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Abstract 

Given the increasing importance of the mining sector in developing countries, an understanding 

of their level of environmental efficiency is useful, both to the industry itself and to 

policymakers. Environmental problems introduced by the sector are attracting extensive 

attention, so comprehensive analysis of their environmental performance has become 

increasingly important. This study evaluates the environmental performance of large gold-

mining operations by applying a by-production model that specifies emission-generating 

technology, while incorporating a four-way error approach that captures mine-size 

heterogeneity, transient and persistent technical efficiency, and random errors. We applied a 

true random effects model (TREM), and a simulated maximum likelihood estimator (SMLE) 

based on the generalised true random effects model (GTREM). The former approach was 

estimated as a benchmark, while the latter was employed to estimate a four-component panel 

data stochastic frontier model. The four-components estimate separates firm heterogeneity 

from persistent and time-varying inefficiencies, thus providing more robust efficiency 

estimates and policy insights. Firm-level data from 2009 to 2018 were used; the results show 

the presence of environmental and technical inefficiencies. Moreover, each inefficiency was 

decomposed into transient and persistent inefficiencies. The GTREM predicts the average 

inefficiency to amount to 34% environmental (interaction between 19% transient and 18% 

persistent) and 30% technical (interaction between 4.4% transient and 27% persistent). The 

transient component of technical efficiency does not change over time, which may imply that 

the mines’ managerial approaches are static. The presence of technical inefficiency implies that 

more than the minimal amounts of inputs are used to produce a given level of desirable output, 

which could be due to moral hazards and asymmetric information such as principal-agent 

problems. The presence of (environmental) inefficiency in the by-production model means that 

more than a minimal amount of the undesirable output is produced. The overall environmental 

performance of the mines in developing countries is low (66%) compared to other sectors, 

which indicates that there could be structural rigidities, poor environmental policies and 

regulations, poor enforcement, or any combination of the three. We also found robust empirical 

evidence that between 2009 and 2018, on average, gold-mining firms neither strongly increased 

nor strongly decreased their transient or their persistent technical and environmental efficiency. 

Besides, firms with high technical efficiency simultaneously have high environmental 

efficiency, which suggests that promoting high environmental efficiency will also promote 

high technical efficiency. 
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1. Introduction 

The gold-mining industry is one of the main pillars in the economy of developing countries, 

and is often credited for making a significant contribution to economic growth. Over the past 

decades, improved living standards have largely been attributable to the mining boom (Kumah, 

2006; Bjorn, 2000). The rapid expansion of the gold industry has had the potential to confer 

many benefits, especially for the people of the developing countries, by providing employment 

and foreign exchange. However, several challenges confront the gold mining industry (World 

Gold Council,2019; Bainton and Holcombe, 2018; Carvalho, 2017). Generally, it has a bad 

reputation, due to its highly polluting nature and the fact that its costs are usually externalised 

on the local communities that host its operations (Kumah, 2006; Rashidi and Saen, 2015). 

Across the developing world, gold mining contributes to acid mine drainage, water, air and soil 

contamination, loss of biodiversity, ecosystem damage and deforestation; all of which may 

result in health issues and lost productivity in local communities. 

 

The key challenge is the trend of the increasing complexity of mining gold deposits, with 

decreasing gold grades and prices. Low-grade deposits (which implicitly means more resource 

inputs for lower output over time) are economically marginal, as the capital and operating cost 

requirements are relatively high, and the metal recovery volumes are sub-optimal (Neingo and 

Tholana, 2016; Pimentel, Gonzalez and Babosa, 2016, Shafiee and Topal, 2010). Alongside 

the context of challenging competition and a shifting social contract between business, 

government and civil society, critical social and environmental issues have increasingly 

become part of the mining-industry landscape (Bainton and Holcombe, 2018; Carvalho, 2017). 

The emphasis on addressing various environmental issues, including CO2 emission and energy 

and water consumption, has recently become more pronounced due to concerns about climate 

change and drought (Gorain, Kondos and Lakshmanan, 2016; Smith and John, 2010).  

 

The recent downturn in commodity prices and increase in environmental scrutiny has raised 

concerns about the sustainability of gold-mining companies. This challenge has also 

highlighted the importance of improving the sector’s environmental efficiency. Consequently, 

many gold-mining companies regard raising efficiency and productivity as one of their main 

goals. In the context of the debate regarding sustainable development in mining, this paper 

examines the technical and environmental performance of the gold-mining industry in 

developing countries. 
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As the environmental sustainability of economic activities has become of increasing interest, 

firm-performance studies have evolved to include environmental concerns, and conventional 

efficiency measures have been extended to include both technical and environmental 

dimensions (Färe, Grosskopf, Lovell and Pasurka, 1989; Reinhard, Lovell and Thijssen, 1999; 

Oude Lansink and Van der Vlist, 2008; Serra, Chambers and Lansink, 2014; Kumbhakar and 

Tsionas, 2016). Little is known about the technical and environmental (in)efficiency of gold 

mining in developing countries. A better understanding of technical and environmental 

efficiency is key to improving regulations, monitoring, mitigation plans and enforcement, in 

order to achieve sustainable mining.  

 

In analysing environmental efficiency, there is considerable debate on how to model pollution- 

and emission-generating technologies; however, the by-production model developed by 

Fernandez, Koop and Steel (2002), Førsund (2009), and Murty, Russell and Levkoff (2012) is 

viewed as the most appropriate model. Only a few studies (see Serra, Chambers and Lansink, 

2014; Kumbhakar and Tsionas, 2016) have analysed technical and environmental efficiency 

using the by-production model in data envelopment analysis (DEA) and stochastic frontier 

analysis (SFA) settings. No study has considered separating firm heterogeneity from persistent 

and transient environmental efficiency, especially in mining firms. However, the four-

component model developed by Kumbhakar, Lien and Hardaker (2014), Colombi et al. (2014) 

and Filippini and Greene (2016) accounts for firm heterogeneity and persistent and transient 

technical efficiency separately, and thus provides more robust efficiency estimates.  

 

The four-component model is increasingly being used to estimate efficiency, in many studies 

(see Filippini, Geissmann and Greene, 2018; Heshmati, Kumbhakar and Kim, 2018; Colombi, 

Martini and Vittadini, 2017). To the best of our knowledge, this model has not been applied in 

assessing environmental performance. Separating firm-heterogeneity from time-varying 

inefficiency helps to quantify the magnitude of persistent inefficiency – which is important, as 

it captures the effects of inputs such as management as well as other unobserved inputs, which 

vary across firms but not over time. Thus, unless there is a change in management or in 

something that affects the management style of individual firms, such as a change in 

government policy towards the industry, changes in firm ownership and so on, it is very 

unlikely that the persistent inefficiency component will change (see Kumbhakar, Wang and 

Horncastle, 2015). The persistent inefficiency components explain the long-run inefficiencies.  
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By contrast, the transient component of inefficiency might change over time without any 

change in the operation of the firm. These are short-run inefficiencies, which may occur in one 

year but not the next year. Therefore, the distinction between the persistent and transient 

components of inefficiency is important, because they have different policy implications; the 

focus should be on the persistent inefficiencies, as they tend to affect performance in the long 

term. Moreover, failure to separate firm effects from persistent inefficiency in the model is 

likely to produce biased estimates of overall efficiency (see Kumbhakar, Wang & Horncastle, 

2015). Applying the four-component model in the by-production specification to estimate 

persistent, transient and overall technical and environmental efficiency, in the context of gold 

mines in developing countries, represents a novel contribution. 

 

The rest of the paper is structured as follows: Section 2 presents a literature review, and Section 

3 the methodology and data. Section 4 presents estimation and results, and Section 5 our 

conclusions.  

 

2. Existing literature  

This section is divided into two main subsections; firstly, a theoretical literature review, which 

highlights the important debate on the evolution of efficiency-model specifications accounting 

for emission-generating technology. Secondly, an empirical literature review that reveals the 

evolution of the estimation approaches in which efficiency can be decomposed into estimation 

and the policy implications components, as far as improving efficiency is concerned.  

 

2.1 Theoretical review  

There has been considerable debate in the technical literature on the appropriate modelling of 

pollution in production technologies. One standard approach assumes that pollution and 

production are complementary outputs, therefore pollution is treated as though it were an input 

(De Koeijer et al., 2003; Reinhard, Lovell and Thijssen, 2000; Reinhard et al., 1999). This is 

based on the observed positive correlation between pollution and intended output. While 

analytically convenient, this reduced-form specification ignores both the physical reality and 

the requirements of material balance, which delimits smaller systems or processes where the 

material inputs should balance the output (Murty, Russell and Levkoff 2012; Halkos and 

Tzeremes, 2012; Førsund, 2008; Pethig, 2006). This model is referred to as a single-equation 

model. In this setting, the technology (usually a directional distance function) is specified by a 
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single equation (which can be estimated using either the DEA4 or the SFA approach) in which 

good and bad outputs, as well as good and bad (pollution-generating) inputs, enter as 

arguments. That is, bad outputs can be treated as inputs (Lee, Park and Kim, 2002; Hailu and 

Veeman, 2001; Reinhard and Thijssen, 2000; Reinhard et al., 1999; Baumol and Oates,1988); 

and since inputs are assumed to be freely disposable, so are bad outputs. Treating bad outputs 

as inputs violates the axioms of production theory. A competing approach in single-equation 

models treats pollution as a weakly disposable or unintended output, subject to null jointness 

(Färe et al., 1989; Piot-Lepetit and Vermersch, 1998; Wossink and Denaux, 2006). 

 

Generally, the property of detrimental variables of weak disposability is well known, and has 

been used in several formulations (Oliveira et al., 2017; Godoy-Durán et al., 2017; Färe et al., 

2004; Zofio and Prieto 2001; Chung, Färe and Grosskopf, 1997; Tyteca, 1997; 1996). This 

approach is widely accepted by environmental economists. Nonetheless, most previous studies 

have analysed the performance of the technical and environmental efficiency of the mining 

firms (see Oliveira, Camanho and Zanella, 2017) in a single-equation-model setting. This 

technically violates the production theory assumption, by assuming undesirable outputs as 

input. Moreover, the material balance assumption is also violated.  

 

The violations steam from the fact that in many cases, production of good, intended outputs 

also generates some bad, unintended outputs. Pollution is a common example of a bad output. 

Because it is an unintended outcome, modelling production processes using standard tools may 

not be appropriate. In a case in which the production process is inefficient, the implications for 

modelling are two-fold. Firstly, how to model technical and environmental efficiency, and can 

they can be separated? A production process is said to be environmentally inefficient when the 

production of pollutants can be reduced without reducing the production of good outputs, given 

the technology and the input vector. Fernandez, Koop and Steel (2002) define environmental 

efficiency as the quantity of pollution that can be reduced without sacrificing good output, by 

adopting the best-practice technology. In general, if a firm is fully technically efficient, a 

decrease in a bad output is only possible if production of a good output is also reduced. This 

 
4 The non-parametric (DEA) approaches are limited as far as decomposition of efficiency into persistence and 
transience is concerned. Such decompositions require econometric approaches, which make SFA more relevant. In 
this regard, semi-parametric and non-parametric SFA approaches are worth consideration. 
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property is not automatically satisfied in a model where the same technology is used to produce 

good and bad outputs jointly – a single-equation-model case (Kumbhakar et al., 2015). 

 

Given that the production of bad outputs increases with good outputs, it is often argued that the 

monotonic relationship between good and bad outputs is similar to the relationship between 

inputs and good outputs. Färe, Grosskopf and Weber (2005) criticised the idea of treating bad 

outputs as inputs. They argued that the treatment of bad outputs as inputs with strong 

disposability properties (Lee et al., 2002; Hailu and Veeman, 2001) would yield an unbounded 

output set, which is not physically possible if traditional inputs are a given. Good and bad 

outputs should satisfy the weak disposability condition. This is an important consideration, and 

implies that bad outputs cannot be treated as inputs (Kumbhakar, Wang and Horncastle, 2015). 

 

To address several weaknesses identified in the single-equation model, Fernandez et al. (2002) 

proposed the two-equation model. This model employs the separable-distance function, which 

allows good and bad output to be modelled separately. Two recent groundbreaking proposals 

modifying the two-equation model are Coelli, Lauwers and Van Huylenbroeck (2007) and 

Murty, Russell and Levkoff (2012). Coelli et al. (2007) proposed the inclusion of pollution into 

conventional productive-efficiency measures by using the materials balance concept. Using the 

same line of argument, Murty et al. (2012) modelled polluting technologies as an amalgamation 

of two technologies: an intended-output and a residual-generation technology. Murty et al. 

(2012), building on the ideas of Frisch (1965), Murty and Russell (2002) and Førsund (2009), 

argued that analytically, pollution-generating technologies are best modelled as the intersection 

of two sub-technologies: an intended-production sub-technology and a residual-generation 

sub-technology. They referred to this structure as a ‘by-production technology’. 

 

The by-production approach models the technologies as intersections of two independent sub-

technologies, reflecting the relations between goods in intended-output production designed by 

human engineers, and the emission-generating mechanism of nature governed by material-

balance considerations. Moreover, the model assumes the production of a good or desired 

output (in this case, gold) also produces something undesirable (pollution); that is, a by-

production of good and bad outputs. Good outputs are freely disposable, but bad outputs are 

not. Bad outputs cannot be substituted for good outputs. Bad outputs may be substitutable for 

some good inputs (Murty and Russell, 2018).  
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Kumbhakar and Tsionas (2016) followed this idea, considering a modelling approach in which 

the technology to produce good outputs is specified in terms of a standard transformation 

function with input-oriented technical inefficiency. Because bad outputs are viewed as by-

products of good outputs, the technology for producing bad outputs is naturally separated from 

the technology for good outputs. This allows one to estimate technical and environmental 

efficiencies, defined in terms of the technologies to produce good and bad outputs respectively. 

Therefore, as far as modelling pollution is concerned, the by-production model is the most 

appropriate. The few studies that have adopted this approach include (but are not limited to) 

Serra, Chambers and Lansink (2014) in the DEA setting, and Kumbhakar and Tsionas (2016) 

using a stochastic frontier (SF) approach.  

 

To the best of our knowledge, no previous mining-efficiency study has applied the by-

production suggested by Fernandez et al. (2002); all therefore potentially suffer from positive 

correlation, violation of axioms of production theory, and violation of the material balance 

assumption, as discussed by Murty et al. (2012). 

 

2.2 Empirical review 

Parametric estimation of efficiency has always been split into cross-section and panel-data 

analysis. For a recent detailed survey of both cross-sectional and panel stochastic frontier 

models, see Greene (2010). Stochastic frontier models originated with Aigner, Lovell and 

Schmidt (1977) and Meeusen and Van den Broeck (1977). These models were intended for 

cross-sectional applications, and made strong assumptions about errors. The original stochastic 

frontier model included both components in the error term: 𝜀𝑖 = 𝜂𝑖+ + 𝛼𝑖. This was adopted in 

the pooled panel, and the two components in the error term were presented as 𝜀𝑖𝑡 = 𝑢𝑖𝑡+ + 𝑣𝑖𝑡, 

Statistical noise was assumed to be normally distributed, while technical inefficiency was 

assumed to be distributed according to a specific one-sided distribution such as exponential or 

half-normal. Furthermore, statistical noise and technical inefficiency were assumed to be 

independent of each other and of the explanatory variables: the inputs (Lee and Schmidt, 1993). 

 

Panel data addresses most of the limitations encountered in cross-sectional analysis, including 

accounting for some of the heterogeneity that may exist by introducing an ‘individual 

(unobservable) effect’; that is, time-invariant and individual-specific unobserved 

heterogeneity, which does not interact with other variables. In addition, it allows for the 
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examination of whether inefficiency has been persistent over time or is time-varying 

(modelling the temporal behaviour of inefficiency).  

 

The standard stochastic frontier panel data models have been extended in several directions. 

Estimation of some of these models included making fewer assumptions, at the same time using 

more flexible modelling approaches. For example, heterogeneous technologies have been the 

focus of much research, including random coefficient stochastic frontier models. Other 

examples include latent class or mixture models and Markov switching models. More recently, 

an important line of research has been the formulation and estimation of panel models, in which 

firm effects are separated from inefficiency. In the panel dataset the estimation techniques have 

thus evolved to account for firm heterogeneity, as well as time-varying and time-invariant 

inefficiencies. These evolutions can be summarised thus: 

  

1. Time-Invariant Technical Inefficiency Models  

A time-invariant model is one whose behaviour (i.e. its response to inputs) does not change 

with time, which represents a lack of technological advances or gains. In a standard panel 

data model, the focus is mostly on controlling firm heterogeneity due to unobserved time-

invariant covariates. The innovation in time-invariant stochastic frontier models (developed 

in the 1980s) was to make these firm effects one-sided, to give them an inefficiency 

interpretation. In some models, these inefficiency effects were treated as fixed parameters 

(see Schmidt and Sickles, 1984), while others treated them as random variables (see Pitt 

and Lee, 1981; Kumbhakar, 1987). Various estimation methods are available for this type 

of model, depending on whether the inefficiency effects are assumed to be fixed or random, 

and whether distributional assumptions are made regarding the inefficiency and noise 

components. 

 

Schmidt and Sickles (1984) introduced a model that assumes the inefficiency effects to be 

time-invariant and individual-specific.5 

 𝑦𝑖𝑡 = 𝛽0 + 𝑥𝑖𝑡′ 𝛽 + 𝑣𝑖𝑡 − 𝑢𝑖+ = 𝛼𝑖 + 𝑥𝑖𝑡′ 𝛽 + 𝑣𝑖𝑡 

 

1 

 
5 The model is a standard panel data model, where 𝛼𝑖 is the unobservable individual effect. Indeed, standard panel 

data are fixed, and random effects estimators are applied here to estimate the model parameters including 𝛼𝑖 – the 

only difference is that we transform the estimated value of 𝛼̂𝑖 to obtain an estimated value of 𝑢𝑖 , 𝑢̂𝑖 . 
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where 𝛼𝑖 ≡ 𝛽0 − 𝑢𝑖+6 
 

The strong distributional assumptions that were necessary in the cross-sectional setting 

were replaced by a single assumption, that technical inefficiency is time-invariant (see Lee 

and Schmidt, 1993). This assumes technical inefficiency to be individual-specific and time-

invariant; that is, the inefficiency levels may be different for different firms, but they do 

not change over time. This implies that an inefficient unit (e.g. a mine) does not learn over 

time. This might be the case in some situations, for example where inefficiency is 

associated with managerial ability, and there is no change in management for any of the 

firms during the period of the study; or if the time of the panel is particularly short. 

However, even this is unrealistic at times, particularly when considering the oligopolistic 

nature of the market7. To accommodate the notion of productivity and efficiency 

improvement, Cornwell, Schmidt and Sickles (1990), Kumbhakar (1990), Battese and 

Coelli (1992), Lee and Schmidt (1993) and Kumbhakar and Wang (2005) all considered 

models that allow inefficiency to change over time, referred to as time-varying technical 

inefficiency models.  

 

2. Time-Varying Technical Inefficiency Models  

In contrast to the time-invariant model above, the behaviour (its response to inputs) of this 

model changes over time. Such a model allows inefficiency to be individual-specific but 

time-varying (i.e. the inefficiency of each cross-sectional unit evolves along a specific path, 

which can either be the same for all units or different for different cross-sectional units). 𝑦𝑖𝑡 = 𝛽0 + 𝑥𝑖𝑡′ 𝛽 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡+  2 

 

Colombi et al. (2014) refer to time-varying inefficiency as short-run inefficiency, and 

mention that it can arise due to failure in allocating resources properly in the short run. 

They argue that (for example) a mine with excess capacity may increase its efficiency in 

the short run by reallocating the workforce across different activities. Thus, some of the 

engineers’ and miners’ daily working hours might be changed to include other mine 

activities. This is a short-run improvement in efficiency that may be independent of short-

 
6 Where the superscript (+) indicates the non-negative value of the corresponding error component. 
7 Another potential issue with this model is the time-invariant assumption of inefficiency. If T is large, it seems 
implausible that the inefficiency of a firm could stay constant for an extended period, and that a firm with persistent 
inefficiency would survive in the market. 
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run inefficiency levels in the previous period, which may justify the assumption that 𝑣𝑖𝑡 is 

independent and identically distributed (IID). However, this does not impact on the overall 

management of the mine, so 𝑣𝑖𝑡 is independent of time-invariant inefficiency. This 

approach does not allow for individual effects (in the traditional sense) to exist alongside 

inefficiency effects. Thus, it allows for inefficiency and individual heterogeneity to be 

separated. Two approaches are used in estimating these models: fixed-effect (FE) and 

random-effect (RE). In the FE models the time-varying inefficiency term is non-stochastic 

(i.e. a parametric function of time), whereas in the RE model the inefficiency effect is 

composed of either a random term or a combination of a time-invariant stochastic term and 

a time-varying deterministic function. 

 

3. Models that separate firm heterogeneity from inefficiency 

The previous time approaches (Equation 1 above) had a drawback in that they fail to 

distinguish between individual heterogeneity and inefficiency, as they treat unobserved 

heterogeneity as a measure of inefficiency. In other words, all the time-invariant 

heterogeneity is confounded with inefficiency; and therefore, the inefficiency component 

might be picking up heterogeneity in addition to (or even instead of) inefficiency (Greene, 

2005a; 2005b). Thus the ‘true’ random or fixed-effect models proposed by Greene (2005a; 

2005b) separate firm effects from inefficiency. Greene’s true random-effects model has the 

following error specification: 𝜀𝑖𝑡 = 𝛼𝑖 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡+ . 3 

 

In this model, the time-invariant component 𝛼𝑖 is viewed as an individual heterogeneity 

that captures the effects of time-invariant covariates, and has nothing to do with 

inefficiency. If this is true, then the results from the time-invariant inefficiency models are 

incorrect. The popular models in this category have been the true fixed-effects model (TFE) 

and the true random-effects model (TRE) advocated by Greene. However, these models 

consider any producer-specific time-invariant component as unobserved heterogeneity. 

Thus although firm heterogeneity is now accounted for, it comes at the cost of ignoring 

long-term (persistent) inefficiency. In other words, long-run inefficiency is again 

confounded with latent heterogeneity. 

 

4. Models that separate persistent and time-varying inefficiency 
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The model discussed above – though it separates firm heterogeneity from time-varying 

inefficiency (which is modelled either as the product of a time-invariant random variable 

and a deterministic function of covariates, or independent and identically distributed [IID] 

across firms and overtime) – does not account for persistent technical inefficiency, which 

is hidden within firm effects. Consequently, the model is mis-specified, and tends to 

produce a downward bias in the estimate of overall inefficiency, especially if persistent 

inefficiency exists when there is no change in the operation of the firm.  

 

The models proposed by Kumbhakar (1991), Kumbhakar and Heshmati (1995) and 

Kumbhakar and Hjalmarsson (1993; 1995) treat firm effects as persistent inefficiency, and 

include another random component to capture time-varying technical inefficiency. The 

composite error term in the Kumbhakar-Heshmati (1995) and Kumbhakar-Hjalmarsson 

(1995) models is of the form8: 𝜀𝑖𝑡 = 𝜂𝑖+ + 𝑣𝑖𝑡 + 𝑢𝑖𝑡+. 4 

 

Therefore, the distinction between the persistent and transient components of inefficiency 

is important, because they have different policy implications (Kumbhakar and Heshmati, 

1995). Identifying the magnitude of persistent inefficiency is important, especially in short 

panels, because it reflects the effects of inputs such as management (Mundlak, 1961), as 

well as other unobserved inputs that vary across firms but not over time. These models 

account for persistent inefficiency by ignoring firm heterogeneity components.  

 

So the question is: should one view the time-invariant component as persistent inefficiency 

(as per Kumbhakar and Heshmati, 1995; Kumbhakar and Hjalmarsson, 1998; 1993; 

Kumbhakar, 1991), or as individual heterogeneity that captures the effects of time-invariant 

covariates and has nothing to do with inefficiency (as per Green, 2005a; 2005b)? The 

answer lies somewhere in between. That is, part of the firm effects in Greene (2005a; 

2005b) may be persistent inefficiency. Similarly, part of persistent inefficiency in the 

models proposed by Kumbhakar et al. may include unobserved firm effects. Since none of 

the assumptions used in the models cited above are fully satisfactory, we consider a 

generalised true random-effect (GTRE) model that decomposes the time-invariant firm 

 
8 Note that these specifications are no different from the models proposed by Green (2005a; 2005b) 
mentioned earlier. The difference is in the interpretation of the ‘time-invariant term’. 
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effects into a random firm effect (to capture unobserved heterogeneity, as in Greene, 2005a; 

2005b), and a persistent technical inefficiency effect (as in Pitt and Lee, 1981; Schmidt and 

Sickles, 1984; Kumbhakar, 1987). 

 

Thus, the models in Equations (3) and (4) are generally referred to as three-component 

models, as they divide the error term into three components. The three-component model 

has some serious shortcomings; it does not separate firm effects from persistent 

inefficiency, which led to the four-component panel-data stochastic frontier model. This 

last distinguishes between long- and short-run inefficiency, and accounts for unobserved 

heterogeneity. In other words, the four-component model separates firm effects, persistent 

inefficiency and time-varying inefficiency. The study by Kumbhakar and Tsionas (2016), 

though it controls for endogeneity, does not control for unobserved firm effects, which must 

be separated from persistent inefficiency. 

 

5. Models that separate firm effects, persistent inefficiency and time-varying inefficiency 

A model that separates persistent and time-varying inefficiency views firm effects (fixed 

or random) as long-term (persistent) inefficiency, with an added second component to 

capture time-varying technical inefficiency. As such, this model confounds firm effects 

(that are not part of inefficiency) with persistent inefficiency. Consequently, this model is 

mis-specified, and is likely to produce an upward bias in inefficiency by treating firm-

effects as inefficiency. The models that separate firm heterogeneity from inefficiency view 

firm effects (fixed or random) as something other than inefficiency; thus, these models fail 

to capture persistent inefficiency, which is compounded with firm effects. Consequently, 

these models are also mis-specified, and tend to produce a downward bias in the estimate 

of overall inefficiency.  

 

The models by Kumbhakar, Lien and Hardaker (2014), Tsionas and Kumbhakar (2014) 

and Colombi et al. (2014) overcome some of the limitations of the earlier (TFE and TRE) 

models, and are commonly referred to as generalised true fixed-effect (GTFE) models and 

generalised true random-effect (GTRE) models, when fixed- or random-effect models 

respectively are specified. In these models, the error term is split into four components to 

consider different factors affecting output, given the inputs. The first component captures 

firms’ latent heterogeneity (Greene, 2005a; 2005b), which has been disentangled from the 

inefficiency effects, while the second component captures short-run (time-varying) 
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inefficiency. The third component captures persistent or time-invariant inefficiency, as in 

Kumbhakar and Hjalmarsson (1993) and Kumbhakar and Heshmati (1995), while the last 

component captures random shocks. The fully flexible error specification is: 𝜀𝑖𝑡 = 𝛼𝑖 + 𝑣𝑖𝑡 + 𝜂𝑖+ + 𝑢𝑖𝑡+ . 5 

 

The economic rationale for all these components is discussed in Kumbhakar, Lien and 

Hardaker (2014). Moreover, Colombi et al. (2014) give detailed justification for the use of a 

four-way error component model. If policymakers (regulators) are interested in eliminating 

persistent inefficiency that is often attributed to regulation, it is necessary to estimate it first. 

Estimating a model with only one inefficiency component (with or without controlling for firm 

effects) is likely to give incorrect estimates of inefficiency. 

 

The decomposition in Equation 5 above may be desirable for policy purposes, especially in 

regulated industries. Since 𝜂𝑖+does not change over time, if a regulator wants to improve 

efficiency then some fundamental change in management or policy must occur. In a regulated 

industry, all the firms may be operating under excess capacity, which might be reflected in high 

values of 𝜂𝑖+ ; but as long as 𝜂𝑖+is similar among all firms, relative persistent inefficiency among 

firms will be low. In such a case, the rankings of firms based on relative values of 𝜂𝑖+ will be 

similar, and the regulator cannot punish some firms because all firms have high values of 𝜂𝑖+. 

However, the estimates of 𝜂𝑖+ provide useful information about the firms in the industry, 

because high values of 𝜂𝑖+are indicators of non-competitive market conditions. This is because 

in a competitive market, there is no persistent inefficiency; i.e. persistently inefficient firms 

will go out of business. The short-run inefficiency 𝑢𝑖𝑡+ can be adjusted over time without a 

major policy change. Thus, for example, if the short-run inefficiency component for a firm is 

relatively large in a particular year, then it may be argued that the inefficiency is caused by 

something unlikely to be repeated in the following year. On the other hand, if a firm’s persistent 

inefficiency component is large, then it is expected to operate with a relatively high level of 

inefficiency over time, unless some changes in policy and/or management take place. Thus, a 

high value of 𝜂𝑖+is of more concern from a long-term point of view, because of its persistent 

nature, than a high value of 𝑢𝑖𝑡+. 

 

As discussed in the introduction, the pollution that gold mines produce is significant, and is 

becoming an important policy issue. To address some of the key policy questions of interest in 
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this paper, it is important to assess the technical and environmental performance of the gold 

mines using the four-component model. To the best of our knowledge there are no studies in 

developing countries that have used firm-level data to analyse technical and environmental 

efficiency in the by-production technology model settings. Thus, this study builds on 

Kumbhakar and Tsionas (2016) by further decomposing the error term into four components, 

and provides policy implications in the mining sector. By using firm-level analysis, this study 

will generate valuable insights for mining companies and for policymakers, which should 

enable them to make better-informed decisions on how to improve their environmental 

efficiency. 

 

3. Methodology  

In this section we present the mixed methodological approach adopted in this study. The two-

equation model accounting for technical and environmental efficiency is described, as well as 

the four-component panel-data stochastic frontier model. The latter model disentangles 

unobserved firm effects (firm heterogeneity) from persistent (time-invariant/long-term) and 

transient (time-varying/short-term) technical or environmental inefficiency. 

 

3.1 Model Specification  

As in Kumbhakar and Tsionas (2016), we follow the by-production specification approach of 

FKS9 (2002), Førsund (2009) and MRL10 (2012), which uses two separate technologies to 

model good and bad outputs. The former describes the textbook-type production process (i.e. 

inputs – good and bad) in which the transformed, desirable outputs do not depend on bad 

outputs. Further, it satisfies all the standard properties, most importantly the free-disposability 

property (for the derivation of properties, see Kumbhakar and Tsionas, 2016). The latter can 

be viewed as a residual generation technology which models the production of bad outputs as 

a function of good outputs (FKS, 2002), bad inputs (MRL, 2012) or both bad and good inputs 

(Førsund, 2009). The positive relationship between bad and good outputs in FKS (2002) 

follows from this residual technology, which embeds the relationship explicitly. Further, 

inefficiency is allowed in each technology, so technical inefficiency can be distinguished from 

environmental inefficiency. 

 

 
9 Fernandez, Koop and Steel (2002). 
10 Murty, Russell and Levkoff, (2012). 
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3.1.1 Good output (technical efficiency) technology 

Using a transformation function (TF) representation of the underlying technology with input 

orientation (IO) inefficiency to produce good outputs, we assume that good outputs Y are 

exogenously given (in our application the ‘good output’ is gold produced, which is demand-

determined and therefore exogenous to the firm). This justifies an input distance function 

(IDF11), represented as: 

 𝐹(𝑌, 𝜃𝑋𝑔, 𝑋𝑏 , 𝑡) = 1 6 

 

The transformation function F (・) is assumed to satisfy all the standard monotonicity 

properties (for a discussion of this property, see Kumbhakar and Tsionas, 2016). Using the 

linear homogeneity restrictions (in 𝜃𝑋𝑔), the transformation function in Equation 6 above can 

be expressed as: 

 (𝜃𝑋1𝑔)−1 = 𝜓𝑔(𝑌, 𝑋̃𝑔, 𝑋𝑏 , 𝑡) 7 

where 𝑋1𝑔 = labour, 𝑌 = gold output, 𝑋̃𝑔 = capital, energy, water;  𝑋𝑏 = fuel, and 𝑡 =time trend. 

 

Linear homogeneity was imposed a priori by normalising gold output and input with respect to 

the constant ‘labour’ (we chose labour as the numeraire, and define the other variables). In a 

translog (TL) form of the transformation function – TF(F) – we can represent Equation 6 above 

as:  

 𝑥1,𝑖𝑡𝑔 ≡ 𝑇𝐿(𝑥̃𝑗,𝑖𝑡𝑦𝑚,𝑖𝑡, 𝑡) + 𝜐𝑖𝑡 + 𝑢𝑖𝑡 8 

 𝑥1,𝑖𝑡𝑔 = 𝛼0 + 𝑆𝑖𝑡′ 𝑎 + 12 𝑆𝑖𝑡′ 𝐴𝑆𝑖𝑡 + 𝜐𝑖𝑡 + 𝑢𝑖𝑡 
9 

where input-oriented technical inefficiency 𝑢𝑖𝑡 = −𝑙𝑛𝜃 > 0 is technically inefficient, which is 

the percentage overuse of inputs due to inefficiency, while 𝜐𝑖𝑡 is statistical noise. 

 

A three-component model (separating firm heterogeneity from efficiency) may be specified as: 

 𝑥1,𝑖𝑡𝑔 = 𝛼0 + 𝑆𝑖𝑡′ 𝑎 + 12 𝑆𝑖𝑡′ 𝐴𝑆𝑖𝑡 + 𝛼𝑖 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡+ 
10 

 

 
11 If outputs are exogenously given, and the objective is to minimise input, then the natural choice is to use 
an input distance function (IDF) and estimate the efficiency component(s). Note that in an IDF, inputs are 
endogenous (Kumbakhar et al., 2015). If the technology is not known (which is the case in reality) and it 
must be estimated econometrically, then the issue of endogeneity cannot be avoided. 
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The proposed alternative approach using a four-component model is defined as:  

 𝑥1,𝑖𝑡𝑔 = 𝛼0 + 𝑆𝑖𝑡′ 𝒂 + 12 𝑆𝑖𝑡′ 𝑨𝑆𝑖𝑡 + 𝛼𝑖 + 𝜂𝑖+ + 𝑢𝑖𝑡+  + 𝑣𝑖𝑡 
11 

where 𝑥̃𝑗,𝑖𝑡𝑔 = 𝑥𝑗,𝑖𝑡𝑔 − 𝑥1,𝑖𝑡𝑔 , 𝑗 = 2, … , 𝐽. 𝑆𝑖𝑡′ = (𝑦′𝑖𝑡, 𝑥𝑖𝑡𝑏′ , 𝑥̃𝑖𝑡𝑔′, 𝑡). A, a are the vector and matrix of 

the relevant parameters. In this model, the error term is split into four components to consider 

different factors affecting output, given the inputs. The first component 𝛼𝑖 captures firms' latent 

heterogeneity, which must be disentangled from inefficiency; it is a random mine effect which 

captures mines’ heterogeneity (Green, 2005a; 2005b). The second component 𝜂𝑖+captures the 

persistent (long-run) technical inefficiency component. The third component 𝑢𝑖𝑡+ captures 

short-run or transient technical inefficiency; while the last component 𝑣𝑖𝑡 captures random 

shocks, which is similar to the noise component in a standard regression model. In this model, 

the overall technical efficiency (OTE) obtained is the product (interaction) of persistent 

technical efficiency (PTE) and transient technical efficiency (RTE); that is, OTE= PTE x RTE. 

 

3.1.2 Bad output (environmental efficiency) technology 

We specify the technology to produce single bad outputs (carbon dioxide, CO2) as follows: 

 𝐻(𝑌, 𝜆𝑍 , 𝑋𝑏, 𝑡)  =  1 12 

where 𝜆≤ 1 is an environmental inefficiency in the production of Z. More specifically, this 

radial measure shows that (1−λ𝑞) 100% is the rate at which the production of bad output Z can 

be reduced without reducing good outputs and bad inputs. Note that the technology to produce 

bad outputs is assumed to be homogeneous with degree 1 in Z. It is also assumed the ratios of 

bad outputs are predetermined/exogenous, and do not correlate with the error components. 

Linear homogeneity was imposed a priori by normalising CO2 emitted and abad input (fuel) 

with respect to the constant (gold) output. 

 

The transformation function H (・) is assumed to satisfy all the standard monotonicity 

properties. Using the linear homogeneity restrictions and IDF specification, the transformation 

function in Equation 12 above can be expressed as: 

 (𝑦𝑖𝑡)−1 = 𝑔(𝑧𝑖𝑡, 𝑥𝑖𝑡𝑏 , 𝑡) 13 

where 𝑌 = gold output, 𝑧𝑖𝑡 =  bad output (CO2), 𝑋𝑏 = fuel, and 𝑡 = time trend. 

For environmental efficiency we also assume the translog functional form on 𝑔 (・), for the 

transformation function-TF (H). Thus, Equation 12 above is re-written as: 

 𝑦𝑖𝑡 ≡ 𝑇𝐿(𝑧𝑖𝑡, 𝑥𝑖𝑡𝑏 , 𝑡) + 𝜐𝑖𝑡 + 𝑢𝑖𝑡 14 
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 𝑦𝑖𝑡 = 𝑎0 + 𝑃𝑖𝑡′ 𝛿 + 12 𝑃𝑖𝑡′ Δ𝑃𝑖𝑡 + 𝜁𝑖𝑡 + 𝜏𝑖𝑡 
15 

𝜏𝑖𝑡 = ln 𝜆𝑖𝑡≥0 is environmental efficiency and 𝜁𝑖𝑡 is an error term. Further, δ and Δ are vector 

and matrix of relevant parameters in the translog function, representing the production of bad 

outputs. In a three-component model (separating firm heterogeneity from efficiency): 

 𝑦𝑖𝑡 = 𝑎0 + 𝑃𝑖𝑡′ 𝛿 + 12 𝑃𝑖𝑡′ 𝛥𝑃𝑖𝑡 + 𝛽𝑖 + 𝜁𝑖𝑡 + 𝜏𝑖𝑡+ 
16 

 

In a four-component model, this can be written as:  

 𝑦𝑖𝑡 = 𝑎0 + 𝑃𝑖𝑡′ 𝛿 + 12 𝑃𝑖𝑡′ 𝛥𝑃𝑖𝑡 + 𝛽𝑖 + 𝜙𝑖+ + 𝜏𝑖𝑡+ + 𝜁𝑖𝑡  
17 

where 𝑆𝑖𝑡′ = (𝑧′𝑖𝑡, 𝑥𝑖𝑡𝑏′ , 𝑡). The error term is split into four components to consider different 

factors affecting output, given the inputs. The first component 𝛽𝑖 captures firms' latent 

heterogeneity, which must be disentangled from inefficiency; the second component 𝜏𝑖𝑡+ 

captures short-run (time-varying) environmental inefficiency. The third component 𝜙𝑖+ 

captures persistent or time-invariant inefficiency, while the last component 𝜁𝑖𝑡 captures random 

shocks. In this model the overall environmental efficiency (OEE) is then obtained from the 

product of persistent environmental efficiency (PEE) and transient environmental efficiency 

(TEE); that is, OEE= PEE x TEE. 

 

3.2 Model Estimation  

The four-component errors, particularly in a generalised true random-effects model (GTREM), 

are usually estimated using one of several methods, in this case the three-step method-of-

moment estimator (MME) by Kumbhakar et al. (2014). In this setting, given the structure of 

the four separate errors, deriving the likelihood function was previously seen as infeasible. This 

approach estimated each component separately, making implementing its procedures 

straightforward.  

 

The second method, proposed by Colombi et al. (2014), found a tractable likelihood function 

which fits all four components. Results are drawn from skew-normal and closed skew-normal 

(CSN) distributions. Assuming 𝑣𝑖𝑡 is i.i.d. normal and 𝑢𝑖𝑡 is i.i.d. half normal, the sum of these 

two distributions 𝐾𝑖𝑡 has a skew-normal distribution. Using the same argument, if 𝜂𝑖 is i.i.d. 

half normal and 𝜈𝑖 is i.i.d. normal, the sum of these two distributions 𝑉𝑖 is a skew-normal 

distribution. Thus, the overall distribution will be the sum of two skew-normal distributions 
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(𝐾𝑖𝑡 𝑎𝑛𝑑 𝑉𝑖), and is a closed skew-normal (CSN) distribution. This innovative approach allows 

for the estimation of the four-component model to be undertaken using a single-stage maximum 

likelihood estimator (MLE) method (also referred to as a full maximum likelihood method) 

based on CSN distribution (see Table 1 below for a breakdown of the distribution assumptions).  

 

The third approach, proposed by Tsionas and Kumbhakar (2014), used similar assumptions to 

that proposed by Colombi et al. (2014); but instead of using the MLE, they used a Bayesian 

Markov chain Monte Carlo (MCMC) approach to estimate the GTRE model. The fourth 

method, proposed by Filippini and Greene (2016), argued that although the CSN framework 

gives a closed-form expression of the log-likelihood function, implementing it in practice is a 

challenging task. Thus they proposed a simulated maximum likelihood estimator (SMLE), 

which overcomes many of the challenges associated with MLE. Using the insights of Butler 

and Moffitt (1982), Filippini and Greene (2016) noted that the density in Colombi et al. (2014) 

can be greatly simplified by employing conditioning on 𝜂𝑖 and 𝜈𝑖. In this case, the conditional 

density is simply the product over time of Ti univariate skew-normal densities. Thus, only a 

single integral (as opposed to Ti integrals) must be evaluated. 

 

In this study, as discussed above, we employ the TREM by Green (2005b) and the SMLE 

GTREM by Filippini and Greene (2016). The TREM results are from the three-component 

model, in which firm heterogeneity is separated from inefficiency. This model serves as the 

benchmark to which the SMLE GTREM is compared. We chose the SMLE GTREM since it 

is a more advanced model for estimating the four-component model.  

  

Table 1: Development of distribution assumptions  

 TREM 

Green 

(2005a, 

2005b) 

MME 

Kumbhakar 

et al. (2014) 

MLE and SMLE 

Colombi et al. (2014), 

Tsionas and Kumbhakar 

(2014), Filippini and 

Greene (2016) 

 

 Component Distri-

bution 

Distri-

bution 

Distri-

bution 

Distri-

bution 

Assumption 

1 Random 

effect: 𝜈𝑖 Normal Normal     Skew  

    Normal 

Homoskedastic 
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2 Persistent 

inefficiency: 𝜂𝑖 — Half-

Normal 

Closed 

Skew  

Normal 

(CSN) 

Homoskedastic 

3 Random 

noise: 𝜐𝑖𝑡 

Normal Normal     Skew  

    Normal 

Homoskedastic 

4 Transient 

inefficiency: 𝜇𝑖𝑡 

Half-

Normal 

Half-

Normal 

Homoskedastic 

 

Table 1 above presents the development of distribution assumptions and their respective 

estimation methods. Column 1 shows the number of error components. Column 2 details the 

three-component model (TREM), which estimates the components by maximum likelihood 

estimator (MLE). Column 3 details the MME GTREM model, in which the method of moment 

estimator (MME) is used to estimate the four components separately. Column 4 presents the 

models which use the CSN assumption (see Colombi et al., 2014; Tsionas and Kumbhakar, 

2014; Filippini and Greene, 2016). 

 

The four-component model is an extension of the TFE or TRE models proposed by Green 

(2005a; 2005b respectively). This model can be estimated by assuming that either the 

inefficiency component (𝜇𝑖𝑡) is a fixed parameter that directly influences the dependent 

variable (the fixed-effect model), or the inefficiency component (𝜇𝑖𝑡) is a random variable that 

correlates with the independent variable (the random-effect model). This model is known as 

the Generalised True Fixed Effect (GTFE) model, in cases of Fixed Effect or Generalised True 

Random-Effect (GTRE) model is considered for a random-effect model (Tsionas, Malikov and 

Kumbhakar, 2020). We assume that none of the covariates (good and bad outputs, bad inputs, 

and the ratios of good inputs) are correlated with either the inefficiency or the noise term.  

 

3.3 Data  

As indicated in previous sections, this study uses firm-level data on energy consumption, 

labour, capital, fuel and water consumption as inputs, while volume of gold produced is 

considered a desirable output. CO2 on the other hand is an undesirable or unintended output. 

The variables collected from financial statements were measured as follows: volume of gold 

produced in a year, measured in ounces (Oz); capital spent in a year, measured in millions of 

US dollars (M$); and labour, measured by total number of employees. The other variables of 

interest are energy, which captures the total energy used by the mine, measured in gigajoules 
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(GJ), and sustainability indicators, which were compiled from mining company sustainability 

reports: carbon dioxide emissions (CO2), measured by the total kilotons (kt) of carbon dioxide 

emitted in a year; quantities of water used in the production process, measured in cubic metres 

(m3); and fuel, measured by total fuels used by the mine in kilolitres (Kl). In the few cases 

where coal was used, we converted coal amounts into fuel equivalents. The choice of variables 

was made for consistency with those in similar studies (see Oliveira et al., 2017; Arabi, 

Munisamy, Emrouznejad and Shadman, 2014; Zhou, Ang and Wang, 2012; Hua, Bian and 

Liang, 2007). 

  

The mine-level data set for this analysis covers the years 2009 to 2018 and was derived from a 

variety of sources, such as annual financial statements, sustainability reports and websites. 

These data are in the public domain, and are published voluntarily by mining companies on an 

annual basis. We have data for 34 large gold-mining companies (see Appendix 1 Table 1 for a 

description of the mining firms used in the analysis), observed over 10 years. The choice of 

firms was based on the availability of complete information and firm-specific data for the 

variables required for the analysis. The data were analysed using Stata for the TRE model, 

while R was employed for estimating an SMLE.  

  

4. Results 

4.1 Descriptive Statistics 

Table 2 below presents results for each of the variables of interest. The descriptive statistics 

represent the variables of the production functions in Equations 11 and 17 above. The statistics 

are based on the full sample of observations. 

 

Table 2: Descriptive statistics of inputs and outputs 

Variable  Obs  Mean  Std.Dev.  Min  Max 

Gold output: y [kilo-ounce] 340 185000 136000 3000 719000 

Capital: k [million US dollars] 340 199.273 354.616 0.21 2387.384 

Labour: l [Total number of employees] 340 2763.344 1809.99 117 9020 

Energy: e [Gigajoules] 340 1425.852 1432.674 128.908 9250 

Water: w [ kilolitres] 340 2476.041 2057.005 137 11191 

Oil-fuel consumption: f [kilolitres] 340 7253.68 15081.33 66.095 88454 

CO2 emitted: c [kilotons] 340 333.082 420.554 12 2178.667 
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Time trend: t 340 5.5 2.877 1 10 

 

 

The standard deviations are relatively dispersed around their mean, which could be associated 

with a high range between the minimum and maximum values for all the variables. The 

variation in the range is because the mine operations are not homogenous, even though they 

are all gold-mining companies, as their product mix, location and exploration sites may be 

different. For example, a firm could have an open pit mine as opposed to underground mines, 

while the grade of ore can differ considerably across mines; and some have different milling 

processes, ranging from heap leaching to alternative leaching technologies. They also face 

different challenges regarding natural conditions, infrastructure, and the economic context of 

their operation. 

 

4.2 Estimation of Technical Efficiency 

The estimated technical efficiency results from the three frontier models are presented in Table 

3 below. This is followed by a presentation of the technical efficiency scores, in Table 4 below. 

The results in Table 3 are grouped into two columns; the first shows benchmark results obtained 

from TREM estimation, while the second presents result from the multiple-equation SMLE 

GTREM model.  

 

Table 3: Estimation of technical efficiency based on TREM and SMLE GTREM specifications  

 TREM  SMLE GTREM 

Ln Labour llneg Coef. St.Err  Coef. St.Err. 

Ln Gold output; ly 1.325*** (0.344)  2.246*** (0.320) 

ly2 -0.159*** (0.027)  -0.224*** (0.026) 

Ln (capital/labour); tk -0.036 (0.123)  -0.394*** (0.088) 

Ln (energy/labour); te 0.168 (0.185)  0.460** (0.169) 

Ln (fuel/labour); tf 0.099*** (0.020)  0.085*** (0.016) 

Ln (water/labour); tf 0.007  (0.014)  0.026 (0.015) 

Time trend; t 0.004* (0.002)  0.006* (0.003) 

lytk 0.065*** (0.010  0.084*** (0.007) 

lyte -0.006 (0.016)  -0.025 (0.014) 

tfte 0.0101 (0.009)  0.015 (0.008) 
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Constant -9.382*** (2.229)  -16.178*** (1.953) 

Number of observations 340   340 340 

Firms' latent heterogeneity 𝜈𝑖 -3.126*** (0.117)  -3.646 (8.148) 

Persistent inefficiency 𝜂𝑖    -1.331***  (0.156) 

Transient technical inefficiency 𝜐𝑖𝑡 -7.207*** (0.862)  -2.057*** (0.082) 

Random noise component 𝜇𝑖𝑡 0.135 (0.257)  -0.415*** (0.024) 

Log likelihood 101.511   107.135  

Note: Table 3 above presents the estimation results when applying TREM (Input Directional Function-IDF 
Equation10 above) and SMLE GRTEM frontier models to the IDF Equation 11. The SMLE GTREM results are 
based on 500 draws each. Asterisks: *** indicates significance at 1% level, ** at 5% level and * at 10% level. 
Standard errors are reported in parenthesis. 

 

The findings show that in all three models, transient or time-varying technical inefficiency (𝜐𝑖𝑡) 

in the large gold mines is negative and statistically significant at a 5 per cent level of 

significance. Also, the persistent efficiency (only found in the GTRE models, in our case) was 

negative and statistically significant. The significant negative transient and persistent 

inefficiencies12 imply that the mining firms may obtain the same level of output using fewer 

inputs; or they could adjust their short-run factors (such as management) or long-run factors 

(such as regulations). The high input usage could be attributed to several factors; among others, 

it may imply behaviour concerns such as moral hazards, or asymmetric information, which 

potentially could highlight the principal-agent problem in management. 

 

The inclusion of the interaction terms (translog function relative to Cobb-Douglas function) 

was tested, the significant p-value (at 5 per cent level of significance) from the Wald test 

indicating that the coefficients of the interactions were not simultaneously equal to zero. Thus, 

the translog production function is preferred to the Cobb-Douglas function specification. 

 

Table 4 below provides descriptive statistics of the estimated levels of technical efficiency for 

the TREM and SMLE GRTEM frontier models. The statistics are based on the full sample of 

observations. However, the TREM results had missing values (see the number of observations). 

 

Table 4: Descriptive statistics of estimated technical efficiencies 

 
12 The presence of technical inefficiency implies that given inputs, less than the maximal possible amount 
of desirable output is produced. Alternatively, it means that more than the minimal amounts of inputs are 
used to produce a given level of desirable output. 
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 TREM  SMLE GTREM 

Variable  Transient  
 

Transient Persistent Overall 

Mean  0.821  
 

0.956 0.731 0.699 

Std. Dev.  0.130  
 

0.001 0.057 0.054 

Min  0.451  
 

0.951 0.647 0.615 

25% Pc.  0.708  
 

0.955 0.677 0.647 

Median  0.851  
 

0.736 0.736 0.870 

75% Pc.  0.928  
 

0.784 0.785 0.750 

Max  0.990   0.824 0.824 0.788 

Obs.  260   340 340 340 

 

The mean transient efficiency of the TREM (82%) is relatively smaller in magnitude than the 

mean transient result of the SMLE GTREM (96%0. The dispersion of the estimated transient 

efficiencies is slightly higher for the TREM than for the SMLE GTREM. As depicted in Figure 

1 below, mean efficiency estimates within the four quartiles of the annual efficiency 

distributions are relatively constant over time, regardless of model specification (these claims 

were also verified by the insignificant-at-5-per-cent level of significant trend estimations 

provided in Appendix 1, Table 2). Hence, we find robust empirical evidence that on average, 

gold-mining firms neither strongly increased nor decreased their transient or persistent 

technical efficiency between 2009 and 2018. The SMLE GTREM is our preferred model, 

because it allows for simultaneous estimation of the level of persistent as well as transient 

technical efficiency. Moreover, the log-likelihood in the GTRE model is higher than that found 

in the benchmark model TRE. The predicted overall technical efficiency of this model amounts 

to 70% (96% transient and 73% persistent) on average. 

 
Figure 1 below presents the development of estimated transient (since it is available in all three 

models) technical efficiencies under the TREM and SMLE specifications. For every individual 

year, firm-level transient technical efficiency estimates are separated into mean and quantiles 

– lower quantile (Pc 25), second quartile (median), and upper quantile (Pc75). 
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Figure 1: Development of estimated technical efficiencies over time 

 

The TREM and the persistent efficiency component of the SMLE GTREM measure different 

kinds of technical efficiency, which explains why the correlation between these two estimated 

efficiency levels is low – and even negative, for SMLE (Table 5 below).  

 

Table 5: Correlation matrix for components of technical efficiency 

  Variables   (1)    (2)    (3) 

 (1) TRE Transient 1.000  

 (2) SMLE Persistent -0.111 [-0.06] 1.000  

 (3) SMLE Transient 0.104 [0.11*] 0.152 [0.18***] 1.000 

Note: Table 5 presents the Pearson correlation coefficients between estimated technical efficiencies of TREM and 
SMLE GRTEM frontier models. Spearman13 correlations are given [.] brackets. Asterisks: *** indicates 
significance at 1% level, ** at 5% level and * at 10% level. 

 

In contrast, the correlation between the TREM technical efficiency and the transient efficiency 

of the SMLE GTREM is positive and comparatively high, as expected. In conclusion, the 

positive and statistically significant correlation between persistent and transient (SMLE 

 
13 The Spearman is preferred in this case, since it is based on the ranked value (efficiency scores are ranks) 
for each variable; rather than the Pearson, which evaluates the linear relationship between raw data.  



27 

 

GTREM) efficiencies suggest that firms showing a high degree of persistent technical 

efficiency are also simultaneously exhibiting production processes of a high degree of transient 

technical efficiency. 

 

4.3 Estimation of environmental efficiency 

The estimated environmental efficiency coefficients of the three frontier models, as well as 

their respective standard errors, are shown in Table 6 below. 

 

Table 6: Estimation of Environmental Efficiency of the 34 gold mines 

 TREM  SMLE GTREM 

Ln (gold output); lyneg Coef. St.Err.  Coef. St.Err 

Ln (CO2 emitted); lC -1.308*** (0.274)  -1.742*** 0.052 

lC2 0.156*** (0.048)  0.138*** 0.010 

Ln (fuel/gold output); tZ -0.292 (0.180)  -1.184*** 0.0524 

tZtZ 0.065* (0.039)  0.066*** 0.0134 

tZlC -0.067*** (0.016)  -0.213*** 0.0061 

tZt -0.007 (0.005)  0.010*** 0.0017 

tCt -0.004 (0.006)  0.015*** 0.0018 

t -0.079 (0.049)  0.144*** 0.015 

Constant -2.594** (0.858)  -4.582*** 0.1501 

Number of observations 340   340  

Firms' latent heterogeneity 𝜈𝑖 -1.945*** (0.408)  0.2275 0.2581 

Persistent inefficiency 𝜂𝑖    -2.245*** 0.2008 

Transient technical inefficiency 𝜐𝑖𝑡 -3.144*** (0.428)  -2.054*** 0.2744 

Random noise component 𝜇𝑖𝑡 -0.496* (0.256)  -1.457*** 0.1064 

Log-likelihood -149.74629   232.525  

Note: Table 6 presents the estimation results when applying TREM (IDF Equation 16 above) and SMLE GRTEM 
frontier models to the IDF Equation 17 above. The SMLE GTREM results are based on 500 draws each. Asterisks: 
*** indicates significance at 1% level, ** at 5% level and * at 10% level. Standard errors are reported in 
parentheses. 

 

The results in Table 6 above show that in all three models, transient or time-varying technical 

inefficiency (𝜐𝑖𝑡) in the large gold mines is negative and statistically significant at a 5 per cent 

level of significance. Persistent efficiency was also negative and statistically significant at a 5 
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per cent level of significance. The significant negative environmental inefficiencies14 imply 

that the mines could reduce their bad output (CO2) emissions without sacrificing good outputs 

(gold), by adopting the best-practice technology. Besides that, the Wald test between the 

translog and restricted Cobb-Douglas model shows that statistically, the interaction terms 

significantly improve the results compared to the restricted model. 

 

Table 7 below provides descriptive statistics of the estimated levels of environmental efficiency 

of the TREM and SMLE GRTEM frontier models. The statistics are based on the full sample 

of observations. 

 

Table 7: Descriptive statistics for the estimated environmental efficiencies 

 
 TREM  

 
SMLE GTREM 

 Variable  Transient  
 

Transient Persistent Overall 

Mean  0.815  
 

0.809 0.820 0.664 

Std.Dev.  0.066  
 

0.022 0.019 0.024 

Min  0.374  
 

0.659 0.790 0.531 

25% Pc.  0.802  
 

0.803 0.808 0.654 

Median  0.829  
 

0.811 0.814 0.661 

75% Pc.  0.850  
 

0.818 0.834 0.674 

Max  0.910   0.886 0.874 0.7536 

Obs.  340   340 340 340 

 
 
The mean and median transient efficiency of the TREM (81.5% and 82.9% respectively) are 

relatively similar in magnitude to the mean and median transient result of the SMLE GTREM 

(81% and 81% respectively). The dispersion of the estimated transient efficiencies is slightly 

higher for the TREM than for the SMLE GTREM. As depicted in Figure 2 below, mean 

efficiency estimates within the first quartiles of the yearly efficiency distributions are relatively 

constant over time, regardless of model specification (see Appendix Table 2 for trend 

estimation results). Hence we find robust empirical evidence that on average, gold-mining 

firms neither strongly increased nor decreased their transient or persistent environmental 

 
14 The presence of (environmental) inefficiency in by-production therefore means that more than this 
minimal amount of the undesirable output is produced. 
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efficiency between 2009 and 2018. The predicted overall technical efficiency (SMLE GTREM) 

of this model amounts to 66% (81% transient and 82% persistent) on average. 

 
As with the previous Figure 1, we present the development of estimated efficiencies under the 

TREM and the SMLE specifications – the difference (between Figure 2 and Figure 1) being 

that we are focusing on environmental efficiencies. Similarly, firm-level environmental 

efficiency estimates are separated into mean and quantiles: lower quantile (Pc 25), second 

quartile (median), and upper quantile (Pc75). 

 

 

Figure 2: Development of estimated Environmental efficiencies over time 

 

The TREM and the persistent environmental efficiency component of the SMLE GTREM 

measure different kinds of environmental efficiency; thus, the correlation between these two 

estimated efficiency levels is low (see Table below).  

 

Table 8: Correlation matrix for components of environmental efficiency 

 

 

 

 

  Variables   (1)    (2)    (3) 

 (1)  TRE Transient 1.000  

 (2)  SMLE Persistent 0.014 [ 0.017] 1.000  

 (3)  SMLE Transient 0.161 [ 0.14**] 0.103 [0.12**] 1.000 



30 

 

Note: Table presents the correlation coefficients between estimated environmental efficiencies of TREM and 
SMLE GTREM frontier models. Spearman correlations are given in [.] brackets. Asterisks: *** indicates 
significance at 1% level, ** at 5% level and * at 10% level. 

 

As expected, the correlation between the TREM and the transient environmental efficiency of 

the SMLE GTREM is positive and comparatively high. In conclusion, the positive and 

statistically significant correlation between persistent and transient (SMLE GTREM) 

environmental efficiencies suggests that firms showing a high degree of persistent 

environmental efficiency are also simultaneously exhibiting production processes of a high 

degree of transient environmental efficiency.  

 

4.4 Summary of both technical and environmental efficiencies under SMLE GTREM 

Table 7 below provides an overall summary of the components of the technical and 

environmental efficiency components estimated for large gold mines in developing countries. 

The results show that on average, the mines’ technical efficiency is 70%. These mining firms 

have high transient efficiency (96%), higher than their persistent efficiency (73%). These 

findings suggest the mines are technically efficient in the short run, while the long-run variables 

– such as regulations and structural rigidity (which may influence input usage) – pose large 

constraints on optimising the industry. However, the transient component of efficiency does 

not change over time, which may imply that the operations of the mines do not change over 

time. 

 

Table 7: Descriptive statistics of both technical and environmental efficiencies 

Variable  Obs  Mean  Std.Dev.  Min  Max 

Persistent Technical Efficiency, PTE 340 0.731 0.056 0.647 0.824 

Transient Technical Efficiency, TTE 340 0.956 0.001 0.951 0.962 

Overall Technical Efficiency, TEO 340 0.699 0.054 0.615 0.788 

Persistent Environmental Efficiency, PEE 340 0.82 0.018 0.79 0.874 

Transient Environmental Efficiency, TEE 340 0.809 0.022 0.659 0.886 

Overall Environmental Efficiency, OEE 340 0.664 0.024 0.531 0.754 

 

On average, transient environmental efficiency has scored approximately 81%; persistent 

efficiency has scored slightly higher (82%), while overall environmental efficiency is recorded 

as around 66 per cent over the 10 years of the study (see Error! Reference source not found. 

below). Low environmental performance could be attributed to the fact that most developing 
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countries face structural rigidity; infrastructure such as electrical supply may be limited, forcing 

them to use large amounts of fuel to generate enough power to run the mine. Poor 

environmental regulation and enforcement can also be a reason for poor environmental 

performance. A mine may not be able to adjust rigidity of this kind in the short run, which in 

turn can undermine persistent efficiency.  

 

Error! Reference source not found. below presents the mean transient, persistent and overall 

firm-level technical and environmental efficiency estimates for the period of study.  

 

 

Figure 3: Technical and environmental efficiency components  

 

The relationship between environmental and technical efficiency and their components is 

represented by the correlation coefficients in Table 8 below. 

 

Table 8: Matrix of correlations of components for both technical and environmental 

efficiencies 

  

Variables 

  (1)    (2)    (3)    (4)  (5)  

(1) PTE 1.000       
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(2) TTE  0.122 [0.15***] 1.000      

(3) PEE  -0.07 [0.11**] 0.001 [-0.0031] 1.000     

(4) TEE   0.031 [-0.03] 0.022 [-0.13**] 0.103 [0.12**] 1.000    

(5) OTE 0.99 [0.99***] 0.137 [0.19***] -0.07 [0.103*] 0.032 [-0.033] 1.000  

(6) OEE  -0.02 [0.006] 0.016 [-0.0716] 0.69 [0.7***] 0.791 [0.7***] -0.02 [0.001] 

Note: Table 8 presents the correlation coefficients of the components for the estimated environmental and 
technical efficiencies of SMLE GRTEM frontier models. PTE indicates Persistent Technical Efficiency; TTE 
indicates Transient Technical Efficiency; OTE indicates Overall Technical Efficiency; PEE indicates Persistent 
Environmental Efficiency; TEE indicates Transient Environmental Efficiency; OEE indicates Overall 
Environmental Efficiency. Spearman correlations are given in [.] brackets. Asterisks: *** indicates significance 
at 1% level, ** at 5% level and * at 10% level. 

 

The Spearman correlation results show that there is a positive and statistically significant 

correlation between technical and environmental persistent efficiencies, and a negative and 

significant correlation between technical and environmental transient efficiencies. While there 

is a positive but not significant correlation between overall efficiencies, similar results were   

found by Tamini, Larue and West (2012), except that the study was on agriculture farms in 

Quebec and used TRE model. Moreover, their study found a positive and significant correlation 

between overall efficiencies. However, the results are similar if we employ the same method 

(TRE Model), for which the positive and significant at the 1 per cent level correlation between 

environmental and technical efficiency is 0.2812 or [0.3011] person and spearmen correlations 

respectively. These results provide strong empirical evidence that firms with high technical 

efficiency simultaneously have high environmental efficiency.  

 

5. Conclusion 

5.1 Summary of the Findings  

The goal of this paper was to estimate the transient, persistent and overall technical and 

environmental efficiency performance of large gold mines in developing countries. We 

employed a by-production model to specify the emission-generating technology, by applying 

two distinct frameworks: a TRE model, which is used as a benchmark, and the four-component 

estimation method using SMLE. We have contributed to the literature in two ways. First, we 

have provided the only estimates of firm-specific technical and environmental efficiency for 

mining companies in developing countries. Second, we have made a methodological 

contribution, by applying the three- (TRE) and four-component models (SMLE) in the by-

production specification to provide robust estimates of persistent, transient and overall 

technical and environmental efficiency in the context of gold mining in developing countries.  
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The results show a strong correlation between the results for the TRE and SMLE models; which 

was in line with our expectation, since the estimation methods are similar. The results from 

both models show no significant trend in terms of environmental and technical efficiency, 

except that the TRE shows significant positive environmental efficiency. However, once the 

persistent component is introduced to the model, the trend disappears. Thus we have found 

robust empirical evidence that on average, gold-mining firms neither strongly increased nor 

decreased their transient or persistent technical and environmental efficiencies between 2009 

and 2018. 

 

On average, the technical efficiency of large gold mines in developing countries is 70%. The 

mining firms have higher transient efficiency than persistent efficiency. These findings suggest 

the mines are technically efficient in the short run, while the long-run variables – such as 

regulations and structural rigidity (which may influence input usage) – create large constraints 

on optimising the industry. Persistent high technical efficiency suggests the industry is highly 

competitive (demonstrating oligopolistic competition). However, the transient component of 

efficiency does not change over time, which may imply that the mines’ managerial approach 

is static. The presence of technical inefficiency implies that more than the minimal amounts of 

inputs are used to produce a given level of desirable outputs, which could be due to moral 

hazards (due to low labour motivation) and asymmetric information, such as principal-agent 

problems. The moderate overall technical efficiency could be attributed mainly to the 

increasing complexity of mining low-grade gold deposits, which undermines the total output 

figures. 

 

The overall environmental performance of the mines in the developing countries is low, which 

indicates that there may be poor environmental policies and regulations, or poor enforcement, 

or both.  

 

The study found that there is a positive and significant correlation between transient technical 

and environmental efficiency. Similarly, a positive and significant correlation between 

persistence technical and environmental efficiency was also found. Moreover, there is a 

positive and significant correlation between overall technical and environmental efficiency. 

These results provide strong empirical evidence that firms with high technical efficiency 
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simultaneously have high environmental efficiency, which suggests that promoting high 

environmental efficiency will also promote high technical efficiency.  

 

5.2 Policy recommendations  

Based on the findings in this study, mines should be able to improve their operations over time, 

since their transient efficiency is rigid. Methods may include (but are not limited to) increasing 

managerial ability, and adjusting management approach and composition to ensure more 

efficient allocation of resources. In addition, technology is available that uses less energy and 

water (and other inputs), while producing higher outputs. To encourage the use of hi-tech 

solutions, the industry should mechanised the incentive approach to the firms with high 

efficiency scores. These methods will overcome the challenges of mining lower grades of gold 

and increasing ore complexity. 

 

In terms of improving long-term environmental efficiency, this study recommends 

strengthening environmental regulations, and enforcement and adjustment of the structural 

rigidities such as green energy supply. The regulators should institutionalise incentive-based 

solutions such as tax credits for lower emissions, which would discourage the use of bad inputs 

and incentivise firms to acquire better technology. In addition, tradable emission permits 

should be used to incentivise polluters to internalise the externality. The more efficient firms 

should benefit more from these incentives, motivating the less efficient firms to become more 

efficient. As far as structural rigidity and institutional capacity is concerned, governments 

should work on unlocking the structural barriers and promoting institutional transformation by 

building the necessary infrastructure. 

 

An examination of the firm-specific determinants of transient, persistence and overall 

efficiencies for both technical and environmental efficiency is worthwhile, with an eye to 

finding approximation results in large samples with a large number of inputs and outputs. 
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Appendix 1 

 

Appendix Table 1: Description of the mining firms used in the analysis 

S/No. Name of the mine Country Region 

1 Buzwagi Tanzania East Africa 

2 Bulyanhulu Tanzania East Africa 

3 North Mara Tanzania East Africa 

4 Geita gold mine Tanzania East Africa 

5 Tshepong operations South Africa South Africa 

6 Phakisa South Africa South Africa 

7 Bambanani South Africa South Africa 

8 Target 1 South Africa South Africa 

9 Doornkop South Africa South Africa 

10 Joel South Africa South Africa 

11 Kusasalethu South Africa South Africa 

12 Masimong South Africa South Africa 

13 Unisel South Africa South Africa 

14 Kalgold South Africa South Africa 

15 Phoenix South Africa South Africa 

16 Hidden Valley Papua New Guinea South Africa 

17 Surface dumps South Africa South Africa 

18 South Deep South Africa South Africa 

19 Mine Waste Solutions South Africa South Africa 

20 Mponeng South Africa South Africa 

21 TauTona South Africa South Africa 

22 Kopanang South Africa South Africa 

23 Moab Khotsong South Africa South Africa 

24 Sadiola Mali West Africa 

25 Morila Mali West Africa 

26 Siguiri Guinea West Africa 

27 Damang Ghana West Africa 

28 Tarkwa Ghana West Africa 

29 Iduapriem Ghana West Africa 
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30 Obuasi Ghana West Africa 

31 Serra Grande Brazil Latin America 

32 AGA Mineração Brazil Latin America 

33 Cerro Corona Peru Latin America 

34 Cerro Vanguardia Argentina Latin America 

 

 

Appendix Table 2: Estimation for efficiencies trend 

 (1) (2) (3) (4) (5) (6) 

VARIABLES SMLE_TER SMLE_TEO SMLE_EER SMLE_EEO TRE_TE TRE_EE 

Year 1.42e-06 -2.97e-07 -0.000127 -0.000116 0.00278 0.00416*** 

 (2.03e-05) (1.58e-05) (0.000407) (0.000346) (0.00244) (0.00122) 

Constant 0.953*** 0.700*** 1.065 0.897 -4.780 -7.553*** 

 (0.0408) (0.0331) (0.819) (0.697) (4.914) (2.452) 

Observations 340 340 340 340 260 340 

Number of id 34 34 34 34 26 34 

Standard errors in parentheses 
*** indicates significance at 1% level, ** at 5% level and * at 10% level  


