
Munich Personal RePEc Archive

Optimal Capital Taxation in an Economy

with Innovation-Driven Growth

Chen, Ping-ho and Chu, Angus C. and Chu, Hsun and Lai,

Ching-Chong

Tunghai University, University of Liverpool, Tunghai University,

Academia Sinica

February 2019

Online at https://mpra.ub.uni-muenchen.de/107961/

MPRA Paper No. 107961, posted 26 May 2021 01:33 UTC



Optimal Capital Taxation in an Economy with
Innovation-Driven Growth

Ping-ho Chen

Department of Economics, Tunghai University, Taiwan

Angus C. Chu

Management School, University of Liverpool, UK

Hsun Chu

Department of Economics, Tunghai University, Taiwan

Ching-chong Lai

Institute of Economics, Academia Sinica, Taiwan

Department of Economics, National Cheng Chi University, Taiwan

Institute of Economics, National Sun Yat-Sen University, Taiwan

Department of Economics, Feng Chia University, Taiwan

May 2021

Abstract

This paper investigates optimal capital taxation in an innovation-driven growth
model. We examine how the optimal capital tax rate varies with externalities associ-
ated with R&D and innovation. Our results show that the optimal capital tax rate is
higher when (i) the “stepping on toes effect” is smaller, (ii) the “standing on shoulders
effect” is stronger, or (iii) the extent of creative destruction is smaller. The opti-
mal capital tax rate is more likely to be positive when there is underinvestment in
R&D. Moreover, the optimal capital tax rate and the monopolistic markup exhibit an
inverted-U relationship. By calibrating our model to the US economy, we find that
the optimal capital tax rate is positive, at a rate of around 6.6 percent. Finally, we
consider a number of extensions and find that the result of a positive optimal capital
tax is robust.

Keywords: Optimal capital taxation, R&D externalities, innovation

JEL classification: E62, H21, O31

Acknowledgements: We are deeply grateful to the Editor, William Barnett, an anonymous

associate editor, and two anonymous referees for their insightful comments and suggestions. The

paper has also benefited from useful comments by Been-lon Chen, Fu-sheng Hung, and Ming-fu

Shaw. The usual disclaimer applies.

Correspondence: Hsun Chu, Department of Economics, Tunghai University, No.1727, Sec.4,

Xitun Dist., Taiwan Boulevard, Taichung, 40704 Taiwan. Tel.: +886-4-23590121 #36119; Email:

hchu0824@gmail.com



1 Introduction

Capital income is taxed worldwide. The estimated effective average tax rates on capital

income are around 40% in the United States and 30% in EU countries. In some countries,

such as the United Kingdom and Japan, the capital income tax rates are even up to nearly

60%. From the perspective of welfare maximization, whether these capital tax rates are too

high or too low is an important policy question.

Despite the fact that capital taxes are commonly levied in the real world, a striking theory

put forth by Judd (1985) and Chamley (1986) suggests that the government should only tax

labor income and leave capital income untaxed in the long run. A number of subsequent

studies, including Chari et al. (1994), Jones et al. (1997), Atkeson et al. (1999), and Chari

and Kehoe (1999), relax key assumptions in Judd (1985) and Chamley (1986), and find their

result to be quite robust. The idea of a zero optimal capital tax has then been dubbed the

Chamley-Judd result, which turns out to be one of the most well-established and important

results in the optimal taxation literature.1

In this paper, we revisit the Chamley-Judd result in an innovation-driven growth model.

There are several reasons as to why we choose this environment to study optimal taxation.

First, as stressed by Aghion et al. (2013), it appears that the consideration of growth does

not play much of a role in the debate on the Chamley-Judd result. However, given that the

recent empirical evidence suggests that the tax structure has a significant impact on economic

growth (e.g., Arnold et al., 2011), it is more plausible to bring the role of growth into the

picture. Second, along the line of the optimal taxation literature, production technology

is treated as exogenously given. The role of endogenous technological change driven by

R&D has thus been neglected in previous models. In view of the fact that innovation is

a crucial factor in economic development as well as in the improvement of human well-

being, overlooking this element could lead to a suboptimal design of tax policies. Our study

thus aims to fill this gap. Third, as pointed out by Domeij (2005), a key premise in early

contributions supporting the Chamley-Judd result is that there exist no inherent distortions

and externalities in the economy. If market failures are present, the optimal capital income

tax might be different from zero. Thus, we introduce an innovation market that featues

various R&D externalities put forth by Jones and Williams (2000). Within this framework,

we can study how the optimal capital taxation and R&D externalities interact in ways not

1More recently, Chari et al. (2020) further support the result that capital should not be taxed by extending
the model to include richer tax instruments that the government can access.
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so far understood.

By calibrating the model to the US economy, our numerical analysis shows that the opti-

mal capital income tax rate is around 6.6 percent. The reason for a positive optimal capital

income tax in our R&D-based growth model can be briefly explained as follows. In essence,

the Chamley-Judd result involves a tax shift between capital income tax and labor income

tax. The basic rationale behind a zero optimal capital tax is that taxing capital generates

more distortion than taxing labor, because taxing capital creates a dynamic inefficiency for

capital accumulation. In our R&D-based growth model, by contrast, innovation requires

R&D labor, as typically specified in standard R&D-based growth models (e.g., Romer, 1990;

Jones, 1995; Acemoglu, 1998).2 Under such a framework, taxing labor has a detrimental

effect on the incentives for innovation and growth. This introduces a justification for taxing

capital income instead of labor income. On these grounds, it might be optimal to have a

non-zero capital income tax rate.

Although the result of a positive capital income tax rate is not new in the literature, our

study provides insights by examining with what features of the innovation process would the

optimal capital tax rate be positive. By varying the parameters capturing important R&D

externalities to see how the optimal capital income tax responds, our analysis reveals the

following findings. First, under the benchmark parameters, the optimal capital tax rate is

positive, but this result can be sensitive to the parameter that determines the monopolistic

markup. Second, when knowledge spillovers are large or R&D duplication externalities are

small (thereby increasing the chances of underinvestment in R&D), it is more likely that a

positive optimal capital income tax rate will result. Third, when creative destruction is more

relevant in the R&D process, the optimal capital income tax rate should be lower. Fourth,

a higher government spending ratio pushes toward a positive optimal capital income tax.

Another contribution of this paper is that we identify the role of the monopolistic markup

played in determining optimal capital taxation. Our numerical analysis shows that the op-

timal capital income tax and the markup display an inverted-U shaped relationship. In

existing studies, a well-known result is that when the intermediate firms are imperfectly

competitive, capital investment is too low compared to the socially optimal level (e.g., Aiya-

2There are two specifications regarding the innovation process in typical R&D-based growth models: the
knowledge-driven specification (i.e., R&D using labor/scientists as inputs) and the lab-equipment specifi-
cation (i.e., R&D using final goods as inputs). Our analysis adopts the former approach by following the
viewpoint of Romer (1990) and Jones (1995) and also the empirical viewpoint of Einiö (2014) who points out
that R&D is a labor-intensive activity. If we instead adopt the lab-equipment specification, the numerical
values of the optimal capital tax rate would be different. However, the nature of the relationships between
R&D externalities and the optimal capital tax, which is our central goal in this paper, will not change.
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gari, 1995; Judd, 1997, 2002; Coto-Martínez et al., 2007). Accordingly, the government

should subsidize capital income to induce a higher level of capital investment, implying that

the optimal capital income tax tends to decrease when the monopolistic markup increases.

In addition to capturing this traditional effect, our present R&D-based growth model also

discloses another effect. In our model, the markup is inversely determined by the elasticity

of substitution between intermediate goods. A reduction in the substitution elasticity that

raises the markup amplifies the productivity of differentiated varieties in the production of

final goods and hence increases the social value of R&D. As a result of this, the government

is inclined to subsidize labor by taxing capital given that the R&D sector uses labor. In

consideration of this R&D effect, an increase in the monopolistic markup is not necessarily

accompanied by a lower optimal capital income tax.

Related Literature. There is a vast literature that attempts to overturn the Chamley-

Judd result. Most of these papers obtain positive long-run capital taxation by changing the

model’s economic environment.3 Recently, Straub and Werning (2020) have demonstrated

that the Chamley-Judd result does not hold even in the original models used to derive it by

Judd (1985) and Chamley (1986).4

Within the voluminous literature, Aghion et al. (2013) is the first attempt to introduce

R&D-based growth to the debate on the Chamley-Judd result. It is therefore worthwhile

discussing our contribution and the main differences between our paper and Aghion et al.

(2013). First, and most importantly, our study links optimal taxation to a detailed innovation

process and monopolistic markup. Specifically, we examine how the optimal capital income

tax responds to various R&D externalities by integrating the models in Aghion et al. (2013)

and Jones and Williams (2000). The empirical literature on R&D has identified various

externalities such as the “stepping on toes effect” and the “standing on shoulders effect” that

are relevant to the innovation process.5 Our study thus extends the Aghion et al. (2013)

analysis by incorporating these externalities into the debate on optimal capital taxation.

Second, by following the specification of Jones and Williams (2000), our model is free of

3The majority of this literature obtains a positive optimal capital income tax; see, e.g., Chari and Kehoe
(1990), Stokey (1991), Aiyagari (1995), Chamley (2001), Erosa and Gervais (2002), Cozzi (2004), Domeij
(2005), Conesa et al. (2009), Farhi and Werning (2010, 2013), Aghion et al. (2013), Chen and Lu (2013),
Piketty and Saez (2013), Long and Pelloni (2017). Alternatively, a few studies overturn the Chamley-Judd
result by proposing a negative optimal capital tax; see, e.g., Judd (1997, 2002), Coto-Martínez et al. (2007),
and Petrucci (2015).

4Lansing (1999) obtains a similar conclusion to Straub and Werning (2020) but his paper is only limited
to a special case in which the intertemporal elasticity of substitution is unity.

5See Neves and Sequeira (2018) and Sequeira and Neves (2020) for useful surveys of this literature.
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the “scale effect” which is often not observed in reality (Jones, 1995).6 Third, Aghion et al.

(2013) find that a positive optimal capital income tax can be the case when the government

spending-to-output ratio exceeds 38%, which is much larger than the empirical value. In

our analysis, by contrast, the optimal capital income tax is positive even if the government

spending ratio is reasonably small (around 17%). Finally, Aghion et al. (2013) consider a lab-

equipment innovation process (i.e., R&D uses final goods as inputs) with Schumpeterian-type

quality-improving R&D. Our model complements their analysis by considering a knowledge-

driven innovation process (i.e., R&D uses labor as an input) with Romer-type expanding-

variety R&D.

Long and Pelloni (2017) also find a sizable positive optimal capital tax in a standard

expanding-variety R&D model a la Romer (1990). In contrast to previous literature on

the Chamley-Judd result, in their analysis the role of physical capital is dismissed and the

capital tax is imposed on the return of financial assets related to R&D investment. Moreover,

their analysis has not examined the linkage between optimal taxation and various R&D

externalities.

Our paper is also related to the literature on the “new dynamic public finance” approach

developed by Golosov et al. (2003) who extend the static Mirrlees (1971) framework to

dynamic settings. This literature considers a different environment from Judd (1985) and

Chamley (1986) by emphasizing the roles of (aggregate and idiosyncratic) uncertainty and

dynamic tax schemes, and finds that it is Pareto optimal to have positive capital taxes.

The basic logic is that once capital is accumulated, it is sunk, and taxing capital is no

longer distortionary. Thus it may become preferable for the government to deviate from the

prescribed sequence of taxes by taxing capital.7

Finally, our paper is related to a group of studies that examine the effects of factor taxes

in R&D-based growth models. Zeng and Zhang (2002) examine the long-run growth effects of

various taxes including the capital, labor, and consumption tax. Scrimgeour (2015) examines

the effects of reforming taxes on government revenues and welfare. Iwaisako (2016) explores

the effects of patent protection on optimal corporate income and consumption taxes. These

papers, however, do not focus on the normative analysis of optimal capital taxation.

The rest of the paper proceeds as follows. In Section 2 we describe the R&D-based growth

6The earlier R&D-based growth models (Romer, 1990; Grossman and Helpman, 1991; Aghion and Howitt,
1992) have a feature that changes in the size of an economy’s population affect the long-run growth rate.
Jones (1995) argues that such a “scale effect” is not supported by the empirical evidence.

7See Golosov et al. (2006) for a useful reader’s guide, and see Golosov and Tsyvinski (2015) for the recent
development of this literature.
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model featuring creative destruction and various types of R&D externalities elucidated by

Jones and Williams (2000). In Section 3 we analyze how capital tax changes affect the

economy in the long run. In Section 4 we quantify the optimal capital income tax rate and

examine how its value depends on various R&D externalities. Section 5 concludes.

2 The model

Our framework builds on the scale-invariant R&D-based growth model in Jones andWilliams

(2000). The main novelty of the Jones-Williams model is that it introduces a variety of

R&D externalities into the original variety-expanding R&D-based growth model in Romer

(1990). In this paper, we extend their model by incorporating (i) an elastic labor supply

and (ii) factor income taxes, namely, capital and labor income taxes. To conserve space, the

familiar components of the Romer variety-expanding model will be briefly described, while

new features will be described in more detail.

2.1 Household

We consider a continuous-time economy that is inhabited by a representative household. At

time t, the population size of the household is Nt, which grows at an exogenous rate n. Each

member of the household is endowed with one unit of time that can be used to supply labor

to a competitive market or enjoy leisure. The lifetime utility function of the representative

household is given as:8

U =

∫ ∞

0

e−βt [ln ct + χ ln(1− lt)] dt, (1)

where ct is per capita consumption and lt is the supply of labor per capita. The parameters

β > 0 and χ ≥ 0 denote, respectively, the subjective rate of time preference and leisure

preference. The representative household maximizes (1) subject to the following budget

constraint:

k̇t + ėt = [(1− τK)rK,t − n− δ]kt + (re,t − n) et + (1− τL,t)wtlt − ct, (2)

where a dot hereafter denotes the derivative with respect to time, kt is physical capital per

capita, δ > 0 is the physical capital depreciation rate, et is the value of equity shares of R&D

8Here we assume that household welfare depends on per capita utility. See, e.g., Chu and Cozzi (2014)
for a similar specification.
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owned by each member, rK,t is the capital rental rate, re,t is the rate of dividend, and wt

is the wage rate. The policy parameters τK and τL,t are respectively the capital and labor

income tax rate.9

Solving the dynamic optimization problem yields the following first-order conditions:

1

ct
= qt, (3)

(1− τL,t)wt(1− lt) = χct, (4)

re,t = (1− τK)rK,t − δ. (5)

where qt is the Hamiltonian co-state variable on eq. (2). Equations (3) and (4) are re-

spectively the optimality conditions for consumption and labor supply, and eq. (5) is a

no-arbitrage condition which states that the net returns on physical capital and equity

shares must be equalized. We denote the common net return on both assets as rt (i.e.,

rt = re,t = (1− τK)rK,t − δ). The typical Keynes-Ramsey rule is:

ċt
ct
= rt − n− β. (6)

2.2 The final-good sector

A perfectly-competitive final-good sector produces a single final output Yt (treated as the

numéraire) by using labor and a continuum of intermediate capital goods, according to the

CES technology:

Yt = L1−αY,t

(∫ At

0

xαρt (i)di

) 1
ρ

, α ∈ (0, 1), ρ ∈ (0,
1

α
), (7)

where LY,t is the labor input employed in final goods production, xt(i) is the i-th intermediate

capital good, and At is the number of varieties of the intermediate goods.

Profit maximization yields the following conditional demand functions for the labor input

and intermediate goods:

wt = (1− α)
Yt
LY,t

, (8)

9We drop the subscript t for τK . In line with the literature, we consider τK as a time-independent policy
parameter. As pointed out by Aghion et al. (2013), analyzing complicated time-dependent policies in the
Ramsey framework is neither plausible nor empirically relevant.
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pt(i) = αL1−αY,t

(∫ At

0

xαρt (i)di

) 1
ρ
−1

xαρ−1t (i), (9)

where pt(i) is the price of the i-th intermediate good.

2.3 The intermediate-good sector

Each intermediate good is produced by a monopolistic producer that owns a perpetually

protected patent for that good. The producer uses one unit of physical capital to produce

one unit of intermediate goods; that is, the production function is xt(i) = vt(i), where vt(i)

denotes the capital input employed by monopolistic intermediate firm i. Accordingly, the

profit of intermediate goods firm i is:

πx,t(i) = pt(i)xt(i)− rK,tvt(i). (10)

Let ηt(i) denote the gross markup that the i-th intermediate firm can charge over its

marginal cost; that is:

pt(i) = ηt(i)rK,t. (11)

Then, the profit of the i-th intermediate firm can be obtained as:

πx,t(i) =
ηt(i)− 1

ηt(i)
α
Yt
At
. (12)

In subsection 2.5, we will elucidate how ηt(i) is determined.

2.4 The R&D sector

R&D creates new varieties of intermediate goods for final-good production. The production

technology we adopt incorporates the knowledge-driven specification of Romer (1990) and

Jones (1995), i.e., innovation using the labor input (scientists and engineers), with the Jones

and Williams (2000)’s specification which features fruitful R&D externalities:

(1 + ψ)Ȧt = ΩtLA,t (13)

where LA,t is the labor input used in the R&D sector, and Ωt is the productivity of R&D

which the innovators take as given. The parameter ψ ≥ 0 represents the size of the innovation

clusters, which we will detail below.
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We follow Jones (1995) to specify that the productivity of R&D takes the following

functional form:

Ωt = Lλ−1A,t A
φ
t . (14)

Eqs. (13) and (14) contain three parameters λ, φ and ψ. These parameters capture salient

features of the R&D process, as proposed by Jones and Williams (1998).

First, the parameter λ ∈ (0, 1] reflects a (negative) duplication externality or a congestion

effect of R&D. It implies that the social marginal product of research labor can be less than

the private marginal product. This may happen because of, for example, a patent race, or

if two researchers accidentally work out a similar idea. Jones and Williams (1998) refer to

this negative duplication externality as the stepping on toes effect. Notice that this effect is

stronger with a smaller λ, and it vanishes when λ = 1.

Second, the parameter φ ∈ (0, 1) reflects a (positive) knowledge spillover effect due to the

fact that richer existing ideas are helpful to the development of new ideas. A higher φ means

that the spillover effect is greater. In his pioneering article, Romer (1990) specifies φ = 1;

however, Jones (1995) argues that φ = 1 exhibits a scale effect which is inconsistent with

the empirical evidence. We follow Jones (1995) and assume that φ < 1 in order to remove

this scale effect. The knowledge spillover effect is dubbed by Jones and Williams (1998) as

the standing on shoulders effect.

Finally, the parameter ψ ≥ 0 denotes the size of the innovation clusters, which captures

the concept of creative destruction formalized in the Schumpeterian growth model developed

by Aghion and Howitt (1992). The basic idea is that innovations must come together in

clusters, some of which are new, while others simply build on old fashions. More specifically,

suppose that an innovation cluster, which contains (1+ψ) varieties, has been invented. Out

of these (1+ψ) varieties, only one unit of variety is entirely new and thus increases the mass

of the variety of intermediate goods. The remaining portion, of size ψ, simply replaces the

old versions. This portion captures the spirit of creative destruction since new versions are

created with the elimination of old versions. However this part does not contribute to an

increase in existing varieties. In other words, for (1 + ψ) intermediate goods invented, the

actual augmented variety is 1, while there are ψ repackaged varieties.

Given Ωt, the R&D sector hires LA,t to create (1+ψ) varieties. Thus, the profit function

is πA,t = PA,t(1 + ψ)Ȧt − wtLA,t where PA,t denotes the market value of a new variety. By

8



assuming free entry in the R&D sector, we can obtain:

PA,t =
st

1− st

(1− α)Yt

(1 + ψ)Ȧt
, (15)

where st ≡ LA,t/Lt is the ratio of research labor to total labor supply Lt. Moreover, the

no-arbitrage condition for the value of a variety is:

rtPA,t = πx,t + ṖA,t − ψ
Ȧt
At
PA,t. (16)

In the absence of creative destruction (ψ = 0), the familiar no-arbitrage condition reports

that, for each variety, the return on the equity shares rtPA,t will be equal to the sum of

the flow of the monopolistic profit πx,t plus the capital gain or loss ṖA,t. When creative

destruction is present, existing goods are replaced. Accompanied by Ȧt new varieties being

invented, the amount of ψȦt existing varieties will be replaced. Therefore, for each variety,

the expected probability of being replaced is ψȦt/At, which gives rise to the expected capital

loss expressed by the last term in eq. (16).

2.5 The monopolistic markup

This subsection explains how the monopolistic markup ηt(i) is determined. As identified by

Jones and Williams (2000), there are two scenarios in which the markup is decided. The

first is the “unconstrained” case. In this case, the monopolistic intermediate firm freely sets

the price by maximizing eq. (10) subject to the production function xt(i) = vt(i) and eq.

(9), which yields the pricing rule pt(i) =
1
ρα
rK,t. We refer to

1
ρα
as the “unconstrained”

markup. The second case is the “constrained” case, which may occur if the new designs are

linked together in the innovation cluster. Specifically, a larger size of innovation clusters ψ

serves as a constraint that controls the magnitude of the monopolistic markup. The intuition

underlying this idea requires a more detailed explanation. Consider that the current number

of varieties is At. Now an innovation cluster with size (1+ψ) is developed. This increases the

mass of varieties to At+1; at the same time it also replaces old-version varieties by ψ units.

Subsequently, the final-good firm faces two choices. It can either adopt the new innovation

cluster and then use At+1 intermediate goods priced at a markup, or part with the new

innovation cluster and still use At intermediate goods in the production process. If the

final-good firm chooses the latter, since ψ varieties have now been displaced, the final-good

9



firm only needs to purchase At − ψ units of intermediate goods at a markup price, while

the other ψ units of displaced intermediate goods can be purchased at a lower (competitive)

price. When the size of an innovation cluster is high (a large value of ψ), the final-good

firm will not tend to adopt the new innovation cluster because sticking to old clusters is

cheaper. As a result, the intermediate-good firms have to set a lower price so as to attract

the final-good firm to adopt the new innovation cluster. This “adoption constraint” explains

why an increase in the size of the innovation clusters reduces the markup.

In an appendix, Jones and Williams (2000) demonstrate that the constrained markup

is negatively related to both the size of the innovation clusters and the elasticity of substi-

tution between capital goods. Specifically, they demonstrate that, in order to attract the

final-good firm to adopt the new innovation cluster, the intermediate-good firms cannot set

a markup that is higher than [(1 +ψ)/ψ]1/ρα−1. A profit-maximizing firm thus always tends

to set the highest price pt(i) = [(1 + ψ)/ψ]1/ρα−1rK,t. We refer to [(1 + ψ)/ψ]1/ρα−1 as the

"unconstrained" markup. By combining the constrained markup pricing with the uncon-

strained markup pricing rule mentioned earlier (i.e., pt(i) =
1
ρα
rK,t), we can conclude that

the equilibrium markup is:

ηt(i) = min

{
1

ρα
,

(
1 + ψ

ψ

) 1
ρα
−1
}

, (17)

which is independent of i and t. Combining eqs. (10) and (17) implies that all intermediate-

good firms are symmetric. Hence, the notation i can be dropped from now on.

2.6 The government and aggregation

The government collects capital income taxes and labor income taxes to finance its public

spending. The balanced budget constraint faced by the government is:

Nt(τKrK,tkt + τL,twtlt) = Gt, (18)

where Gt is the total government spending. We assume that government spending is a fixed

proportion of final output, i.e., Gt = ζYt, where ζ ∈ (0, 1) is the ratio of government spending

to output. As in Conesa et al. (2009), Aghion et al. (2013) and Long and Pelloni (2017),

eq. (18) puts aside the role of government debt when examining the optimal factor taxes.

That is, we mainly focus on the trade-off between the capital and labor income tax.

10



Now let us define the aggregate capital stock as Kt = Ntkt, aggregate consumption

Ct = Ntct, and total labor supply Lt = Ntlt. After some derivations, we can obtain the

following resource constraint in the economy: K̇t = Yt − Ct −Gt − δKt.

2.7 The decentralized equilibrium

The decentralized equilibrium in this economy is an infinite sequence of allocations {Ct, Kt,

At, Yt, Lt, LY,t, LA,t, xt, vt}
∞
t=0, prices {w t, rK,t, rt, pt, PA,t}

∞
t=0, and policies {τK , τL,t}, such

that at each instant of time:

a. households choose {ct, kt, et, lt} to maximize lifetime utility, eq. (1), taking prices and

policies as given;

b. competitive final-good firms choose {xt, LY,t} to maximize profit taking prices as given;

c. monopolistic intermediate firms i ∈ [0, At] choose {vt, pt} to maximize profit taking

rK,t as given;

d. the R&D sector chooses LA,t to maximize profit taking {PA,t, wt} and the productivity

Ω as given;

e. the labor market clears, i.e., Ntlt = LA,t + LY,t;

f. the capital market clears, i.e., Ntkt = Atvt;

g. the stock market for variety clears, i.e., Ntet = PA,tAt

h. the resource constraint is satisfied, i.e., K̇t = Yt − Ct −Gt − δKt;

i. the government budget constraint is balanced, i.e., Nt(τKrK,tkt + τL,twtlt) = Gt.

3 Balanced growth path

In this section, we explore the balanced growth path along which each variable grows at a

constant rate, which can be zero. We denote the growth rate of any generic variable Z by

gZ , and drop the time subscript to denote any variable in a steady state. The steady-state

growth rates of varieties and output are given by (see Appendix A):

gA =
λ

1− φ
n, gY =

1

1− α

(
1

ρ
− α

)
gA + n. (19a)
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Moreover, in order to obtain stationary endogenous variables, it is necessary to define the

following transformed variables:

k̂t ≡
Kt

Nσ
t

, ĉt ≡
Ct
Nσ
t

, ŷt ≡
Yt
Nσ
t

, ât ≡
At

N
λ/(1−φ)
t

, (19b)

where σ ≡ 1 + (1/ρ−α)λ
(1−α)(1−φ)

> 0 is a composite parameter. For ease of exposition, in line with

Eicher and Turnovsky (2001), k̂, ĉ, ŷ, and â are dubbed the scale-adjusted capital, consump-

tion, output, and R&D varieties, respectively. Based on the transformed variables and the

equilibrium defined in subsection 2.5, the economy in the steady state can be described by

the following set of equations:

r = (1− τK)rK − δ = β + gY , (20a)

s =

η−1
η

α
1−α
(1+ψ)gA

r − gY +
(
1 + η−1

η
α
1−α

)
(1+ψ)gA

, (20b)

k̂

ŷ
=

α

ηrK
, (20c)

(1− ζ)
ŷ

k̂
=

ĉ

k̂
+ gY + δ, (20d)

ŷ = â1/ρ−αk̂α ((1− s)l)1−α , (20e)

gA =
1

1 + ψ

(sl)λ

â1−φ
, (20f)

χl

(1− l)
=

(1− τL)(1− α)

(1− s)

ŷ

ĉ
, (20g)

τL =
1− s

1− α

(
ζ − τK

α

η

)
, (20h)

in which eight endogenous variables r, s, ĉ, k̂, â, ŷ, l, τL are determined.

Of particular note, our main focus is on the examination of the capital tax. By holding

the proportion of the government spending constant, an increase in the capital income tax

will be coupled with a reduction in the labor income tax. Therefore, the literature on the

Chamley-Judd result generally assumes that the labor income tax endogenously adjusts to

balance the government budget. This approach has been dubbed as “tax shifting” or “tax

swap” in the literature. Our analysis follows this standard approach in the literature.
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3.1 Comparative statics analysis

In this subsection, we analyze the effects of capital taxation on the R&D share of labor s, the

endogenous labor income tax rate, labor supply, and other scale-adjusted variables: â, k̂, ĉ,

and ŷ.10

The long-run R&D labor share, s, is given by:

s =

η−1
η

α
1−α
(1+ψ)gA

r − gY +
(
1 + η−1

η
α
1−α

)
(1+ψ)gA

. (21a)

From (21a) we have the following proposition:

Proposition 1 In the steady state, the R&D labor share is independent of the capital income

tax rate.

The intuition underlying Proposition 1 can be grasped as follows. The non-arbitrage

condition between physical capital and R&D equity reported in (20a) requires that the

return on physical capital be equal to the return on R&D equity. Given that the return on

R&D equity, r = β+ 1
1−α

(
1
ρ
− α

)
gA + n, is independent of the capital tax rate, the capital

income tax rate then does not affect the return on R&D equity and the R&D labor share.

Therefore, our analysis does not rely on the channel that capital taxation generates a direct

effect on the allocation of R&D and production labor. Instead, our analysis is based on

the trade-off between labor supply and capital investment as in the standard Chamley-Judd

setting.

From (20h), we have:

τL =
1− s

1− α

(
ζ − τK

α

η

)
, (21b)

Based on (21b), we have:

∂τL
∂τK

= −
1− s

η

α

1− α
< 0. (21c)

The above equation shows that an increase in the capital income tax rate is coupled with a

reduction in the labor income tax rate.

10We solve the dynamic system in Appendix B, and a detailed derivation of the comparative static analysis
is presented in Appendix C.
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Given a constant capital income tax rate τK , labor supply in the steady state is given

by:

l = 1−
χ

χ+ 1

[(1−ζ)−(δ+gY )
α(1−τK )

η(β+δ+gY )
]

(1−τL)(1−α)
(1−s)

. (22a)

It is straightforward from eq.(22a) to infer the following result:

∂l

∂τK
=

αβ( 1−s
1−α
)[1− ζ + η−1

η
α(δ+gY )

β+(1+ψ)gA
](1− l)l

η(β + δ + gY )(1− τL)[1− ζ − (δ + gY )
α(1−τK)
η(β+δ+gY )

]
> 0. (22b)

Moreover, the scale-adjusted R&D varieties â is given by:

â =

[
1

(1 + ψ)gA

]1/(1−φ)
(sl)λ/(1−φ), (23a)

where s and l are reported in eqs. (21a) and (22a). With ∂s/∂τK = 0, it is quite easy from

eq. (23a) to derive that:

∂â

∂τK
=

λâ

(1− φ)l

∂l

∂τK
> 0. (23b)

We summarize the above results in the following proposition.

Proposition 2 Under an elastic labor supply (χ > 0), a rise in the capital income tax rate

boosts labor supply and (scale-adjusted) R&D varieties.

The intuition underlying Proposition 2 can be explained as follows. In response to a

rise in the capital income tax rate, the following effect emerges. Raising the capital tax

rate reduces the labor income tax rate (see eq. (21c)) and raises the after-tax wage income,

thereby exerting a positive effect on labor supply. Therefore, a rise in the capital income

tax rate is accompanied by an increase in labor supply. This in turn increases the labor

input allocated to the R&D sector (LA = Nsl). Then, as reported in eq. (23a), given that

scale-adjusted R&D varieties â is increasing in the R&D labor input sl, â will increase in

response to a rise in τK .

We now examine the effect of the capital tax on output. From eqs. (20a), (20c), (20d),

(23a), and (20e), we can infer that:

ŷ =

[
1

(1 + ψ)gA

] 1/ρ−α
(1−α)(1−φ)

(sl)
1/ρ−α
1−α

λ
1−φ

[
α(1− τK)

η(β + δ + gY )

] α
1−α

(1− s)l, (24a)
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where

∂ŷ

∂τK
=

[
−

α

(1− α)(1− τK)
+
σ

l

∂l

∂τK

]
ŷ
>

<
0. (24b)

Thus, we have:

Proposition 3 Under an inelastic labor supply (χ = 0), a rise in the capital income tax rate

lowers final output, whereas under an elastic labor supply (χ > 0), the effect of the capital

income tax on final output is uncertain.

We explain the intuition as follows. As shown in eq. (24b), two conflicting effects emerge

following a rise in the capital income tax rate. First, a rise in the capital income tax rate

shrinks capital investment, which in turn generates a negative impact on output. Second, a

rise in the capital income tax rate is accompanied by a fall in the labor income tax rate, which

motivates the household to provide more labor supply. This increase in labor supply implies

that more labor input is available for the R&D sector and in turn boosts R&D varieties,

thereby contributing to a positive effect on output. If labor supply is exogenous (χ = 0),

the second positive effect is absent (∂l/∂τK = 0), and thus a higher capital income tax rate

lowers output. However, if labor supply is endogenous (χ > 0), the two opposing effects are

present, and the output effect of capital income taxation depends upon the relative strength

between these two effects.

Finally, we examine the effects of the capital tax on capital and consumption. From eqs.

(20a), (20c), and (20d), we have:

k̂ =
(1− τK)Φ

(δ + gY )
ŷ, (25a)

ĉ = [(1− ζ)− (1− τK)Φ]ŷ, (25b)

where Φ ≡ α(δ+gY )
η(β+δ+gY )

is a composite parameter. Based on eqs. (25a) and (25b), the effects

of τK on k̂ and ĉ can be expressed as:
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∂k̂

∂τK
= −

Φ

(δ + gY )
ŷ +

(1− τK)Φ

(δ + gY )

ŷ

∂τK
(26a)

= [σ
∂l

l∂τK
−

1

(1− α)(1− τK)
]
(1− τK)Φ

(δ + gY )
ŷ
>

<
0,

∂ĉ

∂τK
= Φŷ + [(1− ζ)− (1− τK)Φ]

∂ŷ

∂τK
(26b)

= {Φ + [(1− ζ)− (1− τK)Φ][σ
∂l

l∂τK
−

α

(1− α)(1− τK)
]}ŷ

>

<
0.

We see from eqs. (26) that both effects of the capital tax on capital and consumption

are ambiguous. It is clear in eq. (25a) that capital income taxation affects scale-adjusted

capital k̂ through two channels. The first channel is the capital-output ratio k̂/ŷ = (1−τK)Φ
(δ+gY )

,

and the second channel is the level of scale-adjusted output ŷ. The first term after the

first equality in eq. (26a) indicates that the first channel definitely lowers the level of k̂.

Moreover, as shown in eq. (24b), the second channel may either raise or lower the level

of k̂ since capital taxation leads to an ambiguous effect on ŷ. As a consequence, the net

effect of capital taxation on the scale-adjusted capital stock k̂ is still uncertain. Similarly,

as indicated in eq. (25b), capital income taxation also affects ĉ through two channels. The

first channel is the consumption-output ratio ĉ/ŷ = [(1 − ζ) − (1 − τK)Φ], and the second

channel is the level of scale-adjusted output ŷ. The first channel definitely boosts the level

of ĉ, while the second channel may either raise or lower the level of ĉ since capital taxation

leads to an ambiguous effect on ŷ. As a consequence, the net effect of capital taxation on

scale-adjusted consumption ĉ remains ambiguous.

4 Quantitative results

In this section, we simulate the welfare effects of capital taxation and compute the optimal

capital tax rate by performing a quantitative analysis.11 We calibrate the parameters of our

theoretical model based on US data to quantify the optimal capital tax. Then we explore how

the optimal capital tax responds to important parameters that feature R&D externalities

and the government size.12

11We focus on the optimal capital tax that maximizes the steady-state welfare, to be consistent with Jones
and Williams (2000) and Aghion et al. (2013).
12We start from the same initial steady state when we vary the value of each parameter.
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By dropping the exogenous terms, the life-time utility of the representative household

reported in eq. (1) can be expressed as:

U =

∫ ∞

0

e−βt [ln ĉt + χ ln(1− lt)] dt, (27)

in which ĉt and lt are functions of τK . The government chooses the capital income tax rate

τK to maximize eq. (27) while balancing the budget, eq. (18), by using the labor tax.

4.1 Calibration

To carry out a numerical analysis, we first choose a baseline parameterization, as reported

in Table 1. Our model has eleven parameter values to be assigned. These parameters are

either set to a commonly used value in the existing literature or calibrated to match some

empirical moments in the US economy. We now describe each of them in detail. In line with

Andolfatto et al. (2008) and Chu and Cozzi (2018), the labor income share 1 − α and the

discount rate β are set to standard values 0.4 and 0.05, respectively. The population growth

rate n is set to 0.011 as used by Conesa et al. (2009). The physical capital depreciation rate

is set to 0.0318 so that the initial capital-output ratio is 2.5 as in Lucas (1990). The initial

capital tax rate τK is set to 0.3 based on the average US effective tax rate estimated by Carey

and Tchilingurian (2000). A similar value of the capital income tax rate has been adopted in

Domeij (2005) and Chen and Lu (2013). As for the government size (the ratio of government

spending to output), data for the US indicate that this is around 20 percent (Gali, 1994),

and has slightly increased in recent years. We therefore set ζ to be 0.22, which is the average

level during 2001-2013, to reflect its increasing trend. The parameter for leisure preference

χ is chosen as 1.619 to make hours worked one third of total hours (Jermann and Quadrini,

2012).
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Table 1. Benchmark Parameterization

Definition Parameter Value Source/Target

Labor income share 1− α 0.6 Andolfatto et al. (2008)

Discount rate β 0.05 Chu and Cozzi (2018)

Population growth rate n 0.011 Conesa et al. (2009)

Initial capital tax rate τK 0.3 Carey and Tchilingurian (2000)

Government size ζ 0.22 Data

Leisure preference χ 1.619 Total hours worked = 1/3

Stepping on toes effect λ 0.2 Sequeira and Neves (2020)

Substitution parameter ρ 2.2727 Monopolistic markup = 1.1

Standing on shoulders effect φ 0.9837 Output growth rate = 2%

Size of innovation cluster ψ 0.25 Comin (2004)

Physical capital depreciation rate δ 0.0318 Capital-output ratio = 2.5

Now we deal with the parameterization regarding the R&D process. First, Sequeira and

Neves (2020) review the empirical literature on R&D and provide a meta-analysis concerning

the value of the stepping on toes effect λ, and find that the average size is around 0.2. This

value is also within the reasonable range estimated by Bloom et al. (2013). We follow these

empirical studies to set λ = 0.2 as our benchmark. The substitution parameter ρ is closely

related to the markup of the intermediate firms. We set ρ to be 2.2727 such that, given

1 − α, the (unconstrained) markup in our economy is 1.1, which lies within the reasonable

range estimated for US industries (e.g., Laitner and Stolyarov, 2004; Yang, 2018). Next, we

use the output growth rate to calibrate the extent of the standing on shoulders effect φ. In

our model we have:

gY =
1

1− α

(
1

ρ
− α

)
gA + n. (28)

Given that gA = λn/(1 − φ) and that we have already assigned values to 1 − α, ρ, n and

λ, we can then choose φ to target the empirical level of the output growth rate in the US.

Specifically, we set φ = 0.9837 as our baseline value such that the output growth rate is 2%.

The value of φ that we choose is well supported by empirical studies (Ang and Madsen, 2015;

Sequeira and Neves, 2018). Finally, as a benchmark we choose the size of the innovation

cluster ψ = 0.25 by following Comin (2004). In this case the markup is not bound by the

adoption constraint. If the value of ψ is large, the markup will then be constrained by this

parameter. Under our baseline parameter values, the consumption-GDP ratio is around 69%

and the R&D-GDP ratio is around 3%. These values fit the US data.
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4.2 The optimal capital tax rate

Figure 1 plots the relationship between the level of welfare cost (in terms of the percentage

of consumption loss) and the rate of capital income tax, which exhibits an U-shaped rela-

tionship.13 The optimal capital tax rate is positive, and its value is around 6.6%. Thus the

Chamley-Judd result of zero capital tax does not hold in our R&D-based growth model.

[Figure 1 here]

The intuition underlying this result is as follows. Given that the government is limited to

capital and labor taxation to finance a fix amount of the government expenditure, not taxing

capital income implies that the labor income must be taxed at a higher rate. Although a

zero capital tax efficiently leaves the capital market undistorted, a high labor tax distorts

the labor market severely by decreasing the after-tax wage income and in turn reduces total

labor supply. As a consequence, there is less labor devoted to the production in the R&D

sector, which then results in fewer equilibrium varieties for the final-good production, and

ultimately depresses the level of consumption and welfare.

Previous studies on optimal capital taxation in endogenous growth models (Aghion et

al., 2013; Long and Pelloni, 2017) have pointed out that the welfare-maximizing capital tax

rate is not equal to the growth-maximizing capital tax rate. In our semi-endogenous growth

model, the steady-state growth rate is independent of the tax parameters. However, it is

equally important, and of policy relevance, to examine the capital tax rate that maximizes

(scale-adjusted) final output in this model, and compare it to the optimal capital tax rate.

Under the benchmark, we find that the output-maximizing capital tax rate is 4.2%, which is

lower than the welfare-maximizing capital tax rate of 6.6%. The implication of this result is

that taxing capital can be good for welfare even if it is harmful for GDP. This result echoes

that of Long and Pelloni (2017) who find that raising the capital tax may improve welfare

while reducing growth.

Although Figure 1 suggests a positive optimal capital tax, we should note that this result

is obtained under our benchmark parameters, and it may change when the innovation process

exhibits different degrees of R&D externalities. Thus, our goal is not to conclude that it

is always right to tax capital, but to highlight that in achieving the social optimum, it is

necessary to balance both distortions in the capital and labor markets. In view of this, an

13As in Jones and Williams (2000), we focus on the optimal capital tax rate that maximizes steady-state
welfare. If we instead consider welfare including the transitional dynamics, the optimal capital tax rate
would be higher. See Chen et al. (2019) for the level of optimal capital tax rate for transitional welfare.
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extreme case of the zero capital tax is often suboptimal. More importantly, we make an

attempt to give guidance on which R&D mechanisms are at play in influencing the optimal

capital tax, which we will show in the next subsection.

4.3 Policy implications of R&D externalities

In this subsection, we investigate how the optimal capital tax responds to relevant parame-

ters, in particular those related to the innovation process. More importantly, we shed some

light on the roles of R&D externalities in the design of optimal tax policies. In what follows,

we propose some relevant parameters that need to be considered by the policy-makers. The

results are depicted in Figures 2 to 6.

[Figures 2 and 3 here]

First, Figures 2 and 3 show that the optimal capital tax rate is increasing in λ (the

stepping on toes effect) and φ (the standing on shoulders effect). With sufficiently small

values of λ and φ, the optimal capital income tax is negative. Notice that a higher λ implies

that the negative duplication externality is small, and a higher φ means that the positive

spillover effect of R&D is relatively strong. Both cases imply a similar circumstance in which

the innovation process is more productive, and in which underinvestment in R&D is more

likely. Under such a situation, the welfare cost of depressing innovation by raising the labor

income tax is larger. Therefore, the government is inclined to increase the capital tax while

reducing the labor tax.

[Figure 4 here]

Second, Figure 4 shows that the optimal capital income tax and the substitution para-

meter ρ exhibit an inverted-U shaped relationship. A lower ρ is associated with a higher

monopolistic markup η, regardless of whether the adoption constraint is binding or not. The

substitution parameter mainly affects the optimal capital tax in three different ways. First,

when η is large (when ρ is small), the degree of the intermediate firms’ monopoly power is

strong. To correct this distortion, the government tends to subsidize capital to offset the gaps

between price and the marginal cost; see Judd (1997, 2002). Second, when η is large (when

ρ is small), the private value of inventions increases. As a result, equilibrium R&D increases,

which in turn makes R&D overinvestment more likely. Therefore, the government tends to

raise the tax on labor because R&D uses labor in our model. These two effects indicate that
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the optimal capital tax should be decreasing in the markup as in previous studies. Third,

a small ρ amplifies the productivity of varieties in final-good production and thus amplifies

the effect of gA on gY (see eq. (28)). In this case, the government is inclined to subsidize

labor by taxing capital since the R&D sector uses labor. This last effect indicates that the

optimal capital tax rate is decreasing in the elasticity of substitution between intermediate

goods (or increasing in the markup). Figure 4 shows that the first two effects dominate

when ρ is small and the third effect dominants when ρ becomes sufficiently large. Thus the

optimal capital tax reverses as ρ exceeds a threshold value.

[Figure 5 here]

Third, Figure 5 shows that the optimal capital tax decreases in response to a rise in

the size of the innovation cluster (creative destruction). To explain the intuition, we first

distinguish three effects that creative destruction may have on the incentive to engage in

R&D. The first positive effect comes from the R&D firm being able to earn profits even for

those of its products that do not really increase the variety of intermediate goods (note that

πA,t = PA,t(1 + ψ)Ȧt − wtLA,t).
14 This is referred to as the “carrot” by Jones and Williams

(2000). The second negative effect arises, as exhibited in eq. (15), from a higher ψ that

decreases the equilibrium price of the products in the presence of free entry, even though it

increases the products sold by the R&D firm. The third negative effect is associated with

the no-arbitrage condition for the value of a variety, which is displayed in eq. (16). Due

to creative destruction, existing goods have a probability of being replaced by new goods,

and this probability increases with the degree of creative destruction. Therefore, creative

destruction increases the expected capital loss in terms of the return on the equity shares,

and in turn reduces the incentive to engage in R&D. Jones and Williams (2000) dub this

effect as the “stick”. Figure 5 shows that the positive carrot effect dominates the negative

stick effect, which is in consistent with the result in Jones and Williams (2000). As a

consequence, a higher ψ stimulates R&D, which makes R&D overinvestment more likely.

Hence the government should decrease the capital tax and increase the labor tax.

[Figure 6 here]

Finally, the optimal capital tax is increasing in the government spending ratio ζ, as shown

in Figure 6. This result is consistent with Aghion et al. (2013) and Lu and Chen (2015).15

14The R&D firm can earn profits from its whole products (1 + ψ)Ȧ, in which ψȦ does not contribute to
the increase of varieties.
15Lu and Chen (2015) show that in an exogenous growth model with a given share of government expen-

diture in output, the optimal capital income tax is positive and increasing with the the share of government
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When the need for public expenditure is sufficiently small, the government can collect labor

tax revenues to finance the government spending and also to subsidize capital. Note that in

this case the monopoly effect dominates the R&D effect so that the optimal capital tax rate

becomes negative. As the size of government expenditure increases, it is not promising to

rely solely on raising the labor tax, because the distortion to the R&D sector would be too

strong. In this case, it becomes optimal to shift some of the tax burden to capital.

As we have noted earlier, our result of a positive optimal capital income tax is obtained

under the benchmark parameters. Before ending this section, it is worthwhile to briefly

discuss how plausible the above parameters fall into the range that implies a negative optimal

capital tax rate. First, the optimal capital tax rate becomes negative if λ < 0.14, namely

when the stepping on toes effect is very strong. Second, the optimal capital tax rate becomes

negative if the standing on shoulders effect is smaller, i.e., φ < 0.976. According to the

estimation by Ang and Madsen (2015), the value of φ is close to one. Moreover, for the

first-generation R&D-based growth models a la Romer (1990), φ = 1, so that our result of

a positive optimal capital income tax always holds. Third, for the substitution parameter

ρ, the threshold values that will result in a negative optimal capital tax is ρ > 2.37 and

ρ < 0.58. Both values correspond to implausible monopolistic markups, i.e., η < 1.05 and

η > 4.31, respectively. Fourth, the optimal capital tax rate is positive for the whole possible

values of the size of the innovation cluster ψ. Finally, the optimal capital tax rate is negative

if the government spending ratio is less than 16.5%, i.e., ζ < 0.165. This threshold value

is much smaller than that in Aghion et al. (2013), in which the government spending ratio

required for a positive optimal capital tax rate is around 38%.

5 Extensions and discussions

In this section, we perform several extensions to the benchmark model in order to explore the

robustness of our results. We expand the policy instruments available to the government in

subsection 5.1 (a corporate profit tax) and subsection 5.2 (progressivity of labor income tax).

We also adopt various specifications regarding the labor-leisure preference. In subsection 5.3

we consider an iso-elastic labor supply function to explore the role of labor supply elasticity.

In subsection 5.4 we target different labor-leisure allocations and examine its effect on the

expenditure. The intuition is that capital accumulation reduces the discounted net marginal product of next
period’s capital by way of increasing government expenditure. Thus, the government should tax capital to
correct this distortion.
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optimal capital tax, and we discuss the application of our result to the optimal capital tax

in the EU.

5.1 Corporate profit tax

In our benchmark model, we assume that the government only has access to the capital

and labor income tax. In this subsection, we extend the tax regime to include a corporate

profit tax. Let τπ,t denote the corporate profit tax on the intermediate-good firms’ profit.

Accordingly, the after-tax profit of the intermediate-good firms is

(1− τπ,t)πx,t(i) = (1− τπ,t)[pt(i)xt(i)− rK,tvt(i)]. (29)

Moreover, with symmetric intermediate-good firms, the government budget constraint is

modified as:

Nt(τKrK,tkt + τL,twtlt) + Atτπ,tπx,t = Gt. (30)

With this new tax regime, we conduct two policy experiments. In the first experiment,

we engage in tax shifting between the capital income tax and labor income tax with the

presence of the corporate tax. That is, we treat the corporate profit tax as an exogenous

variable, i.e., τπ,t = τπ. We then examine how the optimal capital tax rate responds to the

corporate profit tax. The result is shown in Figure 7.

[Figure 7 here]

We see in Figure 7 that the optimal capital tax rate is positive and decreasing in the

corporate profit tax. Intuitively, there are two conflicting effects of the corporate profit tax

on the optimal capital tax. On the one hand, the corporate profit tax decreases the after-tax

profit of the intermediate-good firms. This depresses the incentives for R&D and causes

underinvestment in R&D. Thus, the government should raise the capital income tax while

reducing the labor income tax. On the other hand, when the corporate tax rate is higher, the

government can collect more profit tax revenues, which means that the tax revenues required

from taxing capital and labor income are smaller. This effect therefore acts like the effect of

a smaller government size that we have discussed using Figure 6. As such, the government

tends to reduce the capital income tax. Figure 7 shows that the latter effect outweighs the

former, so that a higher corporate profit tax is associated with a lower optimal capital tax.

[Figure 8 here]
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In the second experiment, we consider tax shifting between the capital income tax and

the corporate profit tax. We assume that the labor income tax is exogenous, and set its

benchmark value to 17.6%. Figure 8 shows how the optimal capital tax rate responds to

the labor income tax. In this experiment, the government faces a trade-off between taxing

capital income and firms’ profits. While taxing capital income creates a dynamic inefficiency

for capital accumulation, taxing profits depresses the incentives for innovation. Under the

benchmark parameters, we find that the optimal capital tax rate is 31%, and decreasing with

the labor income tax rate. This result is quite intuitive. When the labor income tax rate is

higher, the government does not need to tax the capital income or profits so much.

5.2 Tax progressivity

In this subsection, we extend the tax regime to consider a progressive labor income tax,

which is more realistic in many countries including the US. For tractability, we follow the

specification in Guo and Lansing (1998) by assuming that:

τL,t = 1− µt

(
ĪL,t
IL,t(j)

)ε
. (31)

In this specification, ĪL,t = wtl̄t is the average level of labor income per household with

l̄t being the average labor supply, IL,t(j) = wtlt(j) is the taxable labor income of household

j, and µt determines the level of the labor income tax rate. Note that µt is an endogenous

variable that adjusts to balance the government budget. The parameter ε ∈ [0, 1) governs

the degree of progressivity of the labor income tax. We see from eq. (31) that if ε > 0,

the household faces a tax rate that is increasing in its taxable labor income. A larger ε

corresponds to a higher degree of progressivity because the tax rate is more sensitive to

personal income. In the case where ε = 0, the household faces a flat tax rate equal to 1−µt,

and the model reverts to our basic model.

[Figure 9 here]

Figure 9 depicts how the optimal capital tax responds to the tax progressivity. Mattesini

and Rossi (2012) compute the progressivity parameter of many countries over the period

1999-2009, and obtain a value of ε = 0.18 for the US. By applying this value to our model,

we derive an optimal capital income tax rate of 11.2%. However, Chen and Guo (2013)

point out that tax progressivity has recently exhibited a significant downward trend in the
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US, and suggest a smaller value of ε = 0.063. In Figure 9, this corresponds to an optimal

capital income tax rate of around 7%.16 To sum up, our result of a positive optimal capital

tax is robust when tax progressivity is considered. Furthermore, the optimal capital tax rate

is increasing in the progressivity of the labor income tax. The intuition is that when the

labor income tax is more progressive, raising its tax rate results in higher distortion in the

labor market. Therefore, the government tends to raise the capital income tax rate as it is

relatively less distortive.

5.3 The elasticity of labor supply

Our benchmark model assumes a log-utility function, and thus dismisses the role played

by the elasticity of labor supply in determining the trade-off between the capital and labor

income tax. In this subsection, we extend the model to examine how the optimal capital tax

rate varies with the elasticity of labor supply. To do so, we generalize the utility function to

the iso-elastic labor supply function, which is given by:

U =

∫ ∞

0

e−βt
[
ln ct + χ

(1− lt)
1−θ

1− θ

]
dt, (1’)

where θ > 0 is the inverse of the Frisch elasticity of labor supply. We recalibrate the model.

The benchmark value of θ is chosen as 0.833, which implies that the Frisch elasticity of

labor supply is 1.2 (Chetty et al., 2011). To make hours worked one third of total hours,

the leisure preference parameter is adjusted to χ = 1.73. In this exercise, we find that the

optimal capital tax rate is 8.1%, which is slightly higher than our previous result using a

log-utility function. Hence, our main result of a positive optimal capital tax is robust to an

iso-elastic labor supply.

[Figure 10 here]

Moreover, Figure 10 shows that the optimal capital tax rate is increasing with the Frisch

elasticity of labor supply, which is consistent with the result of Aghion et al. (2013). We also

find that the optimal capital tax rate becomes negative when the Frisch elasticity is very

small (1/θ < 0.27). The intuition is quite clear. When labor supply is more elastic, taxing

16In Mattesini and Rossi (2012) and Chen and Guo (2013), the progressivity parameter represents the
degree of progressivity of total income, while in our model it represents the degree of progressivity of labor
income. Given that labor-income taxation is more progressive than capital-income taxation in the US, this
implies that our ε should be higher than their estimated values. Accordingly, the optimal capital tax rate
could be even higher than the values proposed in the text.
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labor income brings about a larger distortion. Therefore, the government tends to shift from

the labor income tax to the capital income tax.

5.4 Alternative labor-leisure allocations

In our baseline calibration, we follow the standard literature in targeting work time equal

to one third of total hours, which implies a labor-leisure allocation of 1:2. In this extension,

we consider different labor-leisure allocations to explore their implications for the optimal

capital income tax. In doing so, we recalibrate the parameter reflecting the leisure preference

χ. We consider two alternative cases in addition to the benchmark. In the case of a high

work time, we match work time equal to 0.5 of total hours (a labor-leisure ratio of 1:1),

which gives us χ = 0.797. In the case of a low work time, we match work time equal to 0.25

of total hours (a labor-leisure ratio of 1:3), which gives us χ = 3.403.

[Table 2 here]

Table 2 reports the corresponding optimal capital tax rates. As shown, the optimal

capital tax rate is lower in the case where households work more. This is because when the

labor supply is high, it is less elastic, and taxing it causes less distortion. Therefore, the

government tends to shift from the capital income tax to the labor income tax. Moreover,

according to Rogerson and Wallenius (2009), the aggregate working hours in continental

Europe only amounts to about 70% of that in the US. Given that our benchmark targets the

US economy, the amount of working hours in EU countries is close to the case of low work

time. As such, Table 2 primarily implies that the optimal capital tax rate should be higher

in EU countries. Undoubtedly, a comprehensive cross-country comparison of the optimal

capital tax necessitates a more careful calibration of other important parameters. Since our

main focus is on the linkage between R&D externalities and optimal capital taxation, we

leave this issue for a future study.

6 Conclusion

In this paper, we have examined whether the Chamley-Judd result of zero optimal capital

taxation is valid in a non-scale innovation-based growth model. By calibrating our model to

the US economy, our result shows that the optimal capital income tax is positive, at a rate

of around 6.6 percent. We examine how the optimal capital tax rate responds to various
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R&D externalities. The optimal capital tax rate is higher when (i) the “stepping on toes

effect” is smaller, (ii) the “standing on shoulders effect“ is stronger, or (iii) the extent of

creative destruction is smaller. We also find that the optimal capital tax is sensitive to the

parameter that determines the monopolistic markup. An inverted-U relationship is found

between these two variables.

To highlight the roles of R&D externalities, our study follows the original Chamley-Judd

framework in assuming that there are is no uncertainty and heterogeneity. This simplicity

implies that the objective of taxation is purely on has to do with the efficiency aspect, and

absent fromhas nothing to do with insurance and redistribution purposes. If idiosyncratic

risks are present, taxation serves the purpose of an insurance by redistributing income from

high-income households to low-income households, which would give rise to a higher optimal

capital tax rate. For example, Imrohoroglu (1998) and Conesa et al. (2009) introduce

uninsurable idiosyncratic income risks as an important rationale for positive capital taxation.

In Conesa et al. (2009) the suggested optimal capital tax rate goes up to 36 percent, which is

much higher than our result. This means that introducing idiosyncratic uncertainty into our

present model would make the optimal capital income tax even more likely to be positive.

Future research could be extended in this direction.

Some other extensions for future study are also worth noting. First, since R&D invest-

ment usually has liquidity problems (Lach, 2002), it would be relevant to introduce a credit

constraint on R&D investment into our model. Moreover, it would be interesting to examine

the optimal capital tax in an endogenous growth model where both innovation and capital

accumulation are the driving forces of economic growth (see, e.g., Iwaisako and Futagami,

2013; Chu et al., 2019). These directions will generate new insights into the debate on the

Chamley-Judd result.
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Appendix A. Deriving the steady-state growth rate

To solve for the steady-state growth rate of the economy, from eqs. (13) and (14) we have:

Ȧt
At
=

1

1 + ψ

LλA,t

A1−φt

. (A1)

where gA,t = Ȧt/At. Let gZ denote gZ,t =
Ż
Z
the growth rate of any generic variable Z, and

drop the time subscript when referring to any variables in the steady state. The steady-state

growth rate of varieties is given by:

gA =
1

1 + ψ

LλA
A1−φ

. (A2)

Moreover, the R&D labor share is st = LA,t/(Ntlt). In so doing, eq. (A2) can alternatively

be expressed as:

gA =
1

1 + ψ

(sNl)λ

A1−φ
. (A3)

By taking logarithms of eq. (A3) and differentiating the resulting equation with respect to

time, we have the following steady-state expression:

gA =
λ

1− φ
n. (A4)

Equipped with the symmetric feature x(i) = x, the equilibrium condition for the capital

market K = Av, and the production in the intermediate-good sector x = v, the aggregate

production function can be rewritten as:

Yt = A
1
ρ
−α

t LαtK
1−α
t . (A5)

Taking logarithms of eq. (A5) and differentiating the resulting equation with respect to time,

we can infer the following result:

gY =
(1
ρ
− α)

1− α
gA + n. (A6)

Inserting eq. (A4) into eq. (A6) yields:

gY = σn, (A7)

33



where σ ≡ 1 +
( 1
ρ
−α)

1−α
λ
1−φ

is a composite parameter.

We now turn to solve the steady-state R&D labor share. In the long run, substituting

Ȧt = gAAt and differentiating the resulting equation with respect to time gives rise to:

ṖA/PA = gY − gA (A8)

From eqs. (12), (15), (17), in the steady state we have:

πx =
η − 1

η
α
Y

A
(A9)

PA =
s

1− s

(1− α)Y/A

(1 + ψ)gA
(A10)

r =
πx
PA

+
ṖA
PA

− ψgA (A11)

Substituting eqs. (A8), (A9), and (A10) into eq. (A11) yields the result:

r =

η−1
η
αY/A

s
1−s

(1−α)Y/A
(1+ψ)gA

+ gY − (1 + ψ)gA (A12)

Based on eq. (A12), we have the stationary R&D labor share s as follows:

s =

η−1
η

α
1−α
(1 + ψ)gA

r − gY + (1 +
η−1
η

α
1−α
)(1 + ψ)gA

(A13)
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Appendix B. Transition dynamics

This appendix solves the dynamic system of the model under tax shifting from labor income

taxes to capital income taxes. The set of equations under the model is expressed by:

1

ct
= qt, (B1)

χ = qt(1− τL,t)wt(1− lt), (B2)

rt = (1− τK)rK,t − δ, (B3)

ċt
ct

= rt − n− β, (B4)

wt = (1− α)
Yt
LY,t

, (B5)

ηrK,t = αA
1
ρ
−1

t L1−αY,t x
α−1
t , (B6)

rK,tKt =
α

η
Yt, (B7)

πx,t =
η − 1

η
α
Yt
At
, (B8)

rtPA,t = πx,t + ṖA,t − ψ
Ȧt
At
PA,t, (B9)

Gt = ζYt, (B10)

Gt = Nt(τKrK,tkt + τL,twtlt), (B11)

Yt = A
1/ρ−α
t L1−αY,t K

α
t , (B12)

K̇t = Yt − Ct −Gt − δKt, (B13)

Ȧt
At

=
1

1 + ψ

LλA,t

A1−φt

, (B14)

PA,t =
st

1− st

(1− α)Yt

(1 + ψ)Ȧt
, (B15)

Ntlt = LY,t + LA,t. (B16)

The above 16 equations determine 16 unknowns {ct, l t, At, K t, LY,t, x t, rK,t, πx,t r t, Gt, τL,t,

Y t, q t, LA,t, PA,t, w t}, where qt is the Hamiltonian multiplier, Ct = Ntct, Kt ≡ Ntkt = Atxt,

and st= LA,t/N tlt. Based on Kt = Ntkt = Atxt, and eqs. (B1), (B2), (B5), and (B12), we

can obtain:

χ =
1

ct
(1− τL,t)(1− α)

Yt
LY,t

(1− lt). (B17a)
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From eqs. (B5), (B7), and (B11), we have:

τL,t = (1− st)
ζ − α

η
τK

1− α
. (B17b)

Moreover, to solve the balanced growth rate, we define the following transformed variables:

k̂t ≡
Kt

Nσ
t

, ĉt ≡
Ct
Nσ
t

, ŷt ≡
Yt
Nσ
t

, ât ≡
At

N
λ/(1−φ)
t

, st ≡ LA,t/Ntlt. (B18)

Based on eqs. (B16), (B15), (B17a), and the above definitions, we can obtain:

χ

(1− lt)
=
1

ĉt
[1− (1− st)

ζ − α
η
τK

1− α
](1− α)â

1/ρ−α
t (k̂t)

α[1− st)lt]
−α. (B19a)

From eq. (B19a), we can infer the following expression:

lt = lt(k̂t, ât, ĉt, st; τK), (B19b)

where

∂lt

∂k̂t
=

α

k̂t(
lt
1−lt

+ α)
lt, (B20a)

∂lt
∂ât

=
(1/ρ− α)

ât(
lt
1−lt

+ α)
lt, (B20b)

∂lt
∂ĉt

= −
lt

ĉt(
lt
1−lt

+ α)
, (B20c)

∂lt
∂st

=

τL,t
(1−τL,t)

+ α

(1− st)(
lt
1−lt

+ α)
lt, (B20d)

∂lt
∂τK

=
(1− st)

α
η(1−α)

(1− τL,t)(
lt
1−lt

+ α)
lt. (B20e)

Based on (B3), (B4), (B7), (B12), (B18), and Ct = Ntct, we have:

gĉ,t ≡
dĉt/dt

ĉt
= (1− τK)

α

η
(ât)

1/ρ−α[
(1− st)lt(k̂t, ât, ĉt, st; τK)

k̂t
]1−α − δ − β − gY . (B21)

From eqs. (B10), (B12), (B13), and (B18), we can directly infer:
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gk̂,t ≡
dk̂t/dt

k̂t
= (1− ζ)(ât)

1/ρ−α[
(1− st)lt(k̂t, ât, ĉt, st; τK)

k̂t
]1−α −

ĉt

k̂t
− δ − gY . (B22)

According to eqs. (B14) and (B18), we can further obtain:

gâ,t ≡
dât/dt

ât
=

1

1 + ψ

[stlt(k̂t, ât, ĉt, st; τK)]
λ

â1−φt

− gA. (B23)

In what follows, to simplify the notation we suppress those arguments of the labor supply

function. From eq. (B18), taking logarithms of eqs. (B19a) and (B12) and differentiating

the resulting equations with respect to time, we have:

gŷ,t = (1/ρ− α)gâ,t + αgk̂,t + (1− α)(l̇t/lt −
ṡt

1− st
), (B24)

l̇t/lt = {(1/ρ− α)gâ,t + αgk̂,t − gĉ,t − [α + τL,t/(1− τL,t)]}/[α + lt/(1− lt)]. (B25)

Taking logarithms of eq. (B15) differentiating the resulting equation with respect to time,

we obtain:

ṖA,t
PA,t

= (1/ρ− α− φ)gâ,t + αgk̂,t + (1− λ+ α
st

1− st
)
ṡt
st
+ (1− λ− α)

l̇t
lt
+ gY − gA. (B26)

Combining eqs. (B9), (B15), (B18), (B21), (B24), (B25), and (B26) together, we obtain:

dst/dt

st
= {β − [

(η − 1)α(1 + ψ)(1− st)

(1− α)ηst
− ψ](gA + gâ,t) + φgâ,t + gA − [1 +

1− λ− α

α + lt/(1− lt)
]

×[(1/ρ− α)gâ,t + αgk̂,t − gĉ,t]}/{1− λ+ α
st

1− st
+

1− λ− α

α + lt/(1− lt)
(α +

τL,t
1− τL,t

)
st

1− st
}.

(B27)

Note that rt − gY − gĉ,t = β. As a result, in the steady state we have r − gY = β.

Inserting eq. (B18) into eq. (B17b) yields:
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τL,t = (1− st)
ζ − α

η
τK

1− α
. (B28)

Based on eqs. (B21), (B22), (B23),(B27), and (B28), the dynamic system can be ex-

pressed as:

dk̂t/dt

k̂t
= (1− ζ)(ât)

1/ρ−α[
(1− st)lt

k̂t
]1−α −

ĉt

k̂t
− δ − gY , (B29a)

dât/dt

ât
=

1

1 + ψ

(stlt)
λ

â1−φt

− gA, (B29b)

dĉt/dt

ĉt
= (1− τK)

α

η
(ât)

1/ρ−α[
(1− st)lt

k̂t
]1−α − δ − β − gY , (B29c)

dst/dt

st
= {β − [

(η − 1)α(1 + ψ)(1− st)

(1− α)ηst
− ψ](gA + gâ,t) + φgâ,t + gA − [1 +

1− λ− α

α + lt/(1− lt)
]

×[(1/ρ− α)gâ,t + αgk̂,t − gĉ,t]}/{1− λ+ α
st

1− st
+

1− λ− α

α + lt/(1− lt)
(α +

τL,t
1− τL,t

)
st

1− st
}.

(B29d)

Linearizing eqs. (B29a), (B29b), (B29c), and (B29d) around the steady-state equilibrium

yields:






dk̂t/dt

dât/dt

dĉt/dt

dst/dt





=






b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44











k̂t − k̂

ât − â

ĉt − ĉ

st − s





+






b15

b25

b35

b45





dτK , (B30)

where

b11 =
∂(dk̂t/dt)

∂k̂t
, b12 =

∂(dk̂t/dt)
∂ât

, b13 =
∂(dk̂t/dt)

∂ĉt
, b14 =

∂(dk̂t/dt)
∂st

, b15 =
∂(dk̂t/dt)
∂τK

,

b21 =
∂(dât/dt)

∂k̂t
, b22 =

∂(dât/dt)
∂ât

, b23 =
∂(dât/dt)

∂ĉt
, b24 =

∂(dât/dt)
∂st

, b25 =
∂(dât/dt)
∂τK

,

b31 =
∂(dĉt/dt)

∂k̂t
, b32 =

∂(dĉt/dt)
∂ât

, b33 =
∂(dĉt/dt)

∂ĉt
, b34 =

∂(dĉt/dt)
∂st

, b35 =
∂(dĉt/dt)
∂τK

,

b41 =
∂(dst/dt)

∂k̂t
, b42 =

∂(dst/dt)
∂ât

, b43 =
∂(dst/dt)

∂ĉt
, b44 =

∂(dst/dt)
∂st

, b45 =
∂(dst/dt)
∂τK

.

Due to the complicated calculations, we do not list the analytical results for bij, where

i ∈ {1, 2, 3, 4, 5} and j ∈ {1, 2, 3, 4, 5}.

Let `1, `2, `3, and `4 be the four characteristic roots of the dynamic system. Due to

the complexity involved in calculating the four characteristic roots, we do not try to prove

the saddle-point stability analytically. Instead, via a numerical simulation, we show that
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the dynamic system has two positive and two negative characteristic roots. For expository

convenience, in what follows let `1 and `2 be the negative root, and `3 and `4 be the positive

roots. The general solution is given by:






k̂t

ât

ĉt

st





=






k̂(τK)

â(τK)

ĉ(τK)

s(τK)





+






1 1 1 1

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44











D1e
`1t

D2e
`2t

D3e
`3t

D4e
`4t





. (B31a)

where D1, D2, D3, and D4 are undetermined coefficients and

4j =

∣∣∣∣∣∣∣

b12 b13 b14

b22 − `j b23 b24

b32 b33 − `j b34

∣∣∣∣∣∣∣
; j ∈ {1, 2, 3, 4}, (B31b)

h2j =

∣∣∣∣∣∣∣

`j − b11 b13 b14

−b21 b23 b24

−b31 b33 − `j b34

∣∣∣∣∣∣∣
/4j ; j ∈ {1, 2, 3, 4}, (B31c)

h3j =

∣∣∣∣∣∣∣

b12 −b11 b14

b22 − `j −b21 b24

b32 −b31 b34

∣∣∣∣∣∣∣
/4j ; j ∈ {1, 2, 3, 4}, (B31d)

h4j =

∣∣∣∣∣∣∣

b12 b13 `j − b11

b22 − `j b23 −b21

b32 b33 − `j −b31

∣∣∣∣∣∣∣
/4j ; j ∈ {1, 2, 3, 4}. (B31e)

The government changes the capital tax rate τK from τK0 to τK1 at t=0. Based on eqs.

(B31a)-(B31e), we employ the following equations to describe the dynamic adjustment of k̂t,

ât, ĉt and st:
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k̂t =

{
k̂(τK0);

k̂(τK1) +D1e
`1t +D2e

`2t +D3e
`3t +D4e

`4t;

t = 0−

t ≥ 0+
(B32a)

ât =

{
â(τK0);

â(τK1) + h21D1e
`1t + h22D2e

`2t + h23D3e
`3t + h24D4e

`4t;

t = 0−

t ≥ 0+

(B32b)

ĉt =

{
ĉ(τK0);

ĉ(τK1) + h31D1e
`1t + h32D2e

`2t + h33D3e
`3t + h34D4e

`4t;

t = 0−

t ≥ 0+

(B32c)

st =

{
s(τK0);

s(τK1) + h41D1e
`1t + h42D2e

`2t + h43D3e
`3t + h44D4e

`4t;

t = 0−

t ≥ 0+

(B32d)

where 0− and 0+ denote the instant before and instant after the policy implementation,

respectively. The values for D1, D2, D3 and D4 are determined by:

k̂0− = k̂0+ , (B33a)

â0− = â0+ , (B33b)

D3 = D4 = 0. (B33c)

Equations (B33a) and (B33b) indicate that both k̂t (=
Kt
Nσ
t
) and ât (=

At

N
λ/(1−φ)
t

) remain

intact at the instant of policy implementation since Kt, At, and Nt are predetermined vari-

ables. Equation (B33c) is the stability condition which ensures that all k̂t, ât, ĉt and st

converge to their new steady-state equilibrium. By using eqs. (B33a) and (B33b), we can

obtain:

D1 =
[k̂(τK0)− k̂(τK1)]h22 − [â(τK0)− â(τK1)]

h22 − h21
, (B34a)

D2 =
[â(τK0)− â(τK1)]− [k̂(τK0)− k̂(τK1)]h21

h22 − h21
. (B34b)

Inserting eqs. (B33c), (B34a), and (B34b) into eqs. (B32a)-(B32d) yields:
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k̂t =






k̂(τK0);

k̂(τK1) +
[k̂(τK0)−k̂(τK1)]h22−[â(τK0)−â(τK1)]

h22−h21
e`1t

+ [â(τK0)−â(τK1)]−[k̂(τK0)−k̂(τK1)]h21
h22−h21

e`2t;

t = 0−

t ≥ 0+

ât =






â(τK0);

â(τK1) +
{[k̂(τK0)−k̂(τK1)]h22−[â(τK0)−â(τK1)]}h21e

`1t

h22−h21

+ {[â(τK0)−â(τK1)]−[k̂(τK0)−k̂(τK1)]h21}h22e
`2t

h22−h21
;

t = 0−

t ≥ 0+

ĉt =






ĉ(τK0);

ĉ(τK1) +
{[k̂(τK0)−k̂(τK1)]h22−[â(τK0)−â(τK1)]}h31e

`1t

h22−h21

+ {[â(τK0)−â(τK1)]−[k̂(τK0)−k̂(τK1)]h21}h32e
`2t

h22−h21
;

t = 0−

t ≥ 0+

st =






s(τK0);

s(τK1) +
{[k̂(τK0)−k̂(τK1)]h22−[â(τK0)−â(τK1)]}h41e

`1t

h22−h21

+ {[â(τK0)−â(τK1)]−[k̂(τK0)−k̂(τK1)]h21}h42e
`2t

h22−h21
;

t = 0−

t ≥ 0+
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Appendix C. Proof of comparative statics

From eqs. (B29a)-(B29d), we have:

dk̂t/dt

k̂t
= (1− ζ)(ât)

1/ρ−α(
lY,t

k̂t
)1−α −

ĉt

k̂t
− δ − gY , (C1a)

dât/dt

ât
=

1

1 + ψ

[lt(k̂t, ât, ĉt, lY,t; τK)− lY,t]
λ

â1−φt

− gA, (C1b)

dĉt/dt

ĉt
= (1− τK)

α

η
(ât)

1/ρ−α(
lY,t

k̂t
)1−α − δ − β − gY , (C1c)

dst/dt

st
= {β − [

(η − 1)α(1 + ψ)(1− st)

(1− α)ηst
− ψ](gA + gâ,t) + φgâ,t + gA − [1 +

1− λ− α

α + lt/(1− lt)
]

×[(1/ρ− α)gâ,t + αgk̂,t − gĉ,t]}/{1− λ+ α
st

1− st
+

1− λ− α

α + lt/(1− lt)
(α +

τL,t
1− τL,t

)
st

1− st
}.

(C1d)

In the steady state dk̂t/dt

k̂t
= dât/dt

ât
= dĉt/dt

ĉt
= dst/dt

st
= 0, we then have the following steady-

state results:

ĉ

k̂
= (1− ζ)(â)1/ρ−α[

(1− s)l

k̂
]1−α − δ − gY , (C1e)

gA =
1

1 + ψ

(sl)λ

â1−φ
, (C1f)

β = (1− τK)
α

η
(â)1/ρ−α[

(1− s)l

k̂
]1−α − δ − gY , (C1g)

0 = β − [
(η − 1)α(1 + ψ)(1− s)

(1− α)ηs
− ψ]gA + gA. (C1h)

Based on eq. (C1h), we have:

s =

η−1
η

α
1−α
(1+ψ)gA

β +
(
1 + η−1

η
α
1−α

)
(1+ψ)gA

. (C2)

From eqs. (B3) and (C1g), we can obtain

r − gY = β > 0. (C3)
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Equation eq. (C1g) can be rearranged as:

ŷ/k̂ = (â)1/ρ−α[
(1− s)l

k̂
]1−α =

η(β + δ + gY )

α(1− τK)
. (C4a)

Substituting eq. (C4a) into eq. (C1e) gives rise to:

ĉ

ŷ
= {(1− ζ)

η(β + δ + gY )

α(1− τK)
− δ − gY }

k̂

ŷ
= (1− ζ)− (δ + gY )

α(1− τK)

η(β + δ + gY )
. (C5a)

To ensure that the steady-state consumption-output ratio ĉ/ŷ is positive, we impose the

restriction (1− ζ)− (δ + gY )
α(1−τK)
η(β+δ+gY )

> 0 for all values of the time preference rate β. As a

consequence, limβ→0 ĉ/ŷ>0 implies:

(1− ζ)−
α(1− τK)

η
> 0. (C5b)

From eq (C1f), we can derive:

â = [
1

(1 + ψ)gA
]1/(1−φ)(sl)λ/(1−φ). (C6)

Based on eq. (B28), we can infer the following expression:

τL = (1− s)
ζ − α

η
τK

1− α
, (C7a)

where

∂τL
∂τK

= −(1− s)

α
η

1− α
< 0. (C7b)

Equipped with eqs. (B1), (B2), (B5), and LY = N(1− s)l, we can obtain:

l

1− l
χ =

ŷ

ĉ

(1− τL)(1− α)

(1− s)
. (C8)

Inserting eqs. (C5a) and (C7a) into eq. (C8) yields:

l =






1− χ

χ+ 1

[(1−ζ)−(δ+gY )
α(1−τK )
η(β+δ+gY )

]

(1−τL)(1−α)

(1−s)

; χ > 0

1 ; χ = 0

, (C9a)

where
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∂l

∂τK
=






αβ( 1−s
1−α

)[1−ζ+ η−1
η

α(δ+gY )

β+(1+ψ)gA
](1−l)l

η(β+δ+gY )(1−τL)[1−ζ−(δ+gY )
α(1−τK )

η(β+δ+gY )
]
> 0 ; χ > 0

0 ; χ = 0

. (C9b)

Combining eqs. (C2), (C6), and (C9b) together, we can derive

â = [
1

(1 + ψ)gA
]1/(1−φ)(sl)λ/(1−φ), (C10a)

where

∂â

∂τK
=

λ

(1− φ)
â
∂l

l∂τK
> 0. (C10b)

Based on eqs. (C4a), (C9b), (B12), and (B18), we have:

ŷ = â
1/ρ−α
1−α [

α(1− τK)

η(β + δ + gY )
]
α

1−α (1− s)l, (C11a)

where

∂ŷ

∂τK
= [σ

∂l

l∂τK
−

α

(1− α)(1− τK)
]ŷ
>

<
0, σ ≡ 1 +

1/ρ− α

1− α

λ

1− φ
. (C11b)

According to eqs. (C4a), (C5a), and (C11b), we obtain:

k̂ =
α(1− τK)

η(β + δ + gY )
ŷ, (C12a)

ĉ = [(1− ζ)− (δ + gY )
α(1− τK)

η(β + δ + gY )
]ŷ, (C12b)

Inserting eq. (C11a) into (C12a) and (C12b), we can derive the following comparative statics:

∂k̂

∂τK
=

α(1− τK)ŷ

η(β + δ + gY )
{σ

∂l

l∂τK
−

1

(1− α)(1− τK)
}
>

<
0, (C12c)

∂ĉ

∂τK
= {

α(δ + gY )

η(β + δ + gY )
+ [(1− ζ)

−
α(1− τK)(δ + gY )

η(β + δ + gY )
][σ

∂l

l∂τK
−

α

(1− α)(1− τK)
]}ŷ

>

<
0.

(C12d)
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Figure 1: The optimal capital tax rate 

 

 

Figure 2: The optimal capital tax rate and the “stepping on toes effect” 
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Figure 3: The optimal capital tax rate and the “standing on shoulders effect” 

 

 

Figure 4: The optimal capital tax rate and the substitution parameter 
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Figure 5: The optimal capital tax rate and creative destruction 

 

 

Figure 6: The optimal capital tax rate and the government size 
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Figure 7: The optimal capital tax rate with exogenous corporate profit tax and 

endogenous labor income tax 

 

 

 

Figure 8: The optimal capital tax rate with exogenous labor income tax and 

endogenous corporate profit tax 
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Figure 9: The optimal capital tax rate and the progressivity of labor income tax 

 

 

 

 

Figure 10: The optimal capital tax rate and the Frisch elasticity of labor supply 

 

 

 



Table 2. Leisure preference and the optimal capital tax rate 

 Targeted 

work-leisure 

allocation 

Calibrated leisure 

preference 

Optimal capital 

tax rate 

High-work-time case 1: 1 χ = 0.797 −0.4% 

Benchmark 1: 2 χ = 1.619 6.6% 

Low-work-time case 1: 3 χ = 3.403 11.0% 

 

 

 


