Fi)

in an initial contest. Players in a contest with skill distributions (F̃k,Fi), are said to be

more heterogeneous (with respect to their skills) relative to players in the initial contest

with skill distributions (Fk,Fi), in a second-order sense, if either of the following condi-

tions hold:

(i) V ark ≥ V ar i and Fk dominates F̃k in the sense of second-order stochastic domi-

nance.
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(ii) V ark ≤ V ar i and Fk is dominated by F̃k in the sense of second-order stochastic

dominance.

Combining Proposition 5 with Definition 3, we have the following corollary.

Corollary 3. Effort can be higher when contestants are more heterogeneous in a second-

order sense.

6.3 Implications for Optimal Team Composition

The results in the preceding two subsections have implications for optimal team com-

position and organizational design.19 In particular, our results suggest that employers

could find it desirable to employ a more heterogeneous workforce as an instrument to

induce higher effort. In Section 6.1, we analyzed the effects of increasing the hetero-

geneity in players’ expected skills, and showed how this can increase equilibrium effort.

This means that a firm could benefit (from the perspective of inducing higher effort) by

hiring some workers with a high expected skill and some with a low expected skill, based

on, for example, signals such as the quality of the institution where a college graduate

received his or her degree. In Section 6.2, we showed how increased uncertainty regard-

ing skills of some players can increase equilibrium effort. Thus, a firm could benefit from

hiring a mix of experienced workers (for whom the uncertainty regarding skills is rel-

atively small) and inexperienced workers (for whom the uncertainty regarding skills is

relatively large).

To see this more formally, suppose a firm already employs a worker with skill dis-

tribution F1 and considers to hire another worker with skill distribution F2. Moreover,

assume that re,1(x) is strictly decreasing and strictly convex (for example, by assuming

that the production function is given by g(θ, e) = θ+ e and skills are Exponentially dis-

tributed with parameter λ).20 Then the firm may gain from hiring another worker with

a lower expected skill (µ2 <µ1), but where F2 is more uncertain (meaning that worker 2’s

skill is drawn from a more uncertain distribution). This finding can be understood from

the perspective of Proposition 3, that tells us that effort will be higher due to the lower

expected skill of worker 2, combined with Proposition 5, which tells us that effort will

19See, e.g., Gershkov, Li, and Schweinzer (2009, 2016) and Fu, Lu, and Pan (2015).
20An alternative skill distribution that would also be decreasing and convex would be a normal distribu-

tion that is truncated to the left at a point to the right of the second inflection point. Such a distribution
could be motivated by the observation that skills are often normally distributed and that, when employ-
ing worker 1, the firm tried to hire the most able applicant, meaning that skills in the higher end of the
distribution are most relevant (see, e.g., Aguinis and O’Boyle Jr. 2014).
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be higher due to the larger uncertainty regarding the skill of worker 2. In other words,

hiring a worker with a lower expected skill, drawn from a more uncertain distribution,

can induce higher effort. Proposition 3 and Proposition 5 also have other managerial im-

plications as they indicate that employers may want to hire workers who have worked on

different tasks in the past (or on similar tasks in a different firm or industry), to create

uncertainty about workers’ skills. In a similar vein, it might be desirable to implement

some kind of job rotation.

7 Extensions

7.1 The Case of More Than Two Players (n > 2)

We now turn to the case of n > 2 contestants which allows us to address the interesting

question of how effort depends on the number of players competing in a contest.21 In

Section 7.1.1, we show that the existence of a symmetric equilibrium generally cannot

be extended to the case of n > 2 heterogeneous players. In Section 7.1.2, we consider the

case of n homogeneous players. Section 7.1.3 examines a special case of our model where

n− 1 homogeneous players compete against a player who is more highly skilled (e.g.,

as in Brown 2011 and Krumer, Megidish, and Sela 2017), which serves to demonstrate

that a symmetric equilibrium can exist when players are heterogeneous and the number

of players is greater than two. In all these sections, we maintain the generality of the

production technology.

7.1.1 The n = 2 Result Does Not Extend to n > 2

In the case of n > 2 players with different skill distributions, the equilibrium in our model

is generally no longer symmetric. A player i will only win the contest if he or she beats all

of his or her opponents. Essentially, each player is thus competing against the best of the

other players, that is, the highest order statistic, and therefore faces a different “relevant

rival” in the contest. This introduces an asymmetry into the model that was absent in

the two-player case, and which generally leads to an asymmetric equilibrium. To see

this formally, suppose, for simplicity, that g (θi, e i) = θi + e i, implying that ae (x) = 1 (the

following intuition also holds for general production technologies). Then, using a similar

reasoning as in the two-player case (see Section 4), the marginal probability of winning

21Contests with more than two players have been studied by, e.g., Tullock (1980), Nalebuff and Stiglitz
(1983), Hillman and Riley (1989), Zábojník and Bernhardt (2001), Chen (2003), Zábojník (2012), and
Ryvkin and Drugov (2020).
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for player i and player k in a symmetric equilibrium can be written, respectively, as:

∂Pi(e1, e2, . . . , en)

∂e i

|e1=...=en=e =
∫

R

f i (x)
d

dx

(

Fk (x)
∏

j 6=i,k
F j (x)

)

dx

and
∂Pk(e1, e2, . . . , e2)

∂ek

|e1=...=en=e =
∫

R

fk (x)
d

dx

(

Fi (x)
∏

j 6=i,k
F j (x)

)

dx.

Applying the product differentiation rule on the RHS of the above expressions, we obtain:

∫

R

(

f i (x) fk (x)
∏

j 6=i,k
F j (x)+ f i (x)Fk (x)

d

dx

(

∏

j 6=i,k
F j (x)

))

dx (6)

and

∫

R

(

fk (x) f i (x)
∏

j 6=i,k
F j (x)+ fk (x)Fi (x)

d

dx

(

∏

j 6=i,k
F j (x)

))

dx. (7)

The first term in (6) and (7) corresponds to the situation in which all players j ∈ {1, . . . ,n}, j 6=

i,k perform worse than players i and k so that the n-player contest collapses to a con-

test between players i and k. For this subcontest, the marginal winning probabilities

are the same as shown in the analysis of the two-player contest. The second term in

(6) corresponds to the situation in which player i outperforms his or her rival k, such

that the contest boils down to a contest between player i and the strongest of the players

j ∈ {1, . . . ,n}, j 6= i,k. The interpretation of the second term in (7) is analogous, with the

role of i and k interchanged.

Setting expression (6) equal to expression (7), we obtain

∫

R

f i (x)Fk (x)
d

dx

(

∏

j 6=i,k
F j (x)

)

dx =
∫

R

fk (x)Fi (x)
d

dx

(

∏

j 6=i,k
F j (x)

)

dx

⇔
∫

R

(

f i (x)
Fi (x)

−
fk (x)
Fk (x)

)

Fi (x)Fk (x)
d

dx

(

∏

j 6=i,k
F j (x)

)

dx = 0.

Notice that i and k were arbitrarily selected. Hence, in order for a symmetric equilibrium

to exist, it must be the case that the above condition holds for all i,k ∈ {1, . . . ,n}, i 6= k. We

conclude that the condition above is generally violated when the skill distributions of the

competing players are distinct, which implies that a symmetric equilibrium generally

does not exist in the case of n > 2 players.22

22A sufficient condition for a symmetric equilibrium to exist is that f i(x)
Fi(x) =

fk(x)
Fk(x) for all x ∈ R and all

i,k ∈ {1, . . . ,n}, i 6= k. However, since f i(x)
Fi(x) =

d logFi(x)
dx

is the reversed hazard rate, which completely charac-
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7.1.2 The Case of Homogeneous Players

Suppose that all players share the same skill distribution, i.e., f1 = f2 = ... = fn =: f , and

define re(x) := ae(x) f (x).

Proposition 6. In an n-player contest with homogeneous skill distributions, a symmetric

Nash equilibrium with e1 = e2 = ·· · = en = e∗ exists and is characterized by

V

∫

R

re∗ (x) (n−1)(F (x))n−2 f (x)dx =V

∫

R

re∗ (x)
d

dx

(

(F (x))n−1)dx = c′
(

e∗
)

. (8)

Proof. See Appendix A.9.

Notice that (F (x))n−1 describes the cdf of the highest order statistic out of a group

of n−1 players. The condition from the proposition therefore illustrates what was men-

tioned before: the n-player contest boils down to a two-player contest, in which every

player competes against the strongest of the other players.

A particular focus in the literature has been on the relation between effort and the

number of competitors. Early studies of the n-player Tullock contest with γ1 = ... = γn,

m = 1, and linear effort costs found that equilibrium effort is given by e∗ = n−1
n2 V , so that

effort is decreasing in n (e.g., Tullock 1980, Hillman and Riley 1989). With a convex cost

function (as in our setting), the condition would change to e∗c′ (e∗) = n−1
n2 V , but effort

would still be decreasing in n. The result can be explained by a discouragement effect.

If a player competes against many rivals, his or her chance of winning is relatively low

and the player reduces effort in turn.

In what follows, we study the relationship between effort and the number of competi-

tors in our model. To do so, we need to extend Assumption 2 to the n-player case.

Assumption 3. The primitives of the model are such that qn : E →R, defined by

qn(e)=V

∫

R

re (x)
d

dx

(

(F (x))n−1)dx− c′(e),

is strictly decreasing.

We observe that, in addition to the discouragement effect mentioned before, there is

also an encouragement effect, inducing players to increase their effort as they compete

against more players. This is reflected by the factor (n−1) in
∫

R
re (x) (n−1)(F (x))n−2 f (x)dx

terizes a statistical distribution, this condition would only hold for all x ∈ R if Fi and Fk refer to identical
distributions.
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in Proposition 6 above. As we will show, the encouragement effect might dominate, open-

ing up for the possibility that effort increases in the number of competitors (for a related

result, see also Ryvkin and Drugov 2020). In our proof, we make use of the fact that

increasing n leads to a distribution of the highest order statistic that first-order stochas-

tically dominates the original distribution. We can thus invoke Proposition 3 to study

the effects of an increase in n on equilibrium effort.23

Proposition 7. Consider the n-player contest with homogeneous skill distributions and

let e∗ denote the symmetric Nash equilibrium effort. Then the following statements hold:

i) If re(x) is strictly increasing for all x ∈ supp( f ) and all e ≥ 0, then e∗ increases in n.

ii) If re(x) is strictly decreasing for all x ∈ supp( f ) and all e ≥ 0, then e∗ decreases in n.

iii) If re(x) is constant for all x ∈ supp( f ) and all e ≥ 0, then e∗ does not depend on n.

Proof. See Appendix A.10.

We conclude this subsection with an example to illustrate the potentially positive

relationship between effort and the number of players in the context of the well-known

Lazear-Rosen model.

Example 6. Consider a contest with an additive production function g(θ, e)= θ+e, V = 1,

and cost function c(e) = e2

2 . Suppose each Θi is distributed according to the modified

reflected exponential distribution with mean µ= 1 and pdf f (x)= 1
2 exp

(1
2 (x−3)

)

for x ≤ 3

and zero otherwise (see, e.g., Rinne 2014). With two players, equilibrium effort is e∗ = 1
4 .

With three players, equilibrium effort increases to ẽ∗ = 1
3 .

7.1.3 A Contest With One Player Who Is More Highly Skilled

We now turn to a special case of our contest model with n > 2 players where we obtain

a symmetric equilibrium even when players are asymmetric in the sense of having dif-

ferent expected skills. For this purpose, suppose that Θi = ti +E i for i = 1, . . . ,n where

t1 > t2 = ·· · = tn = t and the E i, i = 1, . . . ,n, are i.i.d. according to the reflected exponential

distribution with cdf H(x) = exp(λx) defined on (−∞,0] with λ > 0 (Rinne 2014). In this

case, we have:

f i (x)=
{

λexp(λ(x− ti)), for x ≤ ti

0, for x > ti

23Notice that similar to what was mentioned in connection to Corollary 2, there is a small caveat to part
(i) of Proposition 7. If e∗ is increasing in n, a symmetric equilibrium in which all players exert positive
effort will fail to exist if n becomes so large that V /n < c(e∗), as (some) players would prefer to choose an
effort of zero.
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and

Fi (x)=
{

exp(λ(x− ti)), for x ≤ ti

1, for x > ti,

implying that f i(x)
Fi(x) =λ on the support of f i which is (−∞, ti]. Consider the condition

∫

R

(

f i (x)
Fi (x)

−
fk (x)
Fk (x)

)

Fi (x)Fk (x)
d

dx

(

∏

j 6=i,k
F j (x)

)

dx = 0,

that we derived in Subsection 7.1.1.24 It is satisfied for all i,k ∈ {2, . . . ,n} since in this

case, f i(x)
Fi(x) =

fk(x)
Fk(x) = λ on the common support (∞, t] of f i and fk (since we assumed from

the outset that t2 = t3 = ·· · = tn = t). Consider now the case where i = 1 and k ∈ {2, . . . ,n}.

In this case, we have that f1(x)
F1(x) =

fk(x)
Fk(x) = λ for x ≤ t. For x > t, we have

∏

j 6=1,k
F j (x) =

1 ⇒ d
dx

(

∏

j 6=1,k
F j (x)

)

= 0. Hence, we conclude that the condition is satisfied for all i,k ∈

{1, . . . ,n}, i 6= k and all x ∈ R, and that the marginal winning probabilities are the same.

This implies that a symmetric equilibrium exists in which all players choose the same

equilibrium effort e∗.

Next, we compute an example with a multiplicative production technology and show

that the marginal winning probability is increasing in the number of players.

Proposition 8. Consider the contest described above. Suppose the production technology

takes the form g(θ, e)= θe and assume that t is chosen sufficiently large so that nλt−1> 0.

Then, the marginal winning probability given equal effort e is equal to:

Ψ(n)=
(n−1)

e
exp(−λ(t1 − t))

(nλt−1)
n2 , with Ψ

′(n)> 0.

Proof. See Appendix A.11.

7.2 Privately Known Skills

We now turn to examine how our analysis is affected by assuming that players have

private information regarding their own skill. For this purpose, we assume that each

player i ∈ {1, . . . ,n} observes his or her own skill realization θi before choosing effort e i.

This means that each player chooses a strategy consisting of a function e i(θi) that speci-

fies the effort level for each value of θi. Everything else in our model remains unchanged.

24This condition was derived under the assumption of an additive production technology. In Appendix
B.1, we provide a proof for the existence of a symmetric equilibrium in the general case.
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In particular, all the opponents’ skills Θk, k ∈ {1, . . . ,n},k 6= i remain uncertain, as in the

main model, and their distributions are common knowledge.

This private-information assumption effectively implies that player i can, in a deter-

ministic manner, choose output g(θi, e i) by making the appropriate effort choice e i. The

decision problem of player i can therefore, equivalently, be expressed as the specifica-

tion of optimal effort e i(θi) or the choice of optimal output zi(θi) := g(θi, e i(θi)), as a best

response to the opponents’ choice of effort or output. Assuming that optimal output is

strictly increasing in skill (this will be confirmed in our examples), zi is invertible with

inverse z−1
i

.

In the two-player case, where player i competes against another player k, player i

wins the contest for given realizations of Θi and Θk if and only if the following condition

holds

g(θk, ek)< g(θi, e i) ⇐⇒ zk(θk)< zi(θi) ⇐⇒ θk < z−1
k (zi(θi)).

Taking into account that, from the perspective of player i, the uncertainty of the contest

only concerns the skill realization of player k, we have that equilibrium efforts e i(θi) and

ek(θk) satisfy:

e i(θi) ∈ argmax
e i

{

Fk(z−1
k (zi(θi)))V − c(e i)

}

,

ek(θk) ∈ argmax
ek

{

Fi(z
−1
i (zk(θk)))V − c(ek)

}

.

It can thus immediately be seen that the first-order condition for player i only involves

the skill distribution of the opposing player k, whereas the first-order condition for player

k only involves the skill distribution of the opposing player i. Hence, the symmetry that

was present in the main model, where the first-order condition for each player involved

the product of f i and fk (see equation (4)), vanishes when skills are privately known. We

thus conclude that the equilibrium effort functions e i(θi) and ek(θk) generally are not

symmetric.

The n-player case with privately known skills is handled in an almost identical fash-

ion. Instead of competing against player k, player i can be viewed as competing against

the strongest of the opponents j ∈ {1, . . . ,n}, j 6= i, in the sense of the highest order statis-

tic. We analyze the n-player case with symmetric skill distributions below. Our analysis

generalizes existing contest models with privately informed players with respect to the

production technology. For instance, when imposing a multiplicative production func-
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tion, our model is equivalent to the single-prize version of Moldovanu and Sela (2001).

Likewise, in the case of an additive production function, our model matches the nondis-

criminatory contest in Pérez-Castrillo and Wettstein (2016). We note, however, that

these models are more general in other respects. Whereas Moldovanu and Sela (2001)

allow for multiple prizes, Pérez-Castrillo and Wettstein (2016) allow for the single prize

to differ between contestants.

The case of n homogeneous players. We revisit the setting with n homogeneous

players considered in Section 7.1.2 and introduce the private-information assumption.

The exposition also serves to illustrate the two-player case with symmetric players and

private information.

In a symmetric setting, we naturally expect symmetric equilibria in which players

employ the same effort function, e(θi). Thus, equal types imply equal effort and output

even when individuals are privately informed about their own type. As we did in Section

7.1.2, we analyze the n-player case by analyzing how player i competes against the high-

est order statistic of his or her opponents. We denote the distribution function of this

order statistic by F (n−1) with the associated probability density function f (n−1). Given

that players are assumed to have independent skill distributions, F (n−1)(x) = F(x)n−1

and f (n−1)(x)= (n−1)F(x)n−2 f (x).

To solve for a symmetric equilibrium, we consider the problem of player i maximizing

his or her expected payoff when all his or her rivals adopt the common effort function

e(θk), or equivalently, the common output function z(θk) := g(θk, e(θk)), i 6= k with corre-

sponding inverse z−1. The equilibrium effort of player i is thus given by:

e i(θi) ∈ argmax
e i

{

F (n−1)(z−1(g(θi, e i)))V − c(e i)
}

.

For each value of θi, there is an associated first-order condition:

f (n−1)(z−1(zi(θi)))
1

z′(z−1(zi(θi)))

∂g(θi, e i(θi))

∂e i

V = c′(e i(θi)),

where ∂g(θi ,e i(θi))
∂e i

is the partial derivative of g(θi, e i(θi)) with respect to the second argu-

ment. In a symmetric equilibrium, we can drop the index i, thus the first-order condition

in equilibrium can be written as

f (n−1)(θ)
∂g/∂e

z′(θ)
V = c′(e(θ)).
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The above condition implicitly defines the symmetric equilibrium effort function e(θ).

Note that since

z′(θ)=
dg(θ, e(θ))

dθ
=

∂g

∂θ
+
∂g

∂e

de(θ)

dθ
,

we have that the first-order condition can be written as:

f (n−1)(θ)
∂g/∂e

∂g

∂θ
+ ∂g

∂e
e′(θ)

V = c′(e(θ)). (9)

Condition (9) has an intuitive interpretation. The LHS is the marginal probability of

winning times the prize V in a symmetric equilibrium from the perspective of a player

who knows that his or her skill is θ. Given that a player only has a marginal incentive

to exert effort when the strongest opponent (the highest order statistic) has the same

skill, f (n−1)(θ) is the “likelihood” of this situation. There are two main differences with

respect to the corresponding condition for the case of symmetric uncertainty (equation

(4)). First, because players know their own skill level, there is no need to integrate

over all possible realizations of a considered player’s own skill. Second, instead of ae(x)=
∂g(x,e)

∂e

/

∂g(x,e)
∂x

(which appeared inside the integral of (4)), we now have the factor ∂g/∂e
∂g
∂θ+

∂g
∂e

e′(θ)

which includes the new term ∂g

∂e
e′(θ) in the denominator. This new term arises because

effort is a function of skill in the private information case.

Recall that when we discussed the intuition behind ae(x) in equation (4), we explained

that the purpose of a marginal effort increase is to beat rivals who have marginally

higher skill. In the current setting, the output advantage of marginally more able rivals

is not only determined by ∂g

∂θ
(which is positive) but also by the additional term ∂g

∂e
e′(θ)

which generally has an ambiguous sign. If ∂g

∂e
and e′(θ) are both strictly positive, more

highly skilled rivals are harder to beat not only because of their skill advantage, but also

because they exert higher effort, reducing the marginal incentive to exert effort by any

player.

In the following example, we compute the equilibrium effort for a specific skill distri-

bution and production function.25

Example 7. Consider a contest with n symmetric players with privately known skills

independently drawn from the uniform distribution on [0,1]. The production function is

given by g(θ, e) = θe, and the cost function is c(e) = e2

2 . Then, the symmetric equilibrium

25The detailed derivations for this example are provided in Appendix B.2.
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effort is:

e(θ)=

√

2(n−1)

n+1
Vθn−1.

Notice that for the contest in the above example, re(x) is strictly increasing on [0,1]

for all e ≥ 0. Hence, equilibrium effort in the symmetric uncertainty case would be in-

creasing in n according to Proposition 7. To obtain an analogue of this result in the

case of private information, we can compute the expectation of the equilibrium effort in

Example 7 to obtain:

E[e(θ)]=

√

(n−1)
(

2

n+1

)3

V . (10)

We immediately see that the expected effort in (10) is decreasing in n. Hence, Example

7 serves to demonstrate that the comparative statics results from the baseline case with

symmetric uncertainty do not necessarily carry over to the private-information case.

8 Concluding Remarks

We have explored simple equilibria in contests between heterogeneous players. Under

general assumptions about the production technology and the skill distributions of the

competing players, we have shown that the contest has a symmetric equilibrium in which

all players exert the same effort. We have also provided intuition regarding how the

different components of the contest interact to determine the incentive to exert effort

and revisited several important comparative statics results of contest theory, showing

that standard results in the literature are not necessarily robust to generalizations of the

production technology or skill distributions. In particular, we have found that making

players more heterogeneous can increase the incentive to exert effort. We have also

investigated the robustness of our results with respect to the assumption of symmetric

uncertainty and the number of players.

We would like to mention a few broader implications of our analysis. First, our main

result regarding the emergence of symmetric equilibria in the presence of heterogeneous

players is quite surprising, and an important message of our paper is that differences

between people do not necessarily translate into different behavior in contest situations.

Second, our finding that making skill distributions more heterogeneous can increase

equilibrium effort, has implications for optimal team composition, as employers could

34



find it desirable to increase the diversity of the workforce by hiring a worker drawn from

a more uncertain skill distribution, such as a minority worker, or a worker for whom less

prior information is available.

There are several possible extensions to our analysis. For instance, prior work has

investigated strategic information revelation by the tournament designer (e.g., Aoyagi

2010). If the tournament designer possesses some private information about the players’

skills, he or she may decide to reveal some or all of this information to trigger higher

effort. Another extension would be to consider an endogenous prize structure. Finally,

the implications of our model for promotion tournaments and hiring decisions could be

further explored. We leave these interesting topics as avenues for future research.
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Appendix

A Proofs

A.1 Proof of Lemma 1

Suppose that ∂Pi(e i ,ek)
∂e i

|e i=ek=e is the same for both i ∈ {1,2} and all e ∈ int E. Then we have
∂P1(e1,e2)

∂e1
|e1=e2=eV − c′(e)= ∂P2(e2,e1)

∂e2
|e1=e2=eV − c′(e) for all e ∈ int E. Since πi(e i, ek) is con-

tinuously differentiable, ∂Pi(e i ,ek)
∂e i

|e i=ek=eV − c′(e) is a continuous function of e. Further-

more, recall that there exist ē i, ĕ i ∈ int E such that ∂πi(e i ,ek)
∂e i

|e i=ek=ē i
< 0 and ∂πi(e i ,ek)

∂e i
|e i=ek=ĕ i

>

0. Hence, by the Intermediate Value Theorem, there is some e∗ ∈ int E such that
∂Pi(e i ,ek)

∂e i
|e i=ek=e∗V − c′(e∗)= 0. By Assumption 1, e1 = e2 = e∗ is a Nash equilibrium.

A.2 Proof of Theorem 1

Since we wish to apply the sufficient condition from Lemma 1, we restrict attention to

e i > 0. Then, the function ge : R→ R defined by ge (x) = g (x, e) is strictly increasing and,

thus, invertible. The inverse, g−1
e , is strictly increasing as well. For the two (different)

players i,k ∈ {1,2}, we observe

g (θi, e i)< g (θk, ek)

⇔ ge i (θi)< gek
(θk)

⇔ θi < g−1
e i

(

gek
(θk)

)

.

Player k thus wins with probability

∫

Fi

(

g−1
e i

(

gek
(x)

))

fk (x)dx.

Differentiating with respect to ek, we obtain

∫

f i

(

g−1
e i

(

gek
(x)

))

(

d

dek

g−1
e i

(

gek
(x)

)

)

fk (x)dx.

According to Lemma 1, and noting that g−1
ek

(ge i
(x))= g−1

e i
(gek

(x))= x if e i = ek, a sufficient

condition for a symmetric equilibrium to exist is that

∫(

d

de1
g−1

e2

(

ge1 (x)
)

∣

∣

∣

∣

e1=e2=e

)

f1 (x) f2 (x)dx

=
∫(

d

de2
g−1

e1

(

ge2 (x)
)

∣

∣

∣

∣

e1=e2=e

)

f1 (x) f2 (x)dx,
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for all e ∈ int E. Since d
de1

g−1
e2

(

ge1 (x)
)

∣

∣

∣

e1=e2=e
= d

de2
g−1

e1

(

ge2 (x)
)

∣

∣

∣

e1=e2=e
, this condition is

always fulfilled.

A.3 Proof of Corollary 1

Define Θ̃i := hi (Θi). The considered contest is then equivalent (in terms of equilibrium

effort choices) to a contest in which skills are given by Θ̃i and the production function

g̃
(

θ̃i, e i

)

is the same for both players. Hence, a symmetric equilibrium exists with effort

determined by the condition provided in the corollary.

A.4 Proof of Proposition 1

Player 1’s objective function is given by

∫

R

F2
(

g−1
e2

(

ge1 (x)
))

f1 (x)dxsV − c (e1) .

Using ξ1 = e1/s1/δ, the preceding expression becomes

∫

R

F2
(

g−1
e2

(

gs1/δξ1
(x)

))

f1 (x)dxsV − c
(

s1/δξ1

)

=
∫

R

F2
(

g−1
e2

(

gs1/δξ1
(x)

))

f1 (x)dxsV − sc (ξ1)

= s

(∫

R

F2
(

g−1
e2

(

gs1/δξ1
(x)

))

f1 (x)dxV − c (ξ1)
)

.

Maximizing this function is equivalent to maximizing

∫

R

F2
(

g−1
e2

(

gs1/δξ1
(x)

))

f1 (x)dxV − c (ξ1) .

Player 2’s objective function can be stated as

∫

R

F1
(

g−1
e1

(

ge2 (x)
))

f2 (x)dxV − c (e2)

=
∫

R

F1

(

g−1
s1/δξ1

(

ge2 (x)
)

)

f2 (x)dxV − c (e2) .

A.5 Proof of Proposition 2

(i) Player 1 wins if and only if

θα1 e
β

1 > θα2 e
β

2

⇔ θ
α
β

1 e1 > θ
α
β

2 e2.
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Substituting ξ1 = e1/s1/δ, the condition becomes

θ
α
β

1 s
1
δ ξ1 > θ

α
β

2 e2.

Now define Θ̃1 := s
1
δΘ

α
β

1 and Θ̃2 :=Θ

α
β

2 , and denote the corresponding pdfs and cdfs by f̃1,

f̃2, F̃1, and F̃2, respectively.

Player 1’s objective function can be stated as

∫

R

F̃2

(

ξ1x

e2

)

f̃1 (x)dxsV − c
(

s1/δξ1

)

= s

(∫

R

F̃2

(

ξ1x

e2

)

f̃1 (x)dxV − c (ξ1)
)

.

Maximization of the objective function is equivalent to maximization of

∫

R

F̃2

(

ξ1x

e2

)

f̃1 (x)dxV − c (ξ1) ,

so we consider this latter problem. Since player 2’s objective function can be stated as

∫

R

F̃1

(

e2x

ξ1

)

f̃2 (x)dxV − c (e2) ,

we have transformed the contest into the form of our main model, meaning that an

equilibrium
(

e∗1, e∗2
)

, where e∗2 = ξ∗1 = e∗1

s
1
δ

is characterized by

∫

R

f̃1 (x) f̃2 (x) xdxV = e∗2c′
(

e∗2
)

,

exists.

(ii) Notice that player 1 wins if and only if

αθ1 +βe1 >αθ2 +βe2

⇔
α

β
θ1 + e1 >

α

β
θ2 + e2

⇔ exp
(

α

β
θ1 + e1

)

> exp
(

α

β
θ2 + e2

)

⇔ exp
(

α

β
θ1

)

exp(e1)> exp
(

α

β
θ2

)

exp(e2) .

Define ẽ i = exp(e i) for i ∈ {1,2}. From part (i) of the proposition, we know that, in equilib-

rium, ẽ1 = s1/δ ẽ2. (Note that this is equivalent to e i = ln(ẽ i) and exp(e1) = s1/δ exp(e2) ⇔
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e1 = 1
δ

ln s+ e2.) Hence, defining ξ1 = ẽ1
s1/δ , the event of player 1 winning can be restated as

exp
(

α

β
θ1

)

s1/δξ1 > exp
(

α

β
θ2

)

ẽ2.

Now define Θ̃1 := exp
(

α
β
Θ1

)

s1/δ and Θ̃2 := exp
(

α
β
Θ2

)

, and denote the corresponding pdfs

and cdfs by f̃1, f̃2, F̃1, and F̃2, respectively.

Player 1’s objective function can then be stated as

∫

R

F̃2

(

ξ1x

ẽ2

)

f̃1 (x)dxsV − c
(

ln
(

s
1
δ ξ1

))

=
∫

R

F̃2

(

ξ1x

ẽ2

)

f̃1 (x)dxsV − sc (ln(ξ1))

= s

(∫

R

F̃2

(

ξ1x

ẽ2

)

f̃1 (x)dxV − c̃ (ξ1)
)

,

where the first transformation used the homogeneity of the function c◦ln(e). Maximizing

the objective is equivalent to maximizing

∫

R

F̃2

(

ξ1x

ẽ2

)

f̃1 (x)dxV − c̃ (ξ1)

and we consider this latter problem in what follows. Since player 2’s objective function

can be stated as

∫

R

F̃1

(

ẽ2x

ξ1

)

f̃2 (x)dxV − c (ln(ẽ2))

=
∫

R

F̃1

(

ẽ2x

ξ1

)

f̃2 (x)dxV − c̃ (ẽ2) ,

we have transformed the contest into the form of our main model, meaning that an

equilibrium with ξ∗1 = ẽ∗2 characterized by

∫

R

f̃1 (x) f̃2 (x) xdxV = ẽ∗2 c̃′
(

ẽ∗2
)

exists. The optimal efforts of the original contest are given by e∗1 = ln
(

s
1
δ ξ∗1

)

and e∗2 =

ln
(

ẽ∗2
)

.

A.6 Proof of Proposition 3

Suppose that Assumption 2 holds, and consider case (i), i.e., re,i (x) is monotonically in-

creasing in x, and F̃k first-order stochastically dominates Fk. Denote the equilibrium

effort levels for the two contests by ẽ∗ and e∗, respectively. Our goal is to show that
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ẽ∗ > e∗.

The proof proceeds by contradiction, so suppose ẽ∗ ≤ e∗. Now observe that

V

∫

r ẽ∗,i (x) f̃k (x)dx− c′
(

ẽ∗
)

≥

V

∫

re∗,i (x) f̃k (x)dx− c′
(

e∗
)

>

V

∫

re∗,i (x) fk (x)dx− c′
(

e∗
)

= 0.

The first inequality follows from ẽ∗ ≤ e∗ together with Assumption 2. The second in-

equality follows from re,i (x) being monotonically increasing on supp( f i), F̃k first-order

stochastically dominating Fk, and the fact that we have assumed that both supp( f̃k) and

supp( fk) are subsets of supp( f i).26 The equality follows since e∗ is characterized by the

first-order condition V
∫

re∗,i (x) fk (x)dx− c′ (e∗)= 0. We conclude that

V

∫

r ẽ∗,i (x) f̃k (x)dx− c′
(

ẽ∗
)

> 0.

This shows that the first-order condition for equilibrium effort cannot be fulfilled in the

case of the distribution F̃k, giving us the desired contradiction.

By an analogous argument, we can show that ẽ∗ > e∗ also in case (ii) where re,i is

monotonically decreasing in x for all e > 0 and Fk first-order stochastically dominates

F̃k. In this case,
∫

re,i(x) f̃k (x)dx >
∫

re,i(x) fk (x)dx for all e > 0 (see, e.g., Levy 1992,

p.557).

A.7 Proof of Proposition 4

Suppose that g(θ, e)= θe. This means that

ae(x)=
d

de i

(

g−1
ek

(

ge i (x)
))

∣

∣

∣

∣

e i=ek=e

=
d

de i

(

xe i

ek

)∣

∣

∣

∣

e i=ek=e

=
x

e
.

In the considered situation, the marginal winning probability is

1

2πσ1σ2

∫

x

e
exp

(

−
(

x−µ1
)2

2σ2
1

−
(

x−µ2
)2

2σ2
2

)

dx.

26See, e.g., Levy 1992, p.557. Notice that, in decision theory, the utility function is defined for all possible
payoffs and therefore no additional constraints regarding the statistical supports need to be imposed.
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To prove the proposition, it is sufficient to show that

1

2πσ1σ2

∫

xexp

(

−
(

x−µ1
)2

2σ2
1

−
(

x−µ2
)2

2σ2
2

)

dx

=

(

µ1σ
2
2 +µ2σ

2
1

)

exp
(

− (µ1−µ2)2

2(σ2
1+σ

2
2)

)

(2π)
1
2
(

σ2
1 +σ2

2

)
3
2

.

Define

Z :=
1

2πσ1σ2

∫

xexp

(

−
(

x−µ1
)2

2σ2
1

−
(

x−µ2
)2

2σ2
2

)

dx

and notice that:

(

x−µ1
)2

2σ2
1

+
(

x−µ2
)2

2σ2
2

=
σ2

2

(

x−µ1
)2 (

σ2
1 +σ2

2

)

+σ2
1

(

x−µ2
)2 (

σ2
1 +σ2

2

)

2σ2
1σ

2
2

(

σ2
1 +σ2

2

)

=
σ2

2

(

x2 −2xµ1 +µ2
1

)(

σ2
1 +σ2

2

)

+σ2
1

(

x2 −2xµ2 +µ2
2

)(

σ2
1 +σ2

2

)

2σ2
1σ

2
2

(

σ2
1 +σ2

2

)

=
x2

(

σ2
1 +σ2

2

)2 −2x
(

µ1σ
2
2 +µ2σ

2
1

)(

σ2
1 +σ2

2

)

+
(

µ2
1σ

2
2 +µ2

2σ
2
1

)(

σ2
1 +σ2

2

)

2σ2
1σ

2
2

(

σ2
1 +σ2

2

)

=
x2

(

σ2
1 +σ2

2

)2 −2x
(

µ1σ
2
2 +µ2σ

2
1

)(

σ2
1 +σ2

2

)

+
(

µ1σ
2
2 +µ2σ

2
1

)2

2σ2
1σ

2
2

(

σ2
1 +σ2

2

)

−
(

µ2
1σ

4
2 +2µ1σ

2
2µ2σ

2
1 +µ2

2σ
4
1 −µ2

1σ
2
2

(

σ2
1 +σ2

2

)

−µ2
2σ

2
1

(

σ2
1 +σ2

2

))

2σ2
1σ

2
2

(

σ2
1 +σ2

2

)

=
(

x
(

σ2
1 +σ2

2

)

−
(

µ1σ
2
2 +µ2σ

2
1

))2 +
(

µ2
1σ

2
1σ

2
2 −2µ1σ

2
2µ2σ

2
1 +µ2

2σ
2
1σ

2
2

)

2σ2
1σ

2
2

(

σ2
1 +σ2

2

)

=
(

x
(

σ2
1 +σ2

2

)

−
(

µ1σ
2
2 +µ2σ

2
1

))2

2σ2
1σ

2
2

(

σ2
1 +σ2

2

) +
(

µ1 −µ2
)2

2
(

σ2
1 +σ2

2

) .

Using this, we obtain

Z =
exp

(

− (µ1−µ2)2

2(σ2
1+σ

2
2)

)

2πσ1σ2

∫

xexp

(

−
(

x
(

σ2
1 +σ2

2

)

−
(

µ1σ
2
2 +µ2σ

2
1

))2

2σ2
1σ

2
2

(

σ2
1 +σ2

2

)

)

dx

=
exp

(

− (µ1−µ2)2

2(σ2
1+σ

2
2)

)

(2π)
1
2
(

σ2
1 +σ2

2

)
3
2

(

σ2
1 +σ2

2

) 1
p

2π σ1σ2
√

σ2
1+σ

2
2

∫

xexp















−

(

x− µ1σ
2
2+µ2σ

2
1

σ2
1+σ

2
2

)2

2

(

σ1σ2
√

σ2
1+σ

2
2

)2















dx.
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Now notice that

1
p

2π σ1σ2
√

σ2
1+σ

2
2

∫

xexp















−

(

x− µ1σ
2
2+µ2σ

2
1

σ2
1+σ

2
2

)2

2

(

σ1σ2
√

σ2
1+σ

2
2

)2















dx

describes the mean of a normally distributed random variable with variance

(

σ1σ2
√

σ2
1+σ

2
2

)2

and mean
µ1σ

2
2+µ2σ

2
1

σ2
1+σ

2
2

, hence

1
p

2π σ1σ2
√

σ2
1+σ

2
2

∫

xexp















−

(

x− µ1σ
2
2+µ2σ

2
1

σ2
1+σ

2
2

)2

2

(

σ1σ2
√

σ2
1+σ

2
2

)2















dx =
µ1σ

2
2 +µ2σ

2
1

σ2
1 +σ2

2

.

We obtain

Z =
exp

(

− (µ1−µ2)2

2(σ2
1+σ

2
2)

)

(2π)0.5
(

σ2
1 +σ2

2

)1.5

(

σ2
1 +σ2

2

) µ1σ
2
2 +µ2σ

2
1

σ2
1 +σ2

2

=

(

µ1σ
2
2 +µ2σ

2
1

)

exp
(

− (µ1−µ2)2

2(σ2
1+σ

2
2)

)

(2π)
1
2
(

σ2
1 +σ2

2

)
3
2

.

A.8 Proof of Proposition 5

Because of Assumption 2, and the condition characterizing equilibrium effort, we need to

show that
∫

re,i(x) f̃k (x)dx > (=,<)
∫

re,i(x) fk (x)dx if re,i is convex (linear, concave). The

proof is very similar to part a) of the proof of Theorem 2 in Rothschild and Stiglitz (1970,

p.237). In the case of convex re,i, the inequality in their proof is reversed, while it is

replaced by an equality if re,i is linear.

A.9 Proof of Proposition 6

Player i wins the contest with probability

∫

∏

k 6=i

Fk

(

g−1
ek

(

ge i (x)
))

f i (x)dx.
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Differentiating with respect to e i, we obtain

∫

(

∏

k 6=i

Fk

(

g−1
ek

(

ge i (x)
))

)





∑

k 6=i

fk

(

g−1
ek

(

ge i (x)
))

(

d
de i

g−1
ek

(

ge i (x)
)

)

Fk

(

g−1
ek

(

ge i (x)
))



 f i (x)dx.

In a symmetric equilibrium with e∗1 = ... = e∗n =: e∗, and symmetric skill distributions,

this marginal effect of effort on the probability of winning simplifies to

∫

(

∏

k 6=i

F (x)

)(

∑

k 6=i

(

d

de i

g−1
ek

(

ge i (x)
)

)∣

∣

∣

∣

e∗1=...=e∗n=e∗

f (x)
F (x)

)

f (x)dx,

and must be identical for all i. We can restate the above expression as

∫

re∗ (x) (n−1)(F (x))n−2 f (x)dx =
∫

re∗ (x)
(

d

dx
(F (x))n−1

)

dx,

which is identical for all i.

A.10 Proof of Proposition 7

Part i) As explained in the main body of the paper, the equilibrium first-order con-

dition for an n-player contest is equivalent to that of a two-player contest in which the

second player’s skill distribution is replaced by the strongest rival’s skill distribution (the

highest order statistic) of the n-player contest. We show that
∫

re (x)
(

d
dx (F (x))n−1)dx is

increasing in n. If n1,n2 ∈ N, with n1 > n2, then (F (x))n1−1 first-order stochastically

dominates (F (x))n2−1, and the result follows from Proposition 3.

Part ii) Suppose that re(x) is monotonically decreasing in x for all e ≥ 0, and let n1,n2 ∈

N, with n1 > n2. It follows that (F (x))n1−1 first-order stochastically dominates (F (x))n2−1,

as just mentioned, implying that

∫

re (x)
(

d

dx
(F (x))n1−1

)

dx <
∫

re (x)
(

d

dx
(F (x))n2−1

)

dx.

Part iii) If re(x)= re is constant in x for all e ≥ 0, we have

∫

re (x)
(

d

dx
(F (x))n−1

)

dx = re

∫(

d

dx
(F (x))n−1

)

dx = re,

which is independent of n.
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A.11 Proof of Proposition 8

As shown before, if g(θi, e i)= θi e i, we have

(

d

de i

g−1
ek

(

ge i (ti + x)
)

)∣

∣

∣

∣

e1=...=en=e

=
(ti + x)

e
.

Thus, making use of expression (11), derived in Section B.1, and denoting ∆t = t1 − t > 0,

λ2
∫−∆t

(

H (x)
∏

k 6=1
H (∆t+ x)

)(

∑

k 6=i

(

d

de i

g−1
ek

(

ge i (t1 + x)
)

)∣

∣

∣

∣

e1=...=en=e

)

dx

= λ2
∫−∆t

(exp(λx) ·exp((n−1)λ (∆t+ x))) (n−1)
(t1 + x)

e
dx

=
λ2 (n−1)

e

∫−∆t

exp(nλy+ (n−1)λ∆t) (t1 + y)d y.

The map φ2 : Rx → Ry given by x → y = −∆t+ x is a smooth diffeomorphism with

det |φ′
2(x)| = 1. Applying the associated change of variables to the integral, we obtain

λ2 (n−1)
e

∫0
exp(nλ (x−∆t)+ (n−1)λ∆t) (t+ x)dx

=
(n−1)

e
exp(−λ∆t)λ2

(∫0
xexp(nλx)dx+ t

∫0
exp(nλx)dx

)

.

Notice that

nλ

∫0
xexp(nλx)dx

is the mean of a random variable that is distributed according to the reflected exponential

distribution with parameter nλ, hence

nλ

∫0
xexp(nλx)dx =−

1

nλ

⇔
∫0

xexp(nλx)dx =−
1

n2λ2 .

Furthermore,

nλ

∫0
exp(nλx)dx =1

⇔
∫0

exp(nλx)dx =
1

nλ
.
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It follows that

(n−1)
e

exp(−λ∆t)λ2
(∫0

xexp(nλx)dx+ t

∫0
exp(nλx)dx

)

=
(n−1)

e
exp(−λ∆t)λ2 (−1+nλt)

n2λ2

=
(n−1)

e
exp(−λ∆t)

(−1+nλt)
n2 .

Notice that the last expression is positive if and only if nλt−1> 0. Taking the derivative

of the expression w.r.t. n results in an expression that is positive if t > 0, which is implied

by nλt−1> 0.

B Other Computations and Derivations

B.1 Additional Derivations for Section 7.1.3.

Player i outperforms player k iff

ge i (ti +εi)> gek
(tk +εk)

⇔ εk < g−1
ek

(

ge i (ti +εi)
)

− tk.

Recall that the E i are i.i.d., following the reflected exponential distribution on (−∞,0].

The cdf is denoted by H and the pdf by h. Hence, player i wins the contest with proba-

bility
∫

∏

k 6=i

H
(

g−1
ek

(

ge i (ti + x)
)

− tk

)

h (x)dx.

In a symmetric equilibrium with e∗1 = ... = e∗n =: e∗, the marginal effect of effort on the

probability of winning,

∫

(

∏

k 6=i

H (ti + x− tk)

)(

∑

k 6=i

(

d

de i

g−1
ek

(

ge i (ti + x)
)

)∣

∣

∣

∣

e∗1=...=e∗n=e∗

h (ti + x− tk)
H (ti + x− tk)

)

h (x)dx,

must be the same for all i. Denote ∆t = t1 − t > 0. For player 1, we have,

∫

(

∏

k 6=1
H (∆t+ x)

)(

∑

k 6=1

(

d

de1
g−1

ek

(

ge1 (t1 + x)
)

)∣

∣

∣

∣

e∗1=...=e∗n=e∗

h (∆t+ x)
H (∆t+ x)

)

h (x)dx.
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For any other player i ∈ {2, ...,n}, we have

∫

(

H (−∆t+ y)
∏

k 6=1,i
H (y)

)(

(

d

de i

g−1
e1

(

ge i (t+ y)
)

)∣

∣

∣

∣

e∗1=...=e∗n=e∗

h (−∆t+ y)
H (−∆t+ y)

+
∑

k 6=1,i

(

d

de i

g−1
ek

(

ge i (t+ y)
)

)∣

∣

∣

∣

e∗1=...=e∗n=e∗

h (y)
H (y)

)

h (y)d y.

The map φ1 :Rx →Ry given by x → y=∆t+x is a smooth diffeomorphism with det |φ′
1(x)| =

1. Applying the associated change of variables to the preceding expression, we obtain

∫

(

H (x)
∏

k 6=1,i
H (∆t+ x)

)(

(

d

de i

g−1
e1

(

ge i (t1 + x)
)

)∣

∣

∣

∣

e∗1=...=e∗n=e∗

h (x)
H (x)

+
∑

k 6=1,i

(

d

de i

g−1
ek

(

ge i (t1 + x)
)

)∣

∣

∣

∣

e∗1=...=e∗n=e∗

h (∆t+ x)
H (∆t+ x)

)

h (∆t+ x)dx.

The expressions for the two types of players can be restated as

∫

(

H (x)
∏

k 6=1
H (∆t+ x)

)(

∑

k 6=1

(

d

de1
g−1

ek

(

ge1 (t1 + x)
)

)∣

∣

∣

∣

e∗1=...=e∗n=e∗

h (∆t+ x)
H (∆t+ x)

)

h (x)
H (x)

dx,

∫

(

H (x)
∏

k 6=1
H (∆t+ x)

)(

(

d

de i

g−1
e1

(

ge i (t1 + x)
)

)∣

∣

∣

∣

e∗1=...=e∗n=e∗

h (x)
H (x)

+
∑

k 6=1,i

(

d

de i

g−1
ek

(

ge i (t1 + x)
)

)∣

∣

∣

∣

e∗1=...=e∗n=e∗

h (∆t+ x)
H (∆t+ x)

)

h (∆t+ x)
H (∆t+ x)

dx.

Notice that both expressions are equal to zero for x ≥ −∆t. Hence, they can be restated

as

∫−∆t
(

H (x)
∏

k 6=1
H (∆t+ x)

)(

∑

k 6=1

(

d

de1
g−1

ek

(

ge1 (t1 + x)
)

)∣

∣

∣

∣

e∗1=...=e∗n=e∗

h (∆t+ x)
H (∆t+ x)

)

h (x)
H (x)

dx,

∫−∆t
(

H (x)
∏

k 6=1
H (∆t+ x)

)(

(

d

de i

g−1
e1

(

ge i (t1 + x)
)

)∣

∣

∣

∣

e∗1=...=e∗n=e∗

h (x)
H (x)

+
∑

k 6=1,i

(

d

de i

g−1
ek

(

ge i (t1 + x)
)

)∣

∣

∣

∣

e∗1=...=e∗n=e∗

h (∆t+ x)
H (∆t+ x)

)

h (∆t+ x)
H (∆t+ x)

dx.

For x <−∆t, we observe h(x)
H(x) =

h(∆t+x)
H(∆t+x) =λ, and the expressions become

λ2
∫−∆t

(

H (x)
∏

k 6=1
H (∆t+ x)

)(

∑

k 6=1

(

d

de1
g−1

ek

(

ge1 (t1 + x)
)

)∣

∣

∣

∣

e∗1=...=e∗n=e∗

)

dx,

λ2
∫−∆t

(

H (x)
∏

k 6=1
H (∆t+ x)

)(

∑

k 6=i

(

d

de i

g−1
ek

(

ge i (t1 + x)
)

)∣

∣

∣

∣

e∗1=...=e∗n=e∗

)

dx (11)
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which are identical.

B.2 Computations for Example 7

The first-order condition (9) is equivalent to (we ease notation by writing e instead of

e(θ))

c′(e)
∂g/∂θ

∂g/∂e
− f (n−1) (θ)V + c′(e)

de

dθ
= 0, (12)

which can be restated as

P (θ, e)+Q (θ, e)
de

dθ
= 0,

with P (θ, e) := c′(e)∂g/∂θ
∂g/∂e

− f (n−1) (θ)V and Q (θ, e) := c′ (e).

Is there an integrating factor µ (θ, e) such that ∂(µP)
∂e

= ∂(µQ)
∂θ

? In other words, is there

µ (θ, e) such that
∂µ

∂e
P +µ

∂P

∂e
=

∂µ

∂θ
Q+µ

∂Q

∂θ
?

The latter equation can be stated as

∂µ

∂e

(

c′(e)
∂g/∂θ

∂g/∂e
− f (n−1) (θ)V

)

+µ

(

c′′(e)
∂g/∂θ

∂g/∂e
+ c′(e)

∂2 g/∂θ∂e ·∂g/∂e−∂g/∂θ ·∂2 g/∂e2

(∂g/∂e)2

)

=
∂µ

∂θ
c′ (e) .

Now, for our example, assume g (θ, e) = θe and c(e) = 0.5e2, and ignore the argument

θ in e(θ). Then the equation simplifies to

∂µ

∂e

(

e2

θ
− f (n−1) (θ)V

)

+µ
(

2
e

θ

)

=
∂µ

∂θ
e.

Suppose that ∂µ

∂e
= 0. Then µ needs to satisfy

µ
2

θ
=

∂µ

∂θ

and a solution is µ (θ, e)= θ2 (confirming ∂µ

∂e
= 0).

Using g (θ, e)= θe and c(e)= 0.5e2, our differential equation (12) can be stated as

e2

θ
− f (n−1) (θ)V + e

de

dθ
= 0,
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and multiplication with µ (θ, e)= θ2 leads to

θe2 −θ2 f (n−1) (θ)V + eθ2 de

dθ
= 0.

An integral is

L (θ, e(θ))=
e(θ)2θ2

2
−V

∫θ

0
x2 f (n−1) (x)dx,

which can easily be verified by computing dL(θ,e(θ))
dθ

.

With a general distribution, effort is given by the solution to

e(θ)2θ2

2
−V

∫θ

0
x2 f (n−1) (x)dx = ĉ

⇔ e (θ)=

√

2V

θ2

∫θ

0
x2 f (n−1) (x)dx+

2ĉ

θ2
,

where ĉ is some constant.

Using the assumption that skills are uniformly distributed on [0,1] (implying f (x)= 1

and F (n−1)(t) = tn−1 ⇒ f (n−1)(t) = (n−1)tn−2), we can compute effort and expected effort.

In particular,

∫θ

0
x2 f (n−1) (x)dx = (n−1)

∫θ

0
xndx =

n−1

n+1
θn+1,

meaning that the integral becomes

L (θ, e)=
e2θ2

2
−V

n−1

n+1
θn+1.

Hence, the solution to the differential equation is given by

1

2
e2θ2 −V

n−1

n+1
θn+1 = ĉ,

where ĉ is some constant. Solving for e, we obtain

e (θ)=

√

2V
n−1

n+1
θn−1 +

2ĉ

θ2 .

Conjecturing e (0)= 0, we have ĉ = 0 and

e (θ)=

√

2V
n−1

n+1
θn−1.
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It follows that expected effort is

E [e (θ)]=

√

2V
n−1

n+1

∫1

0
x

n−1
2 dx =

√

8V
n−1

(n+1)3 ,

which is strictly decreasing in n.

It is straightforward to verify that the equilibrium effort function satisfies e(0) = 0

and is strictly increasing in the skill θ. This implies that for any given skill θ, output

g(θ, e(θ))= θe(θ) is increasing in skill as well, and the inverse z−1 exists.
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