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Abstract

This paper investigates the impact of an increase in life expectancy on the level

and the distribution of income in the presence of skill heterogeneity and automa-

tion capital. It shows analytically that an increase in life expectancy induces the

replacement of low-skilled workers by automation capital and high-skilled workers.

It also raises the skill premium, but has an ambiguous e¤ect on total income. When

we perform a simulation exercise, based on US data, we �nd that an increase in life

expectancy raises the level of income but exacerbates its distribution. For this rea-

son, we also examine redistributive policies that can mitigate some of the negative

e¤ects that follow an increase in life expectancy.
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1 Introduction

A specter is haunting the developed world - the specter of automation. The steady growth

of automation capital, such as robots, control systems and 3D-printers is ubiquitous in

every developed country. It is estimated that the number of industrial robots in operation

globally was around 1.8 million at the end of 2016, rose to over 2.4 million at the end of

2018 and is expected to approach 4.5 million by the end of 2022 (our calculations based

on data in IFR 2019a). Moreover, roughly 168,000 professional service robots were sold

globally in 2017 and this �gure is expected to reach over 2.8 million in the period between

2018 and 2022 (IFR 2019b). The fear is then that automation capital will replace labor,

especially the low-skilled one, thereby leading to �high rates of technological unemploy-

ment� and a worsening of wage inequality, a situation often referred to as �automation

anxiety� (see Prettner and Bloom 2020, pp. xi and xii).

A related phenomenon, as we argue below, is population aging, which has become a

global phenomenon. Over the past several decades, most economies have experienced a

substantial increase in life expectancy. According to the United Nations, in 2019 there

were 703 million older persons aged 65 years or over, who comprised 9 percent of the world

population. In particular, Europe and Northern America have the most aged population,

with 18 percent being over 65 years.1 Population aging results in an increase in the

dependency ratio - the ratio of those not of working age to those of working age - lowers

per capita income and puts pressure on productive population. To overcome these adverse

e¤ects and increase their productivity, it is often argued that economies must rely not

only on traditional capital deepening but also on robots and automation, which, as we

mention above, may a¤ect negatively the distribution of income. Still, we claim that the

connection between longevity and automation is even deeper.

Automation and robotics are �elds of arti�cial intelligence (AI).2 While AI and robots,

in particular, emerged in large-scale mass manufacturing, they are now spreading to more

and more application areas.3 One of them is Healthcare Informatics, which seems to

be advancing in great leaps and bounds. For example, new technology, such as AI-

powered Digital Workers, reduces signi�cantly the cost of collecting, sorting and analyzing

data that are important for the development and approval of new medicines. Thus, the

pharmaceutical companies are in a position to bring new and better drugs to the market

1The advanced economies are not the only ones facing rapid population aging. Some emerging
economies follow closely a similar transformation. For example, in China, the share of the population
aged 65 years or over has continuously increased in recent years and reached 11.9 percent in 2019.

2The economic use of AI can be divided into �ve categories: Deep Learning, Robotization, Demateri-
alization, Gig economy, and Autonomous Driving (see Wisskirchen et al. 2017)

3The �rst industrial robot was installed in a General Motors automobile factory in New Jersey (Bryn-
jolfsson and McAfee 2016).
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faster. Moreover, using AI-powered tools such as DAC [Deep Aging Clocks], doctors

should be able to track the changes that occur every second in patients� bodies over

their lifetime; hence, they should be able to assess more precisely individual health risks

and design appropriate interventions and changes in lifestyle for each speci�c patient.

Longevity medicine, a new branch of medicine, �is speci�cally focused on promoting

healthspan and lifespan, and is powered by AI technology� (Zhavoronkov et al. 2021, p.

6).4

At the same time, an increase in longevity has a positive e¤ect on saving (see, for ex-

ample, Bloom et al. 2003, Zhang and Zhang 2005, Kinugasa and Mason 2007 and Li et al.

2007). It is then natural to expect that part of this saving is invested in new technologies.5

Hence, automation and population aging are not only synchronous phenomena, but they

also reinforce each other. Research in AI, which includes automation, �nds applications

in medicine and raises human longevity, while longevity increases saving and investment

in AI. In fact, whereas, in the past, part of the increase in longevity was driven by im-

provements in sanitation, housing and education, in addition to vaccines and antibiotics, a

further increase would have to rely almost entirely on technological advancements. Hence,

the link between longevity and AI will become even stronger.6

This paper analyzes the distributional e¤ects of a change in life expectancy. Specif-

ically, it examines the interplay between longevity and automation capital within an

otherwise standard overlapping generations model that allows for labor market frictions

and skill heterogeneity. We capture the increase in longevity parametrically and show

how it leads to higher saving and investment in automation. Within such a framework,

then, we show analytically that an increase in life expectancy induces the replacement of

low-skilled workers by automation capital and high-skilled workers. It also raises the skill

premium, but has an ambiguous e¤ect on total income. When we calibrate the model to

the US data, we �nd that an increase in life expectancy raises the level of income but

exacerbates its distribution. We also extend the baseline model and allow for di¤eren-

tial longevity between low- and high-skilled workers as well as for endogenous education

and thus occupational attainment. Finally, we propose redistributive policies that can

mitigate and in some cases even reverse the aforementioned adverse e¤ects.

4Other important applications of AI in health include deep learning to diagnose diseases, medical
robots, and AI-powered radiology assistant, to name but a few.

5Indeed, Gehringer and Prettner (2019) using data from the OECD �nd a remarkably robust positive
relation between decreasing mortality and technological progress.

6Recent empirical studies that examine the relation between demographics and automation include
Abeliansky and Prettner (2017) and Acemoglu and Restrepo (2018). The �rst study �nds that an increase
in population growth is associated with a reduction in the growth rate of automation density. The second
study documents that countries that undergo faster aging - measured by an increase in the ratio of older
to middle-aged workers - invest more in robots.
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The remainder of the paper is organized as follows. The next subsection reviews some

of the related literature. Section 2 presents the basic model and Section 3 analyzes its

steady-state equilibrium. Section 4 calibrates the model to the US data and assesses

quantitatively the e¤ects of an increase in agents� life expectancy/longevity. Moreover,

using the calibrated model, the same section assesses the implications of a redistributive

policy that provides a subsidy to �rms for maintaining low-skilled vacancies and �nances

it with a �robot tax.� Section 5 extends �rst the basic model to allow for a) di¤erent mor-

tality rates between low- and high-skilled workers and b) endogenous education decision.

Then, it evaluates a second redistributive policy, namely, one that levies again a robot

tax and uses the proceeds to subsidize the acquisition of human capital. Finally, Section

6 summarizes the main results and suggests some avenues for future research.

1.1 Related Literature

This section outlines the contribution of the paper with respect to the relevant literature.

Several important papers have examined the e¤ects of an increase in longevity on saving

and economic growth; e.g., Zhang et al. (2001), Zhang and Zhang (2005), Cipriani (2014),

Baldanzi et al. (2019). However, much of the existing research pays little attention to

the impact of longevity on labor market outcomes. Two notable exceptions include de la

Croix et al. (2013) and Friese (2016). Nevertheless, since these studies do not allow for

skill heterogeneity, they are not designed to analyze any distributional e¤ects. Moreover,

most of the previous studies, when analyzing the e¤ects of longevity, do not take into

account the importance of automation capital, a factor that is highly substitutable for

unskilled labor.

Our paper is closely related to the recent literature that studies the e¤ects of automa-

tion. In fact, our analysis of life expectancy within an automation-augmented search and

matching framework brings together two previously disconnected lines of research, consist-

ing of Abeliansky and Prettner (2017), Acemoglu and Restrepo (2018) and Stähler (2021),

on the one hand, and Cords and Prettner (2019), Guimarães and Gil (2019), Lankisch

et al. (2019) and Gasteiger and Prettner (2020), on the other. As mentioned above (see

footnote 6), the papers by Abeliansky and Prettner (2017) and Acemoglu and Restrepo

(2018) show theoretically and document empirically that aging leads to greater automa-

tion. The �rst paper captures aging by a decrease in the population growth rate, whereas

the second paper measures it as an increase in the ratio of older to middle-aged work-

ers. The paper by Stähler (2021) analyzes a life-cycle model in which the representative

�rm produces a �nal good using four factors: routine and non-routine labor, traditional

and automation capital. It shows that the positive e¤ect of technological progress on
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per capita output outweighs the negative e¤ect of population aging; this, however, comes

at the cost of increased inequality. We do not consider technological progress and focus

instead on changes in the skill premium, the (un)employment rates and the distribution

of income. We also allow for di¤erent survival probabilities across skill groups as well as

for endogenous education decision. Finally, we analyze the role of policy in mitigating the

adverse distributional e¤ects.

Cords and Prettner (2019) develop a model with automation and a rich search and

matching environment. The production side of their model is almost identical to the

one that we use in this paper, namely, the aggregate production technology combines

skilled and unskilled labor with physical and automation capital. Automation capital,

in particular, is a perfect substitute for unskilled labor and an imperfect substitute for

skilled labor. Within such a framework, they study how changes in automation capital

a¤ect the unemployment and wages of the two types of labor. When they calibrate their

model to German data they �nd that the job creation of automation outweighs the job

destruction and thus overall employment increases. Although our paper shares several

common characteristics with the one by Cords and Prettner (2019), there are also several

important di¤erences between the two papers. For example, our research question is

di¤erent in that we ask how a change in longevity a¤ects labor market outcomes and

especially income inequality. Moreover, the answer to this question depends crucially on

our use of an overlapping generations model where agents save for the old days, whereas

Cords and Prettner use an in�nite horizon Mortensen-Pissarides type model where agents

are risk neutral.

Guimarães and Gil (2019) develop a search and matching model in which �rms choose

between two di¤erent technologies, an automated and a manual-labor. They show that an

automation-augmenting shock, i.e., an increase in the productivity of automation capital,

increases the average wage and employment, but reduces the labor share in total income.

Their model also suggests that the observed decline in the US labor share is mainly at-

tributed to technological shocks, with institutional shocks playing an almost insigni�cant

role. Thus, their focus is on the e¤ect of automation capital on the labor share and not

on changes in longevity or income inequality.

Lankisch et al. (2019) is another important paper in this literature. They simplify

the household side of the economy by assuming a constant saving rate à la Solow and

emphasize the production side by using a technology with four factors as in Cords and

Prettner (2019), described above. They show the possibility of a balanced growth path

with a positive growth rate of per capita output despite the absence of technical progress.

Furthermore, they �nd that automation decreases the real wages of low-skilled workers
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and increases the skill premium. Our paper di¤ers from theirs since i) it uses an over-

lapping generations model with endogenous saving behavior and varying lifetime and ii)

it includes, as part of the economic environment, search frictions that create involuntary

unemployment. Moreover, Lankisch et al. (2019) conclude their paper with a central

policy implication of their model, namely, to invest in higher education. They write that

�such an education policy could dampen the e¤ect of automation on wage inequality.�

We explore in detail this policy recommendation.

Methodologically, Gasteiger and Prettner (2020) is also closely related to our work

even though it has a di¤erent focus. They show that the implications of automation for

long-run growth in an overlapping generations model are di¤erent from those in a Cass-

Koopmans or in a Solow model. In an overlapping generations model with automation,

the economy converges to a steady-state with zero growth in per capita output, even when

labor is fully replaced by automation capital and thus the production function becomes of

the AK form. The reason is that, in the overlapping generations framework, households

save and invest exclusively out of their �rst-period labor income, which diminishes with

automation and eventually becomes a negligible fraction of the stock of automated capital;

hence, accumulation ceases to take place.

Finally, an important recent contribution regarding the taxation of robots is Guerreiro

et al. (2021). They develop an overlapping generations framework with endogenous

skill acquisition and labor supply. Robots are better substitutes for routine than for

non-routine labor. Moreover, the cost of producing robots falls over time as a result of

technical progress. Within this framework, they solve for the optimal Mirrleesian tax

structure under perfect commitment. We are not concerned with optimal taxation issues.

Instead, we focus on how a change in longevity a¤ects labor market outcomes. Also, in

our investigation of the role of policy in mitigating the adverse distributional e¤ects of an

increase in longevity, we take the tax on automation capital as given.

In sum, our paper shares common ingredients with several of the above-mentioned

papers. We cast our model within an overlapping generations framework, as in Gasteiger

and Prettner (2020), because of the convenience that it provides in modelling changes

in life expectancy/longevity and the motive to save for the old days. Also, we introduce

automation capital as a highly substitutable factor for unskilled labor, which is a common

characteristic of most papers in the literature. Hence, changes in the quantity of automa-

tion capital lead to changes in the demand for unskilled labor (availability of unskilled

jobs). This ingredient coupled with search and matching frictions, also found in Cords and

Prettner (2019) and Guimarães and Gil (2019), a¤ects the rate of unemployment among

unskilled workers, as a result of the way that �rms react to market conditions (changes

5



in market tightness). The position then of unskilled labor is a¤ected not only by changes

in its price but also by changes in its quantity employed. Finally, we distinguish between

two groups, skilled and unskilled workers, as in Cords and Prettner (2019) and Lankisch

et al. (2019), so that we can analyze changes in the skill premium and the distribution of

income.

Our main contribution to the literature is that we study the e¤ects of longevity, which

has been consistently increasing for most societal groups and in most developed countries.

We argue that this increase in longevity is consistent and in fact contributes to some of

the changes that we observe in the labor markets, namely, an increasing skill premium,

declined real wages and replacement of the low-skilled workers by automation capital and

a rising income inequality.7 Finally, we propose policies that can mitigate and in some

cases even reverse the adverse distributional e¤ects of an increase in longevity.

2 The Model

Consider an overlapping-generations economy inhabited by an in�nite sequence of large

households whose members have the potential lifetime of two periods. More speci�cally,

the individual members of each household live with certainty during the period following

their birth, but they may or may not survive to their second and last period of life.

We assume that, before their survival prospect is realized, each agent gives birth to one

o¤spring.

All agents belong to a household and all members of a household are a priori identical.

There are two types of household: one whose members are all high-skilled (h) and another

whose members are all low-skilled (l). We use the index i 2 fh; lg, either as a subscript

or as a superscript, to denote the skill level. We normalize the numbers of representative

high- and low-skilled households to nh and nl, so that nl = 1 � nh. Moreover, we also

normalize the size of each type of household to 1. We let � 2 [0; 1] denote the probability

that a young agent survives to maturity; consequently, 1 � � is the probability that the

agent dies prematurely.

During youth, agents search for employment. If they are successful in �nding a match

with a �rm, they work (the time endowment is 1) and receive labor income. If, on the

other hand, individuals cannot �nd a job, they remain unemployed. In the second period

of their life, even if agents survive, nature does not bestow on them the ability to work.

Thus, as a result of frictions in the labor market, individuals face uncertainty in income.

7For a summary of the stylized facts regarding the skill premium, wages, employment rates and
inequality see Lankisch et al. (2019) and Prettner and Bloom (2020).
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We follow the �large household� assumption (see, for example, Lucas 1990), and assume

that all members in the same household pool their income together in both periods of life.

2.1 Households

Each household i seeks to maximize the average utility of its members:

U i
t = log c

i
y;t + �� log cio;t+1;

where ciy;t and c
i
o;t+1 denote consumption in the young and in the old age, respectively,

� > 0 is the discount factor and, as mentioned before, � is the probability that a young

agent survives to maturity.8 The household�s problem is to choose fciy;t; c
i
o;t+1g and saving

sit subject to the budget constraints (one for each period):

ciy;t + sit = wite
i
t; (1)

cio;t+1 =
1 + rt+1

�
sit; (2)

where eit is the proportion of household members that are employed, w
i
t is the wage for

workers with skill i, and rt+1 is the (common) interest rate.
9 Solving the maximization

problem outlined above yields the expressions:

cio;t+1
ciy;t

= �(1 + rt+1); (3)

sit =
��wite

i
t

1 + ��
: (4)

It follows from equation (4) that an increase in the probability of survival to the second

period of life, �, and hence an increase in longevity; has a positive e¤ect on household�s

saving. As mentioned in the Introduction, this �nding receives strong empirical support.10

8This is a common way of introducing the survival probability in overlapping generations models, see,
for example, Blackburn and Cipriani (2002), Chakraborty (2004), Cipriani (2014), Palivos and Varvarigos
(2017) and Baltanzi et al. (2019).

9To simplify our analysis, we do not consider taxation and unemployment bene�ts.
10The logarithmic utility function that we use results in great analytical tractability; however, it yields

a constant saving rate, ��=(1+ ��) (the income and substitution e¤ect of an increase in the interest rate
o¤set each other). Thus, one cannot distinguish the e¤ect of an increase in patience, as captured by an
increase in �; from the e¤ect of an increase in longevity, as captured by an increase in �; on saving. On the
contrary, the two parameters have an opposite e¤ect on future consumption cio;t+1: Whereas an increase

in � raises cio;t+1; because the future matters more, an increase in � lowers it, because the opportunity
cost of future consumption (= �=(1 + rt+1) increases.
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2.2 Firms

There is a continuum of identical �rms. Each period t, the representative �rm employs

low-skilled labor, lt, high-skilled labor, ht, traditional physical capital, kt, and automation

capital, pt, e.g., robots, control systems and other appliances with a minimal direct human

operation, to produce output, yt: More speci�cally, we postulate that the production

technology takes the same functional form as in Cords and Prettner (2019) and Lankisch

et al. (2019):

yt = Ak t [�(lt + �pt)
� + (1� �)h�t ]

1� 
� ; (5)

where A > 0 is a productivity parameter,  2 (0; 1) governs capital income share, � 2

(0; 1) governs labor income shares, � < 1 determines the elasticity of substitution between

low- and high-skilled labor and � > 0 measures the productivity of automation capital

relative to unskilled labor. Accordingly, as it is common in this literature, e.g., Prettner

(2019) and Gasteiger and Prettner (2020), automation capital is assumed to be a perfect

substitute for unskilled labor (at the rate �) and an imperfect substitute for skilled labor.

Henceforth, we restrict our attention to the empirically relevant case where low- and

high-skilled labor are gross substitutes for each other, i.e., � > 0 and the elasticity of

substitution 1=(1 � �) > 1 (see, for example, Ottaviano and Peri 2012). This is also the

case analyzed in the recent literature (see Cords and Prettner 2019 and Lankisch et al.

2019).

The marginal products of low- and high-skilled labor are given by

yl;t = Ak t [�(lt + �pt)
� + (1� �)h�t ]

1� 
�
�1 (1�  )�(lt + �pt)

��1; (6)

yh;t = Ak t [�(lt + �pt)
� + (1� �)h�t ]

1� 
�
�1 (1�  ) (1� �)h��1t ; (7)

while the marginal product of traditional physical capital is

yk;t =  Ak �1t [�(lt + �pt)
� + (1� �)h�t ]

1� 
� (8)

and that of automation capital yp;t = �yl;t:

A �rm opens a job vacancy of type i and searches for a suitable worker in the labor

market. There is a cost di > 0 for maintaining a vacancy (a recruitment cost). Hence,

the representative �rm�s pro�t �ow, �t, is equal to the output produced net of the cost

of employing low- and high-skilled labor, the cost of renting traditional physical and

automation capital, and the cost of maintaining vacancies:
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�t = yt � wltlt � wht ht �Rk;tkt �Rp;tpt � dlv
l
t � dhv

h
t ;

where vit denotes vacancies of type i, and Rk;t and Rp;t denote, respectively, the gross rate

paid to traditional physical capital and to automation capital. The demands for low- and

high-skilled labor are given by lt = qltv
l
t and ht = qht v

h
t ; where q

i
t is the vacancy matching

rate in labor market i, that is, the probability that a vacancy of type i will be �lled.

The �rm maximizes pro�ts with respect to pt, kt, v
l
t and v

h
t . The �rst-order conditions

for pro�t maximization are

yk;t = Rk;t; (9)

�yl;t = Rp;t; (10)

yl;tq
l
t � qltw

l
t = dl; (11)

yh;tq
h
t � qht w

h
t = dh: (12)

Equations (9) and (10) state that, at the optimum, the marginal products of traditional

and automation capital equal their respective marginal cost. Equations (11) and (12), on

the other hand, equate the expected marginal bene�t from �lling a vacancy of type i to

its marginal cost di.

In addition, there is a no-arbitrage condition, which states that investing in traditional

physical capital or in automation capital yields the same rate of return, i.e., Rk;t = Rp;t;

8t: Setting equations (9) and (10) equal to each other, we solve for kt

kt =
 

1�  

� (lt + �pt)
� + (1� �)h�t

�(lt + �pt)��1�
: (13)

For simplicity, we assume that traditional and automation capital are fully depreciated

within a period. As a result, Rj;t = 1 + rt; where j 2 fk; pg.

2.3 Job Matching

Each labor market exhibits search and matching frictions. We assume pair-wise random

matching. Moreover, vacancies match with workers of the same type, i.e., there is no

cross-skill matching. All newly born individuals are initially unemployed and, thus, the

total measure of job-seekers of type i at the beginning of every period is ni. The measure
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of successful job matches in each labor market i = l; h is determined by the matching

functions:

lt =M
�
vlt; nl

�
= �l(v

l
t)
�(nl)

1��; (14)

ht =M
�
vht ; nh

�
= �h(v

h
t )
�(nh)

1��; (15)

where �i > 0 measures the degree of matching e¢ciency and � 2 (0; 1) denotes the

elasticity of the matching function with respect to vacancies.

De�ne the tightness in labor market i as �it = vit=ni: The job �nding rate, i.e., the

probability that a worker of type i �nds a job, is

m
�
�it
�
=
M (vit; ni)

ni
= �i

�
vit
ni

��
= �i(�

i
t)
�; (16)

whereas the vacancy matching rate is given by

qit =
M (vit; ni)

vit
= �i

�
vit
ni

���1
= �i(�

i
t)
��1: (17)

2.4 Wage Determination

The wage rate wit is determined through cooperative Nash bargaining. Workers and �rms

have relative bargaining power 
 and 1 � 
, respectively, where 
 2 (0; 1). For a �rm,

hiring an additional worker will create a surplus of yi;t � wit. On the other hand, for a

household, accepting a job o¤er will raise its objective function by @U i
t=@e

i
t. The outcome

of the bargaining game then is the wage rate wit that solves the maximization problem:

max
wit

�
(1� 
) log

�
yi;t � wit

�
+ 
 log

�
@U i

t

@eit

��
:

Simple di¤erentiation yields:

wit = 
yi;t; (18)

i.e., workers receive a fraction of their marginal product, which is equal to their bargaining

power 
:

3 Equilibrium Analysis: The E¤ects of an Increase

in Life Expectancy

De�nition 1 The equilibrium is a sequence
�
ciy;t; c

i
o;t+1; s

i
t; v

i
t; kt; pt; lt; ht; w

i
t; rt; Rj;t

	
; i 2

fh; lg and j 2 fk; pg; such that in every period t: (a) given the factor price sequence
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fwit; rtg ; the consumption and saving decisions
�
ciy;t; c

i
o;t+1; s

i
t

	
maximize household�s i

discounted lifetime utility; (b) given fwit; Rj;tg ; the vacancy and investment decisions

fvit; kt; ptg maximize �rm�s pro�ts; (c) the measures of low- and high-skilled employed

workers are given by equations (14) and (15); (d) the wage in each market is given by equa-

tion (18); (e) the no-arbitrage condition Rk;t = Rp;t holds; (f) the interest rate rt = Rj;t�1;

and (g) the market-clearing condition for loanable funds, kt+1+ pt+1 = sltnl+ s
h
t nh; holds.

Using equations (4), (11), (12) and (18) and imposing steady-state conditions, we can

reduce the equilibrium system to:

p+ k =
��

1 + ��


h
yl�l

�
�l
��
nl + yh�h

�
�h
��
nh

i
; (19)

(1� 
)yl =
dl
�l

�
�l
�1��

; (20)

(1� 
)yh =
dh
�h

�
�h
�1��

; (21)

where yl; yh; k; l; and h are given by equations (6), (7), (13), (14) and (15).

Proposition 1 An increase in life expectancy, i.e., an increase in �; results in: (a) a

positive e¤ect on the steady-state level of traditional and automation capital, the employ-

ment and wage of high-skilled workers and the skill premium; (b) a negative e¤ect on the

employment and wage of low-skilled workers; and (c) an ambiguous e¤ect on output.

Proof : See the Appendix.

Consider �rst the e¤ect of an increase in �, which corresponds to an increase in life

expectancy or equivalently in longevity, on traditional and automation capital. The right-

hand side of equation (19), which captures households� saving, goes up. Intuitively, an

increase in the probability of surviving to retirement motivates individuals to save more

for old-age consumption. More saving then translates into higher levels of traditional and

automation capital, since besides factors of production, they are also assets (stores of

value). Second, it follows from equation (7) that the increase in traditional or automation

capital raises the marginal product of high-skilled labor, which, in turn, raises �rms�

demand for high-skilled labor and increases the wage of high-skilled workers (equation 18).

On the contrary, from equation (6), the e¤ects of an increase in traditional and automation

capital on variables that are related to low-skilled labor work in opposite directions. In

particular, on the one hand, an increase in automation capital reduces the marginal

product of low-skilled workers, which decreases �rm�s demand for low-skilled labor and
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lowers the wage of low-skilled workers (see equation 18). On the other hand, an increase

in traditional physical capital raises the marginal product of low-skilled workers. As a

result, the employment and the wage of low-skilled workers tend to increase. Nevertheless,

the former e¤ect, which operates through automation capital, dominates the latter one,

which operates via traditional capital. Therefore, an increase in life expectancy has a

negative e¤ect on the employment level and the wage of low-skilled workers. Next, the

increase in wh and the drop in wl result in an increase in the skill premium, de�ned as

wh=wl. Finally, the e¤ect of an increase in life expectancy on output is ambiguous. This

is so because, on the one hand, the employment of low-skilled workers goes down, but,

on the other hand, the level of traditional physical capital, automation capital and the

employment of high-skilled workers go up.

4 Quantitative Analysis

In this section, we calibrate the model to the US data and obtain quantitative results

regarding the e¤ects of an increase in life expectancy/longevity. We are primarily inter-

ested in the e¤ects of an increase in life expectancy on output, automation capital, wages,

employment of skilled and unskilled labor, skill premium and income distribution.

4.1 Calibration

There are 14 parameters in the model: the discount factor �, the elasticity of the matching

function with respect to the measure of vacancies �, the matching e¢ciency parameters

�h and �l; the workers� bargaining power 
, the capital income share  , the share of high-

skilled labor force nh, the vacancy costs dh and dl, the production parameters A, � and �,

the probability of survival to the old age �, and the relative productivity of automation

capital �. One period in our model lasts for 30 years.

First, we use the annual discount factor of 0:98; which implies � = 0:545. Second,

following common practice, we set � = 
 = 0:5; and  = 0:3. Third, following, among

others, Chassamboulli and Palivos (2014) and Prettner and Strulik (2020), we de�ne as

skilled a worker with at least a Bachelor�s degree and set the percentage of skilled workers

nh equal to 0:323. Fourth, based on Acemoglu and Restrepo (2020), we use the value of

� = 3.11 Fifth, � is set equal to 0:6, so that the life expectancy obtained is consistent with

that in the data (78 years). Finally, based on the estimates of Ottaviano and Peri (2012),

we set the production parameter � equal to 0:5, implying an elasticity of substitution

11Nevertheless, our results are robust to lower values of �:
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between high- and low-skilled labor equal to 2:0.12

The remaining parameters are jointly calibrated to match the following 6 targets ob-

tained from the US data: a) the average employment rates of workers with at least a

Bachelor�s degree (skilled labor) and of workers with less than a Bachelor�s degree (un-

skilled labor) equal 0:976 and 0:939, respectively; b) the skill premium is 1:97; c) the

vacancy to unemployment ratios equal 0:620; d) the robots to labor ratio is 2%. The

values of the calibrated parameters are presented in Table 1.

Table 1: Values of the Calibrated Parameters

Value Interpretation

� = 0:427 Labor income share parameter
A = 6:830 Production e¢ciency parameter
�l = 1:203, �h = 1:240 Matching e¢ciency parameters
dl = 0:975; dh = 1:979 Vacancy costs

4.2 Results

To assess the e¤ects of longevity we perform a simulation exercise. More speci�cally, we

let � increase gradually from its baseline value 0:6 (life expectancy = 78 years) to 0:9

(life expectancy = 87 years). The results regarding the level of automation capital (p),

the employment levels (l and h) and wages (wl and wh) for low- and high-skilled workers,

and output (y) are presented in Figure 1 (dashed line).13 As can be seen, consistent with

our theoretical results, an increase in life expectancy has a positive e¤ect on automation

capital, the wage and the employment level of high-skilled workers and the skill premium.

On the contrary, it has a negative e¤ect on the wage and the employment level of low-

skilled workers.

12Our results are also qualitatively robust to changes in � (see Subsection A.3 in the Appendix).
For high values of � the adjustment in the quantities and prices of labor are relatively small. In fact,
when � = 1; the two types of labor become perfect substitutes. In this case, the ratios of their marginal
products (wages) remain constant (= �=1��) and their levels of employment cease to respond to changes
in longevity.
13In Subsection A.4 we also present all the results in a tabular form both in levels and in percentage

changes.
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Figure 1: The e¤ects of longevity

dashed line: baseline model, no subsidy, solid line: a vacancy-maintenance subsidy �nanced by

a robot tax � = 0:1.

As a consequence of the aforementioned e¤ects, there is an adverse change in the

distribution of income. More speci�cally, based on the criteria of age and skill, there are

four income groups in this economy: young low-skilled, young high-skilled, old low-skilled

and old high-skilled. The income level of each group is a¤ected by the changes in wages

and the levels of employment. The change in the Gini coe¢cient, presented in Figure 1,

indicates that, as life expectancy increases, income inequality goes up.

Finally, the e¤ect of an increase in life expectancy on output is positive, meaning

that the e¤ects via traditional physical capital, automation capital and the employment

of high-skilled workers dominate on the e¤ect through the employment of low-skilled

workers. In Subsection A.2 of the Appendix , we also present the e¤ects on traditional

capital (k) and the tightness in each labor market (�i). Quantitatively, the e¤ects range

from small (on wages and employment levels) to modest (on the skill premium and the

Gini coe¢cient) to substantial (on output and automation capital).

4.3 A Vacancy-maintenance Subsidy

In this subsection, we consider a redistributive policy towards low-skilled workers. More

speci�cally, the government provides to �rms a subsidy for maintaining low-skilled vacan-

cies and �nances this subsidy with a �robot tax,� i.e., a tax on the use of automation
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capital (see Gasteiger and Prettner 2020).14 As a result, the pro�t of the representative

�rm becomes:

�t = yt � wltlt � wht ht �Rk;tkt � (1 + �)Rp;tpt � (dl � �t) v
l
t � dhv

h
t ;

where � is the rate of the robot tax and �t is the subsidy for maintaining a vacancy of

type l. The �rst-order conditions with respect to pt and v
l
t are

�yl;t = (1 + �)Rp;t; (22)

yl;tq
l
t � qltw

l
t = dl � �t: (23)

Setting equations (9) and (22) equal to each other, we solve for kt

kt = (1 + �)
 

1�  

� (lt + �pt)
� + (1� �)h�t

�(lt + �pt)��1�
:

Equation (20) changes now to

(1� 
)yl =
dl � �t
�l

�
�l
�1��

:

Finally, assuming that the government budget constraint is balanced in every period, we

have

�Rp;tpt = �tv
l
t: (24)

Acemoglu et al. (2020) �nd that the tax rate on equipment and software capital

is around 10%. The same number is used by Guerreiro et al. (2021). Thus, we set

� = 10% and we let the government budget constraint (24) determine the subsidy �t:
15

The resulting subsidy is presented in Subsection A.2 and in Table A.5 (Subsection A.4).

As a percentage of the cost of maintaining a low-skilled vacancy, the subsidy ranges from

0.4% (when � = 0:6) to 4.0% (when � = 0:9):16

The results appear in Figure 1 (solid line). The subsidy lowers the cost of maintaining

a low-skilled vacancy, spurs �rms to open more low-skilled vacancies and increases the

market tightness for low-skilled workers. At the same time, the robot tax discourages the

14A robot tax is often suggested as a way to mitigate the negative e¤ects of automation (see Gasteiger
and Prettner 2020 and Prettner and Bloom 2020 for details).
15As shown in Subsection A.5.1, our results are robust with respect to changes in � :
16In Subsection A.6, we consider the case where a vacancy-maintenance subsidy at a constant rate is

�nanced by a constant robot tax and additional lump-sum taxation. The results are qualitatively the
same.
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accumulation of automation capital. If the subsidy is combined with the robot tax then,

for any given �; automation capital, the skill premium and the Gini coe¢cient decrease.

On the contrary, traditional capital, the wages and the quantities employed of both types

of labor as well as total output increase.

As the policy of a maintenance subsidy in combination with a robot tax continues and

longevity increases, the behavior of all the variables follows the same pattern as before,

starting either from higher or lower value, except for that of low-skilled labor employed.

The measure of employed low-skilled workers increases with the policy and continues to

do so as � rises. Thus, the trend of a high rate of technological unemployment for low-

skilled workers is not only mitigated, but reversed. The reason behind this result is that

the subsidy that follows from equation (24) is rising with �; as a given robot tax rate

is applied on a higher stock of automation capital. Regarding the skill premium, notice

in Figure 1 that when the subsidy is applied the skill premium drops instantaneously

because of the increase in market tightness �l and the concomitant increase in the wage

rate for low-skilled labor. As then � increases and the subsidy remains, the skill premium

starts rising as before and eventually, for high values of longevity and hence high values

of tightness in the market for low-skilled labor, it surpasses the one without the subsidy.

Thus, there is a value of � below (above) which the skill premium with the subsidy is

below (above) the one without the subsidy. Finally, the Gini coe¢cient in the presence

of the subsidy remains far below the one without the subsidy.17

5 Extensions of the Baseline Model

Next, we consider two extensions of the basic model: (a) the existence of di¤erent survival

probabilities between the two skill groups and (b) the presence of endogenous participation

decision in tertiary education.

5.1 Di¤erential Survival Probability

Recent empirical evidence suggests that there is a positive association between longevity

and education. For instance, Sasson and Hayward (2019) �nd that the estimated life

expectancy at age 25 years in the US between 2010 and 2017 declined among persons

without a Bachelor�s degree and increased among college-educated persons. They at-

tribute these �ndings to the unhealthy lifestyle followed by people with lower educational

17As mentioned by Gasteiger and Prettner (2020), in an open-economy world, the success of a robot
tax requires its coordinated implementation in many countries to avoid the reallocation of capital to
jurisdictions that do not impose such a tax.
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background.18 We therefore extend our model to allow for di¤erent survival probabilities

between the two skill groups. In particular, we let �i 2 [0; 1] denote the probability that

a young agent with skill i survives to maturity.

Each household�s i behavior follows now from the maximization of

U i
t = log c

i
y;t + ��i log c

i
o;t+1;

subject to the �rst-period budget constraint (1) and

cio;t+1 =
1 + rt+1

�i
sit:

The �rst-order conditions are equation (3) and the expression for saving:

sit =
��iw

i
te
i
t

1 + ��i
:

5.1.1 Quantitative Analysis

In this subsection, we perform a simulation exercise regarding the e¤ects of an increase

in either �l or �h. There are now 15 parameter values; the previous 13 and the two

probabilities of survival to the old age, �l and �h: For the parameters f�; �; 
;  ; nh; �; �g,

we use the same values as in the baseline model. Following Sasson and Hayward (2019),

we set �l = 0:57 and �h = 0:82, so that the life expectancies obtained are consistent with

the data (77:1 years for unskilled labor and 84:6 for skilled labor). Finally, the remaining

6 parameters f�;A; �h; �l; dh; dlg are recalibrated to match the above-mentioned 6 targets

obtained from the US data. The calibrated parameter values are presented in Table 2.

Table 2: Values of the Calibrated Parameters

Value Interpretation

� = 0:427 Labor income share parameter
A = 6:180 Production e¢ciency parameter
�l = 1:203, �h = 1:240 Matching e¢ciency parameters
dl = 0:882, dh = 1:791 Vacancy costs

The results, presented in Figure 2, indicate that an increase in either �l or �h has always

a positive e¤ect on high-skilled labor and a negative e¤ect on low-skilled labor. The e¤ect

18This is not the �rst time that we observe a decrease in the life expectancy of certain groups. For
example, the average life expectancy among American women without a high school diploma declined
from 78.5 years in 1990 to 73.5 years in 2008 (Olshansky et al. 2012).
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on output is also positive.19 The intuition is the same as the one described before when the

survival probability was the same between the two skill groups. The interesting �nding

is that the welfare of the low-skilled group declines even as their prospects for survival

to the old age improve. Furthermore, the only di¤erence in the e¤ects resulting from a

change in the two survival probabilities is with respect to the Gini coe¢cient for income

distribution. As seen in Figure 2 (solid line), an increase in the survival probability of the

low-skilled workers raises income inequality, since more agents are in the second lowest

income group.20 On the other hand, an increase in the survival probability of the high-

skilled workers lowers income inequality, since more agents are in the highest income group

(dashed line).
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Figure 2: Di¤erential survival probability

dashed line: the e¤ects of an increase in �h, solid line: the e¤ects of an increase in �l.

5.2 Endogenous Investment in Tertiary Education

As we have shown in the previous sections, an increase in life expectancy has positive

e¤ects on high-skilled and negative e¤ects on low-skilled households. Therefore, one may

expect that more households are willing to invest in education. In this subsection, we

pursue this extension and allow for endogenous education decision.

19In addition, automation capital and traditional physical capital increase as either �h or �l goes up
(see Subsection A.2 in the Appendix).
20Note that the income of the old high-skilled is the highest among the four groups, followed by the

income of the young high-skilled, then by the income of the old low-skilled and �nally by the income of
the young low-skilled.
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Following Prettner and Strulik (2020), we assume that each household�s i utility is

now given by:

U i
t = log c

i
y;t + �� log cio;t+1 � 1[i=h]v (a) ; (25)

where 1[i=h] denotes an indicator function that takes the value 1 if i = h and zero otherwise;

i.e., it takes the value 1 for individuals that obtain a Bachelor�s degree. Moreover, agents

are assumed to be heterogeneous in ability, a; and more able individuals need to spend less

e¤ort on obtaining a university degree: v0(a) < 0: The last term then in (25) captures the

disutility from the e¤ort that is required to obtain a university degree. As in Prettner and

Strulik (2020), we assume that the e¤ort function takes the form v (a) = � log
�

�

a�amin

�

for a � amin and v (a) = 1 otherwise (individuals with an ability level below amin must

spend in�nite e¤ort). The positive parameters � and � are used below to calibrate the

ability function. The household�s budget constraint in the �rst-period of life changes to:

ciy;t + sit = wite
i
t (1� �i) + T it ;

where �i is the constant investment of time spent on education; hence, �i = 0 for i = l

(no college degree) and �i = �; for i = h (college degree), where 0 < � < 1. Also,

T it > 0; if i = h and T it = 0 if i = l; hence, T it is a transfer/subsidy towards those that

choose to invest in education. Utility maximization yields the following expressions for

consumption:

ciy;t =
wite

i
t (1� �i) + T it
1 + ��

: (26)

cio;t+1 =
� (1 + rt+1) [w

i
te
i
t (1� �i) + T it ]

1 + ��
: (27)

Substituting (26) and (27) in equation (25), we obtain the indirect utility function for

any given education decision. Household members compare the utility levels with and

without a college degree and choose to invest in higher education if

v (a) � (1 + ��) log

�
wht e

h
t (1� �) + T ht

wlte
l
t

�
: (28)

Substituting the e¤ort function v (a), we solve (28) with equality to obtain the thresh-

old ability level, a�t , above which household members obtain a college degree:

a�t = �

�
wht e

h
t (1� �) + T ht

wlte
l
t

�� 1+��
�

+ amin:

If we let F (a) denote the cumulative distribution function of ability, then the share of high-
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skilled households nh;t = 1 � F (a�t ). Note that, ceteris paribus, a higher life expectancy

strengthens individuals� incentives to pursue a college degree and hence nh;t increases.

The government �nances the education subsidy with a robot tax and is subject to the

following budget constraint:

�Rp;tpt = nh;tT
h
t : (29)

5.2.1 Quantitative Analysis

We �rst calibrate the model assuming away any tax or subsidy. We then introduce

an education subsidy that is �nanced by a robot tax and study the e¤ects on output,

employment and distribution. In this version of the model, there are 17 parameter values

to be determined; the previous 13, that is, the 14 parameters that are present in the

baseline model except for nh, which now becomes an endogenous variable; the time spent

on education �; and the parameters of the e¤ort function �, �, and amin. For the parameters

f�; �; 
;  ; �; �; �g, we use the same values as in the baseline model. Following Prettner

and Strulik (2020), we set the time spent on education � = 0:11 and the ability level amin =

100;moreover, we assume that ability follows a normal distribution with a mean of 100 and

a standard deviation of 15.21 Finally, the remaining 8 parameters f�;A; �h; �l; dh; dl; �; �g

are recalibrated to match the above-mentioned 6 targets as well as two additional targets

obtained from the US data: the percentage of individuals with at least a Bachelor�s degree,

which is 32:3%, and the elasticity of college attendance with respect to its price, which is

1:5 (Dynarski, 2003). The calibrated parameter values are presented in Table 3.

Table 3: Values of the Calibrated Parameters

Value Interpretation

� = 0:441 Labor income share parameter
A = 6:809 Production e¢ciency parameter
�l = 1:203, �h = 1:240 Matching e¢ciency parameters
dl = 0:980, dh = 1:990 Vacancy costs
� = 0:452, � = 39 Ability function parameters

21As explained in detail in Prettner and Strulik (2020), these numbers are based on the empirical
approximation of the ability distribution with the IQ distribution.
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Figure 3: The e¤ects of an education subsidy

dashed line: baseline model, no subsidy, solid line: an education subsidy �nanced by a robot

tax � = 0:1.

The results, shown in Figure 3 (dashed line), indicate that when education investment

is endogenized, an increase in life expectancy raises the number of high-skilled households.

Due to this change, an increase in life expectancy still has positive e¤ects on automation

capital, the employment and the wage of high-skilled workers and output (the results

on automation capital, traditional physical capital and market tightness in the two labor

markets are presented in Appendix A.2). As for the low-skilled workers, their employment

and their wage decrease. Consequently, the skill premium increases. Finally, given the

above changes in the wages and the employment levels of the two skill groups as well as

the changes in the relative frequencies, the distribution of income gets better, while at

the same time the position of those who remain low-skilled worsens in both absolute and

in relative terms.

Next, based on the work of Acemoglu et al. (2020) and Guerreiro et al. (2021)

mentioned above in the case of the maintenance subsidy, we introduce a tax on robots at

the rate � = 0:1 and let the government budget constraint (29) determine the education

subsidy T ht :
22 The resulting subsidy is presented in Subsection A.2 and in Table A.9

(Subsection A.4). As a percentage of the labor income of high-skilled household, the

subsidy ranges from 0.5% (when � = 0:6) to 4.8% (when � = 0:9):23

22As shown in Subsection A.5.2, our results are robust with respect to changes in � :
23In Subsection A.6, we consider the case where an education subsidy at a constant rate is �nanced by

a constant robot tax and additional lump-sum taxation. The results are qualitatively the same.
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The e¤ects of longevity in the presence of the redistributive policy are again shown

in Figure 3 (solid line). For any given level of longevity, the robot tax lowers the level

of automated capital and raises the level of traditional capital. On the other hand, the

education subsidy induces, ceteris paribus, individuals to invest in education. These ad-

justments have countervailing e¤ects on the wages and employment levels. The immediate

(i.e., for a given �) decrease in automation capital and the increase in traditional capital

drive the initial increase in the wage of the low-skilled workers and the decrease in the

number of educated high-skilled workers in comparison with the situation before the pol-

icy is instigated. Nevertheless, as the education subsidy and the robot tax continue to be

applied and longevity increases, the number of high-skilled workers increases and the level

of automation capital starts rising again (see Appendix A.2). Among the most notable

changes then in the e¤ects of longevity, in the presence of the redistributive policy, are

that the wages of low- and high-skilled workers are stabilized at higher levels. At the

same time, the skill premium and the Gini coe¢cient jump to a lower level and remain

essentially insensitive to changes in longevity. Thus, as before, the redistributive policy

that we analyzed in this subsection mitigates some of the negative e¤ects that follow from

an increase in life expectancy.

6 Conclusion

We have analyzed the e¤ects of an increase in life expectancy or, equivalently, longevity,

on output, employment and income distribution in the presence of automation as well as

traditional capital. We have shown that an increase in life expectancy raises the level of

automation capital, the employment and the wage of high-skilled labor, as well as the

skill premium. On the other hand, it lowers the employment and the wage of low-skilled

labor. Finally, it has an ambiguous e¤ect on output. When calibrating the model to the

US data, our simulation analysis shows that output goes up, but the distribution of in-

come deteriorates. Thus, changes in life expectancy have signi�cant distributional e¤ects.

Most of these results remain qualitatively the same when we extend the model to allow

for di¤erent mortality rates between low- and high-skilled workers or for an endogenous

education decision. We have also examined the e¤ects of redistributive policies, such as a

subsidy towards the maintenance of low-skilled vacancies or education that is �nanced by

a robot tax, and have shown that such policies can alleviate some of the negative e¤ects

of increased life expectancy and automation capital.

Our analysis is subject to several quali�cations that call for further research. For

the sake of brevity we outline just two of them. First, in our analysis, the increase in
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life expectancy occurs as a parametric shift and is not related to any medical R&D that

occurs in the economy. It is likely, however, that advances in both arti�cial intelligence

and in longevity medicine are the results of systematic research e¤orts. To study then

more deeply the interplay between digital health technologies and automation, one would

have to introduce an R&D sector, as in Prettner and Strulik (2020), where new discoveries

a¤ect both the production and the healthcare sectors.

Another caveat of our model is that changes in longevity as well as in automation

do not in�uence the length of agents� working life. It will be an interesting extension

to endogenize the retirement age in the presence of automation. In fact, in the current

framework, changes in longevity and in automation will result in di¤erent retirement age

for each skill group. This is an additional dimension that will in�uence not only the

distribution of income but also the sustainability of the public pension system. We leave

these, and other extensions, for future work.
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A Appendix

A.1 Proof of Proposition 1

Taking logarithm of the system de�ned by equations (19)-(21) yields

ln

�
��

1 + ��

�
+ ln 
 + ln (yll + yhh)� ln (p+ k) = 0; (A.1)

ln(1� 
) + ln yl � ln dl + ln�l � (1� �) ln �l = 0; (A.2)

ln(1� 
) + ln yh � ln dh + ln�h � (1� �) ln �h = 0: (A.3)

The Jacobian of the system is

� =

0

B
@

@ ln J1
@ ln p

@ ln J1
@ ln �l

@ ln J1
@ ln �h

@ ln yl
@ ln p

@ ln yl
@ ln l

@ ln l
@ ln �l

� (1� �) @ ln yl
@ lnh

@ lnh
@ ln �h

@ ln yh
@ ln p

@ ln yh
@ ln l

@ ln l
@ ln �l

@ ln yh
@ lnh

@ lnh
@ ln �h

� (1� �)

1

C
A ; (A.4)

where

@ ln J1
@ ln p

= 

@ ln yl
@ ln p

+ (1� 
)
@ ln yh
@ ln p

�
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p+ k
�
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@ ln k

@ ln p
;
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@ ln �l
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and


 =
yll

yll + yhh
;


l =
� (l + �p)�

�(l + �p)� + (1� �)h�
;

@ ln yl
@ ln p

= � (1�  ) (1� �) (1� 
l)
�p

l + �p
< 0;

@ ln yl
@ ln l

= � (1�  ) (1� �) (1� 
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l

l + �p
< 0;
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@ ln yl
@ lnh

= (1�  ) (1� �) (1� 
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@ ln yh
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= (1� �) [1� (1�  ) (1� 
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= (1� �) [1� (1�  ) (1� 
l)]
l
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> 0;

@ ln yh
@ lnh

= � (1� �) [1� (1�  ) (1� 
l)] < 0:

From equation (13), we have

ln k = ln � ln (1�  ) + ln [�(l + �p)� + (1� �)h�]� ln�� (� � 1) ln (l + �p)� ln�:

Thus,

@ ln k
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d lnh

d ln �h
= �:

The determinant of the Jacobian is
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where
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To analyze the e¤ects of increased longevity on automation capital, we replace the �rst
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column of the Jacobian by the partial derivatives of equations (A.1)-(A.3) with respect

to ln �:
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The determinant of the matrix in equation (A.6) is positive
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Applying Crammer�s rule yields

d ln p

d ln �
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j�j
> 0:

To analyze the e¤ects of longevity on low-skilled labor market tightness, we substitute

the second column of the Jacobian by the partial derivatives of equations (A.1)-(A.3) with

respect to ln �:
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The determinant of the matrix in equation (A.8) is positive
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To analyze the e¤ects of longevity on the tightness of high-skilled labor market, we

replace the third column of the Jacobian by the partial derivatives of equations (A.1)-(A.3)
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The determinant of the matrix in equation (A.9) is positive
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A.2 Additional Results

In this subsection, we present the e¤ects of longevity on traditional and automation

capital, the market tightness for low- and high- skilled workers and the resulting subsidy.
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Figure A1: The e¤ects of longevity

dashed line: baseline model, no subsidy, solid line: a vacancy-maintenance subsidy �nanced by

a robot tax � = 0:1.
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a vacancy-maintenance subsidy �nanced by a robot tax � = 0:1.
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Figure A3: Di¤erential survival probability

dashed line: the e¤ects of an increase in �h, solid line: the e¤ects of an increase in �l.
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Figure A4: The e¤ects of an education subsidy

dashed line: baseline model, no subsidy, solid line: an education subsidy �nanced by a robot

tax � = 0:1.

Education subsidy as a proportion of the labor income of a high-skilled household.
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Figure A5: Size of education subsidy
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A.3 Sensitivity Analysis with respect to �

In this subsection, we check whether our results are robust with respect to changes in the

elasticity of substitution between low- and high-skilled workers. Recall that the elasticity

of substitution is equal to 1=(1 � �): Indeed, if low- and high-skilled labor are gross

substitutes for each other, i.e., � > 0, an increase in longevity has a positive e¤ect on

the steady-state levels of traditional and automation capital, the employment and wages

of high-skilled workers, output, the skill premium and the Gini coe¢cient. On the other

hand, it has a negative e¤ect on the employment and wages of low-skilled workers.

Table A.1: � = 0:1
� 0.600 0.700 0.800 0.900
p 0.004 0.019 0.034 0.048
k 0.198 0.210 0.221 0.232
l 0.599 0.591 0.584 0.577
wl 0.596 0.588 0.581 0.575
h 0.340 0.348 0.354 0.361
wh 1.356 1.385 1.412 1.438
y 1.058 1.124 1.188 1.250
skill premium 2.273 2.355 2.431 2.502
Gini coe¢cient 0.240 0.258 0.273 0.287

Table A.2: � = 0:5
� 0.600 0.700 0.800 0.900
p 0.013 0.029 0.044 0.058
k 0.186 0.195 0.205 0.213
l 0.641 0.636 0.632 0.628
wl 0.638 0.633 0.629 0.625
h 0.315 0.320 0.325 0.329
wh 1.257 1.277 1.294 1.311
y 2.794 2.904 3.007 3.104
skill premium 1.970 2.016 2.058 2.096
Gini coe¢cient 0.169 0.181 0.191 0.200
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Table A.3: � = 0:9
� 0.600 0.700 0.800 0.900
p 0.025 0.041 0.057 0.071
k 0.186 0.195 0.205 0.213
l 0.714 0.713 0.712 0.711
wl 0.710 0.709 0.708 0.708
h 0.267 0.268 0.269 0.270
wh 1.062 1.067 1.071 1.074
y 3.141 3.247 3.345 3.436
skill premium 1.496 1.504 1.511 1.518
Gini coe¢cient 0.035 0.038 0.040 0.042

A.4 Tabular Presentation of the Results

This Subsection reports the results presented in the main text (Figures 1, 2 and 3) in a

tabular form. Related to Figure 1:

Table A.4: The e¤ects of longevity

Values Percentage Changes
� 0.600 0.700 0.800 0.900 0.700 0.800 0.900
p 0.013 0.029 0.044 0.058 124.9 242.5 353.3
l 0.641 0.636 0.632 0.628 -0.764 -1.433 -2.026
wl 0.638 0.633 0.629 0.625 -0.764 -1.433 -2.026
h 0.315 0.320 0.325 0.329 1.553 2.969 4.266
wh 1.257 1.277 1.295 1.311 1.553 2.969 4.266
y 2.372 2.476 2.573 2.665 4.388 8.500 12.36

skill premium 1.970 2.016 2.058 2.097 2.335 4.466 6.421
Gini coe¢cient 0.225 0.231 0.235 0.239 2.666 4.727 6.361

k 0.186 0.195 0.205 0.213 5.192 10.08 14.68

�l 0.620 0.611 0.602 0.595 -1.522 -2.846 -4.010

�h 0.620 0.639 0.657 0.674 3.130 6.025 8.713
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Table A.5: The e¤ects of longevity in the presence of a vacancy-maintenance

subsidy

Values Percentage Changes
� 0.600 0.700 0.800 0.900 0.700 0.800 0.900
p 0.005 0.021 0.037 0.051 337.0 660.2 969.2
l 0.665 0.667 0.670 0.673 0.387 0.818 1.263
wl 0.659 0.653 0.648 0.643 -0.905 -1.703 -2.407
h 0.322 0.328 0.333 0.338 1.829 3.519 5.075
wh 1.284 1.308 1.330 1.350 1.832 3.522 5.078
y 2.461 2.589 2.710 2.826 5.183 10.13 14.81

skill premium 1.949 2.002 2.052 2.098 2.762 5.315 7.669
Gini coe¢cient 0.211 0.215 0.219 0.221 2.236 3.861 5.055

k 0.205 0.218 0.230 0.242 6.144 12.03 17.64

�l 0.667 0.672 0.678 0.684 0.775 1.643 2.541

�h 0.647 0.671 0.693 0.714 3.692 7.162 10.41
�
dl

0.004 0.017 0.029 0.040 329.7 635.2 917.6

Related to Figure 2:

Table A.6: The e¤ects of �l
Values Percentage Changes

�l 0.570 0.700 0.800 0.900 0.700 0.800 0.900
p 0.013 0.023 0.029 0.036 76.18 128.9 177.2
l 0.641 0.638 0.636 0.634 -0.473 -0.787 -1.067
wl 0.577 0.575 0.573 0.571 -0.473 -0.787 -1.067
h 0.315 0.318 0.320 0.322 0.953 1.602 2.188
wh 1.138 1.148 1.156 1.162 0.953 1.602 2.188
y 2.146 2.203 2.243 2.279 2.678 4.527 6.220

skill premium 1.970 1.998 2.017 2.035 1.433 2.408 3.291
Gini coe¢cient 0.207 0.211 0.213 0.216 1.764 2.960 4.041

k 0.186 0.192 0.196 0.199 3.166 5.357 7.366

�l 0.620 0.614 0.610 0.607 -0.943 -1.568 -2.123

�h 0.620 0.632 0.640 0.647 1.916 3.229 4.424
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Table A.7: The e¤ects of �h
Values Percentage Changes

�h 0.820 0.880 0.940 1.000 0.880 0.940 1.000
p 0.013 0.017 0.020 0.024 29.28 57.71 85.33
l 0.641 0.640 0.639 0.638 -0.184 -0.360 -0.528
wl 0.577 0.576 0.575 0.574 -0.184 -0.360 -0.528
h 0.315 0.316 0.318 0.319 0.369 0.724 1.066
wh 1.138 1.142 1.146 1.150 0.369 0.724 1.066
y 2.146 2.168 2.189 2.210 1.030 2.030 3.000

skill premium 1.970 1.981 1.991 2.002 0.554 1.088 1.603
Gini coe¢cient 0.207 0.207 0.207 0.206 -0.045 -0.289 -0.707

k 0.186 0.188 0.190 0.192 1.217 2.398 3.546

�l 0.620 0.618 0.616 0.613 -0.368 -0.719 -1.053

�h 0.620 0.625 0.629 0.633 0.739 1.453 2.144

Related to Figure 3:

Table A.8: The e¤ects of longevity

Values Percentage Changes
� 0.600 0.700 0.800 0.900 0.700 0.800 0.900
nh 0.323 0.337 0.350 0.362 4.334 8.377 12.15
l 0.641 0.627 0.614 0.603 -2.150 -4.154 -6.021
wl 0.642 0.641 0.641 0.640 -0.084 -0.164 -0.239
h 0.281 0.293 0.305 0.316 4.527 8.766 12.74
wh 1.264 1.266 1.268 1.271 0.185 0.359 0.526
y 2.259 2.369 2.473 2.571 4.876 9.471 13.81

skill premium 1.970 1.975 1.980 1.985 0.270 0.523 0.767
Gini coe¢cient 0.197 0.196 0.193 0.190 -0.979 -2.248 -3.664

p 0.013 0.029 0.044 0.058 125.8 244.3 356.0
k 0.176 0.185 0.193 0.201 4.964 9.650 14.08

�l 0.620 0.619 0.618 0.617 -0.169 -0.327 -0.478

�h 0.620 0.622 0.624 0.627 0.370 0.719 1.055
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Table A.9: The e¤ects of longevity in the presence of an education subsidy

Values Percentage Changes
� 0.600 0.700 0.800 0.900 0.700 0.800 0.900
nh 0.319 0.338 0.354 0.370 4.334 8.377 12.15
l 0.664 0.647 0.631 0.616 -2.618 -5.065 -7.345
wl 0.661 0.662 0.662 0.662 0.037 0.045 0.028
h 0.284 0.300 0.315 0.329 5.568 10.77 15.63
wh 1.295 1.294 1.294 1.294 -0.081 -0.098 -0.061
y 2.338 2.464 2.585 2.700 5.414 10.58 15.50

skill premium 1.958 1.956 1.955 1.956 -0.118 -0.143 -0.089
Gini coe¢cient 0.187 0.188 0.188 0.187 0.371 0.351 0.093

p 0.005 0.023 0.040 0.057 339.0 663.0 972.8
k 0.194 0.205 0.215 0.224 5.375 10.53 15.47

�l 0.659 0.660 0.660 0.659 0.075 0.090 0.056

�h 0.651 0.650 0.650 0.650 -0.162 -0.196 -0.122
Th

wheh(1��)
0.005 0.021 0.036 0.048 316.3 589.8 828.6

A.5 Sensitivity Analysis with respect to �

A.5.1 Maintenance Subsidy

In Subsection 4.3, to ensure that the amount of automation capital is positive, the rate

of robot tax � cannot exceed 0:15. Figure A6 presents the results for � = 0:07; 0:1 and

0:13: As can be seen below, the results are robust with respect to changes in the value of

� :
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Figure A6: The e¤ects of longevity

A.5.2 Education Subsidy

In Section 5.2, to ensure that the amount of automation capital is positive, the rate of

robot tax � cannot exceed 0:16. Figure A7 presents the results for � = 0:07; 0:1 and 0:13:

As can be seen below, the results are robust with respect to changes in the value of � :
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Figure A7: The e¤ects of education subsidy

A.6 Lump-sum Taxation

In this subsection, we consider the case where the two subsidies, i.e., the maintenance

subsidy and the education subsidy, are �nanced by a robot tax and an additional lump-

sum taxation.

A.6.1 Vacancy-maintenance subsidy

We assume a constant vacancy-maintenance subsidy � = 0:01dl �nanced by a proportional

robot tax � = 0:1 and an additional lump-sum taxation Tt. The pro�t of the representative

�rm becomes

�t = yt � wltlt � wht ht �Rk;tkt � (1 + �)Rp;tpt � (dl � �) vlt � dhv
h
t � Tt;

The government budget constraint becomes
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�Rp;tpt + Tt = �vlt:

Figure A8 presents the results.
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Figure A8: The e¤ects of a constant vacancy-maintenance subsidy

dashed line: baseline model, no subsidy, solid line: a vacancy-maintenance subsidy � = 0:01dl

�nanced by a robot tax � = 0:1 and a lump-sum tax Tt.

A.6.2 Education Subsidy

We assume a constant education subsidy T h = 0:05 �nanced by a proportional robot tax

� = 0:1 and an additional lump-sum tax Tt. The pro�t of the representative �rm becomes

�t = yt � wltlt � wht ht �Rk;tkt � (1 + �)Rp;tpt � dlv
l
t � dhv

h
t � Tt;

The government budget constraint becomes

�Rp;tpt + Tt = nh;tT
h:
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Figure A9 presents the results.

0.6 0.7 0.8 0.9
0.32

0.33

0.34

0.35

0.36

0.37

 n
h

0.6 0.7 0.8 0.9
0.6

0.62

0.64

0.66

 l

0.6 0.7 0.8 0.9
0.64

0.645

0.65

0.655

0.66

0.665

 w
l

0.6 0.7 0.8 0.9
0.28

0.29

0.3

0.31

0.32

0.33

 h

0.6 0.7 0.8 0.9
1.26

1.27

1.28

1.29

1.3

 w
h

0.6 0.7 0.8 0.9
2.2

2.3

2.4

2.5

2.6

2.7

 y

0.6 0.7 0.8 0.9

1.94

1.95

1.96

1.97

1.98

 s
k
il
l 
p
re

m
iu

m
0.6 0.7 0.8 0.9

0.185

0.19

0.195

0.2

 G
in

i 
c
o
e
ff
ic

ie
n
t

0.6 0.7 0.8 0.9
0

0.02

0.04

0.06

 p

0.6 0.7 0.8 0.9

0.18

0.19

0.2

0.21

0.22

 k

0.6 0.7 0.8 0.9

0.62

0.63

0.64

0.65

0.66

l

0.6 0.7 0.8 0.9
0.62

0.63

0.64

0.65

h

Figure A9: The e¤ects of a constant education subsidy

dashed line: baseline model, no subsidy, solid line: a education subsidy T h= 0:05 �nanced by

a robot tax � = 0:1 and a lump-sum tax Tt.
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