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Abstract

This research motivates the use of Markov chains in modeling financial time series.
Then, it explains the returns and the volatility on the Toronto Stock Exchange (TSX)
using some Markov-switching models. These models are: the conditional capital asset
pricing model, the conditional Sharpe model, and the exponential autoregressive model
with state-dependent heteroscedasticity. It also tests for cointégration between the TSX
and some other major exchanges, relying on the first-order and the second-order Markov
chains.

The asymmetry, the multiple peaks, or the fat tails in the distribution of the returns
on the TSX and on the other exchanges indicates they could not be modelled as random
realizations from a single normal distribution. The switching regressions turn out to have
a greater explanatory power and provide further understanding of the TSX.

Keywords: Econometrics, Finance, Markov Chain.
JEL: G0, 016

Résumé

Cette recherché justifie l’utilisation des chaînes de Markov dans la modélisation des
séries chronologiques financières. Ensuite, elle explique les rendements et la volatilité sur
la Bourse de Toronto (TSX) en utilisant quelques modèles de Markov à changement de
régime. Ces modèles sont : le modèle conditionnel d’évaluation des actifs financiers, le
modèle conditionnel de Sharpe et le modèle autorégressif exponentiel avec une hétérosce-
dasdacité conditionnelle qui dépend du régime. Elle teste également la cointégration entre
le TSX et d’autres bourses, en s’appuyant sur les chaînes de Markov de premier et de
second ordre.

L’asymétrie, les nombreux pics ou l’épaisseur des queues de la distribution des rende-
ments sur la TSX et sur les autres bourses indiquent qu’ils ne peuvent pas être modélisés
comme étant des réalisations aléatoires provenant d’une seule distribution normale. Il
s’avère que les régressions avec changement de régime ont un plus grand pouvoir explicatif
et fournissent une meilleure compréhension du TSX.

Mots clés : Econométrie, Finance, chaîne de Markov.
JEL : G0, 016

∗I am grateful to Messrs Jill Scullion and John Andrew from the TSX for having provided me with
some information on the global industry classification standard.
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Non-Technical Summary

Motivation Financial time series are not normally distributed as often assumed. For
example, on Toronto Stock Exchange (TSX), the likelihood of extreme negative or ex-
treme positive returns is higher than in a normal distribution. Besides, whereas the
graph of a normal distribution is bell-shaped, the graph of the actual distribution of the
returns on the TSX is not symmetrical and has several peaks.

Objectives This research seeks to explain returns across the TSX by accommodating
the asymmetry in their distributions and the higher likelihood of both extreme negative
or extreme positive values. It also purports to study appropriately the existence of a
long-run equilibrium relationship between stock prices on the TSX and stock prices on
some other major exchanges.

Methodology I have assumed the returns are random realizations from a mixture of
normal distributions, each distribution having its own mean and variance. Each of these
means and variances are associated to one of the recurring states of a stock market (the
bull or the bear markets).

Key Contributions I have modeled returns, volatility, and the state variable simul-
taneously across the sectors of the TSX. I have taken into account the recurring states
of stock markets, while investigating the existence of long-run equilibrium relationship
between the TSX and some other major exchanges.

Findings Materials (particularly, gold) and utilities are the defensive sectors of the
TSX. During periods of low volatility, the financial, the energy, and the materials sectors
account for more than half of the market returns. However, during periods of high
volatility, the share of the energy sector drops considerably. Volatility on the TSX has
also turned out to be asymmetric.

In bull markets which are periods of low volatility, the autocorrelation of returns
could be high or low depending on whether the returns are low or extremely high. On
the other hand, in bear markets which are periods of high volatility, the autocorrelation
is low because returns are often negative and extremely low.

Modeling and identifying the recurring states of stock markets have revealed the
existence of long-run equilibrium relationships between the stock prices on the TSX
and the stock prices on some other major exchanges that include the New York Stock
Exchange, the Tokyo Stock Exchange, and the London Stock Exchange. Whatever the
method of estimation used, I have not found any evidence of equilibrium relationship
between the stock prices on the TSX and the stock prices on either the NASDAQ or the
Bolsa de Madrid.

It also turned out that dissociating the trends of stock markets from the turning
points could improve considerably the explanatory power of the models.
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Sommaire Non-Technique

Motivation Contrairement à ce qu’on suppose généralement, les séries chronologiques
financières ne sont pas des variables qui suivent une distribution normale. Par exemple,
sur la Bourse de Toronto (TSX), la probabilité d’observer des rendements négatifs ou
positifs extrêmes est plus élevée que celle d’une distribution normale. Par ailleurs, alors
que la représentation graphique d’une distribution normale a la forme d’une cloche, celle
de la distribution des rendements du TSX n’est pas symétrique et a plusieurs pics.

Objectifs Cette recherché veut expliquer les rendements sur le TSX en tenant compte
de leur distribution asymétrique et de la probabilité plus élevée d’observer des ren-
dements positifs ou négatifs extrêmes. Elle vise également à étudier convenablement
l’existence d’une relation d’équilibre de long terme entre le cours des actions sur le TSX
et le cours des actions sur d’autres bourses.

Methodologie J’ai supposé que les rendements sont des réalisations aléatoires tirées
d’un mélange de distributions normales ayant chacune sa propre moyenne et variance.
Chacune de ces moyennes et variances est associée à un des états récurrents d’un marché
boursier (marché haussier ou marché baissier).

Contributions majeures J’ai modélisé les rendements, la volatilité et la variable
d’état simultanément à travers les secteurs du TSX. J’ai pris en compte les états récur-
rents des marchés boursiers en étudiant l’existence de relations d’équilibre de long terme
entre le TSX et les autres bourses.

Résultats Les matériaux (particulièrement l’or) et les services publics sont les secteurs
défensifs du TSX. Durant les périodes de faible volatilité, les secteurs de la finance,
de l’énergie et des matériaux génèrent plus de ela moitié des rendements du marché.
Toutefois, quand la volatilité est forte, la contribution du secteur de l’énergie baisse
considérablement. La volatilité sur le TSX s’avère être asymétrique.

Dans les marches haussiers qui sont des périodes de faible volatilité, l’autocorrélation
des rendements peut être élevée ou faible selon que les rendements sont faibles ou ex-
trêmement élevés. Par contre, dans les marchés baissiers qui sont des périodes de haute
volatilité, l’autocorrélation est faible parce que les rendements y sont souvent négatifs
et extrêmement bas.

Le fait de modéliser et d’identifier les états récurrents des marches boursiers a révélé
l’existence d’une relation d’équilibre de long terme entre les cours boursiers sur le TS
et les cours des actions sur d’autres bourses, dont la Bourse de New York, la Bourse de
Tokyo et la Bourse de Londres. Quelle que soit la méthode d’estimation utilisée, je n’ai
trouvé aucune preuve de relation d’équilibre entre les cours des actions sur le TSX et les
cours des actions sur le NASDAQ ou la Bourse de Madrid.

Il s’est avéré que le fait de dissocier les tendances des marchés boursiers de leurs
tournants peut améliorer considérablement le pouvoir explicatif des modèles.
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1 Introduction

Toronto Stock Exchange (TSX) is the largest stock market in Canada and also one of
the ten most important in the world. Companies listed on the TSX can be classified into
eleven sectors according to their main activities. These sectors are: consumer discre-
tionary (e.g., automobiles, consumer durables, hotels), consumer staples (e.g., beverage,
food, tobacco), energy (e.g., oil and gas production, refining, or storage, coal), financial
(e.g., banks, capital markets, insurance), health care (e.g., biotechnology, health care
services, pharmaceuticals), industrial (e.g., consulting services, security services, trans-
portation), information technology (e.g., electronic components or equipment, technol-
ogy distributors), material (e.g., aluminum, copper, gold), real estate (e.g., equity real
estate investment trusts, real estate development), telecommunication service (e.g., ad-
vertising, broadcasting, entertainment), and utilities (e.g., electricity, gas, water). For
further details on this classification, see MSCI Barra and Standard & Poors (2018).

The indicators used to track the overall performance of the TSX and the performance
of the sectors of this exchange are the various Standard & Poor’s (S&P)/TSX indices
and sub-indices. These indices are weighted averages of the trading prices of selected
stocks. Their growth rates give the returns on the market and on a sector portfolio.

Two main trends characterize a stock exchange: the bear and the bull markets. A
bear market is a less frequent period of financial turbulence where returns are generally
low and highly volatile. On the other hand, a bull market is a period of widespread
optimism and euphoria among investors. Returns across most sector are generally high
and less volatile, during a bull market (Vendrame, Guermat, and Tucker, 2018). Each
of these two trends, in its own way, interacts with the economic activity. For example,
an incipient bear market that has started during a period of economic expansion, leads
to a recession, which in turn causes a grizzly bear market. Hamilton and Lin (1996) find
that the stock market volatility leads the economic activity by one month. They also
find that, in turn, recession is the single and major cause of stock volatility. 1

As Hamilton and Susmel (1994), Abdymomunov and Morley (2011), and Vendrame,
Guermat, and Tucker (2018) point out, ignoring the state prevailing in the market leads
to wrong estimates and forecasts when fitting models to financial time series. As a
matter of fact, the parameters of models explaining returns and their volatility are not
constant but instead are time-varying due to the alternation of various states on financial
markets.

Therefore, this research aims at modeling returns on the TSX and their volatility
conditionally on the state prevailing on this market. A way of doing this is through the
use of a Markov chain. A Markov chain offers the possibility of modeling in a flexible
and general way the probability of moving from an unobserved state to the other. For
this reason, it can be used to explain and predict the alternation or the persistence of

1Hamilton and Lin (1996) measure the economic activity using the change in the natural logarithm
of the industrial production index of the economy of the United States for the period ranging from
January 1965 to June 1993. The stock market excess returns are the changes in the natural logarithm
of the S&P 500 plus the dividend yields minus the monthly equivalent of the 3-month Treasury bill
yield.
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stock market trends. One can therefore induce time variation in the parameters of an
econometric model by allowing its likelihood to depend on a Markov chain. Conditional
models generated in this way are referred to as Markov-switching models.

Earlier research that have used Markov-switching models to explain returns on the
TSX and their volatility include Van Norden and Schaller (1993). They deem that
the existence of speculative bubbles in asset prices could explain their fluctuations.
As a consequence, the states of stock markets (i.e., crashes and booms) could stem
from the apparent deviation of asset prices from their market fundamental price. The
fundamental price of an asset is the sum of the current dividend it pays and all the
expected future dividends discounted by the risk-free rate. Using data on the TSX for
the period 1956-1989, Van Norden and Schaller calculate inter alia the ex ante and
the ex post probability of a market crash. The ex post probability shows spikes that
correspond to actual crashes. They also find that the ex ante probability rises before a
crash, which suggests that deviations from the fundamentals could predict the states of
stock markets.

In this research, I have used Markov chains to estimate: (1) the conditional capital
asset pricing model (CAPM) for the sectors of the TSX, (2) the contribution to the
market return of each of the sectors making up the TSX (the conditional Sharpe model),
(3) the relation between the variance of the returns on the TSX and their autocorrelation
using a conditional exponential autoregressive model, and (4) the conditional bivariate
relationship between the stock prices on the TSX and the stock prices on some other
major stock exchanges.

The rest of this paper is organized as follows. Section 2 motivates the use of the
Markov-switching models when dealing with financial time series. The main reason is
that the histogram or the graph of the nonparametric probability distribution of finan-
cial time series is not symmetrical and bell-shaped as the unconditional normal distri-
bution used to represent them implies. Section 3 briefly introduces to Markov chains
and Markov-switching models. The presentation of these two tools follows Hamilton
(1994) and mostly Zucchini and MacDonald (2009). Sections 5 through 7 present the
econometric models used to explain returns and their volatility as well as the empirical
evidence. Section 8 concludes this research.

The particularity of some of the empirical investigations is the use of both the first-
order and the second order Markov chains as well as the simultaneous estimations of
the models using state-dependent multivariate normal distributions. The second-order
Markov chain adds precision to the models, as it dissociates the two main trends of stock
markets, which are the bear and the bull markets, from their turning points.

In Section 4, I have fitted mixtures of state-dependent multivariate normal models.
Out of their component expected values and variance-covariance matrices, I have esti-
mated the parameters of the conditional CAPM, simultaneously for all the sectors of
the TSX. It emerges from this investigation that the consumer staples and the utilities
sectors and the gold sub-industry offer a hedge against market downturns.

In Section 5, I have estimated the shares of each of the sectors of the TSX in the
market return. It turns out that during periods of low volatility, the financial, the
energy, and the materials sectors account for more than half of the market returns. On
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the other hand, during periods of high volatility, it is the financial sector followed by
the consumer discretionary and the materials that generate most of the market returns.
The importance of the contribution of most sectors depends on the state prevailing in
the market. These investigations have also confirmed the existence of asymmetry in the
volatility on the TSX.

In Section 6, I have investigated the relation between the variance of the daily ;re-
turns and their autocorrelation. The exploratory analysis of the data shows that when
the autocorrelation is high the volatility is low, but the autocorrelation is not always
high when the volatility is low. This observation leads me to model the relation between
the current and the lagged daily returns on the TSX using an exponential autoregressive
process with state-dependent conditional heteroskedasticity. I turns out that during a
bull markets (for the same level of volatility), when the returns are low their autocor-
relation is high and when they are extremely high their autocorrelation is low. During
bear markets where extreme negative returns are frequent, their autocorrelation is low.

In Section 7, I have investigated the existence of cointegation (i.e. a long-run equi-
librium relationship) between the TSX and some other majors exchanges. Unlike some
authors who have studied cointegration assuming structural breaks in the data, I have
assumed that the bivariate relationships between the stock prices on the TSX and the
stock prices on each of the other 15 exchanges in my sample depend instead on the
recurring states of the stock markets. To estimate the parameters of these bivariate
relations, I have fitted a state-dependent multivariate normal distribution to the data.
The New York Stock Exchange, the Tokyo Stock Exchange, the London Stock Exchange,
and some other exchanges have turned out to be cointegrated with the TSX. But, I have
not found any evidence of cointegration between the TSX and either the NASDAQ or
the Bolsa de Madrid.

2 Motivation

When fitting models to financial time series, it is often assumed that they are normally
distributed. A random variable that is normally distributed has a bell-shaped density

curve, which is symmetrical about its mean. A density curve is a graphical representation
of a probability distribution. Furthermore, a normally distributed variable is completely
described by its mean and its variance, which are assumed to be constant.

There are various ways of checking whether a financial time series is actually normally
distributed. One could either compare its kernel density curve to that of a normal
distribution or compute statistics describing the shape of its distribution. A kernel
density curve is the graph of probability values estimated without assuming priorly a
parametric statistical distribution. (I provide a note on kernel density estimation in
Appendix B.1.) Two descriptors of the shape of a distribution are the skewness (S) and
the kurtosis (K). For observations rt (t = 1, . . . , T ) with mean r̄, these descriptors are
expressed as follows:
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S = T
1
2

∑T
t=1 (rt − r̄)3

[

∑T
t=1 (rt − r̄)2

]
3
2

K = T

∑T
t=1 (rt − r̄)4

[

∑T
t=1 (rt − r̄)2

]2 .

Skewness measures the asymmetry of a distribution. A negative skewness indicates
that the tail on the left-hand side (lhs) of a density curve is fatter than the one on its
right-hand side (rhs). On the other hand, a positively skewed distribution has a longer
tail on its rhs. As for the kurtosis, it indicates whether the tails on either side of a
density curve are thinner or fatter than those of a normal distribution. The kurtosis of
a normal distribution is 3. The excess kurtosis is therefore defined as the kurtosis minus
3. So, a distribution with thinner tails has a negative excess kurtosis and a distribution
with fatter tails has a positive excess kurtosis. One can use simultaneously these two
descriptors of the shape of a distribution to test for normality. A way of doing this is
to perform Jarque-Bera test. The joint null hypothesis of this test is S = 0 and K = 3,
and its alternative hypothesis is either S 6= 0 or K 6= 3. The statistic of Jarque-Bera
(JB) test, which follows a χ2 distribution with 2 degrees of freedom, is

JB =
T

6

[

S2 +
(K − 3)3

4

]

∼ χ2(2).

Figure 2.1 compares the kernel density curves of returns across the TSX to those of
normal distributions. It appears that assuming a normal distribution for returns across
the TSX is not quite appropriate. The kernel density curves of the returns in sectors
such as financial, industrial, information technology, and telecommunication service are
slender than those of the normal distributions generated using their respective means
and variances. Besides, unlike the density curve of a normal distribution, they are not
bell-shaped and many of them have more than one peak.

Table 2.1 reports the estimates for the skewness, the kurtosis, and the Jarque-Bera
stastitic across the TSX, inter alia. Returns on the TSX are negatively skewed, except
for the gold sub-industry. This means that, with the exception of the gold sub-industry,
the likelihood of extreme negative returns is higher than that of extreme positive returns
across the TSX. The highest skewness is observed in the financial sector. All the returns
across the TSX have a positive kurtosis. This means they have more outliers, i.e.

extreme values, than a normally distributed variable. The returns in the financial and
in the information technology sectors display the highest kurtosis. Finally, all the Jarque-
Bera statistics are greater than their 5% critical value, which equals 5.991. Therefore,
the null hypothesis that the returns are normally distributed cannot be accepted. In
an earlier investigation, Episcopos (1996) conclude, using daily data ranging from July
30, 1990 to June 30, 1994, that returns across the TSX follow distributions that deviate
from the normal distribution.
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Figure 2.1: Comparison of the Kernel Density Curves of Returns across the TSX to those of Normal Distributions.
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Table 2.1: Characteristics of Returns, TSX, 1998:M1-2017:M12.

Mean Standard
Deviation

Skewness Excess
Kurtosis

Jarque
BeraSector/Segment

Consumer Discretionary .488 4.170 -0.644 1.053 28.154
Consumer Staples .884 3.532 -0.371 .760 9.849
Energy .318 6.909 -0.440 1.227 26.112
Financial .629 4.825 -1.266 7.997 5 156.879
Industrial .502 5.388 -0.986 2.730 241.325
Information Technology .267 9.949 -0.577 3.326 379.571
Materials .272 7.421 -0.618 2.458 163.192

Gold .114 10.443 0.386 1.630 49.084
Telecommunication Service .458 5.156 -0.502 1.731 61.642
Utilities .300 3.811 -0.400 1.126 20.595
The 60 Largest Companies .386 4.438 -1.269 4.524 986.335
Market return .370 4.328 -1.364 4.880 1 231.664

The two parameters describing a normal distribution, which are the mean and the
variance, are assumed to be constant. Actually, the average value of stock returns
vary depending on the general market sentiment, which can be bearish (i.e., negative),
bullish (i.e., positive), mixed, or neutral. Besides, an empirical regularity characterizing
financial time series referred to as volatility clustering proves wrong the assumption
that the variances of stock returns are constant parameters. Volatility clustering is the
observation that periods of unusually high volatility in financial time series are followed
by quieter periods, as high (low) negative or positive returns tend to follow high (low)
returns. As a consequence, the variance, a measure of volatility, is not a constant
parameter but a random variable fluctuating around a constant mean.

To take into account volatility clustering, (generalized) autoregressive conditional
heteroskedasticity (ARCH) models popularized by Engle (1982) and Bollerslev (1986)
are used to estimate the variance of financial time series. But, as Hamilton and Sus-
mel (1994) showed using weekly returns on the NYSE, these models impute a lot of
persistence to stock volatility and give relatively poor forecasts. An alternative way of
specifying these models is to consider high and low volatility periods as distinct states
of nature and then assume that returns are random realizations from a state-dependent
mixture of normally distributions, each having its own mean and variance.

3 The Markov-Switching Model

3.1 First-Order Markov Chain

A latent (i.e., an unobserved) state variable St (t = 1, . . . , T ) that assumes only one
of the discrete values 1, . . . ,m, is said to be a Markov chain if it satisfies the following
property

Pr (St+1 = j|St = i, . . . , S1 = g) = Pr (St+1 = j|St = i) = γij . (3.1)
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According to (3.1), the probability of moving from a state i at time t to a state j at
time t+ 1 does not depend on the past realizations of St. The conditional probabilities
γij can be compacted into an m × m matrix Γ referred to as transition probability
matrix. Each row of Γ represents the probability of moving from a given state i to all
the other possible states and consequently sums to unity.

Γ1′ = 1′, (3.2)

where 1′ is the transpose of an m× 1 vector of ones.
According to (3.2), 1′ and 1 are respectively the a right eigenvector and the corre-

sponding eigenvalue of Γ. Generally speaking, a nonzero column vector v is said to be
a right eigenvector of a square matrix Γ and the scalar λ its eigenvalue, if Γv = λv.
On the other hand, a nonzero row vector u is said to be the left eigenvector of Γ, if
uΓ = λu. A right and a left eigenvectors differ from each other, unless Γ is a symmetric
matrix. It thus follows that the left eigenvector corresponding to the eigenvalue 1 differs
from 1, unless Γ = Γ′.

The left eigenvector of Γ corresponding the eigenvalue 1 is of particular interest
because it defines the stationary distribution of St. To see that, let ut denote the
unconditional probability distribution of St,

ut = [Pr(St = 1), . . . ,Pr(St = m)]

ut+1 = utΓ. (3.3)

The unconditional probability distribution ut is stationary if, inter alia, its expecta-
tion E (ut) equals E (ut+1) = u, which implies that (3.3) becomes u = uΓ. (See Ap-
pendix B.3, for a definition of stationarity.) Thus, the left eigenvector of Γ associated
to the eigenvalue 1 corresponds to the stationary distribution of the St. Since u is a
vector of the unconditional probabilities of all the possible values that St can assume,
one expects it to sum to unity. Putting together the condition for stationarity and the
constraint u1′ = 1 gives the folling relation

u (Im − Γ+ J) = 1, (3.4)

where Im and J are respectively the identity matrix of size m and an m×m matrix of
ones.

3.2 Higher-Order Markov Chain

When the probability of moving from a state i at time t to a state j at time t + 1
depends also on some earler realizations of St, the latter latent variable is said to follow
a higher-order Markov chain. As an example, a second-order Markov chain satisfies the
following property

Pr (St+1 = j|St = i, . . . , S1 = g) = Pr (St+1 = j|St = i, St−1 = h) = γhij. (3.5)

The latent process described by (3.5) can be transformed into a first-order Markov chain
by constructing a 1×2 vector from a combination of St−1 and St. For a two-state Markov
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chain, there are four possible combinations of the values that St−1 and St can assume,
which are: (1) [St−1 = 1, St = 1], (2) [St−1 = 1, St = 2], (3) [St−1 = 2, St = 1], and
(4) [St−1 = 2, St = 2]. These four combinations are respectively labeled S∗

t = 1, . . . , 4.

If the newlyy defined latent variable S∗

t is in state 1, which corresponds to the vector
[St−1 = 1, St = 1], the next period, it will be impossible to move to state 3, which
corresponds to the vector [St = 2, St+1 = 1], or to move to state 4 corresponding to
[St = 2, St+1 = 2]. The reason is that the second element of the vector corresponding to
S∗

t = 1, which is St = 1, does not match the first element of the vectors associated to
S∗

t+1 = 3 or S∗

t+1 = 4, which is St = 2. When S∗

t = 1, the only two options available are:
either to remain in this state with probability c1 or to move to state 2 with probability
1− c1. The same reasoning applies to states S∗

t 2 through 4.

The transition probability matrix of the newly defined first-order Markov chain S∗

t

resulting from the transformation of the second-order Markov chain St is therefore

Γ∗ =









c1 1− c1 0 0
0 0 c2 1− c2
c3 1− c3 0 0
0 0 c4 1− c4









.

Hamilton and Lin (1996, p 578) show how to transform a third-order Markov chain
into a first-order one. In this research, I only deal with first-order and second-order
Markov chains.

3.3 Dependent Mixture

A time series Rt is said to be generated by an m-state Markov-switching model if, in
addition to either (3.1) or (3.5), its conditional probability satisfies the following property

Pr (Rt|Rt−1, . . . , R1,Xt, . . . ,X1, St, . . . , S1;θ)

= Pr (Rt|Rt−1, . . . , Rt−k,Xt, . . . ,Xt−k, St, . . . , St−k;θ) ,

≡ Pr (Rt|Zt;θ)

(3.6)

where Zt =
[

Rt−1, . . . , Rt−k,X
′

t, . . . ,X
′

t−k, St, . . . , St−k

]

′

, Xt and θ are respectively vec-
tors of exogenous variables and parameters.

In (3.6), the distribution of Rt depends not only on its own past k realizations and
the k + 1 most recent values assumed by some exogenous explanatory variables but
also on the states of an unobserved Markov process. It is referred as state-dependent
probability distribution because of it depends on the states of a Markov chain.

The state-dependent probability given by (3.6) is a general specification for all the
models I will be dealing with. The vector of parameters θ as well as the transition
probabilities can be estimated either by directly maximizing the likelihood of the ob-
servations or by implementing the expectation-maximization (EM) algorithm (for more
details, see Hamilton, 1990; Zucchini and MacDonald, 2009, among others).
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4 The Conditional CAPM

The CAPM predicts a linear relationship between the expected excess return on a finan-
cial asset and the market excess return. An excess return (also known as risk premium)
is the difference between the returns on a risky and a risk-free assets. In Appendix B.4,
I present a derivation of the CAPM

E(Rit −Rft) = βiE(Rmt −Rft), (4.1)

where E is the expectation operator. The variables Rft, Rit, and Rmt respectively denote
the returns on the risk-free asset, on the risky asset i (i = 1, 2 . . . ), and on the market.
The slope parameter βi, which is the sensitivity of the excess return on an asset i to the
excess market return, is referred to as systematic risk or (market) beta.

The CAPM has received little empirical support as an intercept term and other
explanatory variables have turned out to be instrumental in explaining the excess return
on an asset (see Fama and French, 2004, among others). 2

Besides, the slope parameter βi is not constant over time as the CAPM posits (Ja-
gannathan and Wang, 1996; Abdymomunov and Morley, 2011; Vendrame, Guermat,
and Tucker, 2018). For instance, cyclical stocks, as opposed to defensive stocks, tend to
perform well when the market trends upwards and tend to perform poorly when it trends
downwards. As a consequence, the beta of a portfolio of cyclical assets is expected to
be higher when the market trends upwards than when it trends downwards.

There are various ways of modeling conditionally the CAPM. Henriksson and Merton
(1981) propose the following deterministic approach to test for the ability of an investor
to correctly forecast the sign of the excess market return,

Rit −Rft = αi + β1i(Rmt −Rft) + β2i max(Rmt −Rft, 0) + εit. (4.2)

Model (4.2) distinguishes between two states, which are: (1) the up market where Rmt−
Rft > 0 and βi = β1i+β2i, and (2) the down market where Rmt−Rft < 0 and βi = β1i.

Pettengill, Sundaram, and Mathur (1995) and Lam (2001) also use a dummy a
variable to distinguish between up markets and down markets. But, unlike Henriksson
and Merton (1981), Pettengill, Sundaram, and Mathur (1995) use a two-pass approach to
study instead the conditional relationship between the realized returns on risky portfolios
and the market beta

Rit = γot + γ1tδtβi + γ2t(1− δt)βi + εit, (4.3)

where δt = 1, if Rmt −Rft > 0, and δ = 0, if Rmt −Rft < 0. The explanatory variable
in (4.3), which is βi, results from a prior estimation of (4.1) for each individual asset
using time series. The intercept terms γ0t are the returns on the risk-free asset. The

2Some of these explanatory variables referred to as the CAPM anomalies are: the earnings-price ratio
(i.e., the capital gain and dividend on a stock relative to its market value), the debt-equity ratio (i.e.,
the total liabilities of a company divided by the value of shareholders’ equity), and the book-to-market
ratio (i.e., the ratio of the book value of a company’s common equity to its market value).



10 4 THE CONDITIONAL CAPM

parameters γ1t and γ2t are the market excess returns. Consequently, γ1t is expected
to be positive since it is associated to the dummy variable δ = 1 and γ2t is expected
to be negative since it is associated with δ = 0. To check for the conditional CAPM,
Pettengill, Sundaram, and Mathur (1995) propose to perform some one-sided significance
tests on the averages of the T cross-sectional estimates of γ1t and γ2t. If the averages γ1t
and γ2t are respectively significantly positive and negative, this means there is actually
a positive relationship between the returns and the beta of assets during periods of
positive excess market return and a negative relationship during periods of negative
excess market returns.

The problem with using either (4.2) or (4.3) to estimate the CAPM conditionally on
the state prevailing in the market is the deterministic nature of the threshold used. For
example, a one-off positive excess return does not mean that a market is trending upward
or is in a bull state. Abdymomunov and Morley (2011) and Vendrame, Guermat, and
Tucker (2018) defined the bear and the bull states by rather distinguishing between two
states of the volatility in the market.

Abdymomunov and Morley (2011) estimate the CAPM distinguishing between the
low and high volatility states of the market. The switch between these two states follows
a Markov chain. They estimate the conditional CAPM in three main steps. The first
main step of their three-pass approach consists in decoding the states of the market
using the relation

Rmt −Rft = µm,St
+ σm,St

zmt, (4.4)

where the market innovation, σm,St
zmt, follows a zero-mean state-dependent normal

distribution They estimate the standard deviations of this distribution, σm,St
, along with

the expected values of market return, µm,St
, using the maximum likelihood method. The

second pass consists in estimating the conditional betas using the dynamic conditional
correlation (DCC) model of Engle (2002). To explain the DCC model, let’s consider the
following two variables that folows a normal distribution

[

Rmt −Rft

Rit −Rft

]

=

[

µmt

µit

]

+

[

σm,m,t σm,i,t

σm,i,t σi,i,t

] [

zmt

zit

]

, (i = 1, 2, . . . ), (4.5)

where the beta of asset i equals σm,i,t/σ
2
m,m,t, as shown in relation (B.26). Knowing the

two conditional variances, σ2m,m,t and σ2i,i,t, and the conditional correlation coefficient,
one can estimate the dynamic covariance σm,i,t using the following relation

Σit = DitCitDit,

where Σit denotes the conditional variance-covariance matrix defined in relation (4.5),
the matrix Dit consists of the square root of the diagonal elements of Σit, and the
matrix Cit is the matrix of dynamic conditional correlations. To obtain the consecutive
values of σ2m,m,t and σ2i,i,t, Vendrame, Guermat, and Tucker (2018) assume they follows
a generalized autoregressive conditional heteroskedasticity (GARCH) process (which is
described in Section 5 and in Section 6). The estimator for the DCC proposed by Engle
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(2002) is defined as follows.

Qit = (1− a− b)Ci + aet−1e
′

t−1 + bQi,t−1

Cit = (diagQit)
1/2

Qit (diagQit)
1/2

where Qit and Ci denote respectively the matrices of pseudo and unconditional covari-
ances (correlations), and et−1 is a vector of standardized residuals. The third pass of
the approach of Vendrame, Guermat, and Tucker (2018) consists in estimating the bear
and the bull risk premia using the individual fixed effects panel model. Using data on
25 portfolios of stocks over the sample period 1926-2015 and the sub-sample 1980-2015,
they find (1) the bear risk premium to be negative and significant, and (2) the bull risk
premium to be positive and significant.

Abdymomunov and Morley (2011) also estimate a Markov-switching CAPM. They
assume volatility to be constant within each of the two or three possible states of the
market. But, unlike Vendrame, Guermat, and Tucker (2018) who rely on a GARCH
process to estimate several betas for a single asset, they assume that this parameter
takes on two or three values that are switche by the very Markov chain that drives
changes in the market volatility. They further assume that the news idiosyncratic to
each asset (i.e., the residuals of the CAPM) also follows a two-state Markov-switching
process that is independent of that of the market. To estimate their models by the
maximum likelihood method, they form portfolios using the returns of all stocks listed
on the NYSE, the AMEX, and the NASDAQ over the sample period ranging from
July 1963 to December 2010. They find supporting evidence for the Markov-switching
conditional CAPM and, performing diagnostic checks on the residuals of their models,
they also conclude that they capture the ARCH effects and the non-normalities oberved
in the data.

I use a slightly different and simpler approach to estimate in one go the CAPM for
ten of the sectors of the TSX. I assume that the market excess returns on the TSX
and the excess returns of its ten sectors follow a multivariate normal distribution whose
means and variance-covariance matrix depend on a single Markov process. This is a gen-
eralization of the model used by Vendrame, Guermat, and Tucker (2018). But, relying
on the evidence from the diagnostic checks on residuals performed by Abdymomunov
and Morley (2011), I assume that the volatility of each asset is constant within each of
the states of the market. Earlier attempts to estimate the CAPM from state-dependent
multivariate normal distributions include Tu (2010).

4.1 The Method of Estimation

Let’s consider the column vector Yt = [Rmt −Rft, (Rst −Rft1)
′]′ that lists the market

excess return and the distribution of the excess returns across the sectors of the TSX,
at time t. The joint probability of observing Yt is described by the state-dependent
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multivariate normal distribution

p
(

Yt;µSt
,ΣSt

)

= (2π)−
11

2 (detΣSt
)−

1

2 exp

[

−1

2

(

Yt − µSt

)

′

Σ−1

St

(

Yt − µSt

)

]

with µSt
=

[

µm,St

µs,St

]

and ΣSt
=

[

Σm,m,St
Σm,s,St

Σm,s,St
Σs,s,St

]

,

(4.6)

where the operator det denotes the determinant and the variable St in subscript denotes
either the first-order or the second-order Markov chain described by relation (3.1) or
(3.5).

The conditional systematic risks, βSt
, and the measure of performance, αSt

, of the
sectors can be estimated simultaneously using the parameters of the state-dependent
multivariate normal distribution in (4.6).

βSt
= Σm,s,St

Σ−1
m,m,St

αSt
= µs,St

−
(

Σm,s,St
Σ−1

m,m,St

)

µm,St

(4.7)

The parameters µSt
and ΣSt

(St = 1, 2, . . . ) of the state-dependent multivariate
normal distributions are themselves estimated maximizing the likelihood of observing a
sample yt (t = 1, 2, . . . , T ) of the realized excess returns. The likelihood of the first-order
and the second-order Markov-switching models are

L (θ) =
T
∏

t=1

2
∑

st=1

γst−1,stp (yt|st;θst)

= u

T
∏

t=1

ΓP (yt)1
′

with θ =
[

γ11, γ12, γ21, γ22,µ
′

1,µ
′

2, vech(Σ1)
′, vech(Σ2)

′
]

(4.8a)

L (θ∗) =
T
∏

t=1

2
∑

st=1

γ∗s∗
t−1,s

∗

t
p
(

yt|s∗t ;θ∗

st

)

= u∗

T
∏

t=1

Γ∗P (yt) 1
′

with θ∗ =
[

γ∗11, γ
∗

12, . . . , γ
∗

44,µ
∗′

1 , . . . ,µ
∗′

4 , vech(Σ
∗

1)
′, . . . , vech(Σ∗

4)
]

, (4.8b)

where the variable s∗t , as explained in Section 3, is a transformation of a second-order
Markov chain into a first-order chain, the vector u, the stationary distribution of st,
is defined by relation (3.4), Γ is the matrix of transition probabilities, and P (yt) is
a diagonal matrix whose j-th diagonal element corresponds to either p (yt|st = j;θ)
or p (yt|s∗t = j;θ∗). The operator vech denotes the half-vectorization of the variance-
covariance matrix (i.e. the transformation of this symmetric matrix into a column vector
by stacking only its lower trinagular elements)



4.2 The Findings 13

I have estimated the parameters θ and θ∗ by maximizing directly the natural log-
arithm of the likelihood (log-likelihood, in short) of the Markov-switching models. To
do that, I have used the base function nlm, which stands for non-linear minimization,
of the software R (www.r-project.org). The models have multiple maxima. Therefore,
for each of the two models, I have performed the numerical optimization hundred times,
with different starting parameter values generated randomly, in order to select the es-
timates that give the highest log-likelihood. Since repeating this several times gives
roughly the same estimates, I have concluded they are global maxima.

The estimated parameters are assumed to be asymptotically normal. Then, one
needs their standard errors to perform the tests of significance. A way of getting them
is by inverting the Hessian matrix (i.e., the matrix of the second derivatives of the
log-likelihood with respect to the parameters). 3 The Hessian matrix is computed
numerically at the maximum. Since some of the estimated parameters at the maximum
can lie on or close to the boundary of the parameter space, inverting the Hessain matrix
does not always yield finite numbers. To overcome this issue, I have performed some
bootstrapping using the estimated parameters to sample the explained variables rst−rft1
(t = 1, . . . , T ) one thousand times from state-dependent normal distributions. Then, I
have estimated new parameters using the simulated time series and the observed rmt.
The standard errors of the parameters are then computed as the standard deviation of
the bootstrap estimates. To perform the significance tests, I have computed z-statistics
by dividing the global maxima by the bootstrap standard errors.

4.2 The Findings

I present some evidence from estimating the expected excess returns and their variance-
covariance matrices using, in turn, the first-order Markov chain (i.e., maximizing the
likelihood given by relation (7.2a)) and the second-order Markov chain (i.e., maximizing
the likelihood given by relation (7.2b)). Note that both types of Markov chains have
two states. The resulting estimates of the conditional CAPM are also presented. The
data used to estimate the models are described in Appendix A.

4.2.1 The First-Order Markov-Switching CAPM

Figure 4.1 compares the kernel density curves of the excess returns across the TSX fo the
mixture of the state-dependent multivariate normal distributions fitted to these data.
The marginal distributions that are produced using the component expected values and
standard deviations of the Markov-switching model are close to the actual distributions
of the excess returns. However, the actual distributions in the financial, industrial, and
information technology sectors are somewhat taller than the ones fitted to the data.

Relation (4.9) shows the estimates of the transition probabilities of the two states of
the Markov chain and their stationary distribution. State 1 is the most likely one. It
occurs 64% of the time and state 2 occurs 36% of the time. As it appears in Figure 4.2,

3 var(θ) =
{

−E
[

∂
2 lnL(θ)
∂θ∂θ′

]}

−1

.
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Figure 4.1: Kernel Density Curves of Returns across the TSX and their Stationary Markov-Dependent Mixture of Normal
Distributions.
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Figure 4.2: Expected Value and Volatility from a First-Order Markov-Dependent
Mixture of Multivariate Normal Distributions Fitted to Excess Returns across the

TSX, 1998:M1-2017:M12.

all the excess returns are less volatile in state 1 than in state 2. For example, the
volatility (or standard deviation) of the market excess return is 2.69 in state 1 and 6.11
in state 2. On the other hand, the expected excess returns across the TSX are higher in
state 1 than in state 2, except for the gold sub-industry. For example, in the market, the
monthly expected excess returns are .73% in state 1 and -.55% in state 2 while, in the
gold sub-industry, they are respectively -.34% and .7% in states 1 and 2. The expected
excess returns are positive in state 1 and negative in state 2 in the other sectors, except
in the consumer staples and the financial sectors where they are positive over the two
states.

Γ̃ =









.953 .047
(43.70) (2.17)
.084 .916

(2.14)2 (3.25)









ũ =

[

.640 .360
(5.54) (3.12)

]

(4.9)

State 1, the low volatility state, can be labeled as the bull market. The reason is
that, in this state, the excepted excess returns are positive across the TSX, except for
the gold sub-industry. Consequently, state 2, the high volatility state, can be labeled
as the bear market. Decoding the states (i.e., for each time period, identifying using
the fitted model which of the two states is the most likely) reveals that the bear market
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include mainly the period ranging from November 2007 to June 2009, which indeed
corresponds to the global financial crisis, and the early 2000s, which corresponds to the
dot-com crash.

Excess returns are not necessarily positive during bull markets, evenn though their
expected values are positive. Between 1998 and 2017, out of 156 months where the TSX
is very likely to experience a bull market trend, the market excess returns are positive 101
times. In the gold sub-industry and the materials sector, positive excess returns occur
respectively 76 and 82 times. The financial sector followed by the consumer discretionary
are the ones that show more positive excess returns during bull markets, respectively
106 and 105 times. Conversely, positive excess returns occur during bear markets, where
the market excess returns turn out to be negative only 40 times out of 83 months.

The estimates of the transition probability matrix reported in (4.9) indicate that
both state 1 and state 2 are very persistent. The probability of leaving state 1 is only
4.7%. Therefore, state 1, which is identified as the bull market, is the most recurrent
and the most persistent of the two states.

Note that all the estimates of the transition probabilities and the unconditional
probabilities of the states reported in (4.9) are statistically significant since their z-
values, which are displayed in parentheses, are greater than their 5% critical value,
which is 1.64.

In Table 4.1, I have reported the estimates of the parameters of the first-order
Markov-switching conditional CAPM. These parameters are the measure of performance
of Jensen (i.e., the intercept terms or the alphas) and the systematic risks (i.e., the slope
parameters or the betas). They are computed out of the component expected values and
variance-covariance matrices, using relation (4.7). The adjusted coefficients of determi-
nation, R̄2, reported in the last column of this table have been computed after decoding
the consecutive states that most likely prevailed on the TSX over the sample period.

All the betas are significantly positive, except those of the gold sub-industry and the
utilities sector, in state 2. This means that, according to the first-order Markov-switching
model, in the bear market, the overall excess return on the TSX does not significantly
explain the excess returns in the gold sub-industry and in the utilities sector. The betas
of the financial sector are almost the same, over the two states, .766 in the bull market
and .75 in the bear market.

In bull markets, gold and more generally materials along with energy are high-risk
assets. Their betas are greater than the market beta, viz these estimates, which are
roughly equal to 1.5, are greater than 1. For this reason, they should offer the possibil-
ity of higher returns, but they deliver negative alphas, which lowers their theoretically
appropriate excess returns. In bull markets, the sectors that tend to outperform the
market are those having high betas and delivering, at the same time, positive alphas.
These sectors are the consumer discretionary, the financial, the industrial, the informa-
tion technology, and the telecommunication service sectors.

In the bear market, information technology is the only sector that has a beta greater
than 1. Furthermore, its alpha is negative. Thus, investing in this sector is unattractive,
since the market excess returns and, consequently, the theoretically required excess
returns in this sector are very likely to be negative, in bear markets. In bear markets,
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Table 4.1: CAPM, Estimates from a Two-State First-Order Markov-Switching Model,
TSX, 1998:M1-2017:M12.

Performance α Systematic Risk β
R̄2

Sector State 1 2 1 2
Consumer Discretionary .705 -.517 .533 .657 .459

(3.56) (-1.36) (9.33) (6.63)
Consumer Staples .697 .703 .276 .180 .053

(2.75) (1.82) (4.10) (2.01)
Energy -.630 .211 1.505 .814 .409

(-2.14) (.47) 1 (8.70) (4.29)
Financial .253 .443 .766 .750 .448

(1.37) (1.02) (13.38) (6.65)
Industrial .340 -.262 .958 .868 .522

(1.44) (-.56) (15.45) (7.24)
Information Technology .242 -.239 .942 1.697 .442

(00) (-.47) (8.47) (7.63)
Materials -.735 .204 1.571 .826 .373

( -3.00) (.49) (14.35) (4.41)
Gold -1.438 .935 1.496 .427 .108

(-3.53) (2.39) (7.99) (1.50)
Telecommunication Service .657 -.252 .360 .715 .298

(2.40) (-.59) (4.89) (5.41)
Utilities .241 -.317 .393 .111 .063

(.91) (-.82) (5.64) (1.12)
Selection Criteria

-Log-Likelihood 7 018.33
AIC 14 348.67
BIC 14 890.99

The numbers in parentheses are the z-statistics, which are computed di-
viding the maximum likelihood estimates by their respective bootstrap
standard errors.
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Figure 4.3: State-Dependent Security Market Line, TSX, 1998:M1-2017:M12.

the sectors where the excess returns are expected to be positive (the consumer staples
sector and the gold sub-industry) have a low beta and a high alpha.

Figure 4.3 shows the security market lines, which relate the expected excess returns
to the betas across the TSX, in both bull and bear markets. The slope parameters of
these lines are estimated by ordinary least squares (OLS) regression through the origin.
One can see that, in bull markets, the expected excess return tend to increase along
with the beta, while the inverse trend is observed in bear markets. This reflects the fact
that the slope of the security market line is an estimator of the market expected excess
return, which is positive in bull markets and negative in bear markets. Two-sided t-tests
performed on the slope parameters of the security market lines reveal that, respectively,
they are not significantly different from .73% and -.55%, the actual estimates of the
expected excess returns in bull and bear markets, reported in Figure 4.2.

The conditional CAPM switched by a two-state first-order Markov chain explains
52.8% of the variability observed in the excess returns of the industrial sector. This is
the highest R2 in the model. The adjusted coefficient of determination for this sector
is the same as the one from an OLS regression (see Table B.1). The R̄2 for the the
consumer staples and the financial sectors are slightly lower than those from the one-
state OLS regressions. Thus, in terms of explanatory power, the traditional and the
conditional CAPM make no difference, for some of the sectors of the TSX. However,
as far as the performance of a portfolio is concerned, being able to properly decode the
state prevailing in the market is rewarding since it contributes to a better asset allocation
(Tu, 2010). Besides, the selection criteria (the AIC and the BIC) both suggest that, as
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a whole, the conditional CAPM in Table 4.1 is preferable to unconditional CAPM in
Table B.1. The selection criteria from the conditional CAPM are the lowest . (For a
brief detail on model selection criteria, see Subsection B.2.)

4.2.2 The Second-Order Markov-Switching CAPM

In (4.10) as in (4.9), the estimate of the unconditional probability of being in state 1 is
64%. Besides, the estimates of the conditional probability of remaining in state 1, which
are produced using both the first-order and the second-order Markov chains, are almost
the same, 95.8%. The estimates of the market excess return and its volatilty produced
using these two types of two-state Markov chains are also similar. Therefore, as in the
previous case, state 1 here can also be labeled as the bull market. Consequently, states
2 through 4 can be seen as breaking down the bear market into three: its start, its end,
and its progress.

Γ̃ =

























.958 .042 .000 .000
(62.63) (2.77)
.000 .000 .597 .403

(8.57) (5.80)
.200 .800 .000 .000
(3.85) (15.35)
.000 .000 .610 .390

(8.62) (5.52)

























ũ =

[

.640 .135 .135 .090
(7.52) (4.25) (4.25) (3.2)2

]

(4.10)

Figure 4.4 shows that, with the second-order Markov chain, state 1 is characterized
by a low volatility in all sectors, with the exception of materials and, in particular,
gold. Recall from Figure 4.2 that, according to the first-order Markov-switching model,
excess returns in all sectors, with no exception, are less volatile in state 1. As with the
first-order Markov-switching model, in state 1, the expected excess returns are positive
across the TSX, excepting the gold sub-industry.

The estimate of the unconditional probabilities of the states indicates both states 2
and 3 are equally likely to occur . They occur 13.5% of the time and are more recurrent
than state 4. Excess returns are more volatile in state 2 or 3, except for the information
technology sector where state 4 is the most volatile. State 2 can be interpreted as an
incipient bear market or the market top, state 3 as the market bottom, and state 4 as
the progressing or ongoing bear market.

The estimated transition probability matrix in (4.10) indicates that the bull market
(state 1) is very persistent. States 2 and 3 have no persistence since they are turning
points. When a bear market starts (i.e., when the TSX is in state 2), there is a 40.3%
chance that it goes on. The probability the TSX exit an ongoing bear market is high
(61%). When the market reaches a bottom, there is only a 20% probability that a bull
market resume.
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Table 4.2: CAPM, Estimates from a Two-State Second-Order Markov-Switching Model, TSX, 1998:M1-2017:M12.

Performance α Systematic Risk β
R̄2

Sector State 1 2 3 4 1 2 3 4
Consumer Discretionary .712 -1.463 .344 .577 .494 .739 .788 .395 .489

(3.56) (-4.19) (.95) (2.28) (8.92) (5.72) (7.26) (4.04)
Consumer Staples .666 -.498 1.208 1.823 .241 .335 .361 -.231 .147

(2.95) (-1.87) (4.06) (5.87) (3.92) (4.64) (4.34) (-2.25)
Energy -.660 .297 -1.080 .654 1.506 1.466 .804 .237 .470

(-2.66) (.79) (-3.51) (2.65) (18.44) (8.71) (5.48) (1.74)
Financial .272 1.239 -1.176 1.764 .759 .657 .998 .340 .530

(1.47) (4.15) (-3.61) (6.35) (14.11) (6.27) (7.65) (2.59)
Industrial .409 -.791 -.519 .469 .957 1.138 .953 .478 .555

(1.76) (-2.12) (-1.37) (1.49) (15.07) (8.12) (7.62) (2.93)
Information Technology .300 .655 -.026 -.827 .914 1.506 1.332 2.586 .483

(.98) (1.93) (-.07) (-1.04) (8.40) (6.24) (7.53) (6.28)
Materials -.855 .189 -.173 -.489 1.587 1.060 1.079 .037 .419

(-4.33) (.55) (-.47) (-1.98) (16.10) (8.81) (7.18) (.35)
Gold -1.642 .755 1.313 -2.556 1.525 .469 .760 -.307 .139

(-5.88) (3.55) (4.89) (-12.01) (8.67) (2.47) (4.36) (-1.92)
Telecommunication Service .707 -.177 .883 - .892 .361 .712 .670 .695 .294

(2.75) (-.59) (3.15) (-2.50) (5.65) (5.46) (5.95) (2.93)
Utilities .299 -.633 -.868 -.227 .375 .590 .175 -.462 .203

(1.16) (-1.96) (-3.13) (-.67) (5.74) (4.67) (4.29) (-4.26)
Selection Criteria

-Log-Likelihood 6 841.73
AIC 14 307.45
BIC 15 392.11

The numbers in parentheses are the z-statistics, which are computed dividing the maximum likelihood estimates
by their respective bootstrap standard errors.
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Figure 4.4: Expected Value and Volatility from a Second-Order Markov-Dependent
Mixture of Multivariate Normal Distributions Fitted to Excess Returns across the

TSX, 1998:M1-2017:M12.

Figure 4.4 shows that the lowest monthly expected excess return on the market,
which is -.12%, is observed when the market reaches a bottom (i.e., when the TSX is
in state 3). At that moment, in the gold sub-industry, the expected return reaches its
higher level, which 1.22%. This confirms that gold is indeed a defensive asset.

Table 4.2 shows the estimates of the parameters of the conditional CAPM switched
by a two-state second-order Markov chain. The estimates of the betas for state 1 are
close to those in Table 4.1. Thus, the energy and the materials sectors, and the gold
sub-industry have a beta that is greater than 1. Their alphas are still the only ones to
be negative. When the market reaches a high (i.e., in state 2), the betas in the energy
and the materials sectors are still greater than 1, but their alphas become positive,
which raises their theoretically required returns above that of the market. Unlike the
consumer discretionary, the consumer staples, and the industrial sectors, the gold sub-
industry starts outperforming the market because of the rise in its alpha.

Whereas, in the conditional CAPM switched by the first-order Markov chain, the
betas of the gold sub-industry and the utilities sector are positive but not statistically
significant in bear markets, in the second-order Markov-switching model, these param-
eters become negative and statistically significant. The beta of the consumer staples,
which is significantly positive but low in the former model, also becomes significantly
negative in ongoing bear markets (i.e., in state 4). Again, it transpires that the con-
sumer discretionary, the gold, and the utilities are defensive assets. The beta of the
materials is still positive but is no longer statistically significant, in this state.

According to the data, the conditional CAPM switched by the second-order Markov
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chain is more likely than the one switched by the first-order chain and, in addition, has
the lowest AIC. As an example, the second-order Markov chain has raised the R2 of
the utilies sector from 7.4% to 22.6%. On the other hand, the BICS indicate that the
first-order Markov-switching model fits better the data.

5 The Accounting of the Market Return

The purpose of this investigation is to measure how the TSX is exposed to the perfor-
mance of each of its sectors. Following Sharpe (1992), I have estimated the following
linearly constrained model

Rmt = R
′

stΩSt
+ εt

Ω
′

St
1 = 1.

(5.1)

The variable Rmt in (5.1) denotes the market return at time t, the column vector Rst

denotes the returns at time t across the sectors of the TSX, and εt is the market news.
TheN×1 vector of parameters Ω denotes the sensitivities of the TSX to the performance
of its sectors. Since the second equation of (5.1) constrains these sensitivity parameters
to sum to unity, Ω can also be interpreted as the list of the shares of sectors in the
market return. Relation (5.1) can be seen as resulting from a weighted average of the
CAPM in (B.26) and (B.27).

My contribution to (5.1) is to allow heteroskedasticity in the market news (i.e.,
εt = ztσt) and a discrete shift in the state prevailing in the market. Both σt, the market
volatility, and, Ω, the shares of sectors in the market return, are switched over time by a
discrete Markov chain St. I have modeled the market volatility building on the GARCH
processes of order 1 and 1 put forth by Bollerslev (1986) and Glosten, Jagannathan, and
Runkle (1993).

The symmetric GARCH(1,1) process of Bollerslev posits that volatility, measured
by the conditional variance of the market news, is time-varying and depends linearly on
both the volatility and the square of the market news of the previous period.

σ2t = ν + ψσ2t−1 + ηε2t−1 (5.2)

The conditions ν, ψ, η > 0 and ψ + η < 1 ensure the variance in (5.2) is positive and
stationary. The unconditional variance of εt implied by (5.2) is

σ2 = ν + ψσ2 + ηE(ε2)

=
ν

1− ψ − η
,

which means ψ + η measures the persistence of volatility.
Glosten, Jagannathan, and Runkle model asymmetry by adding a dummy variable

to (5.2) to distinguish states where the market news is negative from the states where
it is positive.

σ2t = ν + ψσ2t−1 + ηε2t−1 + τε2t−1It−1, (5.3)
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where the dummy variable It−1 equals one when the market news at time t−1 is negative
and zero otherwise. For τ > 0, relation (5.3) implies that a decrease in stock prices tend
to increase subsequent volatility by more than an increase in stock prices of the same
magnitude would. This negative relationship between current return and subsequent
volatility is termed a leverage effect. Relation (5.3) is named, after their authors, GJR-
GARCH. To ensure the non-negativity and the stability of the variance, the restriction
ψ + η + 1

2τ < 1 is imposed on its parameters (for more details, see Ling and McAleer,
2002).

Instead of using a dummy variable or a threshold to model the asymmetry in the
response of the market to negative and positive news, I allow the parameters of the
GARCH(1,1) process to depend on St, an underlying and unobserved discrete Markov
chain, as Gray (1996) and Bauwens, Preminger, and Rombouts (2010), among others,
have done.

εt = ztσt, zt ∼ N (0, 1)

σ2t = νSt
+ ρSt

σ2t−1 + φSt
ε2t−1

(5.4)

The conditions νSt
, ψSt

, ηSt
> 0 and ψSt

+ ηSt
< 1 are maintained to avoid explosive

variances.

5.1 The Method of Estimation

I have estimated (5.1) and (5.4) by maximum likelihood assuming, in turn, that their
parameters are switched by a two-state first-order Markov chain and a two-state second-
order Markov chain. The first- and second-order Markov chains are respectively de-
scribed by relations (3.1) and (3.5).

To compute the likelihood, I have assumed that the conditional distribution of Rmt

given Rst and St is normal. Thus, in the case of a two-state first-order Markov chain,
the density of an observation rmt given rst and st−1 is

p (rmt|rst, st−1;θ) =

2
∑

st=1

γst−1,stp (rmt|rst, st;θst)

p (rmt|rst, st;θ) =
1

√

2πσ2t
exp






−

(

rmt − r
′

stΩst

)2

2σ2t






,

(5.5)

with θ = [γ11, γ12, γ21, γ22, ν1, ν2, ψ1, ψ2, η1, η2,Ω
′

1,Ω
′

2].

Similarly, in the case of a two-state second-order Markov chain, the density of an
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observation rmt given rst, st−1, and st−2 is

p
(

rmt|rst, s∗t−1;θ
∗
)

=
4
∑

st=1

γ∗s∗
t−1,s

∗

t
p
(

rmt|rst, s∗t ;θ∗

st

)

p (rmt|rst, s∗t ;θ∗) =
1

√

2πσ2t
exp






−

(

rmt − r
′

stΩs∗
t

)2

2σ2t






,

(5.6)

with θ∗ = [γ∗11, γ
∗

12, . . . , γ
∗

44, ν
∗

1 , . . . , ν
∗

4 , ψ
∗

1 , . . . , ψ
∗

4 , η
∗

1 , . . . , η
∗

4 ,Ω
∗′

1 , . . . ,Ω
∗′

4 ]. As shown in
Section 3, the variable s∗t , which is a first-order Markov chain, results from the combi-
nation of two consecutive realizations of a second-order Markov chain.

It follows from (5.5) that the likelihood of observations rm1, . . . , rmT is

L (θ) =

T
∏

t=1

2
∑

st=1

γst−1,stp (rmt|rst, st;θst)

= u

T
∏

t=1

ΓP (rmt|rst) 1′,
(5.7)

where the vector u, the stationary distribution of st, is defined by relation (3.4), Γ is
the matrix of transition probabilities, and P (rmt|rst) is a diagonal matrix whose j-th
diagoal element corresponds to p (rmt|rst, st = j;θ). In the case of a second-order Markov
chain, the likelihood of the observations is defined in a similar way. I have estimated
the parameters θ and θ∗ by maximizing directly the log-likelihoods, using the base
function nlm of the software R. I have computed the z-statistics of the parameters after
performing some bootstrapping. This has consisted in sampling rmt (t = 1, . . . , T ) one
thousand times from the state-dependent normal distributions and using the observed
rst to produce new estimates.

5.2 The Findings

The dataset I have used to estimate (5.1) and (5.4) is described in Appendix A. Ta-
ble B.2 displays the results of the augmented Dickey-Fuller (ADF) tests for stationarity.
(The ADF test is explained in Appendix B.3.) These statistical tests indicate that all
the returns are stationary, which could prevent from obtaining misleading results in
estimating the models.

The exploratory analysis of the data reveals a high correlation among some of the
explanatory variables. The correlation coefficient between the returns in the consumer
discretionary and the industrial sectors is .71 (see Table A.1). For this reason, I have
droped from (5.1) the returns of the industrial sector to estimate a restricted model.
Table 5.1 presents some selection criteria from estimating both the unrestricted and
restricted models assuming that heteroskedasticity either follows a Markov-switching
GARCH(1,1) process or is statewise (i.e., the variance is constant only within the states).
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Table 5.1: Accounting for the Market Return, Some Selection Criteria from the
Estimation of Two-State First-Order and Second-Oder Markov-Switching Models,

TSX, 1998:M1-2017:M12.

GARCH(1,1) Statewise Heteroskedasticity
Sector Unrestricted Restricted Unrestricted Restricted
First-Order Markov-Switching Model

-Log-Likelihood 196.361 231.776 243.484 274.955
AIC 448.722 515.552 530.968 589.909
BIC 546.063 605.940 607.450 659.439
Number of parameters 28 26 22 20
Second-Order Markov-Switching Model

-Log-Likelihood 139.880 189.659 166.005 233.840
AIC 387.761 479.32 420.011 547.680
BIC 575.490 653.140 572.975 686.739
Number of parameters 54 50 44 40

The two unrestricted Markov-switching GARCH models outperform the others. Their
estimates are presented in Table 5.2.

All the models have been estimated without the returns of the health care sector.
For this reason, the binding constraint in relation (5.1) has been relaxed and replaced
with Ω

′

St
1 < 1. Therefore, the shares of the health care sector turn out to be the

difference between one and the sum of the estimated shares, Ω̃
′

St
1, with Ω̃St

being now
an (N − 1)×m matrix. Also, recall from Appendix A that the financial sector includes
the real estate.

5.2.1 The First-Order Markov-Switching Sharpe Model

The first block of Table 5.2 displays the estimates of the unrestricted Sharpe model pro-
duced using the two-state first-order Markov-switching GARCH. This models accounts
for 90.3 % of the variability observed in the market return. The R̄2 computed after
decoding the states is .899. According to this model, 67.5% of the time, the TSX is
in state 1 and, the rest of the time, it is in state 2. These unconditional (stationary)
probabilities are significantly greater than zero, since their z-statistics are greater than
the 5% critical value, which is 1.64. The two states are very persistent. The probabilities
that the TSX remain in state 1 and in state 2 are respectively 94% and 87.5%.

The parameters of the GARCH processes are significantly positive, except the inter-
cepts. Volatility is very persistent over the two states. As a matter of fact, the sum of
the parameters ψ and η is .998 in state 1 and .999 in state 2. The response of the vari-
ance of the market return to a change in the lagged squared residuals (the parameter η)
is higher in state 2 than in state 1, which indicates asymmetry in the GARCH process.

In both states, the financial sector accounts for the highest share of the market
returns, 27.6% in state 1 and 23.4% in state 2. In state 1, which is the low volatility
state, the financial sector followed by the energy and the materials explain 67.1% of the
market returns. In state 2, the financial sector followed by the consumer discretionary
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Table 5.2: Estimates of the Contribution of the Sectors of the TSX to the Market
Return Using Two-State First-Order and Second-Order Markov-Switching Models,

1998:M1-2017:M12.

First-Order Markov Second-Order Markov
Sector State 1 2 1 2 3 4
Mean Equation

Consumer Discretionary .056 .160 .042 .138 .149 .092
(3.64) (4.85) (7.71) (6.71) (70.71) (14.12)

Consumer Staples .028 .065 .034 .075 .130 .063
(2.48) (2.67) (6.35) (50.02) (50.20) (8.98)

Energy .230 .106 .231 .085 .174 .104
(33.70 ) (5.70) (48.42) (76.92) (52.38) (13.22)

Financial .276 .234 .280 .128 .037 .240
(32.24) (9.20) (47.83) (81.10) (14.16) (30.77)

Industrial .091 .047 .094 .201 .070 .093
(8.68) (1.82) (16.67) (110.12) (27.63) (11.98)

Information Technology .055 .102 .053 .161 .090 .099
(10.46 ) (7.66) (12.57) (152.44 ) (25.58) (14.40)

Materials .171 .155 .168 .036 .181 .156
(34.03) (10.29) (36.76) (36.49) (47.22) (20.65)

Telecommunication Service .035 .107 .037 .083 .052 .114
(4.99) (4.86) (6.60) (55.25) (17.77) (16.31)

Utilities .046 .018 .047 .080 .107 .021
(4.42) (.72) (8.48) (55.95) (42.73) (2.87)

Health Care .012 .006 .014 .013 .010 .018
Variance Equation

Intercept ν .004 .000 .005 .000 .000 .017
(1.14) (.53) (2.02) (5.24) (42.20) (2.06)

Lagged Variance ψ .584 .455 .570 .004 .000 .371
(8.17) (2.35) (7.95) (29.31) (24.29) (3.11)

Lagged Squared Residuals η .414 .544 .430 .000 .084 .629
(5.13) (2.71) (6.00) (3.93) (2.67) (5.26)

Markov Chain

Stationary Distribution .675 .325 .644 .033 .033 .291
(7.05) (3.39) (5.54) (3.53) (3.53) (2.68)

Transition Probability Matrix

[

.940 .060

.125 .875

]









.949 .051 .000 .000

.000 .000 .001 .999

.999 .001 .000 .000

.000 .000 .112 .888









The numbers in parentheses are the z-statistics, which are computed dividing the maximum
likelihood estimates by their respective bootstrap standard errors.
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and the materials account for 54.9% of the market returns.

In state 1, health care followed by consumer staples, telecommunication service,
and utilities account for the lowest share of the market returns, 12.1% altogether. In
state 2, the high volatility state, the health care, the utilities, and the industrial sectors
generate the lowest share (7.2% altogether) and represent a good hedge against market
downturns.

5.2.2 The Second-Order Markov-Switching Sharpe Model

The second block of Table 5.2 displays the maximum likelihood estimates of the un-
restricted Sharpe model with a GARCH process. As it appears in Table 5.1, both the
log-likelihood and the AIC indicate that the unrestricted second-order Markov-switching
Sharpe model provides a better fit for the data. However, after decoding the states, its
determination coefficient, R2, which turns out to be 85.3% indicates that its explanatory
power is lower. The R̄2 that results from decoding the states is .825.

Some of the estimates produced assuming a second-order Markov process are similar
to those from the first-order Markov-switching model. As a matter of fact, the estimates
of the coefficients for state 1 and state 4 are respectively close to those for the low and
the high volatility states of the first-order Markov process. Thus, state 1 represents, at
least, three consecutive months of low volatility, while state 4 represents a minimum of
three consecutive months of high volatility. In-between, state 2 is a turning point from
the low to the high volatility state and state 3 is a period of recovery after episodes of
high volatility.

The stationary distribution, which gives the unconditional probabilities of being in
each of the four states, indicates that state 1 is the most frequent one. The unconditional
profitability that the TSX be in any of the two low volatility states (i.e., either state 1
or 3) is 67.7%. This estimate is closer to the unconditional probability of state 1 in the
first-order Markov-switching Sharpe model, which equals 67.5%.

The estimates of the variance equation show evidence supporting the leverage effect.
As a matter of fact, there is asymmetry in the GARCH process as the response of the
variance of the market return to a change in the lagged squared residuals (the parameter
η) is higher when the TSX enters the high volatility state (i.e., state 4). In state 4 (which
represents, at least, three consecutive months of high volatility), this response parameter
is equal to .629, whereas in state 1 (which represents, at least, three consecutive months
of low volatility) it equals .43.

Altogether, the financial, the energy, and the materials sectors account for 67.9%
and 50% of the market returns, respectively in states 1 and 4. In state 2 (which is the
turning point from the low to the high volatility state) the industrial sector followed by
the information technology and the consumer discretionary explain half of the returns
on the TSX whereas they only account for 19% in the low volatility state (state 1).

All the cyclical sectors of the TSX do not behave the same way. The energy sector
tends to account for a greater share of the market return when the TSX enters any of
the two low volatility states (i.e., either state 1 or 3) than when it enters any of the
two high volatility states. On the other hand, the shares of the information technology
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and the telecommunication service tend to be higher over any of the two high volatility
states.

There are significant differences in the estimates of the contribution of most sec-
tors to the market return, over the various states. An implication of this evidence is
that, to match or outperform the TSX, the managers of index exchange traded funds
should change their allocation of assets depending on the state prevailing or expected
in the market. In this accounting exercise, I have used historical returns to estimate
simultaneously the shares of the sectors and the state prevailing in the market. An
alternative approach proposed by Kritzman, Page, and Turkington (2012) is to identify
the states using rather financial turbulence, inflation, and economic growth time series
data. The financial turbulence is a multivariate measure of distance computed as follows
dt = (rt − µ)Σ−1(rt − µ)′.

6 The Exponential Autoregressive Model

Stock returns are not white noises, (i.e. a serially uncorrelated random variable with
a zero mean and a constant variance). Using both the daily and the weekly returns
on the S&P composite index, LeBaron (1992) observes that some of the most volatile
periods are also those with the lowest serial correlation. He also observes that the serial
correlation of the daily returns on the Dow Jones is inversely related to its conditional
variance. Then, he tests the hypothesis of a negative relationship between these two
statistics by fitting a variant of the exponential autoregressive (AR) model of Ozaki
(1980) to these data, The exponential AR (p) model relates the current return to its
previous realization as follows:

rt =
[

ϕ1 +̟1 exp
(

−υr2t−1

)]

rt−1 + · · · +
[

ϕp +̟p exp
(

−υr2t−1

)]

rt−p + εt, (6.1)

where the single scale parameter υ > 0 is set so as to minimize the AIC (Haggan and
Ozaki, 1981). The estimates of the exponential AR coefficients (ϕi, ̟i, i = 1, ..., p)
depend on the value assigned to υ.

The exponential AR model can be seen as a state-dependent model or a smooth
threshold model, since if ̟1, . . . ,̟p are all zero or if the absolute value of rt−1 is large,
(6.1) becomes a linear autoregressive model with parameters ϕ1, . . . , ϕp.

LeBaron (1992) approximates the squared lagged return, r2t−1, in (6.1) with its condi-
tional variance, σ2t . This establishes a direct connection between the conditional variance
and the autocorrelation coefficients.

rt = δ +
[

ϕ+̟ exp
(

−υσ2t
)]

rt−1 + εt (6.2)

For ̟ > 0, model (6.2) suggests an inverse relation between the conditional variance
and the autocorrelation coefficients. LeBaron (1992) models the conditional variance of
the returns using the GARCH process of Bollerslev (1986). His empirical investigations
show evidence of changing correlations in the daily and the weekly returns on the S&P
composite index, as well as in the daily returns on the value-weighted index from the
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Figure 6.1: Daily Variance and Autocorrelation of Daily Returns, TSX,
1998M1-2017:M12.

Center for Research in Securities Prices and on the Dow index. The estimates of ̟ turn
out to be significantly positive, for these index returns.

Episcopos (1996) undertakes the same investigation across the TSX. But, unlike
LeBaron (1992), he takes into account the asymmetry in volatility using the exponential
GARCH model of Nelson (1991). He finds a negative relationship between the autocor-
relation and volatility across the TSX, except for the sector of paper and forest product
and for the sector of transportation.

6.1 The Model

Figure 6.1 relates the variance of the daily returns on the TSX to their autocorrelation.
These daily statistics are computed within consecutive monthly time frames defined over
the period 1998-2017. The scatter plot shows that the highest autocorrelation coefficients
are associated to the periods where volatility is the lowest. Conversely, the persistence
(i.e. the autocorrelation) of the returns is low when volatility is high. However, the scat-
ter plot reveals also an important cluster of low autocorrelation coefficients associated
to the periods of low volatility. This latter observation suggests that the econometric
model (6.1) originally proposed by Ozaki (1980), which is independent of the variance,
might be more appropriate for the TSX than its variant proposed by LeBaron (1992),
i.e. the model (6.2).
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To introduce heteroskedasticity into (6.1), I propose the following variant

rt =
[

ϕ+̟ exp
(

−υr2t−1

)]

rt−1 + ztσst, zt ∼ N (0, 1) . (6.3)

In (6.3), the innovations (or market news) and, consequently, the volatility are state-
dependent The variable st is a first-order Markov chain that assumes the value 1 in the
low volatility state (bull market) and 2 in the high volatility state (bear market). This
formulation is constituent with the possibility of observing at times low persistence in
the returns during a period of low volatility, as it appears in Figure 6.1. According to
(6.3), the autocorrelation is low during a bull market, when the returns are extremely
high.

In relation (6.3), the volatility is constant within each of the states of the market. To
take into account asymmetry in the volatility, this assumption could be replaced with a
Markov-switching GARCH process, which gives

rt =
[

ϕ+̟ exp
(

−υr2t−1

)]

rt−1 + ztσt, zt ∼ N (0, 1)

σ2t = νst + ρstσ
2
t−1 + φstε

2
t−1.

(6.4)

The likelihood of observing models (6.3) and (6.4) are defined as follows:

L (ϑ) =

2
∑

s0=1

us0

T
∏

t=1

p (rt|rt−1, st−1;ϑ)

p (rt|rt−1, st−1;ϑ) =

2
∑

st=1

γst−1,st
√

2πσ2st
exp

[

−rt − ϕrt−1 −̟ exp
(

−υr2t−1

)

rt−1

2σst

]2

with ϑ = [γ11, γ12, γ21, γ22,̟, σ1, σ2, υ, ϕ] (6.5a)

L (θ) =

2
∑

s0=1

us0

T
∏

t=1

p (rt|rt−1, st−1;θ)

p (rt|rt−1, st−1;θ) =

2
∑

st=1

γst−1,st
√

2πσ2st
exp

[

−rt − ϕrt−1 −̟ exp
(

−υr2t−1

)

rt−1

2σt

]2

σ2t = νst + ρstσ
2
t−1 + φstε

2
t−1

with θ = [γ11, γ12, γ21, γ22, ν1, ν2,̟, ρ1, ρ2.σ1, σ2, υ, ϕ, ψ1, ψ2] , (6.5b)

where γst−1,st is the transition probability of the Markov chain defined in (3.1) and us0
its unconditional probability defined in (3.3).

6.2 The Findings

Table 6.1 reports the OLS estimates of (6.1) and the maximum likelihood estimates of
(6.5). The value of the scale parameter υ that minimizes the AIC of the exponential
AR model (6.1) is 18 860.3. This value is much lower than 693 174.1, the inverse of the
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Table 6.1: A Simple and Two Markov-Switching Exponential AR Models of Order One
Fitted to Daily Returns on the TSX, 1998-2017

Simple Markov-Switching
Model (6.1) Model (6.3) Model (6.4)

Mean Equation

ϕ -.438 -.395 -.329
(-9.43) (-11.01) (-9.90)

̟ .560 .478 .399
(9.90) 11.04 (10.02)

υ 18 860.29 18 860.29 18 860.29
Volatility

σ .001 .001 .002 .001 .174
ν .000 .000
ρ .961 .925
ψ .026 .075
Markov Chain

Stationary Distribution .751 .249 .790 .210

Transition Probability

[

.990 .01

.029 .971

] [

.972 .028

.894 .106

]

Selection Criteria

AIC -53 794.41 -55 662.52 -56 162.38
AIC -53 774.83 -55 623.35 -56 084.03

The numbers in parentheses are the t-statistics and z-statistics from the
bootstrapping.

variance (also known as precision parameter) that is often used. I have also set υ at
18 860.3 while maximizing (6.5a) and (6.5b), to make the estimates comparable.

The OLS estimate of the parameters ϕ and ̟ are statistically significant (i.e., the
absolute value of their t-ratios are greater than their 5% critical value, which is 1.64).
The estimates from the two Markov-switching models are also significantly positive.
The parameter ϕ is the autocorrelation when the returns are either extremely high
(generally during bull markets) or extremely low (generally during bear markets). The
three estimates of this parameter are all negative. As for the three estimates of ̟, they
are all positive and greater than the absolute value of the estimates of ϕ, which means
that when the returns are low or almost nil the autocorrelation ϕ−̟ is positive.

The selection criteria indicate that the two Markov-switching models provide a better
fit to the data than the simple exponential AR model. They have the lowest AIC and
BIC. Besides, the Markov-switching GARCH process turns out to be a better alternative
to assuming that the volatility is constant within each of the two states of market. The
Markov-switching GARCH process shows evidence of asymmetry in the volatility, since
the parameter ψ, which is the response of the variance to the lagged squared residuals,
is two times higher in the bear market (.075 versus .026).
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Figure 7.1: The Natural Logarithm of some Major Stock Exchange Benchmark Indices,
1998-2017 (daily)

7 The Cointegration of International Stock Markets

Figure 7.1 plots the natural logarithm of some stock market benchmarks. (These indices
are described in Appendix A.) It reveals a synchronization in the movement of the stock
price indices across the exchanges. This co-movement could be explained by the fact that
the global prices of commodities, especially crude oil, and the state of the US economy
have become some of the important determinants of asset prices (Kose, Claessens, and
Terrones, 2011). The increasing expansion of the activities of companies abroad through
trade, foreign portfolio investment and foreign direct investment, as well as their listings
on exchanges in the host countries also play a role in this co-movement.

Most largest companies on the TSX also have a secondary listing on other exchanges
and, the other way around, there are companies listed on other exchanges that have
a secondary listing on the TSX. They are called interlisted companies. About one-
fifth of the companies on the TSX are interlisted. Most of them also trade on other
major exchanges, such as the New York Stock Exchange (NYSE) and the National
Association of Securities Dealers Automated Quotations (NASDAQ), or on over-the-
counter marketplaces.

Differences in the prices of interlisted stocks could create arbitrage opportunities,
i.e. the possibility of making easy money by buying these stocks at a low price on
one exchange and, simultaneously, selling them at a higher price on another exchange.
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Advances in information technology systems enable the real-time access to stock prices
across exchanges. To prevent arbitrage in the long-run, the changes in the prices of
interlisted stocks would tend to synchronize and so would the prices of stocks or assets
that are similar across exchanges. This would result in a cointegration, i.e. a long-run
equilibrium relationship, between the stock price indices across exchanges.

There are two conditions for cointegration between exchanges. First, their stock price
indices are all trended, but their first differences (i.e. the returns) are stationary. Second,
there is, at least, a linear combination of their stock price indices that is stationary.
A way of testing for cointegration between exchanges is to perform the ADF test for
stationarity on their stock price indices and on the residuals obtained from regressing
one of these indices on the others, as described in Appendix B.3. This way of testing for
cointegration is referred to as the augmented Engle-Granger test (Engle and Granger,
1987). Table B.3 presents the results of the augmented Engle-Granger (AEG) test for
bivariate cointegration between the TSX and 15 other major exchanges. Out of this
sample of 15 exchanges, only 2 are found to be cointegrated with the TSX: the Hong
Kong Stock Exchange and the Bombay Stock Exchange.

An alternative way of testing for cointegration is by implementing the Johansen
(1988) procedure, as Narayan and Smyth (2004, 2005) and Khan (2011), among others,
have done. Narayan and Smyth (2005) find no pairwise cointegration between stock
prices in New Zealand and stock prices in either Australia or any of the G7 countries,
which are Canada, France, Germany, Italy, Japan, the United Kingdom (UK) and the
United States (US). On the other hand, they find some evidence of cointegration between
the Australian stock market and the stock markets in the UK or in Canada (Narayan
and Smyth, 2004). Khan (2011) tests for bivariate cointegration between the US and
each of the stock prices in a sample of 22 developing and developed countries (which
include Canada). He only finds cointegration between the US and the Netherlands.

Then, following Gregory and Hansen (1996), Narayan and Smyth (2004, 2005) and
Khan (2011) allow for a structural change in the bivariate regressions and perform the
test for cointegration on their residuals. By doing so, Narayan and Smyth end up
finding that the New Zealand and the US stock markets are cointegrated. They also
find cointegrating relations between the Australian stock market and stock markets in
Canada, Japan, and Italy. The number of stock markets that are cointegrated with the
US rise from 1 to 16, in the study of Khan.

7.1 The Model

Apparently, nothing in Figure 7.1 suggests a structure break in the stock market bench-
marks or their linear combinations. Instead of assuming a structural break in the data
as the test of Gregory and Hansen (1996) suggests, I propose another approach which
consists in estimating switching regressions and identifying the recurring trends of stock
markets.

1. I have assumed the natural logarithm of the stock price indices are generated by
a mixture of state-dependent multivariate normal distributions. This dependent
mixture is described by relations (7.1) and (7.2).
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2. I have estimated the component means and variance-covariance matrices of the
state-dependent mixture by maximum likelihood.

3. With each component mean and variance-covariance matrix, I have used (7.3) to
estimate simultaneously the intercepts and the slopes of the linear model relating
the natural logarithm of the stock price indices of the 15 other major exchanges
(the dependent variables) to the natural logarithm of the S&P/TSX composite
(the independent variable).

4. For each of the 3 973 trading days common to the 16 exchanges over the period
1998-2017, I have decoded the most likely state of the global financial market.

5. Using the intercept and the slope parameters corresponding to the most likely
state of each time period, I have computed the fitted values and the residuals of
the 15 bivariate relations. Then, I have performed the ADF test for unit root on
these residuals.

p
(

yt;µst
,Σst

)

= (2π)−
16

2 (detΣst)
−

1

2 exp

[

−1

2

(

yt − µst

)

′

Σ−1
st

(

yt − µst

)

]

with µst
=

[

µh,st

µf,st

]

and Σst =

[

Σh,h,st Σh,f,st

Σh,f,st Σf,f,st

]

,

(7.1)

where the column vector yt lists the natural logarithm of the stock price indices at time
t, the vector µ lists their expected values, the matrix Σ denotes their variance-covariance
matrix, the subscipts h and f refer respectively to the home stock market (the TSX)
and the foreign markets, and st is an unobserved state variable.

L (θ) =
T
∏

t=1

2
∑

st=1

γst−1,stp (yt|st;θst)

= u

T
∏

t=1

ΓP (yt)1
′

with θ =
[

γ11, γ12, γ21, γ22,µ
′

1,µ
′

2, vech(Σ1)
′, vech(Σ2)

′
]

(7.2a)

L (θ∗) =
T
∏

t=1

2
∑

st=1

γ∗s∗
t−1,s

∗

t
p
(

yt|s∗t ;θ∗

st

)

= u∗

T
∏

t=1

Γ∗P (yt) 1
′

with θ∗ =
[

γ∗11, γ
∗

12, . . . , γ
∗

44,µ
∗′

1 , . . . ,µ
∗′

4 , vech(Σ
∗

1)
′, . . . , vech(Σ∗

4)
]

, (7.2b)

where the vector u is the stationary distribution of st, Γ is the matrix of transition prob-
abilities, and P (rmt|rst) is a diagonal matrix whose j-th diagoal element corresponds to
p (rmt|rst, st = j;θ).
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Mixture of Multivariate Normal Distributions Fitted to some Major Stock Price

Indices, 1998-2017 (daily)

βst = Σh,f,stΣ
−1
h,h,st

αst = µf,st −
(

Σh,f,stΣ
−1
h,h,st

)

µh,st

(7.3)

7.2 The Findings

This subsection presents the results of the AEG tests performed after estimating (7.3).
In turn, I have assumed that the unobserved state variable is described by a two-state
first-order and a two-state second-order Markov processes.

7.2.1 The First-Order Markov-Switching Cointegrating Relations

In state 1, the volatility is lower across the exchanges, with the exception of those in
the US, Ireland, Germany, and Spain (see Figure 7.2). At the same time, the expected
values of the stock price indices are higher across the exchanges, with the exception of
the Euronext Amsterdam. Thus, state 1 can be labelled as a bull market. The estimates
in (7.4) indicates that this state is the most recurrent and the most persistent.

Γ̃ =

[

.963 .037

.052 .948

]

ũ =
[

.586 .414
]

(7.4)
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Table 7.1: First-Order Markov-Dependent Multivariate Normal Distributions:
Bivariate Relationships between the Stock Price Indices of some Major Exchanges
(Dependent Variables) and the S&P/TSX Composite (Explanatory Variable), AEG

Test with Intercept but no Trend, 1998-2017 (daily)

Intercept Slope AEG Test
R2

Dependent Variable 1 2 1 2 Lags τ -statistic
NYSE Composite -1.598 4.746 1.129 .443 3 -2.727 .879

(-4.09) (27.68) (27.54) (23.24)
NASDAQ Composite -9.265 1.339 1.831 .698 1 -1.587 .624

(-11.41) (4.25) (21.47) (20.06)
N225 1.422 10.174 .856 -.085 2 -1.931 .236

(3.71) (48.95) (21.24) (-3.71)
FTSE All-Share .722 6.134 .775 .186 6 -2.207 .67 0

(2.35) (59.44) (23.99) (16.36)
Hang Seng -1.201 .493 .925 .992 2 -4.208 .906

(3.95) (.92) (29.04) (16.72)
AEX -.682 6.772 .705 -.081 1 -2.188 .117

(-2.40) (48.83) (23.69) (-5.29)
BFL20 4.198 7.421 .406 .051 1 -1.970 .240

(12.46) (47.26) (11.48) (2.96)
CAC 40 4.113 3.661 .449 .517 3 -2.274 .223

(16.99) (10.79) (17.67) (13.81)
ISEQ All-Share 5.082 6.141 .360 .261 2 -1.237 063

(12.97) (25.16) (8.73) (9.66)
BSESN -4.397 -5.132 1.503 1.509 1 -3.533 .910

(-6.07) (-8.28) (19.75) (21.96)
DAX Performance -5.551 4.250 1.530 .468 2 -2.166 .733

(-8.36) (19.40) (21.97) (19.40)
S&P/ASX 200 3.251 2.227 .557 .653 2 -3.204 .890

(16.81) (5.84) (27.44) (15.49)
SMI MID 5.530 7.221 .359 .168 5 -2.198 .405

(28.74) (100.66) (17.70) (21.42)
Bovespa Index 3.085 -10.623 .825 2.258 1 -3.359 .892

(8.55) (-11.93) (21.71) (22.82)
IBEX 35 7.158 5.595 .219 .386 2 -2.524 .288

(23.00) (46.42) (6.69) (29.00)
Selection Criteria

Log-Likelihood 84 011.01
AIC -167 410.00
BIC -165 486.10

The numbers in parentheses are the z-statistics, which are computed dividing the maximum
likelihood estimates by their respective bootstrap standard errors.
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Table 7.1 displays the estimates of the intercept terms and the slope parameters.
All the estimates of the slope parameters are significantly different from zero (i.e. the
absolute value of their z-statistics are greater than 1.97, the critical value at the level
of significance of 5% of a two-sided test). Comparing the coefficients of determination
(R2) computed after decoding the states to those from the OLS regression (in Table
B.3) shows that, in most cases, the first-order Markov process has contributed to the
improvement of the explanatory power of the bivariate models, especially in the case of
Japan, the Netherlands, and France.

The asymptotic critical values for the ADF test performed on the residuals of a
bivariate model are -3.34 and -3.04, respectively, at the levels of significance of 5% and
10% (Davidson and MacKinnon, 1993). In Table 7.1, the absolute value of the τ -statistics
are greater than the critical value of 3.34, in three cases: the bivariate equations relating
the stock prices on the Hong Kong Stockk Exchange, the Bombay Stock Exchange, and
the Bovespa to the stock prices on the TSX. This means that, at the level of significance
of 5%, the null hypothesis of unit root in the residuals can be rejected in these three
cases and one can conclude that the stock prices in Canada and the stock prices in Hong
Kong, India, and Brazil are cointegrated. One can also reject the null hypothesis of
unit root in the residuals in the case of the Australian Security Exchange, but only at
the level of significance of 10%. Narayan and Smyth (2004) also find a cointegration
between the Canadian and the Australian stockk markets.

In conclusion, after distinguishing between two states of stock markets (the bull and
the bear markets), two more exchanges have turned out to be cointegrated with the
TSX.

7.2.2 The Second-Order Markov-Switching Cointegrating Relations

It appears in Figure 7.3 that the volatility of the benchmark indices is higher in state 4
across all the exchanges, with the exception of the NASDAQ. Thus, one can label state
4 as the bear market and, consequently, state 1 as the low volatility state (or the bull
market). States 2 and 3 are the turning points respectively from the low to the high
volatility states and from the high to the low volatility states.

On both Figures 7.2 and 7.3, the volatility of the stock prices is higher on the
Bovespa, the Bombay Stock Exchange, and the Euronext Dublin. During bull markets,
the volatility is lower on the Swiss Stock Exchange, the Australian Securities Exchange,
and the London Stock Exchange.

The estimates in (7.5) indicate that the the high volatility state is persistent 30.6%
of the time and transient 21.8% of the time. The sum of these two probabilities is higher
than the estimate in (7.4).

Γ̃ =









.906 .094 .000 .000

.000 .000 .924 .076

.111 .889 .000 .000

.000 .000 .054 .946









ũ =
[

.258 .218 .218 .306
]

(7.5)
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Figure 7.3: Standard Deviations from a Second-Order Two-State Markov-Dependent
Mixture of Multivariate Normal Distributions Fitted to some Major Stock Price

Indices, 1998-2017 (daily)

Comparing the selection criteria in Table 7.2 to those in Table 7.1 reveals that
the two-state second-order Markov process helps provide a better fit to the data: its
log-likelihood is higher and its information criteria (AIC and BIC) are lower. The
determination coefficients computed after decoding the recurring states also indicate
substantial improvements in the explanatory power of the bivariate models. The R2 of
the bivariate switching regressions that relate the stock prices in Canada to the stock
prices in seven countries (Japan, the Netherlands, Belgium, France, Ireland, Switzerland,
and Spain) have more than doubled. For example, in the case of Ireland, the R2 rose
from 6.3% in the model with the first-order Markov process to 50.3% in the one with
the second-order Markov process.

In Table 7.2 as in Table 7.1, the slope parameter is negative and statistically sig-
nificant over some states in the equation relating the stock prices on the Tokyo Stock
Exchange to those on the TSX. Table 7.2 also indicates that the stock price indices on
the Euronext Brussels and the Euronext Dublin are negatively related to those on the
TSX, over some states, which might create some arbitrage opportunities between these
exchanges.

In Table 7.2, the absolute value of the τ -statistics are greater than 3.34, the absolute
value of their 5% critical value, in 11 cases. This time, the null hypothesis of unit root
in the residuals of the 15 bivariate switching regressions cannot be rejected only in four
cases: the equations relating the stock prices on the NASDAQ, the Euronext Dublin,
the Bombay Stock Exchange, and the Bolsa de Madrid to the stock prices on the TSX.

While the TSX turns out to be cointegrated with the NYSE, I have not found any
evidence of cointegration between the TSX and the NASDAQ. This nuances the result
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Table 7.2: Second-Order Markov-Dependent Multivariate Normal Distributions: Bivariate Relationships between the Stock
Price Indices of some Major Exchanges (Dependent Variables) and the S&P/TSX Composite (Explanatory Variable), AEG

Test with Intercept but no Trend, 1998-2017 (daily) )

Intercept Slope AEG Test
R2

Dependent Variable 1 2 3 4 1 2 3 4 Lags τ -statistic
NYSE Composite 7.096 2.147 2.119 3.251 .185 .741 .744 .604 5 -4.643 .927

(51.12) (6.57) (6.90) (11.99) (11.89) (21.77) (23.24) (20.66)
NASDAQ Composite 2.451 -4.665 -4.637 1.304 .593 1.351 1.347 .689 12 -2.096 .691

(6.25) ( -7.73) (-8.50) (4.62) (13.53) (21.51) (23.73) (22.66)
N225 10.990 6.814 7.692 9.218 -.156 .303 .212 -.001 12 -4.301 .711

(40.33) 32.55 (35.53) (44.01) (-5.17) (13.92) (9.43) (-.06)
FTSE All-Share 7.001 3.860 4.093 2.901 .103 .449 .425 .533 3 -4.543 .875

(59.74) (19.68) (22.44) (16.75) (7.88) (22.03) (22.43) (28.78)
Hang Seng 2.116 1.281 1.386 .057 .815 .917 .905 1.045 12 -3.864 .894

(3.77) (3.15) (3.68) (.15) (13.00) (21.51) (23.00) (25.81)
AEX 5.816 3.171 2.817 5.429 .056 .309 .346 .037 3 -4.851 .756

(37.80) (19.88) (18.63) (40.07) (3.27) (18.59) (21.94) (2.53)
BFL20 9.001 6.590 6.315 4.466 -.113 .167 .196 .359 1 -4.049 .652

(52.55) (50.19) (48.16) (16.18) (-5.92) (12.20) (14.31) (12.02)
CAC 40 5.872 7.233 7.554 6.324 .289 .130 .097 .200 3 -4.581 .622

(18.95) (84.30) (95.36) (49.32) (8.35) (14.54) (11.67) (14.56)
ISEQ All-Share 7.932 11.343 11.371 13.365 .068 -.273 -.276 -.558 5 -3.209 .503

(46.25) (46.68) (45.20) (38.00) (3.59) (-10.69) (-10.45) (-14.65)
BSESN 2.846 -7.406 -7.927 -10.333 .603 1.820 1.873 2.120 5 -2.561 .922

(5.05) (-8.78) (-10.47) (-13.87) (9.56) (20.65) (23.70) (26.58)
DAX Performance 4.610 -2.561 -1.564 .816 .450 1.221 1.115 .835 12 -3.436 .855

(16.86) (-5.92) (-3.74) (2.65) (14.65) (27.03) (25.62) (25.31)
S&P/ASX 200 4.235 3.922 3.820 2.086 .422 .492 .503 .673 3 -4.216 .941

(18.05) (19.00) (18.45) (7.48) (16.03) (22.84) (23.30) (22.45)
SMI MID 7.547 7.779 8.377 6.550 .147 .132 .070 .230 3 -5.879 .831

(69.00) (62.63) (66.05) (37.71) (12.14) (10.15) (5.23) (12.31)
Bovespa Index -4.464 -2.477 -2.944 -9.368 1.551 1.401 1.448 2.156 12 -3.580 .934

(-5.11) (-3.94) (-4.47) (-11.38) (15.78) (21.34) (21.02) (24.40)
IBEX 35 7.739 6.107 5.623 2.829 .158 .334 .387 .676 12 -2.908 .436

(61.71) (27.10) (25.54) (8.79) (11.31) (14.15) (16.79) (19.59)
Selection Criteria

Log-Likelihood 88 114.61
AIC -175 005.2
BIC -171 157.4

The numbers in parentheses are the z-statistics, which are computed dividing the maximum likelihood estimates by their respective
bootstrap standard errors.
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of Khan (2011), who finds evidence of cointegration between stock prices in Canada and
the US. Khan (2011) use a single index, the S&P 500, to describe the US stock market.

Consistently with the result in Table 7.1 (from the first-order state-dependent model)
or in Table B.3 (from the OLS regression), the stock prices in Canada are not cointe-
grated with the stock prices in Spain. On the other hand, the absence of cointegration
between the TSX and the Bombay Stock Exchange comes as a surprise, since these two
stock markets turned out to be cointegrated in the two previous investigations (see Table
7.1 and Table B.3). The stock prices in Canada are cointegrated with the stock prices
in Ireland only at a level of significance of 10%.

8 Conclusion

I have introduced the Markov process in some models to explain stock prices, returns,
and volatility on the TSX. This process has helped distinguished between the recurring
states of stock markets: mainly, the bull and the bear markets. Doing so has helped
improve the explanatory power of the model fitted to the financial data. These models
are the conditional CAPM, the conditional Sharpe model, the exponential autoregres-
sive model with state-dependent heteroskedasticity, the state-dependent cointegrating
relations among international stock markets.

The state-dependent multivariate normal distributions from which I derived the con-
ditional CAPM have enabled to characterized the sectors on the TSX. Consumer staples
and gold have turned out to be the defensive stocks on the TSX, as their expected re-
turns are positive in bear markets. Besides, the use of the second-order Markov chain in
estimating the conditional CAPM has improved considerably the proportion of the vari-
ability in the excess returns explained by the market (viz the determination coefficient)
in the sectors of consumer staples and utilities, and in the sub-industry of gold.

The conditional Sharpe models reveal that the contribution of each sector to the
market return is variable, since some sectors of the TSX are cyclical and the others are
defensive. It turns out from the first-order Markov-switching model that the financial
sector accounts for the highest share of the market return in both the bull and the bear
markets. The contribution of the sector of consumer staples is low in both states but
higher in bear markets.

The exponential autoregressive model reveals that the returns on the TSX are non-
linear time series. This explains the non-linearity of their autocorrelation, which could
be high or low in bull markets depending on whether the returns are low or extremely
high. In bear markets (periods of high volatility), the autocorrelation is low because the
returns are often negative and extremely low. Both the conditional Sharpe model and
the exponential autoregressive model with state-dependent heteroskedasticity indicate
asymmetry in the volatility of the market return. The response of the variance to the
lagged squared residuals is higher in bear markets, which confirms the existence of a
leverage effect.

The second-order Markov-switching regressions raised considerably the number of
stock markets that are cointegrated with the TSX.
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Appendices

A The Data

The investigations cover the period 1998-2017. The monthly S&P/TSX composite in-
dices and the sub-indices relating to to the sectors of the TSX are from Statistics Canada
(www.statcan.gc.ca). The health care sector is missing from this data set. Real estate
is excluded form the data set, because it was an industry group of the financial sector,
up to September 16, 2016.

The one-month treasury bill yields used as risk-free rates are also monthly data
from Statistics Canada. Since the treasury bill yields are annual percentage rates, they
have been converted into monthly rates as follows Rft = (1 + R̃ft)

1/12 − 1, where R̃ft

designates the annual rate.
The daily benchmark indices of the 16 major stock exchanges are from Yahoo Finance

(www.finance.yahoo.com). Public holidays might differ from one country to the other.
For this reason, only the trading days that are common to the 15 countries where these
exchanges are based are included in the sample. These benchmark indices are described
below.

Ticker Description Country

NYA New York Stock Exchange (NYSE) composite US
IXIC National Association of Securities Dealers Automated Quota-

tions (NASDAQ) composite
US

N225 Nikkei 225 (or Nikkei stock average) Japan
FTAS Financial Times Stock Exchange (FTSE) all-share UK
HSI Hang Seng index Hong Kong
AEX Euronext Amsterdam index Netherlands
BFX Euronext Brussels BEL20 Belgium
FCHI Euronext Paris CAC 40 France
ISEQ Euronext Dublin ISEQ all-share Ireland
GSPTSE S&P/TSX composite index Canada
BSESN Bombay Stock Exchange sensitive index India
GDAXI Deutscher Aktienindex Germany
AXJO S&P/Australian Securities Exchange (S&P/ASX) 200 Australia
SSMI Swiss market index midcap (SMI MID) Switzerland
BVSP Bolsa de Valores do Estado de São Paulo (Bovespa) index Brazil
IBEX Bolsa de Madrid IBEX 35 Spain

The returns on the benchmark indices have been computed taking the first difference
of the natural logarithm of their closing values. Figure A.1 compares the distribution of
returns on the TSX to those of its sectors while Figure A.2 compares the distribution
of returns on the TSX to those of other major exchanges. In Appendix B.1, I have
explained how one computes these distributions.

Table A.1 shows the correlation between returns across sectors on the TSX. The
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Figure A.1: Comparison of the Kernel Density Estimate of Returns on the TSX to those of Ten of its Sectors.
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Figure A.2: Comparison of the Kernel Density Estimate of Returns on the TSX to those on some Foreign Stock Exchanges.
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Table A.1: Correlation Coefficient between the Returns, TSX, Canada,
1998:M1-2016:M12

CD CS E F G I IT M TS U

CD 1.00
CS .43 1.00
E .26 .15 1.00
F .56 .33 .43 1.00
G -.06 .10 .36 .05 1.00
I .71 .29 .38 .58 - .01 1.00
IT .53 .10 .10 .33 - .07 .54 1.00
M .19 .15 .56 .26 .84 .32 .15 1.00
TS .49 .18 .11 .32 - .08 .37 .49 .10 1.00
U .18 .42 .34 .33 .18 .22 - .08 .26 .12 1.00

CD: Consumer Discretionary, CS: Consumer Staples, E: Energy, F: Fi-
nancial, G: Gold, I: Industrial, IT: Information Technology, M: Materials,
TS: Telecommunication Service, U: Utilities.

correlation between return in the gold sub-industry with returns in the consumer discre-
tionary, the industrial, the information technology and the telecommunication service
sector is weak. However, there is a high correlation between returns in the gold sub-
industry and the materials sector (because gold is part of materials) and between returns
in the sectors of consumer discretionary and industrial.

Table A.2 shows the first-order autocorrelation coefficient of both the returns and
the squared returns. These coefficients measure the persistence of returns and that of
their volatility.

B Some Basic Concepts

In this section, I introduce some concepts in econometric and finance used throughout
this research.

B.1 Kernel Density Estimation

The kernel density estimation is the computation without any prior assumption of the
probability density function (PDF) of a random variable. Let F denote the unknown
cumulative distribution function (CDF) of a real-valued random variable R. The value
of the function F at a point r in the support of R is

F (r) = Pr (R ≤ r) .

Given a time series Rt (t = 1, . . . , T ), the empirical estimator of the value of F at the
point r is the count of the observations that are less than or equal to r, which is divided



44 B SOME BASIC CONCEPTS

Table A.2: The First-Order Autocorrelation of the Returns and their Squares, TSX,
Canada, 1998:M1-2017:M12

Sector/Segment Returns Squared Returns
Consumer Discretionary .197 .118
Consumer Staples .003 .022
Energy .098 .391
Financial .235 .061
Industrial .191 .229
Information Technology .092 .296
Materials -.037 .225

Gold -.131 .165
Telecommunication Service .247 .250
Utilities ..017 .155
60 Largest Companies .211 .155
Market .223 .175

by T , the size of the sample.

F̂ (r) =
1

T

T
∑

t=1

1(Rt ≤ r), (B.1)

where 1 is an indicator function that takes the value 1 if Rt ≤ r or 0, otherwise.

The PDF, f , of R is defined as the first derivative of F with respect to r.

f(r) == lim
h→0

F (r + h)− F (r − h)

2h

Given the latter definition of a derivative and relation (B.1) defining the empirical CDF,
the estimator of f is

f̂(r) =
F̂ (r + h)− F̂ (r − h)

2h

=
1

2hT

T
∑

t=1

1(r − h ≤ Rt ≤ r + h), (B.2)

where h is a small positive increment referred to as smoothing parameter or band-
width. The bandwidth is determined so as to minimize the mean squared error of f̂(r),

E
[

f̂(r)− f(r)
]2

.

In relation (B.2), a constant weight, which is 1/2, is put on f̂ whenever r−h ≤ Rt ≤
r + h or −1 ≤ (Rt − r)/h ≤ 1. This kernel corresponds to a uniform PDF defined over
the interval [−1, 1]. For this reason, relation (B.2) is called a uniform kernel density
estimator.
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Other non-negative and symmetric weighting functions can be used in (B.2) as long
as they integrate to one, hence the following general expression.

f̂(r) =
1

hT

T
∑

t=1

k

(

Rt − r

h

)

In this paper, I have used the standard normal distribution as kernel to estimate the
nonparametric densities, i.e.

k

(

Rt − r

h

)

=
1√
2π

exp

[

−1

2

(

Rt − r

h

)]2

−∞ <
Rt − r

h
<∞.

For more details on kernel density estimation, see Li and Racine, 2007; Fan and Yao,
2008, among others.

B.2 The Linear Regression Model

Let’s consider the multiple linear regression model

Yt = X
′

tβ + εt, εt ∼ N
(

0, σ2ε
)

(B.3)

where Yt is the explained variable, Xt is a K × 1 vector of explanatory variables, and εt
is an error term. 4 The error term, also known as innovation, is normally distributed
with a zero mean and constant variance, σ2ε .

Given yt and xt, a sample of T observations of Yt and Xt, the unknown parameter
vector β can be estimated either by minimizing the sum of the squares of the errors,
which is known as the ordinary least squares (OLS) estimation, or by maximizing the
likelihood of observing yt given xt, which is known as maximum likelihood estimation.
The estimator of the K × 1 vector β produced by either of these methods is

β̂ =

(

T
∑

t=1

xtx
′

t

)−1 T
∑

t=1

xtyt. (B.4)

Note that, for the K × K matrix
∑T

t=1 xtx
′

t in (B.4) to be invertible, no explanatory
variable should be an exact linear combination of the others.

Given (B.4), the regression residual is et = yt − x
′

tβ̂. The maximum likelihood
estimator of the variance of εt is

σ̂2ε =
1

T

T
∑

t=1

e2t .

This latter estimator is biased, i.e. its expectation differs from the true parameter, σ2ε .
The OLS estimator of this latter parameter is unbiased and is generally preferred

s2 =
1

T −K

T
∑

t=1

e2t , (B.5)

4To allow for an intercept term, one of elements of Xt, say its first element, is set to one all the time.
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where K is the number of explanatory variables including the intercept term. The square
rood of (B.5) is referred to as the standard error of the regression.

The covariance of the estimator β̂ is

cov
(

β̂
)

= s2

(

T
∑

t=1

xtx
′

t

)−1

=
1

T −K

T
∑

t=1

e2t

(

T
∑

t=1

xtx
′

t

)−1

. (B.6)

The square root of the diagonal elements of (B.6) gives the standard errors of the
estimator β̂. For further details on linear regression, see Greene (2000); Verbeek (2008);
Ruppert (2011), among others.

B.2.1 The Significance Tests

The error term, εt, is assumed to be normally distributed. Thus, the estimator β̂ is
also a random variable that is normally distributed with mean β and covariance matrix

σ2ε

(

∑T
t=1 xtx

′

t

)

−1
. Both β and σ2ε are unknown. One can use their estimates to make

inference about them. For instance, one can be interested in knowing whether the true
value of either a single parameter βk or a subset of β is zero, given their estimates. This
is called a statistical significance test.

The significance test consists of two hypotheses: H0, the null hypothesis, versus HA,
the alternative hypothesis. For a single parameter βk, one might perform a one-sided or
a two-sided test.

One-sided test H0 : βk = β0k versus either HA: βk < β0k or HA: βk > β0k ,

Two-sided test H0 : βk = β0k versus HA: βk 6= β0k,

where β0k is the researcher’s a priori about βk. Generally, β0k is set to zero, for the
purpose of knowing whether a variable should be kept in a model or removed.

The standard normal distribution would be used to test for these hypotheses if one
knew σ2ε . To overcome this issue, one replaces σ2ε by its empirical estimate given by
(B.5) to compute the test statistic

tk =
β̂k − β0k

s.e.
(

β̂k

) (B.7)

where s.e.
(

β̂k

)

, the kth diagonal element of (B.6), is the standard error of β̂k. The test

statistic tk in (B.7) is called a t-ratio. It follows a Student’s t-distribution with T −K
degrees of freedom, as it is the ratio of a standardized normally distributed variable,

(β̂k−β0k)/σβk
, and a variable following a Chi-square distribution, (T −K)s.e.

(

β̂k

)

/σβk
.



B.2 The Linear Regression Model 47

In principle, K independent observations are enough to estimate the K unknown
parameters in the regression model (B.3). Once the fitted values x

′

tβ̂ are computed, the
remaining free T −K observations called degrees of freedom can be used to estimate the
standard error.

While performing a test, there is a risk of making two wrong decisions: either reject-
ing the null hypothesis whereas it is true, which is called a type I error, or accepting the
null hypothesis whereas it is untrue, which is called a type II error (Casella and Berger,
2002, chap 8). One controls the type I error probability by setting a significance level for
the test. The significance level is generally set at 5% and corresponds to the probability
of making a type I error.

The lower and upper tails of the t-CDF associated with a significance level depends
on T −K, the degrees of freedom. These tails are the critical values of the test. For a
one-sided test with a 5% significance level, the critical value associated with HA: βk > β0k
is t5%(T − K) such that Pr (tk > t5%(T −K)) = .05. The null hypothesis is rejected
when tk > t5%(T −K). The length of the monthly returns used in this research is 239.
Consequently, the upper tail of the test, t5%(T − K), is about 1.65. Moreover, since
the t-distribution is symmetrical about zero like the standard normal distribution, its
lower and upper tails are opposite numbers. Thus, the lower tail of the test is about
-1.65. When the alternative hypothesis is rather HA: βk < β0k , the null hypothesis will
be rejected when tk < −1.65.

When performing a two-sided t-test with a 5% significance level, the null hypothesis
is accepted when −t2.5%(T −K) ≤ tk ≤ t2.5%(T −K), with |t2.5%(T −K)| ≈ 1.97 for
T = 239.

B.2.2 The Model Selection Criteria

There are several statistics that can be used to compare alternative models in order to
find out the one that provides a good fit to a data set. The most popular of these statistics
is the coefficient of determination, R2. The coefficient of determination indicates the
share of the total variation in the dependent variable explained by a model.

R2 =

∑T
t=1 (ŷt − ȳ)2

∑T
t=1 (yt − ȳ)2

= 1−
∑T

t=1 e
2

∑T
t=1 (yt − ȳ)2

,

where ŷt equals x
′

tβ̂, the fitted value of yt, and ȳ denotes the mean of yt. In case a
model has no intercept term, the mean of the dependent variable, ȳ, is set at zero in the
coefficient of determination (see Barten, 1987; Eisenhauer, 2003, among others).

The coefficient of determination can be used to test for the joint significance of all the
sensitivity parameters in the vector β, which excludes the intercept. The test hypotheses
are

H0 : Yt = α+ εt,
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HA : Yt = X
′

tβ + εt (model (B.3)),

and its statistic is

F =
T −K

K − 1

R2

1−R2
,

which follows an F -distribution withK−1 and T−K degrees of freedom, F (K−1, T−K)
in short.

The coefficient of determination tends to increase along with K, the number of
explanatory variables. But, when K increases, the degrees of freedom, T −K, decreases
and less observations become available to estimate accurately the parameters.

To encourage parsimony in the specification of models, other selection criteria im-
poses penalties that increase along with the number of explanatory variables. Such
selection criteria include the adjusted R2 or R̄2, the Akaike information criterion (AIC),
and the Schwartz Bayesian information criterion (BIC).

R̄2 = 1− T − 1

T −K

∑T
t=1 e

2

∑T
t=1 (yt − ȳ)2

(B.8a)

AIC(K) = ln

(

1

T

T
∑

t=1

e2t

)

+ 2
K

T
(B.8b)

BIC(K) = ln

(

1

T

T
∑

t=1

e2t

)

+
K

T
ln(T ) (B.8c)

Unlike R2, it appears in (B.8a) that R̄2 may fall when K increases and the residual
sum of squares does not fall in the same proportion as the loss of degrees of freedom.
One would prefer either a model with a higher R̄2 or a model with a lower AIC and
BIC. Comparing (B.8b) to (B.8c) indicates that even though both criteria impose a
penalty that increases with K, the penalty imposed by the BIC is larger for ln(T ) > 2
(i.e., for T ≥ 8).

Alternative specifications of the AIC and BIC are:

AIC(K) = −2 ln [L (β)] + 2K (B.9a)

BIC(K) = −2 ln [L (β)] +K ln(T ), (B.9b)

where L denotes the likelihood of the observations. I have computed the AIC and BIC
of the Markov-switching models using the latter specifications.

B.2.3 An Application

The following linear relation between asset and market expected returns, referred to as
CAPM, is considered in Section 4 (see its derivation in Appendix B.4).

E(Rit −Rft) = βm,iE(Rmt −Rft), (B.10)
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To estimate it by OLS, one can assume that investors make errors in forecasting and, as
a consequence, the realized returns are the sum of the expected and unexpected returns.

rit = E(rit) + uit

rmt = E(rmt) + umt

The forecast errors uit and umt are neither contemporaneously nor serially correlated.
Plugging them into (B.10) gives

rit − rf = βi(rmt − rf ) + ut, (B.11)

where ut = uit − βiumt.
Table B.1 reports the OLS estimates of (B.11) for the sectors of the TSX. The one-

month treasury bill is used as the risk-free asset and the growth rate of the S&P/TSX
composite is used as the market returns.

One tests for the statistical significance of each estimate by comparing its t-ratio in
parentheses to the critical value, t2.5%(226) = 1.97. Except for the consumer staples,
these tests confirm that the intercept terms are not significantly different from zero, as
the CAPM suggests. All the slope parameter (i.e. the beta coefficients) are statistically
significant. In the information technology sector, the excess returns are highly sensitive
to the fluctuations in the market excess returns, unlike in the utilities and the consumer
staples sectors. While the market explains about half of the fluctuations in the excess
returns in the industrial sector, movements in the excess returns in the consumer staples
and in the utilities sectors or in the gold sub-industy are mostly idiosyncratic and thus
unpredictable.

B.3 Stationarity and Cointegration

B.3.1 Stationarity

There are a weak and a strong form of stationary. A time series Rt (t = 1, . . . , T ) is said
to be strongly stationary if its joint unconditional probability at time t is unaffected by
any arbitrary change of time origin.

Pr (Rt, Rt−1, . . . , R1) = Pr (Rt+k, Rt−1+k, . . . , R1+k)

t
∏

τ=1

Pr (Rτ ) = .

t
∏

τ=1

Pr (Rτ+k)

A time series Rt (t = 1, . . . , T ) is said to be weakly stationary or covariance stationary
if

1. E (Rt) = E (Rt−1) = µ <∞,

2. var (Rt) = E (Rt − µ)2 = γ0 <∞,

3. cov (Rt, Rt−k) = E (Rt − µ) (Rt−k − µ) = γk <∞, k = 1, 2, . . . ,
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Table B.1: CAPM, OLS Regressions, TSX, Canada, 1998:M1-2017:M12

Sector/Segment Intercept Market β R̄2

Consumer Discretionary .218 .644 .444
(1.08 ) (13.82)

Consumer Staples .737 .206 .060
(3.32) (4.01)

Energy -.047 .982 .376
(-.13) (12.02)

Financial .329 .751 .452
(1.42) (14.04)

Industrial .160 .901 .522
(.66) (16.15)

Information Technology -.244 1.507 .427
(-.50) (13.37)

Materials -.100 1.007 .342
(-.26) (11.18)

Gold -.164 .671 .073
(-0.25) (4.46)

Telecommunication Service .190 .637 .283
(.67) (9.73)

Utilities ..156 .194 .045
(.65) (3.48)

60 Largest Companies .013 1.014 .977
(.30) (101.22)

Selection Criteria

AIC 14 970.93
BIC 15 092.29

t2.5%(226) = 1.97
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where E, var, and cov denote respectively the mathematical expectation, the variance,
and the covariance operators. The first and the second conditions for weak stationarity
require the mean and the variance of the time series to be a finite number and constant.
The third condition requires the autocovariances to depend only on the time interval
between two observations.

Strong stationarity and weak stationarity are equivalent, when a time series is nor-
mally and identically distributed. The reason is that normally distributed variables are
completely described by their means and variance-covariance matrix. Under other distri-
butional assumptions, a weakly stationary time series might not be strongly stationary.
Besides, as obtaining information about the statistical distribution of a time series might
be difficult or joint probability distribution might not be easy to deal with, the weak
form of stationarity is the most commonly referred to.

A time series that fluctuates around a constant mean is an example of a stationary
variable. This process is referred to as mean reversion. A general process called autore-
gressive moving average (ARMA) models can also be used to illustrate stationarity.

Rt = δ + ρ1Rt−1 + · · ·+ ρpRt−p + εt + η1εt−1 + · · ·+ ηqεt−q,

where the innovation εt is normally distributed with a mean of zero and a constant
variance σ2ε , εt ∼ N

(

0, σ2ε
)

. The above ARMA(p, q) model decomposes Rt into a linear
combination of its p most recent values and a linear combination of the q + 1 latest
innovations. To simplify the illustration, I have set p at one and q at zero. This is called
an autoregressive model of order 1.

Rt = δ + ρRt−1 + εt (B.12)

Given (B.12), it follows from the three conditions required for weak stationarity that
the mean, the variance, and the covariances of Rt are

E (Rt) =
δ

1− ρ

var (Rt) =
σ2ε

1− ρ2

cov (Rt, Rt−k) = ρk
σ2ε

1− ρ2
.

(B.13)

The results in (B.13) indicate that, for ρ = 1, the mean and the variance of Rt are
not finite numbers. Note that if ρ equals 1, Rt is said to have a unit root or to follow
a random walk. Besides, for ρ < −1 or ρ > 1, the variance of Rt is negative, which
is counterfactual, and its autocovariances tend to infinity, i.e. they become extremely
high, as k increases. Therefore, Rt is weakly stationary only if −1 < ρ < 1. It follows
that one can test for stationarity on a time series using the OLS estimate of ρ and its
standard error. This is called Dickey-Fuller unit root test (Dickey and Fuller, 1979).

An alternative and more convenient specification of (B.12) used to test for unit root
is obtained by subtracting Rt−1 from both sides of the equation.

∆Rt = δ + πRt−1 + εt, (B.14)
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where ∆ denotes the first-difference operator, i.e. ∆Rt = Rt − Rt−1, and π = ρ − 1.
The null hypothesis H0 and the alternative hypothesis HA of the Dickey-Fuller unit root
test are

H0 : π = 0 (a unit root),

HA : π < 0 (stationarity).

For a 5% significance level, i.e. for a 5% probability of rejecting by mistake the null
hypothesis of unit root, the critical value of this one-sided test is

τ5%(T − 3) such that Pr

(

π̂

s.e.(π̂)
> τ5%(T − 3)

)

= 5%

s.e.(π̂) =

√

√

√

√

(

1

T − 3

T
∑

t=2

e2t

)(

T
∑

t=2

R2
t−1

)−1

,

where π̂, s.e.(π̂), and et denote respectively the OLS estimate of π, the estimated stan-
dard error of π̂, and the residuals from estimating (B.14) by OLS. 5

Even though, the Dickey-Fuller test and the t-test are analogous, in general, the
critical values of the former are smaller than those of the latter. As a consequence, one
would too often reject the null hypothesis of unit root using the t distribution.

In a higher order autoregressive model, unit root occurs when
∑

i ρi = 1, i.e. when
the autoregressive parameters sum to unity. To estimate

∑

i ρi − 1 in one go, the
autoregressive model can be specified as follows through linear transformations

∆Rt = δ + πRt−1 + · · ·+ ̺p−2∆Rt−p+2 + ̺p−1∆Rt−p+1 + εt. (B.15)

where π = ρ1 + · · ·+ ρp − 1, ̺p−1 = − (ρp−1 + ρp), and ̺p−1 = −ρp.
Unit root tests performed on (B.15) are called augmented Dickey-Fuller (ADF) tests.

A time trend can be introduced into (B.14) and (B.15), to test for unit root. When the
unit root hypothesis is not rejected, the test is repeated on the first difference of the
time series.

Table B.2 reports the τ statistics, i.e. the ratios ˆ̂π/s.e.(π̂), from ADF tests performed
on the natural logarithm of the stock prices and the treasury bill rate described in
Appendix A. The statistics are computed with the software R using the package ’urca’
(Pfaff, Zivot, Stigler, and Pfaff, 2016). The package ’urca’, which stands for unit root
and cointegration analysis, is able to select the number of lags to include in the ADF
tests using either the lowest AIC or the lowest BIC. I have selected the order of the
autoregressive processes to use for the tests using the BIC. The ADF tests indicate the
stock prices and the treasury bill rate are not stationary, but their first differences are
all stationary. Such time series are said to be integrated of order one, I(1).

5The degree of freedom of the critical value, which equals T − 3, corresponds to the number of
observations used in the OLS regression, T − 1, minus the number of estimated parameters, 2.
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Table B.2: Statistics from ADF Unit Root Tests with Intercept but no Trend

Level First-Difference
Variable Lags τ -statistics Lags τ -statistics
Monthly Data

S&P/TSX Composite 1 -1.570 1 -8.977
Consumer Discretionary 1 -.110 1 -9.689
Consumer Staples 1 -0.311 1 -9.742
Energy 1 -2.786 1 -9.596
Financial 1 -1.410 1 -8.948
Industrial 1 -0.691 1 -10.207
Information Technology 1 -1.725 1 -10.706
Material 1 -1.718 1 -10.842

Gold 1 -1.861 1 -12.608
Telecommunication Service 1 -.765 1 -9.483
Utility 2 -1.342 1 -8.957
60 Largest companies 1 -1.438 1 -9.130

Treasury Bills 3 -1.764 2 -6.099
Daily Data

S&P/TSX Composite 1 -1.437 1 -45.474
NYSE Composite 1 -1.314 1 -46.349
NASDAQ Composite 1 -.618 1 -44.589
N225 1 -1.449 1 -46.658
FTSE All-Share 2 -1.477 1 -47.773
Hang Seng 1 -1.771 1 -46.967
AEX 1 -1.825 1 -46.702
BFL20 2 -1.797 1 -45.667
CAC 40 2 -2.499 1 -47.904
ISEQ All-Share 2 -1.234 1 -46.610
BSESN 1 -.676 1 -44.869
DAX Performance 1 -1.018 1 -45.884
S&P/ASX 200 1 -1.688 1 -46.796
SMI MID 1 -2.060 5 -29.449
Bovespa Index 1 -1.373 1 -46.662
IBEX 35 2 -2.568 1 -47.170

5% Critical Value -2.88 -2.88
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B.3.2 Cointegration

A linear combination of non-stationary time series can be stationary. In this case,
these variables are said to be cointegrated. One can test for cointegration or long-run
equilibrium relationship between variables by performing the ADF test described earlier
on their regression residuals.

Table B.3 shows the OLS estimates of the bivariate relationship between the bench-
mark indices of some major stock exchanges and the S&P/TSX Composite as well as the
statistics from the ADF test performed on their residuals. Out of the 15 exchanges, only
two are cointegrated with the TSX: the Hong Kong Stock Exchange and the Bombay
Stock Exchange. As a matter of fact, the ADF test statistics from the regression of the
Hang Seng on the S&P/TSX Composite and that from the regression of the Bombay
Stock Exchange sensitive index on the S&P/TSX Composite are both greater in absolute
value than their 5% asymptotic critical value.

B.4 The Derivation of the CAPM

The CAPM relates the performance of an asset to that of the stock market. There are
several ways of deriving the CAPM. In this section, following Breeden (1979), I have
derived this relation from a consumption optimization problem.

Let Ct denote the consumption at time t of a representative investor endowed with
a utility U (Ct). The utility function U is increasing and concave, i.e. its first derivative
is positive, dU (Ct) /dCt ≥ 0, and its second derivative is negative, d2U (Ct) /dC

2
t < 0.

The representative investor is infinitely-lived and seeks to maximize the discounted
value of his expected lifetime utility Et

∑

∞

t=0 U (Ct) /(1 + ρ)t, where the parameter ρ
denotes his subjective discount rate, also known as time preference rate, and the operator
Et denotes the expectation conditional on the information available at time t. Each time
period, he faces the following budget constraint

Ct +P′

tAt = (Pt +Dt)
′
At−1,

where A, D, and P are respectively column vectors that list the amount of each of
the N financial assets held by the representative investor, the dividends paid, and their
prices. The budget constraint states that the representative investor’s wealth consists
of the market value of the N financial assets he owns plus the dividends he receives for
holding them. Out of this wealth, he finances his consumption and acquires new assets.

B.4.1 The Optimization Problem

The representative investor’s optimization program can be written as follows

V (At−1, zt) = max
Ct,At

U (Ct) +
1

1 + ρ
EtV (At, zt+1)

+ λt
[

(Pt +Dt)
′
At−1 − Ct −P′

tAt

]

.

(B.16)

The first line of (B.16) splits Et
∑

∞

t=0 U (Ct) /(1 + ρ)t , the representative investor’s
discounted lifetime utility, into his instantaneous utility and the discounted value of all
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Table B.3: Bivariate Relationships between the Benchmarks of some Major
Exchanges(Dependent Variables) and the S&P/TSX Composite (Explanatory

Variable): Augmented Engle-Granger Test (with Intercept but no Trend)

OLS Regression ADF Test on Residuals
Dependent Variable Intercept Slope R2 Lags τ -statistics
NYSE Composite 1.709 .781 .828 3 -1.717

(32.56) (138.06)
NASDAQ Composite -2.085 1.076 .550 3 .451

(-14.55) (69.69)
N225 6.087 .366 .141 1 -1.811

(45.63) (25.48)
FTSE All-Share 2.879 .548 .630 4 -1.921

(46.53 ) (82.23)
Hang Seng -.674 1.123 .907 2 -4.227

(-12.70) (196.31)
AEX 5.635 .042 .002 2 -1.801

(43.35) (3.01)
BFL20 4.324 .394 .235 2 -1.819

(41.36) (34.96)
CAC 40 5.889 .265 .135 3 -2.165

(59.56) (24.90)
ISEQ All-Share 6.715 .192 .025 2 -1.178

(38.42) (10.19)
BSESN -15.345 2.652 .895 1 -3.570

(-114.56) (183.70)
DAX Performance -1.154 1.068 .686 3 -1.527

(-10.86) (93.21)
S&P/ASX 200 .402 .857 .889 3 -2.908

(9.02) (178.43)
SMI MID 4.845 .432 .415 5 -2.115

(64.21) (53.13)
(-78.17) (153.13)

IBEX 35 5.562 .389 .287 2 -2.430
(61.68) (40.02)

5% Critical Value t5%(3971) = 2.13 τ5% = −3.34
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his future utilities. The function V is referred to as value function. For more details
on value function, see among others, Sargent (1987) or Stockey, Lucas Jr, and Prescott
(1989).

The value function V depends on variables describing both the financial state of the
representative investor, At−1, and the level of the technology used to produce the good
he consumes, zt.

6 The variable zt is the only source of uncertainty in the model. The
variable λt is the Lagrange multiplier.

The first-order conditions from the optimization program are

Ct : U ′ (Ct) = λt (B.17a)

At−1 : ∇V (At−1, zt) = λt (Pt +Dt) (B.17b)

At :
1

1 + ρ
Et∇V (At, zt+1) = λtPt, (B.17c)

where the symbol ∇ denotes the gradient vector. Thus, ∇V is the gradient vector of V ,
i.e. the column vector consisting of its partial derivatives.

One can get rid of the gradient vector of V in (B.17c) by plugging in the first lead
of (B.17b),

1

1 + ρ
Etλt+1 (Pt+1 +Dt+1) = λtPt.

Relation (B.17a) and its first lead also can be plugged into (B.17c) to get rid of the
Lagrange multiplier

1

1 + ρ
EtU

′ (Ct+1) (Pt+1 +Dt+1) = U ′ (Ct)Pt. (B.18)

Relation (B.18), referred to as Euler equation or pricing equation, governs the represen-
tative investor’s choice between consumption and investment in financial assets. For a
given asset i = 1, . . . , N , this relation can be written as follows

1

1 + ρ
Et

[

U ′ (Ct+1)

U ′ (Ct)
(1 +Ri,t+1)

]

= 1 (B.19)

where Ri,t+1, the return on asset i at time t+ 1, equals (Pi,t+1 +Di,t+1)/Pt. It follows
from (B.19) that if an asset is risk-free, its gross return will equal

1 +Rf,t+1 =
1 + ρ

Et

[

U ′(Ct+1)
U ′(Ct)

] . (B.20)

Given the covariance between two variables, say x and y, equals E(xy)− E(x)E(y),
the lhs element of the pricing equation (B.19) can be written as follows

1

1 + ρ
Et

[

U ′ (Ct+1)

U ′ (Ct)
(1 +Ri,t+1)

]

=
1

1 + ρ
covt

[

U ′ (Ct+1)

U ′ (Ct)
, (1 +Ri,t+1)

]

6Following Mehra and Prescott (1985), one can assume that zt is expected to grow at a rate γSt

that is subject to a Markov chain, viz technological change undergoes occasional shifts driven by the
unobserved variable St describing the state of the economy.
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+
1

1 + ρ
Et

[

U ′ (Ct+1)

U ′ (Ct)

]

Et(1 +Ri,t+1)

The above relation along with (B.19) and (B.20) imply that

Et(Ri,t+1)−Rf,t+1 = −covt [U
′ (Ct+1) , Ri,t+1]

Et [U ′ (Ct+1)]
. (B.21)

According to Stein’s lemma, if two variables, say x and y, are jointly normally disturbed,
then cov [g(x), y] = E [g′(x)] cov(x, y). Applying this result to (B.21) gives

Et(Ri,t+1)−Rf,t+1 = −Et [U
′′ (Ct+1)]

Et [U ′ (Ct+1)]
covt (Ct+1, Ri,t+1) . (B.22)

Let’s now define the variable Rc,t+1 = Ct+1/Ct − 1. This growth rate will be referred
to as consumption return. Since the representative investor’s wealth consists only of
financial assets, growth in his consumption depends on the average return of his portfolio.
Replacing Ct+1 in (B.22) with its expression in terms of Rc,t+1 and then rearranging
gives

Et(Ri,t+1)−Rf,t+1 = −Et [U
′′ (Ct+1)]

Et [U ′ (Ct+1)]
Ctcovt (Rc,t+1, Ri,t+1) . (B.23)

For Ri,t+1 = Rc,t+1, relation (B.23) becomes

Et(Rc,t+1)−Rf,t+1

vart (Rc,t+1)
= −Et [U

′′ (Ct+1)]

Et [U ′ (Ct+1)]
Ct, (B.24)

which means the risk-adjusted excess return on consumption equals the representative
investor’s relative risk aversion. Finally plugging this latter result into (B.23), gives the
consumption CAPM.

Et(Ri,t+1)−Rf,t+1 = βc,i [Et(Rc,t+1)−Rf,t+1] ,

with βc,i =
covt (Rc,t+1, Ri,t+1)

vart (Rc,t+1)
.

(B.25)

The slope parameter βc,i, called systematic risk or consumption beta of asset i, measures
the sensitivity of returns on this asset to variations in the returns on consumption.

B.4.2 The Consumption versus the Traditional CAPM

The formulation of the consumption CAPM differs from that of the traditional CAPM
in the way the systematic risk is measured. According to the traditional CAPM, the
appropriate measure of the risk of an asset is rather the covariance of its return with the
market return (proxied as the return on a stock market index). Mankiw and Shapiro
(1984) test empirically both the consumption CAPM and the traditional CAPM hy-
potheses using a cross-section of 464 stocks of companies listed continuously on the
NYSE between 1959 and 1982. They estimate the following model

Ri = a0 + a1βm,i + a1βc,i + ui,
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where ui denotes the error term. While the consumption CAPM appears preferable on
theoretical grounds, it received little empirical support as the coefficient on the market
beta, βm,i turned out to be larger and more statistically significant. Some possible
reasons for the poor performance of the consumption CAPM are: consumption data
suffer from measurement errors and many consumers do not actively take part in the
stock market.

To estimate the CAPM consistently with the evidence of Mankiw and Shapiro (1984),
I will replace the return on consumption Rct with the market return Rmt in (B.25). To
do this, I assume that all investors populating the economy are identical and have the
same return on consumption. Besides, firms are perfectly competitive and produce a
single good. This gives the traditional CAPM

E(Ri,t+1)−Rf,t+1 = βm,i [E(Rm,t+1)−Rf,t+1] ,

with βm,i =
cov (Rm,t+1, Ri,t+1)

vart (Rm,t+1)
.

(B.26)

Note that the market beta can be written as follows

βm,i =
cov(Ri,t+1, Rm,t+1)

∑N
i=1 ωicov(Ri,t+1, Rm,t+1)

, (B.27)

where ωi is the weight of asset i in the market portfolio. Relation (B.27) indicates
that the market beta of asset i is its covariance risk relative to the weighted average
covariance risk of all assets.

B.4.3 The Market Excess Return and the Risk Aversion

Consider now relation (B.24). Assuming that the representative investor’s relative risk
aversion is constant will imply that the market excess return is also constant. One can
achieve constant relative risk aversion using a utility of the type

U (Ct) =
C1−e
t − 1

1− e
,

where e = −CtU ′′ (Ct) /U ′ (Ct) > 0 is referred to as coefficient of relative risk aversion. 7

Jagannathan and Wang (1996), Abdymomunov and Morley (2011), and Vendrame,
Guermat, and Tucker (2018) attribute the empirical failure of the CAPM to the hypoth-
esis of constant relative risk aversion that constrains the excess market return to remain
unchanged over time.

7This utility embeds several well-known functions as special cases. For e = 0, the utility is linear
and, for e = 1, it is logarithmic.
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