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Abstract 

 

Robots are continuously transforming industrial production worldwide and thereby also 
inducing changes in a variety of production-related economic and social relations. While 
some observers call this transformation an unprecedented "revolution", others regard it as a 
common pattern of capitalist development. This paper contributes to the literature on the 
effects of the rise of industrial robots in three ways. Firstly, we describe the historic evolution 
and organizational structure of the International Federation of Robotics (IFR), which collects 
data on the international distribution of industrial robots by country, industry, and application 
from industrial robot suppliers worldwide since 1993. Secondly, we extensively analyze this 
IFR dataset on industrial robots and point out its specificities and limitations. We develop a 
correspondence table between IFR industry classification and the International Standard 
Industrial Classification (ISIC) Revision 4 and shed some light on the price development of 
industrial robots by compiling data on robot price indices. We further compute implicit 
depreciation rates inherent to the operational stocks of robots in the IFR dataset and find an 
average depreciation rate of aggregate robot stocks between 4% and 7% per year between 
1993 and 2019. Moreover, tracking the share of industrial robots that are not classified to any 
industry or application we find that their share in total robot stocks has sharply declined after 
2005. The average value of 45% of unspecified industrial robots at country level is therefore 
likely to shrink in the future. We also compare IFR data with other data sources such as UN 
Comtrade data on net imports and unit prices of industrial robots or data on robot adoption 
from firm-level surveys in selected countries. Thirdly, we provide a comprehensive overview 
of the empirical research on industrial robots that is based on the IFR dataset. We identify 
four important strands of research on the rise of robots: (i) patterns of robot adoption and 
industrial organization, (ii) productivity and growth effect of robot adoption, (iii) its impact 
on employment and wages, and (iv) its influence on demographics, health, and politics.  

Keywords: Robots, productivity, growth, employment, industry classification, depreciation 
rates, IFR 
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1. Introduction 

Robots are continuously transforming industrial production worldwide and thereby also 
inducing changes in a variety of production-related economic and social relations. While 
some observers call this transformation an unprecedented "revolution", others regard it as a 
common pattern of capitalist development. The academic research on the impact of robots on 
the economy and society has received a major boost by two seminal papers that have led 
methodical foundations for fruitful further studies: Acemoglu/Restrepo (2017; 2020) and 
Graetz/Michaels (2018). The latter deals with labor productivity effects induced by increased 
robot adoption whereas the former investigates the labor market effects of robotization. Both 
papers as well as most others dealing with the impact of robotization base their empirical 
investigation on a special data set on industrial robots put together and published by the 
International Federation of Robots (IFR). Given the crucial role of the IFR data set in robot 
research we see the necessity for a detailed survey that presents the characteristics of IFR, the 
specifics of the data set and the major findings of its use in academic studies.   

We will proceed as follows: Firstly, in Section 2 we describe the historical evolution and 
organizational structure of the IFR, which collects data on the international distribution of 
industrial robots by country, industry, and application from industrial robot suppliers 
worldwide since 1993. In Section 3, we extensively analyze this IFR dataset on industrial 
robots and point out its specificities and limitations. In Section 4, we provide a 
comprehensive overview of the empirical research on industrial robots that is based on the 
IFR dataset. We identify four important strands of research on the rise of robots: (i) patterns 
of robot adoption and industrial organization, (ii) productivity and growth effect of robot 
adoption, (iii) its impact on employment and wages, and (iv) its influence on demographics, 
health, and politics. Finally, in Section 5 we are able to distinguish the revolutionary from the 
traditional aspects of the rise of robots.  

 

 

   



 

 

2. The story of IFR 

2.1 Members of IFR 
The International Federation of Robotics (IFR) is the international association of the robotics 
industry and of selected research institutes in the field of robotics as well as an umbrella 
organization of all national robotics associations. IFR was established as a non-profit 
organization in 1987. Initially, it started as the international association of several national 
robotics associations and its General Secretariat was hosted by the Swedish Industrial Robot 
Association (SWIRA), located at "Sveriges Mekanförbund" in Stockholm. In 2003, the 
General Secretariat was moved to the French Association for Manufacturing (SYMOP) in 
Paris. In the same year, the IFR Statistical Department moved to the German Mechanical 
Engineering Industry Association (VDMA) in Frankfurt. Since March 2008 also the IFR 
General Secretariat is based in Frankfurt. 
 
In 2006, apart from industry associations, R&D institutes with a major focus on robotics 
became eligible for membership according to the IFR constitution, and since 2013 also robot 
suppliers are full members of IFR. Before 2013, robot manufacturers could only obtain the 
status of a “partner”, just like universities and research centers not otherwise eligible for 
membership. Accordingly, participating members of IFR are today divided into three 
membership categories: i) industry associations, ii) R&D institutes, and iii) robot suppliers. 
From each geographical area only one association can be an industry association member. At 
present, IFR counts 69 members from more than 20 countries, of which 16 are national 
industry associations, 9 are R&D institutes and the remaining 44 are robot suppliers. 20 of the 
robot suppliers produce industrial robots and the other 24 are either component suppliers, 
robot integrators or service robot suppliers. End users of robotics technologies, however, are 
not eligible for membership in IFR. Table 1 lists all 16 national robotics associations. 
 

<<< insert Table 1 here  >>> 
 

 

2.2 Organizational structure 
The organizational structure of IFR mirrors its historic evolution and is illustrated in Figure 1. 
The General Assembly (GA) is the main governing body of IFR. It decides on budgetary 
affairs as well as amendments of statutes and IFR services. Not all IFR members are 
represented in the GA. Each national industry association member sends one representative 
with voting rights to the GA, typically a director or board member of a robot manufacturing 
or integration company. Industry association members from a geographical area, in which 
more than 10,000 operational industrial robots are installed, can send a second representative 
with voting rights to the GA, who might be an employee of the respective association.  
 

<<< insert Figure 1 here >>> 
 
R&D institute members form the Research Committee (RC), which aims at stimulating 
research and development in the field of robotics. Each R&D institute member can send one 
representative to the RC, which in turn nominates six representatives (chairman + 5 
members) with voting rights for the GA. Robot suppliers are organized in the Robot 
Suppliers Committee (RSC). Each robot supplier member is allowed to send one 
representative to the RSC, which in turn nominates six representatives (chairman + 5 
members) with voting rights for the GA. The RSC mainly deals with statistics on the robotics 
market by deciding on structure and changes in the classification of the IFR robot data, while 



 

 

the IFR Statistical Department is the executive body that collects and analyses the data. The 
RSC is also responsible for forecasts of robot installations. Overall, the GA is composed of 
representatives of industry association member, delegates from the RSC and the RC, the IFR 
President and Vice President, the Secretary General (who does not have voting rights), and 
possibly additional observers that are appointed by the Executive Board (EB).  
 
The EB is composed of a maximum of 15 voting members, including the IFR President, who 
represents the EB, the Vice President, the chairman and another nominated member of the 
RC, two elected RSC members, 11 representatives of industry association members, and the 
Secretary General, who is a member without voting rights. Except for the two members of the 
RC, all other EB members with voting rights are elected by the GA to serve for a term of two 
years. Of the 11 industry association representatives, two come from North America, three 
from Europe, four from Asia, and two further members from any geographical area. The IFR 
President and Vice President are to be elected among the EB members and should be 
representatives of well-known manufacturing companies in the field of robotics. The IFR 
President presides at all EB meetings that take place at least two times per year. The EB is 
responsible for IFR’s strategic orientation, which must be confirmed by the GA, and is 
supposed to assist all other IFR bodies so that their tasks and projects can be performed 
efficiently. It is empowered to manage the affairs of IFR between meetings of the GA, directs 
the activities of the General Secretariat, and represents IFR externally. 
 
The General Secretariat is responsible for the daily management of IFR, administration of its 
assets, and coordination of all major activities. It is established following an EB’s decision 
for a minimum period of four years and is represented by the Secretary General, who is 
appointed by the EB. In more detail, the General Secretariat is supposed to act as a “service 
center” for IFR members and a contact point for other international organizations. It manages 
the recruiting of new members, publishes a quarterly IFR robotics newsletter, and cooperates 
with the EB in developing an annual business plan and budget for IFR. Admission to 
membership requires a written application to the General Secretariat, which is subsequently 
approved or rejected by the EB. 
 
A further organizational structure enshrined in the constitution of IFR are several Working 
Groups that perform sector and industry specific tasks related to robotics. Any IFR member 
can become a member of a Working Group. Each Working Group must report to the EB on 
its activities at least once per year. In October 2002, an IFR Service Robotics Group was 
founded. In subsequent years, planning of a formal Working Group on service robots started 
as the members recognized the growing market and the distinct properties of service robots in 
contrast to industrial robots. In 2006, the “Working Group Service Robots“ was officially 
established and focuses on statistics and market development in the field of service robots.  
 
A so-called “Marcom Committee” was established in 2015, on the initiative of the RSC. It 
gathers marketing and communication experts of national industry associations, robot 
suppliers, and R&D institutes and is responsible for marketing and PR activities. The 
“Marcom Committee” is not yet anchored in the constitution of the IFR because the latest 
version of the constitution is from 2013. With the next amendment of the statutes, it will be 
mentioned in the constitution and decided if it obtains the status of a committee or a working 
group.  
 
 
 



 

 

2.3 Areas of activities 
IFR describes its operational framework in the following way: “The general purpose of the 
IFR is to promote research, development, use and international co-operation in the entire field 
of robotics, to act as a focal point for organizations and governmental representatives in 
activities related to robotics” (IFR 2021). Its self-defined aim consists in “promoting the 
positive benefits of robots for productivity, competitiveness, economic growth and quality of 
work and life”. In order to serve its purpose, the activities of IFR cover the following four 
areas: 1) statistics, 2) market analysis & market expansion, 3) positioning & communication, 
and 4) networking. These are all typical tasks for an association that represents members of 
an innovative industry cluster, reaches out to the various stakeholders and links them in joint 
activities such as trade fairs or conferences. As already investigated by Weder/Grubel (1993) 
or Klump (1996) for other industries such activities lay the institutional foundations for 
further innovations and growth within the cluster.   
 
1) The IFR Statistical Department, located at VDMA in Frankfurt, annually publishes data on 
the worldwide robotics market that are commercially provided to researchers. Since 2009, 
data on industrial and service robots are analyzed in two separate reports. Previously, service 
robot data were examined within one chapter of the single World Robotics Report. Now they 
appear in a separate publication, the annual World Robotics Service Robots report. The main 
data source on industrial robots is the World Robotics Industrial Robots (WRIR) report that 
always contains five thematic blocks: first, the worldwide distribution of industrial robots is 
analyzed in terms of installations, stocks, and robot density. IFR defines robot density as the 
number of industrial robots in operation (i.e. operational stock) per 10,000 persons employed. 
Second, country/region reports explore the geographical distribution of industrial robots by 
analyzing their usage in single countries or regions. Third, installations of industrial robots 
for the current and the following two years are forecasted. Fourth, case studies illustrate the 
profitability and practical benefit of industrial robots. Fifth, the report is rounded off by 
special features summarizing topical issues in the field of robotics.  
 
As early as 1973 the United Nations Economic Commission for Europe (UN-ECE) had 
started with collecting, processing, and analyzing worldwide statistics on industrial robots. 
UN-ECE closely collaborated with IFR since the association was founded in 1987. The 
responsibility for the World Robotics Statistics was transferred to the IFR Statistical 
Department from 2003 onwards. In 2005, the IFR Statistical Department fully compiled the 
World Robotics Statistics for the first time but was still published by UN-ECE. Since 2006, 
the IFR Statistical Department has published the World Robotics Statistics regularly.  
 
2) IFR helps manufacturers and integrators of robots to enter new markets. For this purpose, 
the association serves as a platform for sharing information on current technological and 
economic trends in the global robot market. While being established in the robotics market is 
a prerequisite for companies to become a member of IFR, market expansion is supported 
through networking activities and exchange of experiences. Moreover, IFR helps in founding 
new robot associations in countries or regions where previously no appropriate association 
structures did exist.  
 
3) IFR represents the interests of its members in the public debate and, therefore, shapes and 
conveys the robotics industry’s position on policy-relevant topics such as “collaborative 
robots, artificial intelligence and the workplace of the future” (IFR 2021). Press releases and 
regular IFR Executive Roundtable (ER) discussions that usually take place in conjunction 
with major international trade fairs are supposed to inform the public and policy makers on 



 

 

key topics.1 The ER discussions are organized as panel discussions. Typically, prior to the ER 
discussions, the most recent World Robotics Statistics are presented. Media representatives 
are the main target group of the ER discussions, which are organized by the General 
Secretariat and the Marcom Committee that selects topics and speakers. Panelists are 
typically important CEOs of robot suppliers; depending on the topics, end users of robotic 
technologies and policy makers might also be invited. Apart from organizing ER discussions, 
IFR also publishes position papers to convey its stance on topics related to robotics. Thereby, 
IFR advocates global, national, and local policies fostering robot adoption.  
 
4) IFR brings its members into contact with each other for exchanging opinions and ideas. 
Regular meeting points are the international trade fairs mentioned above. Thereby, the 
association aims to promote alliances and partnerships among its members, especially in 
research and development. For this end, IFR also sponsors the International Symposium on 
Robotics (ISR), a conference on industrial and service robotics held since 1970. Always one 
of the national robot associations applies for organizing ISR in conjunction with its respective 
international robotics trade fair. Participants of ISR are typically R&D representatives of 
companies in the field of robotics and usually come from engineering or natural sciences. The 
focus is generally on application-oriented technological topics, but also key performance 
indicators of robots in the production process can be discussed. IFR further enables 
networking activities by cooperating with other national and international robotics 
organizations as well as by interacting with international organizations such as the 
Organisation for Economic Co-operation and Development (OECD), the United Nations 
Industrial Development Organization (UNIDO), or the World Economic Forum (WEF). In 
order to stimulate robotics-related research and to support links between industry and science, 
the IFR sponsors the IERA2 award together with the IEEE Robotics and Automation Society 
(IEEE/RAS).3 Firms with specific marketable innovations can apply for this award. 
Responsibility for the award ceremony alternates between IFR and IEEE/RAS.  
  

 
1 Major robotic trade fairs take place in Germany, the USA, Russia, China, and Japan: “automatica” in Munich 
taking place in even years and “AUTOMATE” in Detroit (until 2019 in Chicago) in uneven years; 
“INNOPROM” in Ekaterinburg; “China International Robot Show (CIROS)” in Shanghai and “Int’l Robotics & 
Automation Conference & Exhibition (iRACE)” in Shenzhen; the International Robot Exhibition “iREX” in 
Tokyo. 
2 IERA stands for "Innovation and Entrepreneurship in Robotics and Automation". 
3 IEEE, the Institute of Electrical and Electronics Engineers, is the largest technical professional organization 
worldwide with more than 400.000 members. RAS is a society within IEEE with a special focus on robotics and 
automation, including theoretical and applied issues.  



 

 

3. The IFR data base on industrial robots 

3.1 Installations and stock of robots 
By documenting the number of robots newly installed worldwide per year as main indicator, 
IFR aims at giving a comprehensive overview on the global dissemination of industrial robots 
since 1993, the initial year of time series in the IFR dataset (IFR 2020, 21). It uses the term 
“industrial robot” based on the definition of the International Organization for 
Standardization (ISO). According to ISO standard 8373:2012 (§ 2.9), an industrial robot is an 
“automatically controlled, reprogrammable multipurpose manipulator programmable in three 
or more axes, which can be either fixed in place or mobile for use in industrial automation 
applications.” Thus, industrial robots are fully autonomous machines that do not require a 
human operator and can be re-programmed to perform several tasks such as welding and 
soldering, dispensing (e.g. painting/ enameling), (dis-) assembling, handling operations or 
processing (e.g. cutting or grinding). Single-purpose automation technology such as 
elevators, conveyors or weaving- and knitting machines are not covered by the above 
definition because they cannot be re-programmed to conduct other tasks, need a human 
operator, or both. Therefore, the IFR dataset only refers to a specific kind of industrial 
automation. Nevertheless, it covers more than 90% of the global market for industrial robots 
(Dauth et al. 2017, 9f.; Acemoglu/Restrep0 2020).  
 
IFR collects data on industrial robot installations for its annual WRIR statistics and report by 
means of two separate questionnaires from nearly all industrial robot suppliers worldwide: 1) 
annual installations by country and application; 2) annual installations by country and 
customer industry. Both questionnaires are composed of six separate sheets, one for each type 
of robots: Articulated robots, Cartesian robots, Cylindrical spherical robots, Parallel/ Delta 
robots, SCARA robots, and Others.4 Primary data reported by industrial robot suppliers are 
supplemented by secondary data that have been collected by national robot associations on 
their national robot markets. On the one hand, these secondary data are used to validate the 
primary data. On the other hand, the secondary data are used to fill in missing information of 
companies not reporting to IFR directly. Data are generally only published in aggregated 
form, by geographical entity, industry, or application. Company level data are not publicly 
available. The IFR dataset distinguishes five geographical entities (from lowest to highest 
hierarchy level): i) survey items, usually a single country, ii) country groups, iii) regions, iv) 
continents, and v) the whole world. Table A.2 lists all geographical classes in the IFR data 
set. 
 
Data processing includes two consistency checks: At first, the IFR checks if the total values 
by country in both questionnaires - for applications and for industries - match. Secondly, it is 
scrutinized if the IFR data are consistent with national associations’ data. Moreover, data 
processing involves the removal of double counting when secondary data are incorporated. 
Lastly, an automated compliance verification ensures adherence to compliance rules (see 

 
4 Classification by mechanical structure according to IFR (2020): 
- Articulated robot: a robot whose arm has at least three rotary joints. 
- Cartesian (linear/gantry) robot: a robot whose arm has three prismatic joints and whose axes are correlated 

with a cartesian coordinate system. 
- Cylindrical robot: a robot whose axes form a cylindrical coordinate system. 
- Parallel/ Delta robot: a robot whose arms have concurrent prismatic or rotary joints. 
- SCARA (Selective Compliance Assembly Robot Arm) robot: a robot, which has two parallel rotary joints 

to provide compliance in a plane. 
- Others: robots not covered by one of the above classes. 



 

 

section 3.4 below). Sometimes, minor revisions occur in the dataset by updating the data on 
robot installations in previous years if new information becomes available. 
 
Within the WRIR report the expressions “shipments” and “installations” of industrial robots 
are used interchangeably. Theoretically, the IFR statistics aim at counting the actual 
installation of robots at the customer’s site. Practically, the available data, however, often 
refers to the shipment of robots. The IFR (2020, 22) points to the possibility that shipment 
and installation data might differ for two reasons: Geographical deviations can occur, if - 
without the knowledge of the supplier - a reseller installs robots in a different country than 
the supplier shipped it to (i.e. re-exports). Temporal deviations are possible as the time of 
installation might be significantly later than the shipment, e.g. because the robot is en route, 
is stored in an inventory or is work-in-progress at the robot integrator, such that a robot 
shipped might be not yet installed at year-end. This is also relevant since data on robot 
installations are used to construct estimates of the operational stock of industrial robots at the 
end of the year. While installations are flow values, the stock values are supposed to measure 
the number of robots currently deployed. The Japanese national robot association JARA 
calculates this figure for Japan. For all other countries, the IFR computes the operational 
stock of robots assuming an average service life of 12 years with immediate withdrawal from 
service afterwards (IFR 2020, 22). In other words, the IFR assumes that installed robots must 
be replaced by new robots after 12 years of usage. This corresponds to a one-hoss shay model 
of depreciation since the robots are assumed to exhibit no decay during their service life 
(Jungmittag 2020). This further implies that the operational stock in all IFR member 
countries except Japan equals the sum of robot installations over 12 years.  
 
3.2 Robot prices 

The IFR provides both unit prices and price indices for robots. Unfortunately, both unit prices 
and price indices are neither available for the entire time period of the IFR database nor for 
all countries. In addition, information on robot prices cannot be downloaded directly as a 
time series but has to be gathered from the annual WRIR reports. Average unit prices are 
only provided until 2009 by the annual reports but can be easily calculated as they are 
turnover based. The producer price indices with base year in 1990 start in that same year but 
are only available until 2005. 
 
Unit prices are calculated through total market turnover divided by the number of robots 
delivered. Total turnover in current prices is expressed in historical local currency and then 
converted by the IFR into US Dollar at exchange rates that are taken from the Monthly 
Bulletin of the United Nations. Both values are published. The value of the market for robots 
can be found in Table 2.3 of the annual WRIR. Average unit prices are no longer published 
but can be found until 2009 in chapter 3 of the WRIR report and since 2009 in chapter 2. 
Data coverage for total market values begins in 1985 with prices for 6 countries and one 
country group: Japan, North America, Germany, Italy, France, UK, and Rep. of Korea. Some 
of the reports with historical data running to 1990 can only be found in print copies in the 
archives of the IFR at the VDMA headquarters in Frankfurt.5 Currently, total market values 
for robots and thus unit prices are only available for 5 countries: China, North America6 , 

 
5 Only for some countries information on prices is available from 1985 onwards. 
6 Prior to the WRR 2011 North America was called US, but it contained price data on Canada and Mexico, just 
as the installations and the robot stock contained information on Canada and Mexico as well.  As the IFR points 
out, this is due to the distributional structure of the North American robot market. All robots are shipped first to 
the US and are then exported to Canada and Mexico. After 2011 the North American Robotic Association began 



 

 

Germany, Rep. of Korea and Japan. Total market values for France have ceased to be 
published in 2006, the last year covered being 2005. However, in the case of France, average 
unit prices up to 2008 are available from the WRIR published in 2008. Data on total market 
value for Italy are reported for the last time in 2006, and information on average unit prices 
stops there as well. The UK is covered until 2018.7 China appears first in the WRIR of 2013 
and dates back to 2007. The Chinese values are solely based on IFR estimates, while for all 
other countries the market values are reported by the respective national robotics 
associations. 
 
Calculating unit prices through total market values has the disadvantage that it does not 
account for different qualities and sizes of robots. One only receives an average price. This, 
however, is a drawback of the entire robotics database as each robot delivered is counted as 
one unit irrespective of its size or quality. Apparently, many robots sold in recent years are 
smaller sized robots and are therefore lower priced causing the average robot price to decline 
(IFR 2020, 51). Also, a robot is not installed by itself but rather forms a system with 
computer technology, software and peripherals. These costs are, however, not included in the 
market value and thus the average unit price. The IFR assumes that these additional 
components could increase the value of the installed robots significantly as the robot unit 
alone only constitutes roughly 1/3 of the cost of the whole system. A way to resolve the issue 
of different sizes and complexities of robots delivered and furthermore to take into account 
quality changes over time is to express robot prices as an index. Along these lines, the IFR 
has constructed two producer price indices, both with base year 1990, one without and one 
with quality changes. The price indices are reported from 1990-2005 and are expressed using 
both current exchange rates (see Table 3a) and in fixed conversion rates against the US$ (see 
Table 3b). The information needed for constructing these price indices was provided by 5 
multinational robot producing companies who reported list prices on 2 different, clearly 
defined robot models for each year. In addition, the firms reported also on several pre-
specified electronic and mechanical characteristics shedding light on quality changes.  
 

<<< insert Tables 3a and 3b here >>> 
 
In order to construct the quality-adjusted price index, the IFR resorts to a producer price 
mark-up method.  A robot is composed of three parts: a control unit (usually a computer), a 
mechanical unit with changing characteristics (such as arms, drives, sensors ect.) and 
mechanical parts which are time-invariant (such as casings and steel structures).  
These components are assigned weights by which each component enters the overall price 
adjustment (20 % control unit and 40 % for each mechanical component). The price decline 
of the control unit is measured via the US producer price for computers. For the mechanical 
parts it is more difficult. Therefore, changes in 4 characteristics8 of the mechanical parts are 
monitored and it is assumed that costs would increase proportionally to the their 
improvements. 9. The IFR is then able to calculate what a robot would have cost in each year 

 
to report installations for the US, Canada and Mexico separately. However, information on prices is still for all 
of North America. 
7 The UK Robotic Association has ceased to report data on market values. For some time, the IFR estimated the 
market values but has ultimately discontinued the time series for the UK. 
8 These characteristics with their respective weights in brackets are : Total handling capacity in kg / maximum 
payload (0.2),  repetition accuracy in mm (0.3),  total aggregated speed of all six axes in degrees per second 
(0.3),  total maximum reach in mm (0.2).  
9 A detailed account of this procedure can be found in the WRIR of 2006, Annex C. 



 

 

of the time series with the characteristics of a robot in 2005.10 The weighted price increases 
that are due to an increase in the characteristics are added as a mark-up to the actual price of 
the robot in the respective year. The quality-induced price change is then the difference 
between this counterfactual price and the actual price. One has to be aware, however, that this 
procedure does not yield a price index in the usual sense where the quality of a robot remains 
constant while the price changes. Instead, here quality evolves and the price is corrected 
backwards. The price index provided by the IFR, therefore, measures what a robot with the 
characteristics of a robot in 2005 would have cost in previous years instead of asking how 
much a replacement robot would cost if the quality remained the same. 
 
The indices with current exchange rates are calculated for 6 countries - US, Italy, France, 
Germany UK and Sweden - and are published in the WRIR of 2006, chapter 3.11 As the IFR 
points out in the WRIR of 2006, the price indices (not quality adjusted as well as quality 
adjusted, see Table 3c) with a fixed conversion rate against the 1990 US$ can be viewed as a 
general price index since it lacks the exchange rate dimension whereas the price indices with 
current exchange rates are only applicable to the respective countries. A substantial part of 
the price decline in current US$ is actually due to exchange rate fluctuations. This is not 
surprising as roughly 90% of the robot producing companies originate from Europe. The 
price decline without quality adjustment between 1990 and 2005 has been in the order of 
40% to 60 %, depending on the country. Accounting for quality changes leads to a more 
pronounced price decline: a robot installed in 2005 costs less than a quarter compared to one 
installed in 1990.12 
 
 
3.3 Industry classification 
Data on industrial robots are collected for 11 broad manufacturing categories, for six broad 
non-manufacturing categories, and for one category "Unspecified". The IFR industry 
classification is based on the International Standard Industrial Classification of All Economic 
Activities (ISIC) revision 4 (United Nations 2008). Within manufacturing, industry 
disaggregation is available at the two- or three-digit level. Three-digital-level data are only 
reported for ISIC divisions 26, 27, and 29, i.e. electronics and automotive industries which 
are also the most important users of industrial robots (c.f. Figure 5b). The six non-
manufacturing industries are solely at the two-digit-level. However, the IFR industry classes 
deviate from the classes in ISIC rev. 4, making a perfect match between both classifications 
impossible. The most important complication for the matching process is created by the 
IFR’s more detailed focus on the automotive industry: automotive parts are separated from all 
relevant ISIC categories and used for a finer granularity of the IFR industry class 
“Automotive parts”. So, for instance the manufacture of rubber and plastics products 
(division 22 in ISIC rev. 4) that end up as automotive parts are taken out of that ISIC 
category and grouped as a subclass of “Automotive parts”. Thus, the IFR industry 
classification contains a category “Rubber and plastic products (non-automotive)” and a 
separate category “Rubber and plastic (AutoParts)”. The reason behind this procedure is the 

 
10 There were actually 2 surveys, one running from 1990-1999 and one from 2001-2005. The resulting indices 
were chain linked. 
11 There are releases in earlier publications but the most up to date one can be found in the 2006 report. 
12 Until 2009 the IFR had also reported a price index with base year 1990 (up to 2005 with base year 1989).  In 
contrast to the former producer price indices, this price index was based on average unit prices and did neither 
account for robot heterogeneity nor quality improvements. Together with the individual reporting of average 
unit prices, this index has ceased to be published after 2009. 



 

 

high share of customers from the automotive sector in the robotics market. Table 4 serves as 
correspondence table between IFR classification and ISIC rev. 4 using basic set theory.  
 

<<< insert Table 4 here >>> 
 
The highest level of aggregation in the IFR dataset is obtained by the class “All industries” 
(code 0) and serves as parent class for all other IFR classes. The IFR classification is 
organized by eight broad classes (with parent code 0): “Agriculture, forestry fishing”, 
“Mining and quarrying”, “Manufacturing”, “Electricity, gas, water supply”, “Construction”, 
“Education/research/development”, “All other non-manufacturing branches”, and 
“Unspecified”. Within the manufacturing sector, eleven classes of manufacturing activities 
are distinguished: “Food and beverages”, “Textiles”, “Wood and furniture”, “Paper”, “Plastic 
and chemical products”, “Glass, ceramics, stone, mineral products (non-auto)”, “Metal”, 
“Electrical/electronics”, “Automotive”, “Other vehicles” and “All other manufacturing 
branches”. Four of these manufacturing classes are further divided into sub-classes: “Plastic 
and chemical products”, “Metal”, “Electrical/electronics”, “Automotive”. The number of 
robot installations in the dataset always results from summation of all the sub-classes of a 
branch, i.e. the number of robot installations at the level of “Plastic and chemical products” 
results from adding up all the robot installation in the sub-classes of that IFR class. The 
number of robots in the manufacturing sector is obtained from summation over all the 
manufacturing classes. Accordingly, the total number of robots in the economy across all 
industries (parent class “All industries”) is the sum of all 8 broad classes distinguished in the 
IFR dataset. The total number of robots can also be obtained from adding up the eleven 
manufacturing classes, the six non-manufacturing classes (“Agriculture, forestry fishing”, 
“Mining and quarrying”, “Electricity, gas, water supply”, “Construction”, 
“Education/research/development”, “All other non-manufacturing branches”) and the 
category “Unspecified”. 
 
The first two IFR classes are equal to the first two ISIC sections: “Agriculture, forestry, 
fishing” has the same title as section A of ISIC rev. 4 and corresponds to ISIC divisions 01-
03. “Mining and quarrying” has the same title as ISIC section B and corresponds to ISIC 
divisions 05-09. The third broad IFR class is “Manufacturing” and comprises 11 sub-classes, 
which in turn are partly divided into even more specific industrial categories. At aggregated 
level, IFR class “Manufacturing” is equivalent to ISIC section C. The disaggregated 
manufacturing categories in the IFR classification, however, partially deviate from ISIC 
rev. 4. Either the IFR manufacturing categories combine several ISIC divisions and/or ISIC 
groups/ classes, or the IFR classes additionally include or exclude some single elements of 
ISIC categories. In the latter case, a perfect match between the IFR classification and ISIC 
rev. 4 is impossible. Nevertheless, even then we can at least approximately harmonize the 
two industry classifications.  
 
The IFR class “Food and beverages” is equivalent to ISIC divisions 10-12 (“Manufacture of 
food products, beverages, tobacco products”). “Textiles” corresponds to ISIC divisions 13-15 
(“Manufacture of textiles, wearing apparel, leather and related products”). “Wood and 
furniture” combines ISIC division 16 with a part of ISIC division 31, namely wood furniture. 
However, ISIC division 31 comprises furniture “of any material (except stone, concrete and 
ceramic)” (UN 2008, p. 155). Since wood furniture is the biggest component of ISIC division 
31 (Global Market Insights, 2020), we suggest combining ISIC divisions 16 and 31 to get as 
close as possible to the IFR class “Wood and furniture".  
 



 

 

"Paper" comprises ISIC divisions 17 and 18 (“Manufacture of paper and paper products”; 
“Printing and reproduction of recorded media”). The IFR class “Plastic and chemical 
products” is subdivided into four sub-categories and approximately corresponds to ISIC 
divisions 19-22. An exact match is prevented by the exclusion of automotive parts in the IFR 
sub-class “Rubber and plastic products (non-automotive)”. Just as ISIC divisions 19-22, it 
includes rubber tires for bicycles or wheelbarrows but excludes car tires, which are contained 
in the IFR automotive sub-class “Rubber and plastic (AutoParts)”. The sub-class 
“Pharmaceuticals, cosmetics” is equivalent to ISIC division 21 (“Manufacture of 
pharmaceuticals, medicinal chemical and botanical products”) plus ISIC class 2023 
(“Manufacture of soap and detergents, cleaning and polishing preparations, perfumes and 
toilet preparations”). Accordingly, sub-class “Other chemical products n.e.c” comprises ISIC 
divisions 19 and 20 (“Manufacture of coke and refined petroleum products”; “Manufacture of 
chemicals and chemical products”) without ISIC group 2023. The IFR sub-class “Chemical 
products, unspecified” does not correspond to any ISIC class. It simply contains all data 
reports where the exact industrial category among “Plastic and chemical products”, in which 
the robots are used, is either unknown (i.e. not specified by the reporting robot producer) or 
cannot be disclosed due to compliance rules. 
 
Combining IFR-class “Glass, ceramics, stone, mineral products (non-automotive) with 
“Glass (AutoParts)” corresponds to ISIC division 23 (“Manufacture of other non-metallic 
mineral products”). IFR-class “Metal” comprises four sub-classes. The first one, “Basic 
metals” matches ISIC division 24 (“Manufacture of basic metals”). The second one, “Metal 
products (non-automotive)”, is virtually equivalent to ISIC division 25 (“Manufacture of 
fabricated metal products, except machinery and equipment”). One limitation arises from the 
inclusion of metal furniture in the IFR subclass. The IFR-focus on non-automotive metal 
products seems to be a minor issue here, as all metal parts of motor vehicles mentioned in the 
IFR automotive sub-class “Metal (AutoParts)” are also contained in ISIC group 293 
(“Manufacture of parts and accessories for motor vehicles”). Third, “Industrial machinery” 
corresponds to ISIC division 28 (“Manufacture of machinery and equipment n.e.c.”), except 
for the exclusion of the manufacture of lawn mowers from the IFR sub-class. The fourth one, 
“Metal, unspecified” does not have any ISIC equivalent.  
 
The next IFR-class, “Electrical/electronics”, contains eight sub-classes. “Household/domestic 
appliances” approximates ISIC group 275 (“Manufacture of domestic appliances”). In 
contrast to ISIC group 275, the IFR sub-class, however, includes the manufacture of lawn 
mowers and lamps, which are part of ISIC classes 2821 (“Manufacture of agricultural and 
forestry machinery”) and 2740 (“Manufacture of electric lighting equipment”), respectively. 
“Electrical machinery n.e.c. (non-automotive)” approximately is the union of ISIC groups 
271, 272, 273 and 274 (“Manufacture of electric motors, generators, transformers, and 
electricity distribution and control apparatus”; “Manufacture of batteries and accumulators”; 
“Manufacture of wiring and wiring devices”; “Manufacture of electric lighting equipment”, 
except for the exclusion of the manufacture of lamps from the IFR sub-class). A perfect 
match is not possible since electrical/electronic parts that end up in motor vehicles are taken 
out of this IFR subclass and subsumed under the automotive IFR sub-class 
“Electrical/electronics (AutoParts)”. This automotive sub-class, however, contains elements 
that are also registered as parts of motor vehicles under ISIC group 293. Therefore, we cannot 
add “Electrical/electronics (AutoParts)” to “Electrical machinery n.e.c. (non-automotive)” as 
this would shift automotive parts according to ISIC definition that are not covered by ISIC 
groups 271, 272, 273 nor 274. Combining the IFR sub-classes “Electronic 
components/devices” and “Semiconductors, LCD, LED” is equivalent to ISIC group 261 



 

 

(“Manufacture of electronic components and boards”). “Computers and peripheral 
equipment” correspond to the union of ISIC groups 262 and 268 (“Manufacture of computers 
and peripheral equipment”; “Manufacture of magnetic and optical media”). “Info 
communication equipment, domestic and professional (non-automotive)” can be 
approximated by the union of ISIC groups 263 and 264 (“Manufacture of communication 
equipment”; “Manufacture of consumer electronics”). An exact match is again prevented by 
the separation of communication equipment and consumer electronics that ends up in motor 
vehicles, in particular radios and hands-free systems. “Medical, precision, optical 
instruments” also comprises several ISIC groups: 265, 266 and 267 (“Manufacture of 
measuring, testing, navigating, and control equipment; watches and clocks”; “Manufacture of 
irradiation, electromedical and electrotherapeutic equipment”; “Manufacture of optical 
instruments and photographic equipment”). One limitation is that navigation systems used in 
motor vehicles are excluded from the IFR sub-class “Medical, precision, optical 
instruments”, and are instead registered in the sub-class “Electrical/electronics (AutoParts)”. 
The last “Electrical/electronics” sub-class is “Electrical/electronics, unspecified”, which 
again collects all data reports where the exact electrical/electronics industry is unknown or 
cannot be revealed due to compliance reasons, and thus does not have any ISIC equivalent.  
 
The last disaggregated IFR industry class is the automotive sector (class “Automotive”). Its 
first sub-class “Motor vehicles, engines and bodies” is equivalent to the union of ISIC groups 
291 and 292 (“Manufacture of motor vehicles”; “Manufacture of bodies (coachwork) for 
motor vehicles; manufacture of trailers and semi-trailers”). A specific peculiarity of the IFR 
industry classification consists in the fine granularity of sub-class “Automotive parts”. Unlike 
ISIC, the IFR classification further divides parts and accessories of motor vehicles into 
“Metal (AutoParts)”, “Rubber and plastic (AutoParts)”, “Electrical/electronics (AutoParts)”, 
“Glass (AutoParts)” and “Other (AutoParts)”. These categories contain goods that have been 
separated out of the respective broader “non-automotive” IFR classes. Consequently, 
automotive parts in the IFR classification comprise significantly more elements than the 
corresponding ISIC group 293 (“Manufacture of parts and accessories for motor vehicles”). 
In detail, “Rubber and plastic (AutoParts)” includes tires of motor vehicles (part of ISIC class 
2211), rubber hoses and belts (part of ISIC class 2219) as well as plastic hoses and belts (part 
of ISIC class 2220), which all are excluded from ISIC group 293. The only rubber/plastic 
products included in both IFR class “Rubber and plastic (AutoParts)” and ISIC group 293 
seem to be bumpers. Similarly, “Electrical/electronic (AutoParts)” includes navigation 
systems (part of ISIC class 2651), communication equipment for motor vehicles (part of ISIC 
class 2630), electric motors, switchboard apparatus and relays (all part of ISIC class 2710) as 
well as batteries and accumulators (part of ISIC 2720). Generators, alternators, spark plugs, 
ignition wiring harnesses, power window and door systems, assembly of purchased gauges 
into instrument panels, and voltage regulators are contained in both IFR class “Rubber and 
plastic (AutoParts)” and ISIC group 293. Auto glass listed under “Glass (AutoParts)” in the 
IFR classification is no part of ISIC group 293 but included in ISIC group 231. In contrast, 
“Other (AutoParts)” encompasses car seats, safety belts and airbags, which are also part of 
ISIC group 293. As well, all metal parts of motor vehicles mentioned in the IFR definition of 
“Metal (AutoParts)”, namely brakes, gearboxes, axles, road wheels, suspension shock 
absorbers, radiators, silencers, exhaust pipes, catalytic converters, clutches, steering wheels, 
steering columns and steering boxes, are also registered under ISIC group 293. To match IFR 
class “Automotive parts” as good as possible with ISIC group 293, “Metal products 
(AutoParts)”, “Electrical/electronic (AutoParts)” and “Other (AutoParts)” are to be combined 
while “Rubber and plastic (AutoParts)” and “Glass (AutoParts)” should be excluded. Robots 
delivered to industries manufacturing automotive parts where the exact category is unclear 



 

 

were collected under “Automotive unspecified” (IFR code 299, sub-class of IFR class 
“Automotive”) until year 2017. Since 2018, these data reports are captured by “Unspecified 
AutoParts” (IFR code 2999) as a subcategory of the IFR sub-class “Automotive parts” to 
improve the precision of IFR class “Automotive parts” because the number of robots 
delivered to industries manufacturing auto parts results from a summation of its sub-
categories. The IFR class “Other vehicles” is equivalent to ISIC division 30 (“Manufacture of 
other transport equipment”). The last IFR manufacturing class (91) is called “All other 
manufacturing branches” and unites ISIC divisions 32 and 33 (“Other manufacturing”; 
“Repair and installation of machinery and equipment”), but also contains data reports that 
were not allowed to appear in the more specific manufacturing industries for compliance 
reasons. Thus, a good match between IFR class 91 and ISIC is impossible. 
 
The IFR dataset also covers some further broad non-manufacturing branches apart from 
“Agriculture, forestry, fishing” and “Mining and quarrying”: “Electricity, gas, water supply” 
corresponds to ISIC sections D and E, which entail the ISIC division 35 to 39; 
“Construction” matches ISIC section F (divisions 41 to 43) and 
“Education/research/development” is equivalent to the union of ISIC divisions 72 and 85 
(“Scientific research and development”; “Education”). “All other non-manufacturing 
branches” (IFR class 90) comprises a large part of the service sector by including all the 
remaining ISIC divisions from 45 to 71, from 73 to 84 and from 86 to 99. However, the IFR 
class 90 also contains re-classified data from the non-manufacturing IFR classes (A-C, E-P), 
either due to compliance restrictions or because the specific branch is unknown. Finally, the 
IFR class “Unspecified” covers all data reports for which the robot applying industry is either 
unknown or cannot be shown in any of the aforementioned classes owing to compliance 
issues. 
 
3.4 Classification of robot applications 
Apart from data collection by industrial classes, annual installations of industrial robots are 
also collected by application classes. The IFR distinguishes six broad application classes and 
one category “Unspecified” (class 999).  “Unspecified” contains robots for which the 
application is either unknown or cannot be shown in any of the application classes due to 
compliance reasons. Each of the broad application classes also contains one “unspecified” 
sub-class for all data points where the exact application area within the broad category is 
either unknown or cannot be revealed due to compliance rules. The first broad application 
area is called “Handling operations/machine tending” (class 110) and comprises assistant 
processes, i.e. applications in which the robot does not process the primary operation directly. 
This class is the aggregate of ten sub-classes such as “Handling operations for metal casting” 
(class 111). The second broad application area is labelled “Welding and soldering (all 
materials)” (class 160) and is divided into six sub-classes, for instance “Arc welding” (class 
161). “Dispensing” is the third broad application class that encompasses four sub-classes, e.g. 
“Painting and enameling” (class 171). The fourth broad application area is “Processing” and 
comprises five sub-classes such as “Laser cutting” (class 191). “Assembling and 
disassembling” (class 200) is the fifth broad application area, divided into three sub-classes, 
namely “Assembling” (class 201) and “Disassembling” (class 202) as well as “Assembling 
and disassembling unspecified” (class 209). The last broad application class is called 
“Others” (class 900) and comprises four sub-classes, for example “Cleanroom for 
semiconductors” (class 902). Table 5 presents the different IFR application classes. 
 

<<< insert Table 5 here >>> 
 



 

 

 
3.5 Compliance rules 
The IFR Statistical Department complies with antitrust and privacy protection rules. The 
fundamental principle behind these rules is to prevent users of the IFR data from retrieving 
information on an individual company: given that the data user has data on one company, it 
should not be possible to conclude on another company’s data. The compliance rules 
therefore require that each data point revealed must consist of data from at least four 
companies. This rule has been applied by the IFR from 2015 onwards and, therefore, affects 
installation data since year 2014. Earlier data points, however, were not adjusted 
retrospectively. Only since 2015 the number of reports underlying each data point is 
automatically checked. This iterative process is repeated until every single data point is 
compliant or until the most generic level is reached. Thereby, the IFR aspires to remove as 
little information as possible from the data but as much as necessary to be compliant. 
 
Two methods are applied upon compliance violation at the survey item or country group 
level. Higher levels of geographical aggregation (i.e. regions, continents, or world) are not 
subject to any compliance rules. Compliance mechanism M1 works as follows. Data are 
reclassified to an “unspecified”-class on the same level in the hierarchy of the IFR 
industry/application classification. One example may illustrate this: assume, data reports for 
IFR class 19 (“Pharmaceuticals, cosmetics”) are non-compliant. Then, the data in class 19 are 
shifted to industry class 229 (“Chemical products, unspecified”). This results in 0 
installations shown for industry class 19, as these data now appear in 229. If this is still non-
compliant, the data are moved to a superior hierarchy level. In our example, this means that 
the data are revealed under industry class 91 (“All other manufacturing branches”). This 
would result in 0 installations in industry classes 19 and 229 because data appears in class 91. 
If this is still non-compliant, the data will show up under the most generic IFR industry class, 
i.e. class 99 (“Unspecified”). M1 is applied to industry classes and application classes by 
country or country group. Figures 2a and 2b show the re-classification procedure for all IFR 
industry and application classes according to compliance mechanism M1.  
 

<<< insert Figures 2a and 2b here >>> 
 
Compliance mechanism M2 may also be called geographical aggregation as this procedure 
stipulates that all data are hidden (i.e. no installations are shown) for a country and, instead, 
are added to the superior hierarchy level, i.e. a country group or geographical region. For 
instance, data reports for Bosnia-Herzegowina, Croatia, Serbia, and Slovenia are hidden and 
displayed only for Balkan Countries as a whole. Accordingly, M2 is applied to countries, at 
the discretion of the IFR Statistical Department. It is usually deployed for those countries 
with low installation figures. Figure 3 illustrates which compliance mechanism is applied to 
which geographical entity. 
 

<<< insert Figure 3 here >>> 
 
The compliance mechanisms described above have several consequences for working with 
the IFR dataset. Data are seemingly inconsistent as a bottom-up summation of country-level 
data does not yield totals at higher hierarchy levels for data points since year 2014. This is 
obvious for M2: if data are hidden for some country, leading to “false” zeroes, a summation 
over countries cannot add up to the country group-level values. Thus, the number of robot 
installations obtained from summing the country values within a country group or region will 
be lower than the number shown for the respective country group or region. This implies, that 



 

 

data for country groups, regions and continents usually cannot be obtained from adding up 
the values of the corresponding countries but must be retrieved from the data explicitly 
shown for the respective level of geographical aggregation. This holds also true for the 
highest level of geographical aggregation: data on robot installations for the whole world 
must be taken from the IFR geographical class “World” (WR) and do not equal to the sum 
over all countries in the dataset for data points since year 2014. 
 
The complications created by M1 are less obvious. M1 shifts data to another industry class on 
the country or the country group level. In consequence, except for country (group) totals (i.e. 
values reported for the respective mother class “All industries” or “All applications”) not 
affected by M2, the sum of country (group)-level values will not match the reported region or 
continent value for the respective industrial categories. The bottom-up sum will be lower than 
the reported region or continent value for industry/application classes that are the origin of 
reclassified data, and it will be larger for “unspecified” classes which are the target of 
reclassification. For instance, the sum of robots employed in the manufacturing of 
“Household/domestic appliances” (IFR class 275) in Canada, Mexico and the USA will be 
smaller than the number of robots reported in the same industrial class for the region North 
America (NAM), if for at least one of the three countries the number was set to zero and 
shifted to IFR class 279 (“Electrical/electronics unspecified”) owing to the compliance rule. 
This would simultaneously imply a sum over Canada, Mexico, and the USA for IFR class 
279 that is higher than reported for the region North America. The reason for this is that the 
compliance rules are not applied for regions, continents, and the world, such that there is no 
obstacle to revealing the true number of robots installed in all industrial classes.  
 
In general, time series data for individual countries may seem incomplete, especially in small 
countries because data can be published only in years without compliance violations. 
Moreover, inconsistencies between installations and robot stocks within a geographical entity 
can occur because robot stocks are not affected by the compliance mechanisms. Therefore, it 
can happen, that the robot stock increases from one year to the next, although the number of 
installations in the respective year is set to zero for compliance reasons. This may create 
consistency problems since 2014, in particular for all calculations of the robot stock based on 
the various perpetual inventory methods.  
 
3.6 Data issues and limitations 

The IFR dataset on industrial robots exhibits several data issues and limitations. We will 
explicitly discuss seven of them. First, a significant share of the robot stocks is not classified 
into any of the industrial categories or application areas and, therefore, appears under 
“Unspecified” (IFR industry class 99, or application class 999). On average, between 1993 
and 2019 45.2% of the robot stocks at survey item level are not classified to a specific IFR 
industry class, while 27,7% are not classified to a specific IFR application class. However, 
these high shares of robot with unspecified industry or application are mainly driven by 
smaller countries or countries that account for low shares of global market for industrial 
robots.  Among Western and Northern European countries, including Germany and Italy as 
important markets for industrial robots, on average only 27.9% of the robot stocks are not 
classified to any IFR industry and 21.2% do not have a specified field of application. The 
average share of robots with unspecified industry or application in total robot stocks over the 
full period of the dataset decreases in the level of geographical aggregation (Tables 6a und 
6b).  
 

<<< insert Tables 6a and 6b here >>> 



 

 

 
This can be explained by the fact that those countries with relatively high robot stocks and a 
low share of unspecified robots over the whole period of the dataset obtain more weight when 
climbing up the geographical hierarchy. In particular, the relative weight of Japan and 
Germany matters as these two countries have comparatively high robot stocks from the 
beginning, while the mean share of unspecified robots between 1993 and 2019 is very low 
(Japan: 0.04%, Germany: 5.0% for robots by industry; Japan: 0,2%, Germany: 5,4% for 
robots by application).13 However, even at the global level still 19.7% of robots are not 
allocated to a specific industry class. For robot data by application area the picture is neater 
with only 7% of unspecified robots in the global robot stock. The pattern of a declining share 
of unspecified robots with a higher level of geographical aggregation seems to be disrupted 
by the relatively high unspecified shares at the country group level. Yet, this can be explained 
by the fact that country groups are formed via compliance mechanism M2 for countries with 
low installation figures and, thus, relatively low robot stocks. Moreover, some of the 
countries that form country groups have very high shares of unspecified robots. For example, 
country group “Australia/New Zealand” (AUNZ) exhibits a mean share of robots with 
unspecified industry of 90.1% (Australia: 92,2%, New Zealand: 87,4%).  
 
<<< insert Figures 4a and 4b here >>> 
 
Figures 4a and 4b illustrate the evolution of the share of robots with unspecified industry and 
unspecified application over time for 24 countries as well as for the global robot stock, where 
the dashed line indicates the respective mean of the unspecified share. The evolution of the 
unspecified share over time varies tremendously between these countries, showing a 
downwards trend for some countries and an upwards trend for others. Some countries start 
with an unspecified share of 1 (i.e. data are only available at the most aggregated 
industry/application level “All industries”/ ”All applications”) and exhibit an almost linear 
decay of the unspecified share until the end of the period (e.g. Belgium, Brazil, Netherlands, 
Switzerland). This phenomenon can be explained by progress in availability of disaggregated 
data. However, there are also some countries for which the share of unspecified robots starts 
at (or close to) 0 and increases over time. For instance, Germany, France, and Italy have 
shares of robots with unspecified industry close to zero, which start to increase quite strongly 
around year 2005 up to approximately 13% for Germany and France, and even 24% for Italy, 
in year 2019. Nevertheless, in total the share of robots with unspecified industry or 
application sharply decreases since 2005, indicating a clear improvement in availability of 
disaggregated data (c.f. Figures 4c and 4d) . Between 1993 and 2004, on average 74.3% of 
robots at survey item level are not classified to any industry, while 58.3% are not classified to 
any application. Between 2005 and 2019, the average share of robots with unspecified 
industry is only 33.9% and the average share of robots with unspecified application is only 
15.9% at survey item level. Simultaneously, the number of observations (i.e. total robot 
stocks larger than zero) per year sharply increases over time, especially from 1998 to 2010. 
 
Second, the assumption of a one-hoss shay depreciation after 12 years in the IFR dataset is 
not in line with the mainstream literature on economic growth and productivity where capital 
equipment is usually subject to continuous depreciation from one time period to the next 
(Graetz/Michaels 2018, 758). Moreover, the IFR itself points out that the assumption of 12 

 
13 Although Japan is excluded from the survey item level, Japanese data are still included in the respective 
region (South East Asia, SAS) and continent (Asia/ Australia, ASI) data as well as in the global robot stocks 
(World, WR).  



 

 

years of service life is uncertain and needs further investigation.14 The IFR depreciation 
procedure is associated with an implicit depreciation rate that fluctuates over time. This 
implicit depreciation rate can be calculated by re-arranging a standard capital accumulation 
equation: 
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Rt is the stock of robots at year-end, It is the number of robots installed within a year, and δt is 
the depreciation rate in period t. Since the stock of robots is valued at the end of a year, it is 
not appropriate to use the number of installations in t-1 as it is the case for investment in the 
capital accumulation equation of a standard neoclassical growth model. Table 7a shows 
summary statistics for the implicit depreciation rate of total robot stocks by geographical 
class. At survey item level, the mean depreciate rate between 1993 and 2019 is equal to 4% 
per year. The global robot stock exhibits a mean implicit depreciation rate of about 7% per 
year.  
 
To compute implicit depreciation rates also at industry- and application-level, we impute 
such disaggregated data for countries and years where only aggregate data are available (i.e. 
all robots are reported as “Unspecified”) by distributing robots to the respective industries 
based on country-specific average industry shares in the years where disaggregated data are 
non-missing. Simultaneously, for all countries and years with disaggregated data, unspecified 
robots are also distributed by adding them to the data reported under the individual industries 
based on the same country-specific average industry shares. After imputation, robot stocks 
are reconstructed according to the IFR methodology assuming a service life of 12 years. 
Thus, by construction at least 12 years of data must be available before any depreciation 
takes place.   
 

<<< insert Tables 7a, 7b and 7c here >>> 
 
This explains why implicit depreciates at industry- and application-level are lower than the 
mean depreciation rate of total robot stocks at survey item level, with values usually moving 
between 2% and 3% per year. While total robot stocks for countries with initial robot stocks 
in year 1993 larger than zero exhibit “historic” depreciations between 1993 and 2004 (i.e. 
cases where robot stocks grow by less than the number of robots newly installed), these 
“historic” depreciations cannot be preserved for imputed industry- and application level data 
by construction. Table 7b shows summary statistics for implicit depreciation rates by IFR 
industry classes that add up to aggregate (roughly two-digit level). Table 7c shows summary 
statistics for implicit depreciation rates by main IFR application classes. 
 

 
14 The assumption was investigated in an UNECE/IFR pilot study, carried out as early as 2000 among some 
major robot suppliers (IFR/UN ECE 2001). 
 This study suggested that 12 years of average service life might be too conservative and that the average service 
life was closer to 15 years. German and American tax authorities, however, assume in their standard 
depreciation schedules an average service life of 5 to 6 years for robots (Germany: 5 years for robots in the 
automotive industry and 6 years for robots in the mechanical engineering industry; USA: useful life of class 
80.0C “Robotics” is 5 years in the American tax law). Such depreciation schedules however ignore possible 
refurbishments extending the actual service life (IFR 2020, 22-23).  



 

 

To obtain a robot stock that is in line with capital accumulation of a standard neoclassical 
growth model, Graetz/Michaels (2018) applied the perpetual inventory method (PIM) with a 
constant depreciation rate from one period to the next. Thereby, the initial robot stock 
indicated in the IFR dataset is taken as given and installations in the subsequent years are 
used to construct robot stocks according to equation (1), however with a constant 
depreciation rate of either 5%, 10%, or 15%. Figure 5a plots the IFR robot stocks and the 
different PIM robot stocks over time for 24 selected countries and the global robot stock. As 
can be expected from the mean of the implicit depreciation rate shown in Table 8a, robot 
stocks constructed using PIM with a depreciation rate of 5% most closely match the 
evolution of the respective IFR robot stocks. Figures 5b and 5c plot the evolution of imputed 
robot stocks, summed over survey items, by IFR industry and application classes 
respectively, either constructed according to IFR methodology or employing PIM. Again, 
robot stocks obtained from PIM with a depreciation rate of 5% most closely track the 
respective IFR stocks. The most important robot-adopting industry is IFR class 29 
(“Automotive”), followed by 26-27 (“Electrical/electronics”), and 24-28 (“Metal”). Largest 
part of the operational stock of industrial robots is involved in “Handling operations/ machine 
tending” (application class 110), followed by “Welding and soldering” (application class 
160), and “Assembling and disassembling” (application class 200).  
 

<<< insert Figures 5a, 5b and 5c here >>> 
 
Third, the IFR’s construction of the operational stock of robots does not involve any quality 
adjustment due to embodied technological change. Thus, a robot for example installed in 
2019 is assumed to have the same quality as a robot installed in 1993 as both robots are 
simply counted as one unit installed in the respective year, thereby ignoring the technological 
progress between these two points in time. For instance, a single robot installed in 2019 
might be able to perform production tasks that required a number of different robots in 
previous times, i.e. technological progress led to a more complex, integrated robot with 
higher capacity, which however is still registered as one unit (Kromann et al. 2020). This also 
implies that the number of robots reported by the IFR underestimates the actual (quality-
adjusted) stock of robots in countries and industries in which robot investments have 
increased in recent years and overestimate the stock in countries and industries where 
investments in recent years have been relatively low. Assuming that technological progress 
improves the quality of robots over time, a quality-adjusted measure of the number of robots 
would ceteris paribus grow faster than the number of units presented by the IFR (Borjas and 
Freeman 2019). Moreover, although the IFR collects data for different robot types, the 
varying quality attributes and complexity of these robot types are not further quantified – all 
robots installed are simply counted as one additional unit.  
 
Fourth, as the IFR dataset counts industrial robots that are sold on the open market, it does 
not cover robots that are used within the producing firm. A popular example in this respect is 
online retailer Amazon’s purchase of warehouse robots provider Kiva Systems in 2012 
(Estolatan et al. 2018). Since then, this market-leading company in the field of warehouse 
automation has been called “Amazon Robotics” and is solely intended for Amazon’s 
exclusive use to improve the productivity of its own warehouse processes (Leigh et al. 2020). 
Because Amazon does not sell these robots, they are also not included in WRIR. And their 



 

 

number is not small: at the end of year 2019, more than 200,000 mobile robots were working 
inside Amazon’s warehouse network (Del Rey 2019). 15 
 
Fifth, data for some survey items suffer from inconsistencies that cannot be explained by the 
compliance mechanisms. There is a break in the time series for Japanese data between 2000 
and 2001 due to international harmonization of definitions and coverage of statistics. Prior to 
year 2001, Japanese data also included dedicated machinery and thus are overstated. Another 
peculiarity of the Japanese data refers to robot stocks: they are estimated by JARA and 
deviate from the IFR methodology because they are approximately defined as the sum of 
installations over ten years. Moreover, Japanese data reported under industry “Automotive 
parts” (IFR class 293) are not further disaggregated into the specific types of automotive 
parts. Data for Russia also underwent major reclassifications. In consequence, robot figures 
reported for Japan and Russia are not consistent over time and difficult to include in 
econometric analyses. Industry-level data for Austria exhibit an inconsistency in 2003 as 
robot stocks are always equal to zero even if installations in the same year are larger than 
zero. Similarly, robot stocks at industry-level for Taiwan are always equal to zero between 
1993 and 1999 even if installations are larger than zero. The same holds through for 
Taiwanese application-level data. The Republic of Korea likewise exhibits stocks at industry-
level equal to zero between 2001 and 2003, even though installations in the respective 
industries are larger than zero in 2001 and 2003. Between 1993 and 1998, robot stocks at 
application-level for Australia are as well always equal to zero even if installations are 
strictly positive. Only after correcting these issues, data for Austria, Australia, the Republic 
of Korea, and Taiwan can be included in econometric analyses. Furthermore, data collected 
under survey item “Other Asia” (OA) exhibit an aggregate robot stock that increases by much 
more than the number of robots installed between 1999 and 2000. We decided to drop Japan, 
Russia, and Other Asia from all our calculations at survey item level, whereas Austria, 
Australia, the Republic of Korea, and Taiwan are included.  
 
Sixth, data for the USA and Australia are partly impaired through geographical aggregation. 
Data for the USA includes Mexico and Canada before 2011 and is therefore equal to data for 
the region North America (NAM) up to this year. Similarly, Australian data include New 
Zealand before year 2005 and are thus equal to data for country group AUNZ up to this year. 
This data issue can be solved by adjusting data for the USA, Canada, and Mexico as well as 
Australia and New Zealand according to their country shares in the available geographically 
disaggregated data.      
 
Seventh, data availability at industry-level is limited for most countries, especially in the 
initial years of the data set. Disaggregated industry data are available for eight countries only 
over the full period of the data set: Germany, Spain, France, Italy, United Kingdom, Sweden, 
Finland, and Norway. Similarly, availability of application-level data is limited: data 
disaggregated by the six broad application classes over the full period of the data set is 
available for ten countries – the same eight countries as for industry-level data plus Austria 
and Denmark.  
 
 

 
15 It is questionable, however, whether these robots would occur at all in the WRIR dataset because the IFR 
classifies autonomous mobile robots with less than three axes and/ or without manipulation capabilities as 
service robots. And the IFR dataset excludes dedicated industrial robots specifically designed for and controlled 
by a special machine (e.g. automated storage and retrieval systems, integrated circuit handlers, or dedicated 
assembly equipment) and robotic devices (IFR 2020, 23-24). 



 

 

3.7 Alternative data sources 
An alternative data source for the usage of industrial robots is the UN Comtrade database, 
where industrial robots are counted under HS6 commodity code 847950. Time series that 
track international trade of industrial robots start in 1996. Acemoglu/Restrepo (2021) use 
robot imports from Comtrade to confirm their results on the effect of an aging demography 
on robot adoption using IFR data. They further use Comtrade data on robot exports to 
scrutinize the effect of aging demographics on the domestic development of industrial robots. 
Thus, Comtrade data on trade of industrial robots might be an attractive alternative or 
complementary data source for future research in the field of robotics. In contrast to IFR data, 
these data, however, are not disaggregated by customer industry or field of application. 
Comtrade distinguishes four types of trade flows: imports and exports as well as re-imports 
and re-exports. Units of measurement used to quantify these trade flows are trade values in 
current US-Dollars, net weight in kilograms, and varying quantity units. The most reliable 
data from Comtrade appear to be monetary import values as there are little missing values. 
Quantity units reported in the Comtrade database suffer from a significant number of missing 
values even if monetary trade values are non-missing. Moreover, quantities in the Comtrade 
database exhibit varying units of measurement. Most frequently, the number of items is 
reported, but some quantities (even within the same country) are measured by weight in 
kilograms or volumes in litres, or no quantity is reported at all.  
 

<<< insert Tables 8a and 8b here >>> 
 
We analyze the correlation between robot installations according to the IFR dataset and 
Comtrade import data on industrial robots. To obtain comparable indicators for domestic 
robot installations from Comtrade, we compute import values and import quantities net of re-
exports. Import values are converted to constant US-Dollars with base year 1996 using data 
on the US consumer price index from the World Bank (2021). Comtrade quantity data are 
restricted to data points measuring the number of items. For both Comtrade import values and 
quantities, we only keep country-years with positive imports net of re-exports to compute 
Pearson correlation coefficients with IFR installations. For pooled cross-country times series 
data, the correlation coefficient between IFR installations and Comtrade import values in 
constant US-Dollars (1996 = 100) is equal to roughly 0.81. The correlation between IFR 
installations and Comtrade import quantities measured as the number of items imported net 
of re-exports is much weaker with a value of only 0.29. Considering the panel data structure, 
Tables 8a and 8b show the correlation between IFR installations and Comtrade data 
separately within each country, supplemented by 95% confidence intervals. Figures 6a and 
6b visualize the relationship between IFR and Comtrade data using scatter plots with a fitted 
line. The highest correlation coefficients between IFR installations and Comtrade import 
values among countries with at least 20 observations are observed for India (0.98), the Czech 
Republic (0.97), Poland (0.93), and Switzerland (0.91). Except for Canada, Moldova, and 
Israel, all correlation coefficients are strictly positive. Between IFR installations and 
Comtrade import quantities, the highest correlations are observed for Poland (0.96), Austria 
(0.95), India (0.94), and Denmark (0.91). Except for Moldova and Slovakia, again all 
correlation coefficients are larger than zero. Due to missing values for import quantities in the 
Comtrade database, we lose observations for almost all countries. In total the number of 
observations is reduced by 200, compared to the correlation analysis using monetary import 
values.  
 

<<< insert Figures 6a and 6b here >>> 
 



 

 

 
Table 9 takes a closer look at the similarity of robot quantities according to IFR and 
Comtrade. Optimally, Comtrade data reporting the annual number of robots imported net of 
re-exports should be close to robot installations in the same year according to the IFR dataset. 
Deviations should mainly arise for countries which use a significant number of robots that 
were produced domestically. However, robot quantities reported in the two datasets differ 
substantially. The most extreme difference is observed for Malaysia, with Comtrade net 
imports being on average almost 50 times as high as IFR installations: while IFR robot 
installations between 1996 and 2019 are roughly 684 per year on average, Comtrade net 
imports amount to roughly 33,676 robots per year on average. The highest difference is also 
observed for Malaysia: in year 2015, 436,994 units more are reported in Comtrade compared 
to IFR, a deviation that is hard to explain. In general, Comtrade data exhibit higher numbers 
compared to IFR data. On average across all countries, annual robot installations equal 3,028 
according to IFR data, while Comtrade net imports suggest a number of 4,407. This is 
equivalent to a mean difference of 1379.1, which is statistically significant at the 5%-level.16 
The mean difference is defined as Comtrade net imports minus IFR installations. Out of 46 
countries analyzed, only eight have a negative mean difference. Four of these eight countries 
exhibit negative differences for all observed data points: Germany, Italy, New Zealand, and 
the Republic of Korea. For Germany (mean difference = -6,492.5) and Italy 
(mean difference = -1,941.2), this outcome is not a big surprise as both countries are 
important producers of industrial robots (Estolatan et al. 2018), and robots domestically 
produced and installed do not show up in the Comtrade database. The finding is more 
surprising for New Zealand and the Republic of Korea as they do not host any of the major 
producers of industrial robots. According to IFR data, the Republic of Korea installed 19,517 
robots per year on average and has the second highest robot density (measured as the number 
of industrial robots per 10,000 persons employed ) in manufacturing worldwide (IFR 2020, 
55), while Comtrade net imports only indicate an average number of 3,391. Also for other 
important markets of industrial robots, the deviations between IFR and Comtrade figures are 
substantial. For Singapore, the country with the most automated manufacturing industry in 
the world (IFR 2020, 55), IFR data indicate average annual installations of 1,081, whereas 
Comtrade net imports suggest average annual installations as high as 16,581, which 
corresponds to a mean difference of 15,500. China has a mean difference of -10,300 and also 
exhibits the highest negative difference among all paired data points, with 106,637 units less 
reported in Comtrade compared to IFR in year 2017. From 1998 (initial reporting year for 
China in the IFR dataset) to 2015, Comtrade quantities are always larger than IFR quantities. 
That relation is reversed from 2015 onwards with constantly highly negative differences, 
possibly indicating China’s growing ability and importance in domestic production of 
industrial robots as documented in Cheng et al. (2019). The inverse pattern is found for the 
USA with a mean difference of -5,238: until 2014, all observed differences are clearly 
negative but become highly positive afterwards.17 
 

<<< insert Table 9 here >>> 
 

16 Ignoring the panel data structure, a simple paired t-test delivers a t-statistic of t(754) = 1.995, with  Pr(T < t) = 
0.977, Pr(|T| > |t|) = 0.046, and Pr(T > t) = 0.023. Considering the panel data structure, we can fit a fixed-effects 
model with the paired difference as outcome variable and a constant term only (i.e. y – x = a). Using Stata 
command “xtreg, fe”, the estimated intercept of 1379.1 represents the average value of the fixed effects, with t = 
2.08 and p = 0.038. The F-test that all country-specific fixed effects are equal to zero generates a F-statistic 
F(45, 709) = 2.47, suggesting that estimating the fixed effects model is more appropriate than conducting a 
paired t-test on pooled data. 
17 After 2014, only the years 2015, 2016 and 2018 are covered for the US due to non-availability of quantity 
data in 2017 and 2019 in the Comtrade database.  



 

 

 
Summing up, the high correlation between IFR installations and monetary Comtrade import 
values make it attractive to cross-check analytical results obtained from either data set by 
means of robustness checks. However, one needs to keep in mind that robots domestically 
produced and installed do not show up in Comtrade data, leading to downward biased 
installation values based on Comtrade for important robot producing countries. More caution 
is needed when complementing IFR installations with Comtrade import quantities measured 
as “Number of items” since the correlation between both data sources is much weaker 
compared to monetary Comtrade import values and the quantities reported in both datasets 
differ substantially. 
 

<<< insert Figure 7 here >>> 
 
Comtrade also provides information on import market values. Using the quantity of imports 
less re-imports given by Comtrade one can easily calculate average unit prices. This has the 
advantage that prices are then available for more countries than the IFR based prices. 
Comtrade based unit prices are available from 1996 onwards, however, data coverage is 
incomplete.  Monetary import values itself do not have many missings but the quantities 
reported by Comtrade have, so as a result, unit prices are not available throughout the sample. 
Moreover, the Comtrade average unit prices are import prices only. These prices cannot 
reflect the entire market for robots as domestically produced and installed robots do not 
appear in this database. Figure 7 compares the average unit prices of the IFR database with 
Comtrade. The average unit price calculated through the IFR database differs in countries 
with a smaller share of imported robots (e.g. Germany, France, Italy) substantially. One 
would expect countries with a high share of imported robots to display a similar price in 
Comtrade as in IFR based calculations. Yet, the US, a massive importer of robots, also 
displays a considerable difference in unit prices.  The Rep. of Korea does fit the picture and 
the UK price difference is rather small. Here it seems that the Comtrade unit price represents 
a good alternative for the IFR unit prices.  Especially because the IFR does not report UK 
prices after 2018 anymore. Strikingly, the unit prices based on IFR data are higher except for 
Korea.  One can only speculate as why this is so. Bearing in mind that the Comtrade unit 
price is also an average price with no information to the size or the quality of the robot, it 
could well be that on average, smaller and, therefore, lower priced robots have been imported 
into Europe and the US. Moreover, the price development based on Comtrade data is much 
smoother than the IFR based prices which display more volatility. Only for the US one can 
observe a similar trend in the import-based price development as in the IFR based prices. For 
Italy the IFR prices show an increase from 2000 onwards whereas Comtrade prices report a 
strikingly smooth price behavior (IFR price are not available from 2008 onwards). Comtrade 
as an alternative data source for unit prices on robots can therefore complement the IFR data 
especially for those countries where price information has ceased to be reported by the IFR. 
But it has to be treated cautiously as it reflects import prices only. It also suffers from the 
same shortcomings as the IFR based unit prices regarding quality and size. 
 
While IFR and Comtrade provide standardized and internationally comparable data for many 
countries the evolution of robot exposure within individual countries has also been studied 
and analyzed with data from particular firm-level surveys. An early example for this 
alternative empirical strategy is the investigation by Jäger et al. (2015). It is based on firm 
data from the European Manufacturing Survey (EMS) 2009 to study the impact of robots on 
employment and productivity. EMS was carried out for 10 European countries and covers 
data from around 3,700 companies of European manufacturing; the study concentrates on a 



 

 

sub-sample of 7 countries (Germany, Austria, France, Spain, Denmark, the Netherlands and 
Switzerland) with more than 3,200 manufacturing companies with at least 20 employees. 
With regard to industrial robots, EMS provides the actual number of firms using robots as 
well as the intensity of their robot usage related to the economically rational maximum in the 
own firm. By using this variable, EMS data differs from IFR data in the WRIR. While the 
latter refers to the installed base within a certain country, the EMS variable is targeted 
towards the broader economic diffusion of robots in terms of using firms. In order to get a 
better understanding of the "robotics ecosystem" in a sub-national perspective Leigh/Kraft 
(2018) performed a survey of the US industrial robotics industry in 2015. The industry 
consisting of both, robot suppliers and service providers (called integrators) shows a very 
uneven geographical clustering. While the authors are able to show that robotics-related 
employment is geographically correlated with the manufacturing sector, the actual use of 
robots cannot be determined from their data. Neither can causal links between robots and 
employment, wages or productivity be confirmed.  
 
Three more recent examples of the firm-level perspective that can be found in the studies by 
Cheng et al. (2019) for China, by Deng et al. (2020) for Germany and by Koch et al. (2021) 
for Spain show a high degree of complementarity to the IFR data base. Cheng et al. (2019) 
investigate firms’ robot adoption behaviors with data from the China Employer-Employee 
Survey (CEES). This data set is considered representative of the entire Chinese 
manufacturing sector. Data for 2015 cover 1,115 firms in the Chinese provinces of 
Guangdong and Hubei. Interestingly, the share of robot units across industries in the WRIR 
data set versus the probability of using robots by industries in the CEES data have a 
correlation coefficient of 0.97. Similar results are reported by Deng et al. (2020) who analyze  
firm-level data for Germany during the period 2014-2018 from the IAB Establishment Panel, 
an annual survey of nearly 16,000 plants, sampled from aroung 2 million German employers. 
Comparing data from IFR and IAB for the robot density, defined as the number of robots per 
1,000 employees, in 2018 they find a correlation coefficient across all industries of 0.84. If 
only manufacturing industries are considered, the correlation coefficient rises to a value of 
0.96 (Deng et al. 2020, 25, Figure A1.) Koch et al. (2021) work with a panel data set of 
Spanish manufacturing firms from Encuesta Sobre Estrategias Empresariales (ESEE) for the 
period 1990-2016. The paper uses explicit information on robot use in the production process 
of individual firms and is able to differentiate between "robot adopting" and " non-adopting" 
firms. The results that are derived with these firm-level data on the impact of robot exposure 
on employment and output are very similar, however, to those from studies using the stock of 
robots within industries from the IFR data. This is remarkable because the IFR measure 
captures the intensive margin of robot diffusion, regardless of how many firms use this 
technology, whereas the ESEE measure reflects the share of firms using robots and thus the 
extensive margin of robot use.  
 
  



 

 

4. Data applications and findings 

 

4.1 Overview  

 

The study by Gorle/Clive (2013) is an example for the early use of IFR data on industrial 
robots in business research documenting the rise of automated production in selected 
countries, including China and Korea. High level academic research based on the IFR data 
set on industrial robots is a more recent phenomenon. It benefited enormously from two 
research papers that have set important standards for further studies investigating more and 
more aspects of robot exposure and its impact on economic and social life. The mostly cited 
paper by far is the study by Acemoglu/Restrepo (2020) on the impact of robots on the US 
labor market in a very decentralized perspective. It is based on a working paper version 
(Acemoglu / Restrepo 2017) that had become available as early as 2017. Graetz/Michaels 
(2018) are the authors of the second very influential paper with a major focus on the 
productivity effects of industrial robots.  
 
In the following we aim at reviewing this very recent strand of robot research literature in 
four different, but closely related areas: robot adoption and industrial organization, 
productivity and growth, employment and wages as well as demographics, health and 
politics. Regarding the specific aspects of the use of the IFR data set in the different research 
papers we refer to the overview in Table 10 where we document the main specificities of the 
studies and point out in particular how the authors handled some of the difficult issues of the 
data.  
 
<<<< insert Table 10 here >>>> 
 
 

 
4.2 Patterns of robot adoption and industrial organization 

The impact of robots on industrial organization depends on where and in what way robots are 
adopted by firms and how this adoption changes the organizational structure of production 
within the particular industry and within global value chains. These aspects are treated in 
papers by OECD (2019), Keisner et al. (2016), Nuccio et al. (2020), López-Sánchez et al. 
(2020), Jungmittag (2020), Cséfalvay (2020), Cséfalvay/Gkotsis (2020), Faber (2018), 
Carbonero et al. (2018), Krenz et al. (2018), Fernández-Marcías et al. (2020) and Jung / Lim 
(2020).  

OECD (2019, 9 f.) gives a first overview over the worldwide patterns of robotization since 
1993. Three subperiods are distinguished: 1993-2000, 2001-07 and 2008-14. The average 
growth during the first subperiod was about 78%. Adoption of industrial robots was still in an 
early stage in 1993, which explains the strong growth in the operational stock. Growth was 
even stronger in the second subperiod with an average of above 80%. It continued after the 
financial crises but at a much slower pace of 38% on average. Two sectors stand out by far in 
the adoption of robots: "Transport equipment" (including automotive industry) with a share 
of almost 45% in the total stock of robots in 2014 and “Electronic, electrical and optical 
equipment” with almost 30% due to the large production volumes and the high degree of 
standardization in mass production. While Spain (with its growing automotive industry) had a 
very fast increase during the first subperiod, some Central European countries and Germany 
grew with a three-digit rate during the second subperiod. The last subperiod saw extremely 



 

 

different developments: while Singapore and Korea showed three-digit growth rates of robot 
adoption, many other OECD countries even had negative rates. An extreme case is Russia 
being the only country where after the fall of Soviet Union the number of operational robots 
decreased over all three subperiods. Looking at the robot density, measured by the number of 
robots per thousand employees, OECD (2019, 129) summarizes: " Japan had by far the 
highest density in the sample in 2009 - roughly five units per thousand employees. Korea 
followed with three units per thousand employees. Italy is the country with the highest 
density in 2014, which increased by a factor of more than three in five years. ... Norway is the 
country with the lowest density, both in 2009 and 2014."  Keisner et al. (2016) looked at the 
robotics clusters in an even broader perspective, distinguishing between robot developers, 
robot manufacturers, intermediary companies and institutes as well as robot user 
manufacturers and in-house robotic development facilities of larger robot using firms. All 
parts of this "robotization" chain are characterized by strong geographical concentration and 
it is unclear how upgrading of other regions can take place and to what extent public policy 
measures could be helpful in this process.  

López-Sánchez et al. (2020) investigate the global pattern of robot adoption, defined as the 
change in the operational stock of robots per 10,000 people of the active population in the 
period 1993-2016. Looking at a sample of 71 countries - with North America covering 
Canada, Mexico and the US - and applying a time-series clustering algorithm with an 
adaptive dissimilarity index they are able to identify similar and dissimilar robotization 
trajectories. These can be clustered in 4 groups and one outlier. Cluster 1 consists of 40 
countries including the Russian Federation, Argentina or Pakistan that started late with 
robotization and had a rather low growth or even an erratic development in robot intensity. 
Cluster 4 brings together the "leaders" of robotization: Germany, Singapore and Korea that 
have even increasing growth in robot adoption from 2010 onwards. Cluster 3 contains 6 other 
industrialized countries like France, Italy or Sweden that have grown less than the "leaders" 
and showed a relative stagnation in robot adoption since 2007. In Cluster 2 one finds 21 
countries including North America, China and the UK that show a lower rate of robotization 
over the whole period than Cluster 3 but have accelerated in recent years. Japan is the outlier 
whose behavior is rather unique.  

Nuccio et al. (2020) investigate the regional clustering of robots in the five largest European 
countries (France, Germany, Italy, Spain and UK). For the period 1993-2015 they compute 
the annual national stock of robots for 15 industries (using the PIM 10% approach) and 
distribute it to the 137 NUTS 2 regions according to the regional share in the national number 
of firms in the respective industries. They find a very uneven regional development with 
some pronounced clustering of robot adoption in traditional manufacturing areas. Southern 
Germany with its variety of integrated manufacturing industries, namely in car production, is 
the only region with advanced automation and dynamic growth.  Northern Italy has 
accumulated a good robot stock, but shows a declining growth rate, while manufacturing 
French regions appear to lack stock and not to increase the existing levels. The English 
Midlands and Eastern Germany, the capital cities-regions and some sparse regions in Spain, 
Italy and Scotland, which started from a very low provision of robots, show also steady 
growth rates, while the other regions lag behind. A related study by Jungmittag (2020) looks 
at the patterns of convergence or divergence for the robot densities in 9 manufacturing 
industries of 24 EU countries for the period 1993-2015. The annual data from IFR are used 
for the calculation of robot stocks with a PIM 5%, 10% and 15% approach, respectively. 
Testing for unconditional as well as for conditional convergence taking country-specific 
effects into account, the authors find completely different patterns for European 



 

 

manufacturing industries in two sub-periods 1993-2005 and 2005-2015 that are divided by 
the large EU enlargement of May 1st, 2004. While in the first subperiod no convergence of 
robot densities could be identified, relatively fast conditional and unconditional convergence 
occurred in for the second sub-period, mainly driven by the increased growth of robot 
densities in some Central and Eastern European countries. Cséfalvay (2020) looks also at the 
global as well as the intra-European convergence of robot densities during the period 1995-
2013. Over the whole period Germany was able to keep its dominant position with a steady 
growth rate. Until 2005 the deployment of robots appeared at large scale in the large 
industrial countries of Western Europe (Italy, France, Spain) while after the EU enlargement 
of 2004 it happened mainly in Eastern and Central Europe, where robots were rarely to be 
found at the beginning of the period. In addition, the robot deployment in Eastern and Central 
Europe is highly concentrated in the automotive sector while Western European countries 
show a more diversified sectoral pattern of automation in manufacturing. The author 
concludes that this "dependent robotization" concerns Eastern and Central Europa in two 
ways: first by a sectoral dependence from just one sector, namely car manufacturing, with 
few spill-over effects to other industries, and second by a dependence from localization 
decisions of global car producing firms, both leading to a potentially high economic 
vulnerability.  

One source of this vulnerability might be re-shoring activities by globally active firms. This 
phenomenon is studied in a theoretical and empirical perspective by Krenz et al. (2018), by 
Carbonero et al. (2018) with a special focus on developing countries and in a case study for 
Mexico by Faber (2018). The theoretical model developed by Krenz et al. (2018) suggests 
that initially, when industrial robots are not very productive, firms facing low costs of 
distance save on the wage bill by offshoring production to low-wage countries. As the 
productivity of industrial robots increases, the incentive to re-shore increases because firms 
with high productivity in automation produce more efficiently at home with robots than 
abroad. In a panel analysis for 43 countries (including all EU members) with 9 manufacturing 
industries over the years 2000-2014, using IFR data for the calculation of the respective robot 
densities, they find evidence for a strong association between re-shoring and automation 
within countries as well as within sectors. Carbonero et al. (2018) who use IFR data for 41 
countries and 15 sectors during 2005-2014 find significant evidence that the use of robots had 
induced certain industries in developed countries to reduce the amount of inputs produced in 
developing and emerging economies.  Faber's (2018) study confirms the re-shoring result 
from investigating 1,806 regional labor markets in Mexico, defined according to a 
commuting zone approach in the spirit of Acemoglu / Restrepo (2020).  Working with IFR 
data for 1993-2015 (where Mexico is treated as a part of North America until 2000 so that 
national data have to be extrapolated) he looks at the exposure of local employment to both 
domestic and foreign robots. e finds a robust and negative impact of automation in the US to 
Mexican exports and employment, in particular for the later time period 2000-2015. The 
strongest negative effects of such re-shoring activities occurred in manufacturing industries 
that were highly exposed to US robots (i.e., automotive, electronics, metal products and 
minerals) and in services.  And the most affected Mexican employees were low-educated 
machine operators and technicians in manufacturing as well as highly educated service 
workers in managerial and professional occupations. The results should be considered as a 
warning that ongoing automation in the highly industrialized countries may induce a radical 
transformation in the patterns of globalization that have characterized the past three decades.  

In a recent study Cséfalvay/Gkotsis (2020), building on the global robotization chain model 
by Keisner et al. (2016) and using IFR data for the period 1995-2016, point out the following 



 

 

patterns in a global and intra-European perspective: Five countries - Japan, Korea, Germany, 
the US and China - dominate the global robotization landscape, but none of them possesses 
an equally strong position across the whole chain. Japan and Korea are robustly engaged in 
every part of the robotization chain, Germany is very strong in robot manufacturing and robot 
deployment, the USA has its firm competitive advantages in robotics development, and at 
present China is a rival in the industrial deployment of robots. Within Europe one can 
identify three main groups of countries with significantly different positions. The countries of 
the first group – Sweden, Germany, Austria, Denmark and France – have densities in every 
part of the robotization chain which are mostly well above the European average values. 
Their leadership is based on the fact that they are equally strong in robotics development – 
though with differences regarding robotics developers, robot manufacturers and in-house 
robotics developers – as well as in robot deployment. The countries of the second group – 
Spain, Italy, Belgium, the Netherlands and Finland – do not participate in every part of the 
robotization chain. Many of them lack robot manufacturing and are weak concerning the in-
house robotics development, but they have relatively well performing robotics developers 
and also deploy industrial robots intensively. Finally, the countries of the third group, all 
Central and Eastern European countries and Portugal, have only recently started to converge 
with their European counterparts, in particular by the deployment of industrial robots. 
However, this development is often almost exclusively limited to the automotive industry. 
These countries are still very far behind in robotics development, and, according to patent 
data at present, robot manufacturing and in-house robotics development are non-existent in 
this group. This makes them particularly vulnerable to re-shoring activities of multinational 
firms.  

Fernández-Marcías et al. (2020) and Jung / Lim (2020) provide explanations for the patterns 
of robot adoption in Europa and beyond. Fernández-Marcías et al. (2020) study determinants 
of increased automation in European countries in the period 1995-2015 and conclude that 
industrial robots have grown more in those sectors where work is more routine and manual, 
where there are fewer highly educated workers and where wages and unionisation rates are 
higher. This seems to underline that robotization is not a revolutionary new phenomenon but 
a traditional response to increasing unit labor costs as it is known since the beginning of the 
industrial. Jung / Lim (2020) who analyze 42 countries worldwide for the years 2001-2017 in 
a simultaneous estimation model come to similar results. Major determinants of the 
expansion of industrial robots are increases in unit labor costs and hourly compensation 
levels. It is also positively related to the proportion of manufacturing workers in the total 
labor force and to the firms' capacity to adopt new technology.  

 
4.3 Productivity and growth 

The seminal paper by Graetz/Michaels (2018) studies the effects of automation on both, labor 
productivity and total factor productivity (TFP), implying that robot adoption should not only 
influence the development of employment, but also the long-run growth of output. The 
authors construct a novel panel data set with 17 countries and 14 industries ranging from 
1993-2007 using the IFR data on robotics and data from EUKLEMS for output, labor and 
capital. Their robot stock measure is built on the perpetual-inventory method (PIM) with a 
depreciation rate of 10%. Whenever needed, they impute initial stocks for 1993. However, 
they refrain from allocating the “unspecified” category. They find a positive relationship 
between robot densification (expressed as robots per million hours worked) and labor 
productivity growth that is driven by an increase in value added and not by a significant 



 

 

reduction in hours worked. The estimated labor productivity growth of 0.36 percentage points 
that can be attributed to robots is comparable to the effect of the steam engine as a driver of 
economic growth in the 19th century and only a little lower than the growth effect of 
highways in the middle of the 20th century or that of ICT in recent decades. In addition, the 
study shows that robot densification also increased TFP significantly. These baseline results 
are refined, discussed and qualified by CEBR (2017), Dauth et al. (2021), Jungmittag/Pesole 
(2019), Kromann et al. (2020) and Ghodsi et al. (2020). The growth effect of robots is 
particularly studied in a recent paper by Jurkat et al. (2021).  

The study by CEBR (2017) that looks at 23 OECD countries, including the US and the UK, 
over the period 1993-2015 confirms the baseline result in all regards. Dauth et al. (2021) also 
confirm the positive impact of automation on labor productivity in Germany.18 Kromann et 
al. (2020) use IFR data from IFR on the robot stock for the period 2004-2007 in 10 
manufacturing industries of 9 countries in order to investigate the effect of automation on 
total factor productivity. They estimate production functions at the industry level making a 
distinction between ICT and non-ICT capital and including a robot-intensity index, calculated 
as the number of robots relative to non-ICT capital in the industry. They find that a more 
intensive use of industrial robots has a significantly positive effect on TFP. In particular, an 
increase of one standard deviation in the robot intensity is associated with more than 6% 
higher TFP. Jungmittag/Pesole (2019) extend this approach to a much broader data set. They 
work with a panel of 9 industries for 12 EU countries in the period 1995-2015 using 5, 10 and 
15% annual depreciation for the calculation of the annual stock of robots with PIM. Since the 
robot stock of an industry is part of its non-ICT capital, it is assumed that non-ICT capital has 
a quality and a quantity dimension. The quality of non-ICT capital is assumed to be 
positively influenced by the number of industrial robots used in an industry relative to the 
total non-ICT capital input. The estimation of industrial Cobb-Douglas production functions 
then shows that this particular quality variable - stocks of robots per 1 million Euros non-ICT 
capital - had a significant effect on TFP growth and via this channel also increased labor 
productivity. The substantial effects on productivity are, however, limited to a few industries 
with an already large deployment of robots, notably transport equipment, including car 
manufacturing. 

Ghodsi et al. (2020) match IFR data on operational robot stocks with data from the World 
Input-Output Database (WIOD) for 56 industries in 43 countries over the period 2000-2014 
to investigate the impact of automation on value added. Their particular focus is on the inter-
industry linkages within global values chains. Their results how that about 0.8 per cent of the 
growth in global real value-added is explained by the increase in the number of robots. The 
main positive impact comes from international forward linkages. When considering value 
added growth, it becomes apparent that advanced economies - due to their higher share of 
value added in the world economy - provide the largest contribution.  

Jurkat et al. (2021) analyze the growth effects of robots by estimating the parameters of a 
normalized CES production function from a panel of 9 industries in 10 countries for the 
period 1993-2007. Unlike Kromann et al. (2020) or Jungmittag/Pesole (2019) they do not 
treat the robot stock as an indicator of the quality of non-ICT capital but distinguish between 

 
18 Koch et al. (2021) speculate from their analysis of Spanish firm panel data that the the productivity gains 

documented in Graetz / Michaels (2018) or Dauth et al. (2021) might be partly explained by a reallocation of 

workers from low-productivity non-adopting firms to high-productivity robot adopters. In other words, with 

the selection of more productive firms into robot adoption, increased exposure to robots reduces market 

shares of non-adopters and forces the least productive firms to exit. 



 

 

a robot and non-robot capital stock. This makes it necessary to calculate values of robot 
capital using IFR data on the number of robot shipments and also user costs of robots.  Their 
results from a system approach estimation show a high elasticity of substitution between 
human labor and the robot stock and a generally lower elasticity of traditional capital with the 
composite labor service that is constructed from the joint input of human labor and robots.  

 
4.4 Employment and wages 

 
When the increase in the automation of industrial production by robots started, this 
immediately led to the question what effects this development might have on the industrial 
labor market in terms of employment and wages. From various perspectives, with various 
methodologies and for different counties these issues were tackled by Acemoglu/Restrepo 
(2017; 2020), Graetz/Michaels (2018), Borjas/Freeman (2019), De Vries et al. (2020), Dahlin 
et al. (2019), Chiacchio et al. (2018), Giuntella /Wang (2019), Dauth et al. (2021), Aghion et 
al. (2019), Leigh et al. (2018), Carbonero et al. (2018),  Anelli et al. (2019b), Aksoy et al. 
(2020) and Ge / Zhou (2020).  
 
The paper by Acemoglu/Restrepo (2017; 2020) studying US local labor market effects of 
increased robot exposure has become the central reference for this field of research. The 
authors use micro level data for 722 commuting zones and 19 industries in the US for the 
period 1990 to 2007 and match these with a novel measure for the exposure to robots using 
IFR data on robot stocks for the period 1993 to 2007.  This exposure is constructed as the 
sum of all increases in use of robots per thousand workers in the individual industries divided 
by the baseline value of employment within the respective industry and then summed up over 
all industries with employment shares as weights. The commuting zone approach enables the 
authors to closely investigate the effects a higher exposure to robots has on local labor 
markets rather than studying cross-country and cross-industry effects. The following 
particularities in the use of robot data from IFR must be pointed out:  Firstly, within the 11 
industry sectors that IFR distinguishes for the manufacturing industry, Acemoglu / Restrepo 
(2017; 2020) split up the category "Metal" into the three categories "Basic Metals“ (IFR class 
24), „Metal products“ (IFR class 25) und „Industrial machinery“ (IFR class 28) so that they 
can work with 13 manufacturing industries. Secondly, the "Unspecified" data category on 
robot installations is allocated to the 19 industries according to the respective industry’s share 
in the classified data. Thirdly, as the IFR data for the US with industry breakdown is only 
available from 2004 onwards and to mitigate endogeneity concerns, exposure to robots in 
European countries between 1993 and 2007 is used as an instrument for the US exposure 
between 2004 and 2007. The authors find that one robot per one thousand worker decreases 
the employment-to-population ratio by 0.39 percentage points and average wages by 0.77 % 
in a commuting zone relative to one without exposure to robots. These numbers imply that 
one robot per thousand workers would actually substitute for about six workers. These strong 
labor market effects are robust to including exposure to imports from China, to excluding the 
automobile industry as a heavy user of robots, or to including IT or other types of capital. The 
employment effects are more pronounced in manufacturing as well as in routine and manual 
tasks.  
 
Graetz/Michaels (2018) in contrast, did not find an overall employment effect of increased 
robot use within the same period in their cross-country, cross-industry study. However, they 
confirm the result that increased robot use lowers employment for low-skilled occupations. 
Dahlin (2019) also examines the effect of industrial robots on occupations in the United 



 

 

States in 2010 and 2015 and finds that an increase in industrial robots is associated with 
increases in high-skill and some middle-skill occupations but not for other types of 
occupations. De Vries et al. (2020) had a closer look at the relationship between industrial 
robots and occupational shifts by task content. Using a panel of 19 industries in 37 high-
income as well as emerging market and transition economies from 2005-2015, they find that 
an increased use of robots is associated with positive changes in the employment share of 
non-routine analytic jobs and negative changes in the share of routine manual jobs.   

Borjas/Freeman (2019) compare the labor market effects of robots and of immigrants in the 
US. Working with IFR data for robot shipments between 2001-2016 they construct the stock 
of robots by simply summing up annual shipments assuming that depreciation (i.e. 
obsolescence) and appreciation (i.e. quality improvements due to technological change) 
balance each other out (PIM with a net depreciation rate of 10% is used as a robustness 
check). They define robot intensity for each industry-year as the stock of robots per workers 
in the respective industry assuming that robots are distributed across geographic areas within 
an industry proportional to employment in that industry. Thereby, they solely rely on 
variation in robot intensity across industries instead of modelling the robot shock in local 
labor markets according to their local industry mix like Acemoglu/Restrepo (2017, 2020) do 
by means of commuting zones. Nevertheless, they obtain the same qualitative and even 
similar quantitative results as Acemoglu/Restrepo (2017, 2020):  their study confirms the 
negative impact of industrial robots on employment and earnings, concentrated on lower 
educated workers. As this group is also the most challenged by the influx of migrants, they 
compare the respective effects and find robust evidence that the entry of an additional 
immigrant has a much less negative effect suggesting that one industrial robot is comparable 
to 2 to 3 human workers and even up to 3 to 4 in particular groups. 

Chiacchio et al. (2018) apply the community zone approach for a study of the employment 
and wage effects of robots in Europe. Their analysis covers six EU countries (Finland, 
France, Germany, Italy, Spain, and Sweden) with 116 NUTS2 regions and 18 industries for 
the period 1995 - 2007. The regional exposure of robots in industry j is proportional to the 
regional employment in the respective industry. The results support a negative impact of 
robots on employment. However, the effect is smaller than in the US. In the analyzed 
European countries one additional robot reduces the employment-to-population ratio only by 
0.16-0.20 percentage points, thus by one half of the value for the US. One obvious 
explanation is the more liberalized labor market in the US and the much more active public 
labor market policy in the European countries. The authors find only mixed results for the 
impact of industrial robots on wages. Dauth et al. (2021) could not confirm that in Germany 
for the period 1994-2014 robots were major job killers. Rather they led to a change in the 
composition of employment, where a significant reduction in manufacturing job was offset or 
even slightly overcompensated by a job increase in the service sector. At the level of 
individual workers robots did not raise the displacement risk for incumbent manufacturing 
workers but rather reduced the availability of those jobs for young labor market entrants. 
Aghion et al. (2019) investigate the effect of robotization on employment in France over the 
period 1994-2014. They show that robotization reduced aggregate employment at the 
regional employment zone level, but also that non-educated workers are more negatively 
affected by robotization than educated workers. Giuntella/Wang (2019) apply the same 
framework to China. In both aggregate- and individual-level analyses, they find large 
negative effects of robot exposure on employment and wages. For 261 prefecture-level cities 
they show that an increase by 1 standard deviation in robot exposure lowers an individual’s 
probability of being employed by 5% with respect to the mean and reduces hourly wages by 



 

 

7%. In addition, they find evidence that the negative effects on employments are largely 
driven by the state-owned sector and that these effects are concentrated among low-skilled 
workers, older workers and men. Furthermore, cities with an initial higher specialization in 
manufacturing seem to suffer significantly higher losses in terms of workers’ employment 
and wages.  
 
The methodological approach by Acemoglu/Restrepo (2017; 2020) has been criticized, 
however, for exaggerating the impact that robots have on employment. Leigh et al. (2020) 
question both the commuting zone approach as well as the exposure to robots measure. 
Exposure to robots in a commuting zone assumes that all firms of one industry use robots in 
the same way regardless of geographical location and firm size. Firms are therefore assumed 
to be identical over commuting zones and to employ robots in the same fashion. These are 
strong assumptions which are not necessarily true. Outside of manufacturing, the number of 
robots installed is often very low. It is not realistic to assume that a small number of robots 
would impact labor markets on such a large scale as implied in the commuting zone 
approach, especially if this small number is then allocated to over 700 small regions. 
Actually, some firms will use these robots while a majority of firms will not. Moreover, 
results from manufacturing might not be applicable to other sectors. Industry specific use in 
e.g. education is entirely different from manufacturing. Leigh et al (2020) therefore pursue a 
different strategy in order to quantify the robot related impact on the US labor market. Firstly, 
they modify the exposure to robots based on IFR data so that it applies to manufacturing only 
and use 352 metropolitan areas as defined by the US Census - the so-called "core-based 
statistical areas (CBSA)" - instead of commuting zones. Secondly, they use real time data on 
job postings to calculate a robotics skill demand index (RSDI). This index accounts for the 
skills required to operate a robot, calculated as the number of job postings with at least one 
robot related skill cluster divided by the total number of job postings in manufacturing. Job 
postings indicate that robot related work is indeed concentrated in the US Midwest and 
Southeast regions reflecting the overall higher manufacturing intensity of labor markets there. 
The authors find that for the period 2010-2016 one robot per thousand workers more or an 
RSDI of 1% above average has boosted manufacturing employment by 0.2 percent, while no 
statistically significant effect on wages is found. This translates according to Leigh et al. 
(2020) into an increase of 900 manufacturing employees over these six years and thus, a 
positive employment effect in the US after the Great Recession.  
 
Carbonero et al. (2018) link the national employment effects of robot adoption to the re-
shoring activities of globally active firms. Their results for a panel fo 41 countries point to a 
long-run decline of worldwide employment of about 1.3% due to an increase of the number 
of robots by 24% between 2005 and 2014. In developed countries, this decline of 
employment amounts to slightly over 0.5%, while in emerging economies it reaches almost 
14%. Third, robots in developed countries reduce off-shoring, which has depressed 
employment in emerging economies by 5% between 2005 and 2014. 
 
Three studies with a focus on Europe and the US, respectively, look in particular at the 
impact of increasing automation on the gender pay gap and come to strikingly different 
conclusions. Aksoy et al. (2020) building on IFR data for 20 European countries, 12 
industries, and the years 2006, 2010, and 2014 find that robot adoption increased both male 
and female earnings, but also increased the gender pay gap. This is due to a larger positive 
effect on male earnings, especially in medium- and high-skilled occupations, where women 
are underrepresented, and in countries with low levels of initial gender equality and 
outsourcing destination countries. Different findings are reported by Anelli et al. (2019b) as 



 

 

well as by Ge/Zhou (2020) in their studies of the American labor market over the period 
2005-2016 and 1990-2015, respectively. In the US, an increase in robot exposure has reduced 
the gender income gap significantly. According to the findings of Ge/Zhou (2020) one more 
robot per thousand workers decreased the gender wage gap by 0.3 log points, and the increase 
in robots accounts for 6% of the total reduction in the gender wage gap between 1990 and 
2015. In general, earnings for both groups decreased in the US, but male income fell at 
substantially higher rate than female income, lowering the gender income gap at a reduced 
income level.  
 
 
4.5 Demographics, health, and politics 

The adoption of robots in industrial production is not only influenced by major demographic 
factors such as growth or age structure of a given population. It may also influence itself 
important social and political trends such as changes in demographic behavior, physical and 
mental health of workers or the voting patterns of citizens. This is the outcome of papers by 
Abeliansky/Prettner (2017), Abeliansky/Beulmann (2019), Acemoglu/Restrepo (2021), 
Anelli et al. (2019a; 2019b), Gihleb et al. (2020), Gunadi/Ryu (2020) and Frey et al. (2018).  

The intensive use of robots in some highly industrialized countries might economically be 
seen as a promising strategy to face a long-term decline in population growth that sooner or 
later also transforms into a shrinking workforce. The fact that the robot adoption in the US is 
so much lower than in countries like Germany, Japan or South Korea would thus be the 
outcome of the pronounced differences in population growth. Abeliansky/Prettner (2017) 
treat robots as a perfect substitute for human labor and investigate the effects of a declining 
population growth on the robot density, defined as automation capital per capita, between 
1993 and 2013 in a sample of 60 countries. Their dependent variable is the growth rate in the 
stock of robots, constructed from IFR data following the PIM approach under the assumption 
of a 10% depreciation rate. The main explanatory variable is population growth from UN 
data sources, lagged by 1 and 2 periods. Estimations (over 3-year-averages) in various 
empirical models show a robust negative relationship between (lagged) population growth 
and the increase in robot density. These findings are complemented and deepened by the 
study of Acemoglu/Restrepo (2021) who analyze theoretically and empirically the effects of 
an aging population on the use of robots. Looking at a sample of 52 countries over the period 
1993-2014 they calculate the change in the stock of robots relative to industry employment in 
1990. The main explanatory variable is the change in the age composition of the workforce 
measured by UN data for the rate of older (56 years or more) to middle-aged workers (21-55 
years old) between 1990 and the expected level in 2025. They find a robust positive effect of 
aging on the adoption of robots, meaning that an expected future decline in the middle-aged 
population and an expected increase in the older population are associated with faster present 
robot adoption. The future demographic shifts alone are able to explain 35% of the variation 
in robot adoption across all countries of the sample. The same finding can also be derived 
when looking at differences among US local labor markets via a commuting zones 
estimation. Middle-aged workers are identified as the most scare resource in industrial 
production. If their share relative to old workers declines, the higher cost of the most 
productive workforce directs technical change into the direction of faster automation. When 
looking at the sectoral dynamics robot adoption responds positively to aging precisely in 
those industries that rely more on middle-aged workers and that have greater opportunities 
for automation.  



 

 

Looking at the immediate effects on the workplace it is not surprising that more automation 
should impact on the physical and mental health of workers. In a study for the US 
metropolitan areas Gunadi/Ryu (2020) find that higher exposure to industrial robots is 
positively associated with the self-reported health of the low-skilled population. This might 
be explained by a reduction of unhealthy behavior in industrial production when robots take 
over the most burdensome tasks. Gihleb et al. (2020) analyze the relationship between robot 
adoption and workplace injuries in the US and Germany. They show that higher robot 
exposure reduces workplace-related injuries in manufacturing firms in both countries. 
However, the US counties that are more exposed to robot penetration experience a significant 
increase in drug- or alcohol-related deaths and mental health problems, consistent with the 
evidence of negative effects on labor market outcomes in the US. The German case, where 
data from the SOEP panel on physical and mental health are used, is completely different. 
There seems to be no evidence of significant effects on the mental health of workers. This 
result is in line with the insignificant impact of automation on labor market outcomes in 
Germany. At first glance this result contradicts the findings by Abelansky/Beulmann (2019) 
who investigate in-depth the effect of automation on the mental health of German employees 
across 21 manufacturing sectors in the period 2002-2014. Their main regressor is sector- and 
year-specific robot intensity (i.e. stock of robots divided by employment in thousands of 
employees in the respective sector) calculated on the basis of IFR data with a PIM approach 
and a rate of depreciation of 10%. The dependent variable is a mental health index score of 
individual i, measured at time t, who works in sector S that is taken from bi-annual SOEP 
panel data. It is constructed from various mental health related survey questions that can be 
divided into four subcategories. The estimation results indicate that an increase in robot 
intensity is associated with a decrease of mental health, that men - and in particular young 
men aged 20-29 - are more affected than women and that workers in medium-level jobs are 
affected the most. The main drivers of a decline in mental health seem to be worries about 
job security and the economic situation in general. In a decomposition of the mental health 
index the authors find evidence that automation does not affect vitality, social functioning nor 
the emotional state of individual, but mainly the “mental work ability”. An increased robot 
exposure leads to individuals feeling less productive, which in turn affects their overall 
mental health negatively. Therefore, the difference to the results by Gihleb et al. (2020) can 
be explained by the use of a different measure for mental health.  

Anelli et al. (2019b) examine how exposure to robots and its consequences on job stability 
and economic uncertainty have affected individual demographic behavior such as marriages, 
divorces or fertility. Their empirical methodology for the US follows the commuting zone 
approach by Acemoglu / Restrepo (2017; 2020) applied to 741 zones for the period 2005-
2016. The results of the analysis indicate some significant social costs of increasing 
automation of production. Zones with higher robot penetration experienced a decrease in new 
marriages, and an increase in both divorce and cohabitation. While the overall fertility rate 
did not change, marital fertility declined and out-of-wedlock births increased. Speculating 
about the causal links the authors point out that a more intensive robot adoption may not only 
have increased the uncertainty of all traditional labor relations but may in particular have 
deteriorated the relative marriage-market value of male industrial workers.  

Anelli et al. (2019a) investigate with the same empirical methodology also the impact of 
robot adoption on electoral outcome in 14 Western European countries between 1993 and 
2016. Their findings have a highly political relevance, because they indicate that higher local 
exposure to robots, measured by IFR data, increases the political support for nationalist and 
radical-right parties. The study is based on two different empirical strategies, one relying 



 

 

again on the community zone exposure approach. The other approach tries to identify the 
individual exposure to robots measured by individual i’s probability of working in occupation 
j, that can be predicted according to age, gender, educational attainment and region of 
residence and then multiplied by an estimate of the automation threat for occupation j. The 
second approach makes the transmission channels between automation and voting results 
more transparent: higher robot exposure at the individual level leads to poorer perceived 
economic conditions and well-being, lower satisfaction with the government and democracy, 
and a reduction in perceived political self-efficacy. Frey et al. (2018) even make robots 
responsible for the victory of Donald Trump in the 2016 US presidential elections. Working 
again with the commuting zone approach, their dependent variable is the percentage point 
difference in the Republican party vote share between the 2016 and 2012 presidential 
elections. As explanatory variable they make use of the change in robot adaption in the 
immediate years before these elections. They find a positive link between changes in robot 
exposure and changes in the share of votes in favor of the Republican candidate and finish 
with a very interesting counterfactual exercise that demonstrates the extreme socio-political 
impact of the robot revolution: if the exposure to robots had not increased in the immediate 
years before the 2016 presidential elections, the major swing states Michigan, Pennsylvania 
and Wisconsin would have swung in favor of Hillary Clinton leaving the Democrats with a 
majority in the Electoral College. Even if the authors do not identify the direct transmissions 
channels there is no doubt that the political impact of increasing automation stems from the 
major structural changes that the traditional human industrial labor force had to face. Instead 
of riots against machines as in the days of the Industrial Revolution the Robot Revolution 
seems to lead to riots against politicians that are held responsible for job losses. 

We are thus confronted with significant socio-demographic and political side effects of robot 
adoption that may even promote a vicious circle:  Lower population growth and aging 
promote a higher rate of automation that via its short-term negative labor market effects 
increases overall economic uncertainty, destroys traditional family patterns and promotes the 
rise of nationalist and radical-right parties. If these parties and politicians promise a return to 
safer economic and social conditions, this would only prevent the substitution of scare labor 
by robots and thus lower income and wealth in the longer-run. The challenge for economic 
policy is thus straightforward. As Abelansky/Prettner (2017, 16) summarize: "Of course, the 
transition to automation technologies might not be all that smooth because automation capital 
competes with labor and therefore could act so as to depress wages. If this concern is valid 
and widespread, it might lead to resistance against automation from labor unions and the 
population at large. Altogether, it might therefore be in everybody’s interest if governments 
enact policies that alleviate the burden of those who suffer because of automation." 

  



 

 

5. Conclusions and outlook 

As our survey shows the IFR database on industrial robots has been a valuable tool for a 
growing body of academic research on the patterns and the effects of the rising robot 
adoption. So far it remains the only reliable data source that covers the development of the 
exposure to robots in internationally comparable format and over a long period of time for a 
broad range of countries. Alternative data sources, such as the UN Comtrade Database or 
firm-level surveys for individual countries can complement data from IFR but will by no 
means replace it. As a dataset that is provided by a private association representing the 
interest of the global robotic industry it needs to meet high standards of compliance, while 
maintaining all professional standards for presenting a realistic picture of the development on 
the world markets for robots. Moreover, availability of data disaggregated by industry and 
application has significantly improved since 2005, visible in a sharply declining share of 
robots with unspecified industry or application in total robot stocks.  

Nevertheless, we are aware of several shortcomings in the data which are partly due to the 
strict compliance guidelines. Matching the data with widely used databases such as 
EUKLEMS or WIOD is not necessarily easy but we believe that our paper by making the 
difficulties explicit aids those who wish to work with it in the future. In addition, we see an 
increasing need to develop means of quality adjustments when it comes to robot prices. 
Robot prices are only provided by IFR as average unit prices and the only quality adjusted 
price index ends in 2005. Constructing robot stocks in the same fashion as other capital 
stocks are calculated (e.g. in EU KLEMS) would require, however, some kind of quality 
adjustment. 

From the research results that are based on IFR data one learns that the effects of the rise of 
robots are multi-faceted. The patterns of adoption and the changes in industrial organization 
as well as the effects on productivity and growth are in line with long-term trends in capitalist 
development where rising wages induce labor-augmenting technical change. Whether the 
structural transformation in the organization of work means a revolutionary change in 
industrial production that leads to a general reduction in employment and wages seems, 
however, to depend very much on the institutional, political and social framework conditions. 
While in the US the rise of robots caused a significant reduction in industrial employment 
and wages, nothing comparable could be detected in Europe. The striking international 
differences to this ongoing development seem to indicate that economic policy measures as 
well a social institutions and traditions play a role in mitigating negative effects of industrial 
robots on employment and wages so that the positive effects on productivity and growth can 
dominate. Nevertheless, the social costs of structural change may induce vicious cycles in 
politics that prevent necessary policy reforms.  

The most controversial debate in that context has started on the pros and cons of a particular 
"robot tax" (Kovacev 2020) that should redistribute income from non-routine workers who 
benefit from increasing automation to routine workers who lose their jobs. As Guerreiro et al. 
(2020) point out in a theoretical model context, an economic justification for such a tax can 
only be given in the short-run and as a reaction to the extreme high speed in robot adoption 
that leaves too little time for an adequate adaption of the workers' skills on a very broad level. 
Korea, the country with the second highest robot density in the world in 2019 (IFR 2020), 
could become an interesting case for studying the impact of changing tax regimes on robot 
adoption and labor market conditions. In 2017, a reform of the Korean tax law introduced a 
reduction of the automation tax credit that had before subsidized the firms' investment in new 



 

 

robots. A rigorous empirical assessment of this reform will certainly become an innovative 
contribution to this debate.  

There are no signs that the rise of robots has already come to an end. On the contrary, there 
are indications that it will proceed at an even higher speed after the end of the COVID-19 
pandemic. Kilic/Marin (2020) speculate that the era of "hyper-globalisation" had already 
come to an end after the global financial crisis and that this has also led to a reduction in 
global value chains that profited from cheap labor outside the industrialized countries. Using 
IFR data for robot intensity they show that before 2007 industries with higher robot exposure 
were also importing more from developing countries while this pattern was completely 
reversed after 2010. For the post-pandemic era one could therefore expect that the growing 
risks of global sourcing and trading together with rapidly falling robot prices will induce a 
massive reshoring of firm activities. Whether these trends characterize the coming decade 
and what this could mean for the economy, the society and for politics, will certainly became 
visible in the data provided by IFR.  
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Appendix  
 

 
Table 1: Overview of national robotics associations 

Table A1: National robotic associations 

 Country Association 

1 China China Robot Industry Allinace (CRIA) 
2 Denmark Danish Industrial Robot Association (DIRA) 
3 France Syndicat des Machines et Technologies de Production (SYMOP) 
4 Germany VDMA Robotics + Automation (VDMA R+A) 
5 Italy Associazione Italiana di Robotica e Automazione (SIRI) 
6 Japan Japan Robot Association (JARA) 
7 Norway Norwegian Society of Electrical and Automatica Control (NFEA) 
8 Republic of Korea Korea Association of Robot Industry (KAR) 
9 Russia Russian Association of Robotics (RAR) 
10 Spain Spanish Association of Robotics & Automation (AER) 
11 Sweden Swedish Industrial Robot Association (SWIRA) 
12 Switzerland Swiss Technology Network (swissRobotics.net) 
13 Taiwan Taiwan Automation Intelligence and Robotics Association (TAIROA) 
14 Turkey Industrial Automation Manufacturers Association (ENOSAD) 
15 United Kingdom British Automation & Robotics Association (BARA) 
16 USA Robotic Industries Association (RIA) 

Source: IFR  



 

 

Table 2: IFR Geographical classes and availability of installation data 
Table A2: IFR Geographical classes and data availability 

Parent 

Class 

IFR 

Code 

Geographic Entity Geographical 

level 

Aggregate 

data since 

Data by 

industry 

since 

Data by 

application 

since  
WR WORLD Global 1993 1993 1993 

WR AFR AFRICA Continent 1999 2005 2005 
AFR ZA South Africa Survey item 1999 2005 2005 
AFR ROA Rest of Africa Country group 2005 2005 2005 
ROA EG Egypt Survey item 2005 2005 2005 
ROA MA Morocco Survey item 2005 2005 2005 
ROA TN Tunisia Survey item 2005 2005 2005 
ROA OAF Other Africa Survey item 2005 2005 2007 
WR AM AMERICA Continent 1993 2004 1993 
AM NAM North America Region 1993 2004 1993 
NAM CA Canada Survey item 2011 2011 2011 
NAM MX Mexico Survey item 2011 2011 2011 
NAM US United States Survey item 1993 2004 1993 
AM SAM South America Region 1993 2004 2004 
SAM BR Brazil Survey item 1999 2004 2004 
SAM RAM Rest of South America Country group 1999 2004 2004 
RAM AR Argentina Survey item 1999 2004 2004 
RAM RCH Chile1 Survey item 1999 2004 2004 
RAM CO Colombia1 Survey item 1999 2004 2004 
RAM PE Peru1 Survey item 1999 2004 2004 
RAM PR Puerto Rico1 Survey item 1999 2004 2004 
RAM VE Venezuela1 Survey item 1999 2004 2004 
AM AS America, not specified Survey item 1993 2006 2006 
WR ASI ASIA/AUSTRALIA Continent 1993 1993 1993 
ASI SAS South East Asia Region 1993 1993 1993 
SAS CN China Survey item 1999 2006 2004 
SAS IN India Survey item 1999 2006 2005 
SAS ID Indonesia Survey item 2002 2006 2005 
SAS JP Japan Survey item 1993 1996 1995 
SAS KR Rep. of Korea Survey item 1993 2001* 1993 
SAS MY Malaysia Survey item 1999 2006 2004 
SAS SG Singapore Survey item 1993 2005 2005 
SAS TW Taiwan Survey item 1993 1993* 1993* 
SAS TH Thailand Survey item 2002 2005 2004 
SAS VN Vietnam Survey item 2004 2005 2005 
SAS OSAS other South/East Asia Country group 2002 2006 2005 
OSAS HK Hong Kong1 Survey item 2004 2004 2004 
OSAS KP North Korea1 Survey item 2005 2005 2005 
OSAS MO Macau1 Survey item 2005 2005 2005 
OSAS PH Philippines Survey item 2002 2006 2005 
ASI RAS Rest of Asia Region 2001 2005 2004 
RAS IR Iran Survey item 2001 2005 2004 
RAS KW Kuwait1 Survey item 2005 2005 2005 
RAS OM Oman1 Survey item 2005 2005 2005 
RAS PK Pakistan1 Survey item 2005 2005 2005 
RAS QA Quatar1 Survey item 2005 2005 2005 
RAS SA Saudi Arabia1 Survey item 2005 2005 2005 
RAS AE United Arab Emirates1 Survey item 2005 2005 2005 
RAS UZ Uzbekistan1 Survey item 2005 2005 2005 
ASI OA Other Asia Survey item 1993 2006 2006 
ASI AUNZ Australia/New Zealand Country group 1993 2006 1993* 
AUNZ AU Australia Survey item 1993 2006 1993* 
AUNZ NZ New Zealand Survey item 2005 2006 2005 
WR EU EUROPE Continent 1993 1993 1993 
EU CEU Central/Eastern Europe  Region 1993 2004 2004 
CEU YUG Balkan Countries Country group 1993 2005 2005 
CEU CZ Czech Republic Survey item 1993 2004 2004 
CEU HU Hungary Survey item 1993 2004 2004 
CEU PL Poland Survey item 1993 2004 2004 



 

 

CEU RO Romania Survey item 2003 2004 2004 
CEU RU Russian Federation Survey item 1995 2004 2004 
CEU SK Slovakia Survey item 1993 2004 2004 
YUG BA Bosnia-Herzegowina1 Survey item 2005 2005 2005 
YUG CR Croatia1 Survey item 2005 2005 2005 
YUG RS Serbia1 Survey item 2005 2005 2005 
YUG SL Slovenia Survey item 1993 2005 2005 
CEU OEE Other Eastern Europe Country group 2003 2004 2004 
OEE BY Belarus1 Survey item 2005 2006 2006 
OEE BG Bulgaria1 Survey item 2005 2006 2005 
OEE EE Estonia1 Survey item 2003 2004 2004 
OEE LV Latvia1 Survey item 2005 2005 2005 
OEE LT Lithuania1 Survey item 2004 2006 2006 
OEE MD Moldova1 Survey item 2005 2005 2005 
OEE UA Ukraine1 Survey item 2003 2004 2004 
EU WEU Western Europe Region 1993 1993 1993 
WEU AT Austria Survey item 1993 2003 1993 
WEU BE Belgium Survey item 1993 2004 2004 
WEU DE Germany Survey item 1993 1993 1993 
WEU ES Spain Survey item 1993 1993 1993 
WEU FR France Survey item 1993 1993 1993 
WEU IT Italy Survey item 1993 1993 1993 
WEU NL Netherlands Survey item 1993 2004 2004 
WEU PT Portugal Survey item 1993 2004 2004 
WEU CH Switzerland Survey item 1993 2004 2004 
WEU UK United Kingdom Survey item 1993 1993 1993 
EU NEU Nordic Countries Region 1993 1993 1993 
NEU DK Denmark Survey item 1993 1996 1993 
NEU FI Finland Survey item 1993 1993 1993 
NEU NO Norway Survey item 1993 1993 1993 
NEU SE Sweden Survey item 1993 1993 1993 
EU REU Rest of Europe Region 1993 2005 2005 
REU TR Turkey Survey item 1993 2005 2005 
REU OEU all other European countries Survey item 1998 2005 2005 
OEU GR Greece Survey item 1999 2006 2005 
OEU IC Iceland1 Survey item 2004 2006 2005 
OEU IE Ireland Survey item 2002 2006 2005 
OEU IL Israel Survey item 1999 2005 2005 
OEU MT Malta1 Survey item 2005 2005 2005 
EU EUU Europe unspecified Survey item 1993 2006 2006 
WR OT Others not specified Survey item 2006 2006 2006 

Column about aggregate data availability indicate in which year the respective data were first surveyed; for some entities, 
the first strictly positive data entry is observed several years later. Columns about data availability by industry and 
application indicate the first year in which not all reported installations are unspecified (this does not hold true for all 
countries labelled by 1 because no installations might be reported). 1Surveyed, but no or very few installations reported; data 
usually hidden due to compliance mechanisms from year 2014 onwards. *Australia and Australia/New Zealand: No 
disaggregation by application between 1999 and 2003. *Rep. of Korea: No disaggregation by industry in year 2002. 
*Taiwan: No disaggregation by industry between 2000 and 2003; no disaggregation by application between 2000 and 2003. 
Source: IFR 

 
  



 

 

Table 3a: Average unit prices of industrial robots in thousand US$ 

Country 1990 1991 1992 1993 1994 1995 

Germany 99.23 103.22 95.43 90.40 77.66 78.66 

North America (USA) 112.09 105.24 99.98 106.56 103.06 89.73 

Rep. Of Korea na na na 39.18 48.06 55.74 

China       
UK 86.27 78.98 56.09 54.15 61.69 68.18 

Italy 102.80 120.91 88.44 75.68 77.66 79.81 

France 112.90 115.35 91.81 72.90 82.71 83.82 

       
Country 1996 1997 1998 1999 2000 2001 

Germany 71.08 61.77 60.07 55.27 49.45 46.51 

North America (USA) 97.56 86.17 96.32 83.05 78.55 81.57 

Rep. Of Korea 44.30 19.45 41.23 38.75 27.69 23.04 

China       
UK 76.16 60.83 56.94 63.22 53.97 47.91 

Italy 76.55 63.11 67.34 65.85 63.42 65.59 

France 65.41 56.94 59.89 64.04 47.46 47.07 

       
Country 2002 2003 2004 2005 2006 2007 

Germany 50.24 56.34 64.47 63.42 62.32 63.92 

North America (USA) 74.84 70.04 68.03 60.00 67.00 66.02 

Rep. Of Korea 21.26 26.39 28.22 27.22 29.84 32.71 

China      51.36 

UK 46.67 57.61 50.96 46.22 46.72 46.67 

Italy 71.12 85.42 95.26 91.61 121.77 137.02 

France 48.14 56.46 63.81 64.35 48.50 48.50 

       
Country 2008 2009 2010 2011 2012 2013 

Germany 68.13 84.52 58.32 58.36 71.31 75.97 

North America (USA) 74.01 64.04 62.00 61.01 62.01 61.01 

Rep. Of Korea 28.34 26.41 22.33 19.42 19.41 23.98 

China 56.35 63.71 44.73 47.26 51.20 51.37 

UK 36.21 37.80 37.59 40.95 57.08 55.51 

Italy 173.37 na na na na na 

France na na na na na na 

       
Country 2014 2015 2016 2017 2018 2019 

Germany 66.28 59.81 62.07 78.67 58.11 49.65 

North America (USA) 58.01 56.99 58.71 57.67 50.53 52.81 

Rep. Of Korea 15.61 23.33 25.11 29.64 25.15 21.70 

China 47.50 45.01 38.06 28.76 35.18 31.97 

UK 53.01 50.46 41.97 45.80 43.06 na 

Italy na na na na na na 

France na na na na na na 
Source: Own calculation based on IFR data  



 

 

Table 3b: Price index for industrial robots at current prices in national currencies 

  USA  Germany France  

year 
not quality 
adjusted quality adjusted 

not quality 
adjusted 

quality 
adjusted 

not quality 
adjusted 

quality 
adjusted 

1990 100.00 100.00 100.00 100.00 100.00 100.00 

1991 95.70 94.20 97.10 95.50 96.60 95.10 

1992 69.50 58.60 75.10 61.30 74.60 62.90 

1993 53.10 36.30 61.30 42.00 61.00 41.70 

1994 56.90 41.40 59.00 43.00 59.30 43.20 

1995 59.70 45.30 57.30 43.50 57.00 43.30 

1996 55.90 40.20 58.20 41.80 57.10 41.00 

1997 46.50 27.10 55.60 32.50 54.10 31.70 

1998 45.70 26.20 51.20 29.40 50.10 28.80 

1999 40.90 19.70 51.90 25.10 50.70 24.50 

2000 37.30 17.90 51.10 24.50 50.00 23.90 

2001 31.50 15.10 48.60 23.40 47.50 22.80 

2002 34.30 16.60 45.10 21.70 44.00 21.20 

2003 40.40 18.10 46.60 20.90 45.50 20.40 

2004 42.80 18.30 46.00 19.70 44.90 19.20 

2005 41.10 17.00 44.60 18.50 43.60 18.10 
 
 

  Italy UK Sweden  

year 
not quality 
adjusted 

quality 
adjusted 

not quality 
adjusted 

quality 
adjusted 

not quality 
adjusted 

quality 
adjusted 

1990 100.00 100.00 100.00 100.00 100.00 100.00 

1991 97.50 95.90 98.60 97.10 92.90 81.40 

1992 90.50 76.30 88.50 74.60 85.90 72.40 

1993 80.10 54.80 69.10 47.20 77.40 52.90 

1994 82.00 59.80 70.10 51.10 74.50 54.30 

1995 83.70 63.50 74.20 56.30 69.80 52.90 

1996 75.70 54.40 63.50 45.60 67.40 48.40 

1997 72.10 42.20 54.00 31.60 64.00 37.50 

1998 66.80 38.40 52.90 30.40 64.60 37.10 

1999 68.00 32.80 49.60 24.00 60.70 29.30 

2000 66.90 32.00 47.60 22.80 57.70 27.60 

2001 63.60 30.60 43.20 20.80 58.90 28.80 

2002 59.00 28.40 43.10 20.80 55.40 26.70 

2003 61.00 27.30 47.50 21.30 56.80 25.40 

2004 60.20 25.80 45.40 19.40 56.50 24.20 

2005 58.40 25.20 44.30 18.40 56.20 23.30 
Source: IFR 

  



 

 

 
Table 3c: Price indices for industrial robots at fixed conversion rates in US$ 1990 

   

Source: IFR

  USA   

year 
not quality 
adjusted 

quality 
adjusted 

1990 100.00 100.00 

1991 95.30 91.60 

1992 83.90 71.60 

1993 73.80 53.80 

1994 71.60 49.80 

1995 67.90 43.20 

1996 66.30 40.50 

1997 63.20 34.90 

1998 61.30 31.60 

1999 59.30 28.00 

2000 57.10 26.80 

2001 57.10 26.90 

2002 53.40 24.40 

2003 55.10 24.40 

2004 54.40 23.10 

2005 53.50 22.10 



 

 

 

Table 4: Correspondence table between IFR and ISIC Rev. 4 classifications 
IFR ISIC Rev. 4 

Parent 

class 

IFR Code Title Section Divisions 

or Groups 

Description 

 - 0 All industries  xxx  xxx  xxx 
0 A-B Agriculture, forestry, fishing A 01-03 Agriculture, forestry, fishing 
0 C Mining and quarrying B 05-09 Mining and quarrying 
0 D Manufacturing C 10-33 Manufacturing 
D 10-12 Food and beverages C 10-12 Manufacture of food products ∪ Manufacture of beverages 

∪ Manufacture tobacco products 
D 13-15 Textiles C 13-15 Manufacture of textiles ∪ Manufacture of wearing apparel 

∪ Manufacture of leather and related products 
D 16 Wood and furniture C 16 ∪ 31 Manufacture of wood and of products of wood and cork, except furniture; 

manufacture of articles of straw and plaiting materials  
∪ Manufacture of furniture 

D 17-18 Paper C 17-18 Manufacture of paper and paper products 
∪ Printing and reproduction of recorded media 

D 19-22  Plastic and chemical products C 19-22 Manufacture of coke and refined petroleum products 
∪ Manufacture of chemicals and chemical products 
∪ Manufacture of pharmaceuticals, medicinal chemical and botanical    
products ∪ Manufacture of rubber and plastics products 

19-22 19 Pharmaceuticals, cosmetics C 21 ∪ 2023 Manufacture of pharmaceuticals, medicinal chemical and botanical products 
∪ Manufacture of soap and detergents, cleaning and polishing preparations, 
perfumes and toilet paper 

19-22 20-21 Other chemical products n.e.c  C 19-20 \ 
2023 

Manufacture of coke and refined petroleum products 
∪ Manufacture of chemicals and chemical products (without class 2023) 

19-22 22 ∪ 2932 Rubber and plastic products (non-
automotive) 
∪ Rubber and plastic (AutoParts) 

C 22 Manufacture of rubber and plastics products 

19-22 229 Chemical products, unspecified C xxx  xxx 
D 23 ∪ 2934 Glass, ceramics, stone, mineral 

products (non-automotive) 
∪ Glass (AutoParts) 

C 23 Manufacture of other non-metallic mineral products 

D 24-28 Metal C 24  
∪ 25 
∪ 28 

Manufacture of basic metals  
∪ Manufacture of fabricated metal products, except machinery and 
equipment ∪ Manufacture of machinery and equipment n.e.c. 



 

 

24-28 24 Basic metals C 24 Manufacture of basic metals 
24-28 25  Metal products (non-automotive) C 25 Manufacture of fabricated metal products, except machinery and equipment 
24-28 28 Industrial machinery C 28 Manufacture of machinery and equipment n.e.c 
24-28 289 Metal, unspecified C xxx xxx 
D 26-27  Electrical/electronics C 26 ∪ 27 Manufacture of computer, electronic and optical products 
26-27 275 Household/domestic appliances C 275 Manufacture of domestic appliances 
26-27 271 Electrical machinery n.e.c. (non-

automotive) 
C 271  

 
∪ 272  
∪ 273  
∪ 274 

Manufacture of electric motors, generators, transformers and electricity 
distribution and control apparatus 
∪ Manufacture of batteries and accumulators 
∪ Manufacture of wiring and wiring devices 
∪ Manufacture of electric lighting equipment 

26-27 260  
∪ 261 

Electronic components/devices 
∪ Semiconductors, LCD, LED 

C 261 Manufacture of electronic components and boards 

26-27 262 Computers and peripheral equipment C 262  
∪ 268 

Manufacture of computers and peripheral equipment 
∪ Manufacture of magnetic and optical media 

26-27 263 Info communication equipment  
domestic and professional (non-
automotive) 

C 263  
∪ 264 

Manufacture of communication equipment 
∪ Manufacture of consumer electronics 

26-27 265 Medical, precision, optical 
instruments 

C 265  
 
∪ 266  
∪ 267 

Manufacture of measuring, testing, navigating and control equipment; 
watches and clocks 
∪ Manufacture of irradiation, electromedical and electrotherapeutic 
equipment 
∪ Manufacture of optical instruments and photographic equipment 

26-27 279 Electrical/electronics, unspecified C 279 Manufacture of other electrical equipment 
D 29 Automotive C xxx  xxx 
D 291 

∪ 2931  
∪ 2933  
∪ 2939 

Motor vehicles, engines and bodies 
∪ Metal (AutoParts)  
∪ Electrical/electronic (AutoParts)  
∪ Other (AutoParts) 

C 29 Manufacture of motor vehicles, trailers and semi-trailers 

29 291 Motor vehicles, engines and bodies C 291  
∪ 292 

Manufacture of motor vehicles 
∪ Manufacture of bodies (coachwork) for motor vehicles; manufacture of 
trailers and semi-trailers 

29 293 Automotive parts C xxx  xxx 
293 2931  

∪ 2933  
∪ 2939 

Metal (AutoParts)  
∪ Electrical/electronic (AutoParts)  
∪ Other (AutoParts) 

C 293 Manufacture of parts and accessories for motor vehicles 

293 2931 Metal (AutoParts) C xxx  xxx 
293 2932 Rubber and plastic (AutoParts) C xxx  xxx 



 

 

293 2933 Electrical/electronic (AutoParts) C xxx  xxx 
293 2934 Glass (AutoParts) C xxx  xxx 
293 2939 Other (AutoParts) C xxx  xxx 
293 2999 Unspecified AutoParts C xxx  xxx 
29 299 Automotive unspecified C xxx  xxx 
D 30 Other vehicles C 30 Manufacture of other transport equipment 
D 91 All other manufacturing branches C 32-33 Other manufacturing ∪ Repair and installation of machinery and equipment 
0 E Electricity, gas, water supply D ∪ E 35-39 Electricity, gas, steam and air conditioning supply 

∪ Water collection, treatment and supply ∪ Sewerage 
∪ Waste Collection, treatment and disposal activities; materials recovery 
∪ Remediation activities and other waste management services 

0 F Construction F 41-43 Construction of buildings ∪ Civil engineering 
∪ Specialized construction activities 

0 P Education/reserach/development P ∪ M 85 ∪ 72 Education ∪ Scientific research and development 
0 90 All other non-manufacturing 

branches 
G-O  
\ 72 
∪ Q-U 

45-71  
∪ 73-84 
∪ 86-99 

Wholesale and retail trade; repair of motor vehicles and motorcycles 
∪ Transportation and storage 
∪ Accommodation and food service activities 
∪ Information and communication 
∪ Financial and insurance activities ∪ Real estate activities 
∪ Professional, scientific and technical activities (without Scientific research 
and development) 
∪ Administrative and support service activities 
∪ Public administration and defence; compulsory social security 
∪ Human health and social work activities 
∪ Arts, entertainment and recreation 
∪ Other service activities 
∪ Activities of households as employers; undifferentiated goods- and 
services producing activities of households for own use 
∪ Activities of extraterritorial organizations and bodies 

0 99 Unspecified xxx xxx  xxx 

Symbol ∪ serves as logical join operator, while quantity operator \ indicates a difference quantity.  
Sources: Own research based on IFR (2020) and United Nations (2008) 
 
 
 
 
 
  



 

 

 
Table 5: IFR application classes 

IFR class Application area Definitions/ Notes 

110 Handling operations/ machine tending Assistant processes for the primary operation (the robot does not 
process the main operation directly) 

111 Handling operations for metal casting Incl. die-casting 
112 Handling operations for plastic moulding Incl. inserting operations for injection moulding 
113 Handling operations for stamping/ forging/ bending  
114 Handling operations at machine tools  

 
 
 
 

115 

 
 
 
 
Machine tending for other processes 

e.g. handling during assembly, handling operations during glass 
or ceramics production or food production; 
Robots that handle workpieces at an external welding tool centre 
point (TCP) (i.e. MIG/MAG torch or spot gun) need to be 
reported in the appropriate welding classification (i.e. 161 for arc 
welding or 162 for spot welding) and are not counted under 
handling operations  

116 Handling operations for measurement, inspection, 
testing 

Triage, quality inspection, calibration 

117 Handling operations for palletizing All sectors, all kinds and sizes of pallets 
118 Handling operations for packaging, picking and 

placing 
e.g. operations during primary and secondary packaging 

119 Material handling n.e.c. e.g. transposing, handling during sandcasting 
120 Handling operations/ machine tending unspecified Exact IFR 11X class is unknown or hidden for compliance 

reasons 
160 Welding and soldering (all materials)  

161 Arc welding  
162 Spot welding  
163 Laser welding  
164 Other welding e.g. ultrasonic welding, gas welding, plasma welding 
165 Soldering  
166 Welding and soldering unspecified Exact IFR 16X class is unknown or hidden for compliance 

reasons 
170 Dispensing  

171 Painting and enamelling Area-measured application of lacquer (surface coat) 
172 Application of adhesive, sealing material or similar 

material 
Spot-wise and line-wise application 

179 Dispensing others/ Spraying others e.g. powder coating, application of mould release agent, area-
measured application of adhesive, spraying of wax to conserve 

180 Dispensing unspecified Exact IFR 17X class is unknown or hidden for compliance 
reasons 

190 Processing Enduring changing: the robot leads the workpiece or the tool, 
incl. material removal 

191 Laser cutting  
192 Water jet cutting  
193 Mechanical cutting/ grinding/ deburring/ milling/ 

polishing 
 

198 Other processing e.g. gas/ plasma cutting, drilling, bending, punching, shearing 
199 Processing unspecified Exact IFR 19X class is unknown or hidden for compliance 

reasons 
200 Assembling and disassembling Enduring positioning of elements 

201 Assembling Assembling, mounting, screw/ nut-driving, clinching, riveting, 
bonding 

202 Disassembling Recycling, removal of cover after processing 
209 Assembling and disassembling unspecified Exact IFR 20X class is unknown or hidden for compliance 

reasons 
900 Others  

901 Cleanroom for flat-panel display (FPD)  
902 Cleanroom for semiconductors  
903 Cleanroom for others  
905 Others Applications not mentioned before 

999 Unspecified Application is unknown or hidden for compliance reasons 
 Source: IFR (2020) 
 
 



 

 

 
 
Table 6a: Share of robots with unspecified industry in total robot stocks 

 Geographical class            Obs              Mean   Std. Dev.            Min               Max  
Survey item  1539  0.452  0.384  0  1 
Country group  146  0.565  0.356  0.018  1 
Region  196  0.391  0.376  0.035  1 
Continent  102  0.369  0.338  0.043  1 
World  27  0.197  0.040  0.133  0.275 
 

Share of robots with unspecified industry in total robot stocks – Summary statistics by geographical class for the 
period 1993-2019. Japan, Russia, and Other Asia are removed from the survey item level due to data 
inconsistencies. 
Source: Own calculations based on IFR data. 

 
Table 6b: Share of robots with unspecified application in total robot stocks 

  Geographical class              Obs               Mean   Std. Dev.             Min                Max  
Survey item  1539  0.277  0.353  0  1 
Country group  146  0.386  0.350  0  1 
Region  196  0.261  0.348  0  1 
Continent  102  0.147  0.251  0.006  1 
World  27  0.070  0.030  0.032  0.186 
 

Share of robots with unspecified application in total robot stocks – Summary statistics by geographical class for 
the period 1993-2019. Japan, Russia, and Other Asia are removed from the survey item level due to data 
inconsistencies. 
Source: Own calculations based on IFR data 
 
  



 

 

 
Table 7a: Implicit depreciation rate by geographical class 

  Geographical class             Obs              Mean   Std. Dev.               Min               Max  

Survey item  1454  0.040  0.079  0  1 
Country group  139  0.024  0.032  0  0.239 
Region  188  0.056  0.075  0  0.630 
Continent  98  0.054  0.029  0  0.133 
World  26  0.069  0.013  0.046  0.098 
 

Implicit depreciation rate of total robot stocks between 1993 and 2019 – Summary statistics by geographical 
class. Japan, Russia, and Other Asia are removed from the survey item level due to data inconsistencies. 
Source: Own calculations based on IFR data 
 
 
Table 7b: Implicit depreciation rates by industry 
IFR code  Industry        Obs        Mean   Std. Dev.  Min       Max  
10-12  Food and beverages  1173  0.021  0.043  0  0.571 
13-15  Textiles  591  0.028  0.075  0  0.875 
16  Wood and furniture  823  0.028  0.069  0  1 
17-18  Paper  712  0.023  0.055  0  0.500 
19-22  Plastic and chemical products  1309  0.027  0.061  0  0.852 
23  Glass/ceramics/stone/mineral 

products  
1003  0.027  0.085  0  1 

24-28  Metal  1255  0.021  0.037  0  0.500 
26-27  Electrical/electronics  1119  0.023  0.055  0  1 
29  Automotive  1212  0.024  0.064  0  1 
30  Other vehicles  984  0.021  0.054  0  0.571 
91  All other manufacturing branches  1137  0.020  0.056  0  0.750 
A-B  Agriculture/forestry/fishing  553  0.021  0.068  0  1 
C  Mining and quarrying  348  0.021  0.083  0  1 
E  Electricity/gas/water supply  314  0.018  0.095  0  1 
F  Construction  856  0.023  0.073  0  1 
P  Education/research/development  1057  0.025  0.053  0  1 
90  All other non-manufacturing 

branches  
626  0.009  0.029  0  0.235 

 

Summary statistics for implicit depreciation rates of robot stocks by industry at survey-item level between 1993 
and 2019. Japan, Russia, and Other Asia are removed from the survey item level due to data inconsistencies. 
Source: Own calculations based on IFR data 
 
 
Table 7c: Implicit depreciation rates by application 

IFR code  Application Obs  Mean  Std. Dev.  Min  Max 
110  Handling operations / Machine 

Tending  
1409  0.024  0.067  0  1 

160  Welding and soldering  1284  0.027  0.063  0  1 
170  Dispensing  1107  0.025  0.059  0  1 
190  Processing  1071  0.024  0.055  0  1 
200  Assembling and disassembling  1069  0.021  0.046  0  0.714 
900  Others  1105  0.019  0.056  0  1 
 

Summary statistics for implicit depreciation rates of robot stocks by application at survey-item level between 
1993 and 2019. Japan, Russia, and Other Asia are removed from the survey item level due to data 
inconsistencies. 
Source: Own calculations based on IFR data 
  



 

 

 
Table 8a: Correlation between IFR installations and Comtrade import values 
Country                Corr   Obs  95% Confidence interval
Argentina  0.935  15  0.812  0.979 
Australia  0.677  18  0.307  0.869 
Austria  0.883  24  0.746  0.949 
Belgium  0.211  21  -0.243  0.589 
Brazil  0.789  21  0.541  0.910 
Canada  -0.318  24  -0.639  0.098 
Chile  0.876  15  0.659  0.958 
China  0.848  21  0.657  0.937 
Colombia  0.549  15  0.052  0.829 
Czech Rep.  0.974  23  0.938  0.989 
Denmark  0.845  23  0.664  0.932 
Finland  0.337  24  -0.077  0.651 
France  0.445  24  0.051  0.719 
Germany  0.820  24  0.622  0.919 
Greece  0.374  15  -0.171  0.744 
Hungary  0.777  24  0.544  0.899 
Iceland  0.598  11  -0.003  0.882 
India  0.979  21  0.948  0.992 
Indonesia  0.853  18  0.642  0.944 
Ireland  0.508  12  -0.093  0.838 
Israel  -0.117  15  -0.594  0.421 
Italy  0.815  24  0.614  0.917 
Malaysia  0.827  21  0.615  0.928 
Mexico  0.737  24  0.476  0.879 
Moldova  -0.094  13  -0.614  0.482 
Netherlands  0.601  24  0.262  0.809 
New Zealand  0.203  18  -0.291  0.612 
Norway  0.425  24  0.026  0.707 
Peru  0.948  15  0.848  0.983 
Philippines  0.631  12  0.090  0.885 
Poland  0.931  24  0.846  0.970 
Portugal  0.748  24  0.493  0.884 
Rep. of Korea  0.887  24  0.753  0.950 
Romania  0.672  23  0.359  0.849 
Singapore  0.038  23  -0.380  0.443 
Slovakia  0.406  23  -0.008  0.701 
Slovenia  0.766  18  0.466  0.908 
South Africa  0.788  20  0.530  0.912 
Spain  0.519  24  0.146  0.763 
Sweden  0.134  24  -0.285  0.510 
Switzerland  0.905  24  0.790  0.958 
Thailand  0.849  18  0.633  0.942 
Turkey  0.634  24  0.310  0.826 
USA  0.445  24  0.051  0.720 
United Kingdom  0.383  24  -0.024  0.681 
Venezuela  0.198  15  -0.350  0.645 
Vietnam  0.515  16  0.026  0.805 
Pooled data  0.808  955  0.785  0.829 
Country-years with negative import values net of re-exports are excluded. Country-years with IFR installations 
equal to zero only for compliance reasons are removed as well. Only countries with at least ten observations are 
included. Corr refers to Pearson correlation coefficients.  
Source: Own calculations based on IFR and Comtrade data 
 

 

 

 

 



 

 

Table 8b: Correlation between IFR installations and Comtrade import quantities 
Country                Corr   Obs  95% Confidence interval 

Argentina  0.799  14  0.467  0.934 
Australia  0.674  14  0.224  0.887 
Austria  0.949  18  0.866  0.981 
Belgium  0.629  19  0.245  0.843 
Brazil  0.312  20  -0.151  0.663 
Canada  0.087  18  -0.396  0.532 
Chile  0.560  14  0.042  0.841 
China  0.858  21  0.676  0.941 
Colombia  0.195  13  -0.399  0.674 
Czech Rep.  0.135  18  -0.354  0.566 
Denmark  0.906  19  0.767  0.964 
Finland  0.694  18  0.336  0.877 
France  0.859  19  0.664  0.945 
Germany  0.899  11  0.648  0.974 
Greece  0.219  13  -0.378  0.687 
Hungary  0.793  19  0.530  0.917 
India  0.936  21  0.845  0.974 
Indonesia  0.864  18  0.666  0.948 
Ireland  0.510  11  -0.130  0.850 
Israel  0.121  13  -0.460  0.630 
Italy  0.827  14  0.529  0.944 
Malaysia  0.153  20  -0.310  0.558 
Mexico  0.475  20  0.041  0.758 
Moldova  -0.204  13  -0.679  0.391 
Netherlands  0.680  18  0.312  0.870 
New Zealand  0.547  12  -0.039  0.853 
Norway  0.622  20  0.248  0.835 
Peru  0.551  14  0.029  0.837 
Philippines  0.249  12  -0.379  0.720 
Poland  0.958  18  0.889  0.985 
Portugal  0.820  18  0.571  0.930 
Rep. of Korea  0.881  18  0.704  0.955 
Romania  0.774  14  0.412  0.925 
Singapore  0.122  21  -0.327  0.526 
Slovakia  -0.068  18  -0.518  0.412 
Slovenia  0.814  12  0.450  0.946 
South Africa  0.149  13  -0.438  0.647 
Spain  0.253  10  -0.448  0.761 
Sweden  0.557  19  0.138  0.807 
Switzerland  0.636  20  0.269  0.842 
Thailand  0.095  14  -0.458  0.596 
Turkey  0.747  19  0.444  0.897 
USA  0.831  22  0.630  0.928 
United Kingdom  0.678  16  0.275  0.878 
Venezuela  0.147  14  -0.416  0.629 
Vietnam  0.514  15  0.003  0.813 
Pooled data  0.293  755  0.227  0.357 
Country-years with negative import values net of re-exports are excluded. Country-years with IFR installations 
equal to zero only for compliance reasons are removed as well. Only countries with at least ten observations are 
included. Corr refers to Pearson correlation coefficients. 
Source: Own calculations based on IFR and Comtrade data 

 
 
 



 

 

 
Table 9: Comparison between IFR and Comtrade quantities 
 IFR installations Comtrade imports Difference 

Country  Obs  Mean  SD  Min  Max  Mean  SD  Min  Max  Mean  SD  Min  Max 

Argentina  14  105  104.5  17  407  150.1  144.8  20  466  45.1  87.7  -32  316 

Australia  14  602.3  262.5  236  1214  2300.1  5379.8  311  20922  1697.8  5206.5  -232  19708 

Austria  18  791.2  460.5  320  1686  1450.1  863.7  478  3076  658.8  450.5  -88  1572 

Belgium  19  706.4  323.9  339  1518  2329.7  725.5  1566  4355  1623.4  579.2  894  3297 

Brazil  20  945.9  585.3  208  2196  7799.8  8831.3  117  33959  6853.9  8666.6  -923  32752 

Canada  18  1203.1  539.6  618  2333  6955.8  12701.6  467  57027  5752.7  12666.0  -151  55831 

Chile  14  4.9  4.5  0  16  220  315.9  8  899  215.1  313.4  5  891 

China  21  38411.1  53277.4  380  156176  28113.9  24630.6  1648  84685  -10300.0  34558.1  -106637  25747 

Colombia  13  2.7  4.6  0  14  64.4  73.8  2  264  61.7  73.1  2  264 

Czech Rep.  18  1129.6  997.0  70  2893  3374.6  2657.7  366  10253  2244.9  2709.2  109  10090 

Denmark  19  477.1  178.7  249  800  727  385.8  254  1668  249.9  236.5  -42  896 

Finland  18  407.7  117.7  270  699  461.2  195.6  195  954  53.4  141.9  -124  398 

France  19  3400.9  1277.2  1450  6711  3825.1  1151.7  1747  6900  424.2  655.4  -753  1814 

Germany  11  15809  5374.5  10075  26723  9316.5  6243.9  2642  19223  -6492.5  2750.5  -10439  -2465 

Greece  13  23.8  17.4  3  59  77.5  57.7  11  198  53.7  56.5  -12  146 

Hungary  19  513.5  588.4  20  2470  646.3  420.1  181  1485  132.7  361.5  -994  573 

India  21  1387.6  1414.0  20  4771  3169.2  5101.4  12  19713  1781.6  3811.2  -515  14942 

Indonesia  18  542.8  434.7  3  1168  961.1  751.8  128  2346  418.3  435.2  45  1477 

Ireland  11  46.2  29.0  4  90  134.5  183.3  19  678  88.4  170.3  3  595 

Israel  13  61.6  37.1  4  114  297.6  81.7  186  443  236  85.5  122  379 

Italy  14  5602.8  1795.8  2883  11089  3661.6  1521.1  2372  8337  -1941.2  1009.8  -3525  -54 

Malaysia  20  683.9  670.3  140  2863  33675.6  99772.3  507  437992  32991.7  99671.7  316  436994 

Mexico  20  2545.9  1904.6  716  6356  7561.1  8876.8  1143  41975  5015.1  8146.3  -498  36509 

Moldova  13  0.4  1.0  0  3  4.9  4.5  1  16  4.5  4.8  -1  16 

Netherlands  18  849  586.8  167  1814  2152.6  1574.6  370  4873  1303.6  1251.9  -216  3215 

New Zealand  12  68.5  31.5  23  123  27.3  28.4  3  99  -41.3  28.6  -95  -4 

Norway  20  102.2  43.0  48  192  588.3  369.1  187  1443  486.1  344.0  90  1251 

Peru  14  1  2.1  0  8  21.1  17.5  2  48  20.1  16.4  1  46 

Philippines  12  63.4  32.9  8  121  484.7  850.5  25  2615  421.3  842.9  -53  2521 

Poland  18  890.6  881.5  20  2651  1298.4  1086.4  132  3931  407.8  349.8  -255  1289 

Portugal  18  351.9  282.1  120  993  743.6  703.3  114  2647  391.7  499.0  -10  1951 

Rep. of Korea  18  19517.3  13871.9  3998  41373  3390.5  2131.7  1100  8090  -16100.0  12035.3  -37024  -2525 

Romania  14  283.1  262.3  16  784  1011.4  472.2  335  1641  728.3  316.4  265  1321 

Singapore  21  1080.9  1326.2  48  4559  16581.1  21758.3  662  61848  15500.2  21637.1  162  61615 

Slovakia  18  458.6  514.9  1  1732  1406.8  2503.5  71  10693  948.3  2589.9  -945  10658 

Slovenia  12  108.1  75.2  15  267  224.4  153.2  44  588  116.3  101.9  -21  321 

South Africa  13  253.2  214.8  30  805  8984.5  13525.6  141  41917  8731.3  13495.4  86  41590 

Spain  10  2561.1  651.3  1348  3584  2290.6  636.7  1488  3165  -270.5  787.5  -1368  1134 

Sweden  19  1021.8  352.8  386  1647  1173.2  413.8  606  2356  151.4  364.7  -402  1093 

Switzerland  20  613.4  381.8  156  1546  1992.7  1327.1  761  5985  1379.3  1123.7  605  4574 

Thailand  14  1919.8  1337.0  101  4028  1696.3  1521.5  293  5784  -223.5  1927.4  -2239  4532 

Turkey  19  830.7  783.2  16  2267  2048.6  1503.2  411  5504  1217.9  1055.2  357  4258 

USA  22  16443.7  8925.5  7054  40373  11205.4  15623.6  994  52879  -5238.3  9590.7  -21362  17143 

UK  16  1438.6  592.9  635  2486  2195.9  725.2  1418  3755  757.3  542.6  -523  1661 

Venezuela  14  1.7  2.8  0  7  102.7  156.2  2  562  101  155.8  2  562 

Vietnam  15  1058.1  2110.6  14  8274  1193.7  1434.8  136  5396  135.6  1843.3  -5831  3220 

Pooled data  755  3028.1  11701.5  0  156176  4407.1  18782.2  1  437992  1379.1  18994.5  -106637  436994 

Comparison between the number of robots installed/ imported according to IFR and Comtrade, respectively. 
Country-years with negative import values net of re-exports are excluded. Country-years with IFR installations 
equal to zero only for compliance reasons are removed as well. Only countries with at least ten observations are 
included. Difference is defined as Comtrade quantity (number of industrial robots imported net of re-exports) 
minus IFR installations.  
Source: Own calculations based on IFR and Comtrade data 
 



 

 

Table 10: Overview of research papers using IFR industrial robot data 
Paper Period/ Years Countries Regions  Industries (Manuf. 

+ Non-Manuf.)  

Calculation of 

robot stock 

Definiton of robot 

intensity 

Robot prices Treatment of 

unspecified robots* 

Abeliansky/Beulma

nn (2019)  

2002-2014 Germany  / 17 (15+2) PIM 10% (5%, 15% 
as robustness 
checks) 

Robot stock per 
1,000 employees 
(logged) 

  Omitted 

Abeliansky/Prettne

r (2017)  

1993-2013 60 countries / 13 (13+0) PIM 10% (5%, 15% 
as robustness 
checks) 

Robot stock per 
capita/ Robot stock 
per 10,000 
employees in 
manufacturing 

  Omitted 

Acemoglu/Restrepo 

(2020) 

1993-2007 USA 722 CZ 19 (13+6) IFR stocks Robot stock per 
1,000 workers 

Robustness check: 
adjustment for 
variation in the 
average price of a 
robot across 
industries (data on 
robot prices from 
RIA) 

Redistributed 
(allocated to 
industries in the 
same proportions as 
in the classified data) 

Aghion et al.  

(2019) 

1994-2014 France 297 local 
employment zones 

19 (13+6) IFR stocks Robot stock per 
1,000 workers 

  Omitted 

Aksoy et al. (2020) 2006, 2010, 2014 20 EU countries / 12 (8+4)  IFR stocks Robot stock per 
10,000 workers 

  Omitted 

Anelli et al. (2019a) 1993-2016 14 Western 
European countries 

192 NUTS-2 regions 11 (11+0) IFR stocks Robot stock per 
100,000 workers 

  Omitted 

Anelli et al. (2019b) 2005-2016 USA 741 CZ 19 (13+6) IFR stocks Robot stock per 
1,000 workers 

  Redistributed 

Borjas/Freeman 

(2019) 

2004-2016 USA / 26 (20+6) Simple sum of 
installations over 
time (PIM 10% as 
robustness check) 

Robot stock per 
worker 

  Unspecified 
shipments prior to 
2004 are allocated 
according to the 
2004 industry share 

Carbonero et al. 

(2018) 

2005-2014 41 countries / 14 (9+5) IFR stocks Robot stock per 
10,000 workers 

  Omitted 

CEBR (2017) 1993-2015 23 OECD / / Monetary value of 
IFR stocks in 2010 
US$ PPP 

Ratio of the 
monetary value of 
robot installations to 
GDP, or in 2010 
US$ PPP & 
robot stock per 
million hours 
worked 

Price indices 1993-
2015 

N/A 

Chiacchio et al. 

(2018) 

1995-2007 6 EU countries 116 NUT2 regions 18 (13+5) IFR stocks Robot stock per 
1,000 workers 

IFR price indices (w 
& w/o quality 
adjustment) 

Redistributed 



 

 

Cséfalvay (2020) 1995-2013 18 EU countries / Automotive 
industries 
(Automotive + Other 
vehicles) vs. Non-
automotive 
industries (all other 
industries incl. 
unspecified) 

IFR stocks Robot stock per 
10,000 employees in 
manufacturing 

  Unspecified robots 
are treated as robots 
which do not belong 
to manufacturing or 
automotive 
industries 

Cséfalvay/Gkotsis 

(2020) 

1995-2016 43 countries / / IFR stocks  Robot stock per 
10,000 employees in 
manufacturing 

  N/A 

Dahlin et al. (2019) 2010, 2015 USA 327 metropolitan 
areas 

/ Muro (2017) Robot stock (logged)   N/A 

Dauth et al. (2020) 1994-2014 Germany  402 local labour 
markets 

25 (20+5) IFR stocks Robot stock per 
1,000 workers (full-
time equivalents) 

  Omitted 

De Vries et al. 

(2020) 

2005-2015 37 countries / 19  (14+5) PIM 10% (5%, 15% 
as robustness 
checks) 

Robot stock per 
1,000 persons 
employed 

Turnover-based 
prices of robots for 
the US  

Omitted 

Faber (2018)  1993-2015 Mexico  1,806 CZ 19 (13+6) IFR stocks Robot stock per 
worker 

  Omitted 

Fernández-Marcías 

et al. (2020) 

1995-2005, 2005-
2015 

European countries / 9 (9+0) Own method of re-
estimation 
maintaining the 12-
year service life 
assumption 

Robot stock per 
1,000 workers 

Estimation of robot 
prices based on 
Comtrade data & 
comparison with IFR 
price data 

Redistributed within 
own re-estimation 
method 

Frey et a.l. (2018) 2011, 2015 USA 722 CZ 19 (13+6) IFR stocks Robot stock per 
1,000 workers 

  Redistributed 

Fu et al. (2021) 2004-2016 74 (45 developed, 29 
developing c.) 

/ / IFR stocks Robot stock over 
total labor force  

  N/A 

Ge & Zhou (2020) 1993-2015 USA 722 CZ 19 (13+6) IFR stocks Robot stock per 
1,000 workers 

  Redistributed 

Ghileb et al. (2020) 2005-2011 (USA), 
1994-2016 
(Germany) 

USA, Germany  596 CZ 19 (13+6) IFR stocks Robot stock per 
1,000 workers 

  Redistributed 

Ghodsi et al. (2020).  2000-2014 43 countries / 17 (11+6) IFR stocks Robot stock   Omitted 

Giuntella / Wang 

(2019) 

2000-2016 China 261 prefecturial level 
cities; 31 provinces 

18 (12+6) IFR stocks Robot stock per 
1,000 workers 

  Omitted 

Graetz/Michaels 

(2018) 

1993-2007 17 countries / 14 (9+5) PIM 10% (5%, 15% 
as robustness check) 

Robot stock per 
million hours 
worked 

  Omitted 

Gunadi/Ryu (2020) 2006-2017 USA 93 metropolitan 
areas 

17 (11+6) IFR stocks Robot stock per 
1,000 workers 
(logged) 

  Redistributed 

Jung/Lim (2020)  2001-2017 42 countries / / IFR stocks Annual shipment of 
robots per 10,000 

  N/A 



 

 

manufacturing 
workers 

Jungmittag (2020) 1995-2015 24 EU countries / 9 (9+0) PIM 5%, 10%, 15% Robot stock per 
1,000 workers 

  Redistributed 

Jungmittag/Pesole 

(2019) 

1995-2015 12 EU countries / 9 (9+0) PIM 5%, 10%, 15% Robot stock per 
million Euros non-
ICT capital input 

  Redistributed 

Jurkat et al. (2021) 1993-2007 10 countries / 9 (9+0) PIM 10% (5%,15% 
as robustness 
checks)  

Value of robot 
stocks in 1995 US$ 

User costs Redistributed 

Krenz et al. (2018) 2000-2014 43 countries / 9 (9+0) IFR stocks Robot stock per 
1,000 workers & 
robot stock per 
million hours 
worked 

  Omitted 

Kromann et al. 

(2020) 

2004-2007 9 countries / 10 (10+0) IFR stocks Robot stock per 
million Euros non-
ICT capital  

IFR price indices (w 
& w/o quality 
adjustment) 

Omitted 

Leigh et al. (2020) 2010-2015 USA 352 core-based 
statistical areas 
(CBSAs)  

13 (13+0) IFR stocks Robot stock per 
1,000 workers 

  Redistributed 

López-Sánchez et 

al. (2020) 

1993-2016 71 countries / / IFR stocks Robot stock per 
10,000 people of 
active population  

  N/A 

Nuccio et al. (2020) 1993-2015 5 EU countries 137 NUTS-2 regions 15 (11+4) PIM 10% Robot stock per 
1,000 inhabitants 

  Omitted 

OECD (2019) 1993-2000, 2001-
2007, 2008-2014 

  / 18 (13+5) PIM 10% Stock of robots Average unit prices 
1998-2008 

Omitted 

*Treatment of unspecified robots is not relevant for analyses based on aggregate robot data at country-level instead of country-industry level. Therefore, for the respective papers this column is labelled by “not 
applicable” (N/A). Redistribution of unspecified robots indicates that unspecified robots are allocated to industries based on industry shares in specified data, while the detailed method of redistribution might slightly 
differ from one paper to the next. “Omitted” indicates that unspecified robots are excluded from the analysis.  

 



 

 

Figure 1: Organizational structure of IFR 

 

 
 Source: IFR (internal document) 

 
 
  



 

 

Figure 2a: Compliance mechanism M1 – re-classification procedure for IFR industry classes 

 
 Source: IFR (internal document) 
 
 
Figure 2b: Compliance mechanism M1 – re-classification procedure for IFR application classes 

 
Source: IFR (internal document) 
 
 
Figure 3: Compliance for IFR geographical classes 

 
The compliance mechanism applied to the respective geographical entity is shown in parentheses 
Source: IFR (internal document) 
 
  



 

 

Figure 4a: Share of robots with unspecified industry in total robot stocks over time 

 
Source: Own calculations based on IFR data 
 

 
Figure 4b: Share of robots with unspecified application in total robot stocks over time 

 
Source: Own calculations based on IFR data 
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Figure 4c: Average share of robots with unspecified industry at survey item level over time 

 
Japan, Russia, and Other Asia are excluded from the survey item level. 
Source: Own calculations based on IFR data 
 

 

Figure 4d: Average share of robots with unspecified application at survey item level over time 

 
Japan, Russia, and Other Asia are excluded from the survey item level. 
Source: Own calculations based on IFR data 
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Figure 5a: Evolution of total robot stocks over time according to IFR method and to PIM  

   
The perpetual inventory method (PIM) is applied with three different depreciation rates: 5%, 10%, 15%. Own 
calculations based on IFR data. Since data for the US is equal to North American (NAM) data until 2011 (i.e. 
includes Canada and Mexico), the US stock is adjusted before 2011 according to the average US share in robot 
installations between 2011 and 2013 among NAM countries. After 2011, the US stock was continued according 
to IFR methodology to obtain the IFR stock for this country. 
Source: IFR data and own calculations 
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Figure 5b: Evolution of aggregated robot stocks for IFR industry classes over time according to IFR 

method and to PIM  

 
The perpetual inventory method (PIM) is applied with three different depreciation rate: 5%, 10%, 15%. Own 
calculations based on IFR data. Imputed industry robot stocks are aggregated over survey items excluding 
Japan, Russia, and Other Asia.  
Source: IFR data and own calculations 
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Figure 5c: Evolution of aggregated robot stocks for main IFR application classes over time according to 

IFR method and to PIM 

 
The perpetual inventory method (PIM) is applied with three different depreciation rate: 5%, 10%, 15%. Own 
calculations based on IFR data. Imputed industry robot stocks are aggregated over survey items excluding 
Japan, Russia, and Other Asia.  
Source: IFR data and own calculations 
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Figure 6a: Scatter plot of IFR installations and Comtrade import values 

 
Country-years with negative import values net of re-exports are excluded. Country-years with IFR installations 
equal to zero only for compliance reasons are removed as well. Only countries with at least ten observations are 
included. 
Source: Own calculations based on IFR and Comtrade data 
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Figure 6b: Scatter plot of IFR installations and Comtrade import quantities 

 
Country-years with negative import quantities net of re-exports are excluded. Country-years with IFR 
installations equal to zero only for compliance reasons are removed as well. Only countries with at least ten 
observations are included. 
Source: Own calculations based on IFR and Comtrade data 
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Figure 7: Comparison of average unit prices for robots by IFR and Comtrade 

 
Source: Own calculations based on IFR and Comtrade data 
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