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ABSTRACT

M-competition studies provide a set of stylized recommendations to enhance
forecast reliability. However, no single method dominates across series, leading
to consideration of the relationship between selected data characteristics and
the reliability of alternative forecast methods. This study conducts an analysis
of predictive accuracy in relation to Internet bandwidth loads. Extrapolation
techniques that perform best in M-competitions perform relatively poorly in
predicting Internet bandwidth loads. Such performance is attributed to Internet
bandwidth data exhibiting considerably less structure than M-competition data.
Copyright © 2005 John Wiley & Sons, Ltd.
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INTRODUCTION

M-competition outcomes due to Makridakis and Hibon (1979, 2000), Makridakis et al. (1982, 1993)

provide much information. These stylized outcomes, as summarized by Makridakis and Hibon

(2000), are: statistically simpler models perform better than complex methods; ranking of compet-

ing methods varies across accuracy measures; combining forecasts perform best; and accuracy

depends on the forecast horizon. Clements and Hendry (2001) contrast these conclusions with their

theoretical research that demonstrates for weakly stationary processes, a congruent, encompassing

model in-sample, based on causal variables, performs best for forecast horizons. Further, the prac-

tice of pooling forecasts does not enhance accuracy.

The conflicting results of forecast performance obtained from theoretical predictions and the 

stylized results of M-competitions are due to the non-stationary and evolving nature of data being

modelled by M-competition participants (Clements and Hendry, 2001). Simple models, they argue,

offer adaptability while complicated models are susceptible to structural breaks. Moreover, these

data are not reducible to stationarity through differencing. More generally, Fildes and Ord (2002)

indicate that prior knowledge of the data-generating process permits a link to be established between

particular data characteristics and the forecast reliability of alternative methods.

The link between the underlying properties of the data and forecast performance is explored in

Fildes (1992) and Fildes et al. (1998). In examining a set of 263 telecommunications time series,

Journal of Forecasting
J. Forecast. 24, 299–309 (2005)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/for.953

*Correspondence to: Gary Madden, Communications Economics and Electronic Markets Research Centre, School of 
Economics and Finance, Curtin University of Technology, GPO Box U1987, Pert, WA, Australia. 
E-mail: gary.madden@cbs.curtin.edu.au



300 G. Madden and G. Coble-Neal

Copyright © 2005 John Wiley & Sons, Ltd. J. Forecast. 24, 299–309 (2005)

Fildes (1992) concludes that Robust Trend, developed specifically to forecast the telecommunica-

tions series, performs best. Additionally, Fildes et al. (1998) provide a framework to compare and

contrast the respective properties of the telecommunications and M-competition data. The use of a

common set of summary statistics allows Fildes et al. to observe the relative performance of methods

in relation to data characteristics. For example, they attribute an increased random component of the

M-competition data to the relative decline in Robust Trend performance.

Following Fildes et al., this paper provides further information on the link between exhibited data

characteristics and forecast reliability of methods. In doing so, a direct comparison with the earlier

results is permitted. Moreover, like Fildes (1992) a single data type is examined—an index that meas-

ures Internet bandwidth loads.1 The paper is organized as follows. The next section describes sample

data. Discussion of the alternative forecast models is contained in the third section. Model results

are presented in the fourth section, and concluding remarks are presented in the final section.

DATA

The data set is comprised of 58 time series, each containing 232 observations. These data-are sampled

from a continuous data-generating process and obtained daily at 7 a.m. Australian Eastern Standard

Time weekdays from 18 February 2000 to 3 March 2001. A representative specimen of these 

data is shown in Figure 1. These data oscillate between zero and 100 and appear to exhibit charac-

teristics typical of stationary series. Another feature, common to many series in the data set, is the

presence of occasional downward spikes. Spikes indicate high congestion and, depending on the

1 The Internet Traffic Report URL is http://www.internettrafficreport.com/index.html.
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Figure 1. Japan dm-gw1.kddnet.ad.jp
Source: Opinix (2001).
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motivation for generating forecasts, can be treated as outliers that are atypical or incorporated in the

model as infrequent but important characteristics of the data-generating process.

Summary statistics indicate the frequency of the downward spikes with 27 of the 58 routers report-

ing at least one minimum value below the 25th percentile. Sampled regions include Australia, East

Asia, Israel, North America, Russia, South America and Western Europe. Regions not included 

are Africa, Antarctica and most of the Middle East. The Denver denver-br2.bbnplanet.net router is

recorded as providing the fastest response, while AOL1 pop1-dtc.atdn.net has the lowest response

time. On average, the Perth1 opera.iinet.net.au router consistently provides the fastest response.

Yahoo fe3-0.cr3.SNV.globalcenter.net typically records the slowest response.2 The sample average

coefficient of variation is 6.3 and the corresponding standard deviation is 1.8.

Following Fildes (1992), the frequency of outliers, strength of trend, degree of randomness and

seasonality are analysed. The results are shown in Figures 2 to 5. An observation Xt is treated as an

outlier when either Xt < Lx - 1.5(Ux - L) or Xt > Lx + 1.5(Ux - Lx), where Lx denotes the lower quar-

tile and Ux the upper quartile. The strength of trend is measured by the correlation between series

(with outliers removed) and a time trend, with the absolute value of the trend indicating its strength.

Randomness is measured by estimating the regression:

(1)

where X¢t denotes the series Xt with outliers removed. measures the variation explained by the

model. High indicates low randomness, while low reveals high randomness. Deterministic

seasonality is estimated by regressing the series on an intercept and dummy variables which equal

one when t = s, where t denotes observation Xt’s position in time and s corresponds to the frequency

of the seasonality. For example, to test the hypothesis that Mondays are statistically different to band-

width capacity for the rest of the week, t = {1, 2, 3, 4, 5, . . . , T}, s = {1, 5, 10, 15, . . . , T} and

dummy variable DMonday = 0 for t = s, zero otherwise.

Figure 2 reveals half the series contain between 1% and 5% outliers. In percentage terms these

data appear slightly more heterogeneous than Fildes’ (1992) telecommunications data. Figure 3

shows that these data are generally uncorrelated with time. This contrasts with Fildes, where the data

exhibit strong negative trends. Moreover, histograms contained in Figures 3 and 4 reveal that vari-

ation in these data presents a high degree of randomness with little serial correlation.

Finally, Figure 5 presents some evidence of regularity in weekly capacity variation aggregated by

region. There appear regular dips occurring on different days across regions. Typically, Asia experi-

ences lower traffic volumes from Wednesday through Friday, while most Australian routers have

excess capacity from Monday through Tuesday. Conversely, Europe and North America experience

a smoother traffic flow—perhaps due to more sophisticated capacity pricing and network manage-

ment systems. Finally, South American Internet traffic variation is tied to particular routers.

The regressions are also conducted to test for regularity of both weekly and monthly traffic pat-

terns. Weekly variation is not apparent, with only six routers reporting regular spikes across weeks.

Surprisingly, given the short time series, substantial monthly variation was found for 95% of sampled

routers.3 Although the sustained increase in traffic is too haphazard across routers to reveal a cycli-

R 2R 2

R 2

¢ = + + ¢ + ¢ + ¢- - -X t X X Xt t t ta b d d d1 1 2 2 3 3

2 Time-of-day and scale-of-demand effects may impact on router performance. For example, the Perth router services a small
market and is likely to have relatively low congestion early in the morning, while in real time, the Yahoo router may be at
peak demand in the mid-to-late afternoon.
3 Comparisons between consecutive months are considered here.
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Figure 2. Outlier frequency
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Figure 3. Strength of linear trend

cal pattern, most routers experience significant increases for an average of 2 months, with some

routers showing surges of up to 3 months. This pattern may reflect the average lagged response time

required before routers are expanded to cope with the increased traffic. Once expanded, the Internet

traffic index for the router is likely to increase, reflecting a permanent increase in capacity. To sum,

the data series exhibit a high degree of randomness with not infrequent spikes in index scores appar-

ent. Compared to telecommunications data analysed in Fildes (1992) and Fildes et al. (1998), these

data appear considerably more heterogeneous and so less predictable.
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FORECAST MODELS AND ACCURACY MEASURES

Forecast models considered here are univariate ARARMA, ARMA, Filtered Trend, Holt, Holt-D

exponential smoothing and Robust Trend against a benchmark Random Walk model. With the excep-

tion of Filtered Trend, these forecast methods have been shown to be reliable by Fildes (1992),

Makridakis et al. (1993), Fildes et al. (1998) and Makridakis and Hibon (2000), and consistently

perform well in the M-competition. Implicit in these analyses, however, is that the majority of data

included in the M-competition are non-stationary, while data analysed here are stationary. Given this
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Figure 4. Variation explained by linear/AR

No difference

Early Week

Mid Week

Late Week

Asia
Australia

Europe
North

America South
America

0

2

4

6

8

10

12

F
re

q
u
e
n
c
y

Asia Australia Europe North America South America

Figure 5. Daily variation in capacity utilization



304 G. Madden and G. Coble-Neal

Copyright © 2005 John Wiley & Sons, Ltd. J. Forecast. 24, 299–309 (2005)

fundamental difference in assumption, some of the forecast techniques are modified to avoid prob-

lems associated with over-differencing. For example, the ARMA method is applied rather than

ARIMA. ARARMA explicitly questions the practice of differencing to achieve stationarity and has

an advantage of utilizing information contained in these data, normally lost when differencing.

Moreover, the approach outlined in Parzen (1982) contains a method of determining when it is appro-

priate to apply the AR filter, hence the method is adopted intact. Filtered Trend is simple extrapola-

tion based on a regression of a series on a deterministic time trend after outliers have been removed.

Holt and Holt-D methods provide adaptable alternatives to Filtered Trend while also retaining the

advantage of simplicity and reliability. However, to ensure the opportunity for accuracy is max-

imized, the parameter is re-estimated for each new estimation period, as recommended in Fildes et

al. (1998), rather than being held fixed. Robust Trend differences the data before calculating the sto-

chastic trend. The perceived advantage in adopting this method is the outlier filter and its use of the

median rather than mean in estimation, which may provide some advantage over the simple Random

Walk extrapolation. Accordingly, for comparison, Random Walk is employed as the benchmark.

When outliers do not bias estimation, Random Walk forecasts are difficult to improve on, given the

reported properties of these data.

The choice of accuracy measures is guided by the recommendations of Armstrong and Collopy

(1992). They argue that the Mean Absolute Percentage Error (MAPE), Median Absolute Percentage

Error (MdAPE), % Better, Geometric Mean Relative Absolute Error (GMRAE) and Median Rela-

tive Absolute Error (MdRAE) best assess forecast performance. Both GMRAE and MdRAE are 

Winsorized as recommended by Armstrong and Collopy. Mean square error measures are avoided

since these statistics are scale-dependent and sensitive to outliers.

FORECASTS

To identify the most accurate forecasting methods, six sets of forecasts are created by dividing these

data into estimation and forecast segments. The estimation period is shifted forward 10 observations

post-estimation. The model is re-estimated on this sample, and so on. Each forecast method uses

117 observations to forecast over the next 60 observations.4 That is, the approach uses a rolling

window beginning at the first observation and steps forward 10 days, re-estimating the forecasts over

the next 117 observations. The approach provides 348 forecasts with an equal lead time of 60 periods

per method to judge forecast performance. In evaluating the reliability of the alternative methods,

forecasts are compared to post-sample data values. The number of forecast windows is maximized

to offset the distortions created by outlying observations at the end of each estimation window.5

All forecast methods are estimated in SHAZAM utilizing automatic procedures. For example,

ARMA is implemented by conducting a grid search of autoregressive moving average parameters

with maximum lag length set to 10. The best performing model is deemed to be the one that scores

the lowest Akaike Information Criterion statistic. The test for the long-memory filter in ARARMA

(Parzen’s Err(t) statistic) is used to determine the filter’s lag length. The long-memory procedure is

4 60-day forecasts are necessary due to the existence of standard capacity contracts.
5 The effects of distortions created by these data are complex. To simplify the analysis, a total of 24 zero observations are
replaced with variable medians after estimation. This is done to separate the anomalies observed in the forecast error meas-
ures. An attempt to predict the zero observations is being conducted in a separate forecast study.
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verified using the results from the illustrative example provided in Parzen (1982).6 In most cases,

the model is determined to be short memory and is estimated as an unfiltered ARMA. In a portion

of the cases deemed to be long memory the Err(t) statistic is less than zero. Analysis of the inter-

national airline data used by Parzen along with simulated data shows that data with exponential

trends always yield positive Err(t) statistics. By contrast, the Internet bandwidth data does not exhibit

any trend. The explanation for negative Err(t) statistics is provided by examining the calculations

for Err(t) and the long-memory coefficient (t), which are defined as:

(2)

(t) is the sample correlation coefficient between the current observation and its counterpart lagged

t periods. SSQ(T ) is the sum of squares for all observations in the estimation window and SSQ(T -

t) is the sum of squares for observations between one and the observation corresponding to T - t.

In the Internet bandwidth data, the calculated sum of squares increases linearly as T increases. Thus,

the rate of increase in the ratio SSQ(T )/SSQ(T - t) is greater than the rate of decline in (t) (as lag

t increases), resulting in a calculated coefficient (t) that can at times be substantially greater than

one. The magnitude of the coefficient dominates the calculated Err(t), resulting in a negative statis-

tic. Rejection of negative Err(t) statistics results in estimation of short-memory ARMA models. This

problem is indicative of the need to consider the underlying properties of the data prior to selecting

specific forecast methods.

In general, selected models for both ARMA and ARARMA exhibit short lags (on average between

one and four lags) and are, therefore, highly adaptive. Seventeen percent of ARARMA models cal-

culated positive Err(t) statistics that are less than the critical value, resulting in estimates of (t) that

range between 0.94 and 1.02. Holt, Holt-D and Robust Trend parameters are optimized for each esti-

mation window and series.

Table I presents forecast accuracy results through average absolute error calculations. In general,

Filtered Trend performed better than the other methods with Robust Trend the next best. ARARMA

and Holt-D consistently performed worst. The ARARMA statistic is biased by 23% of forecast

models with substantial forecast errors. In general, it appears that the poor performance of ARARMA

is closely related to outliers near the end of some estimation windows in a number of series. Of

these, 30% correspond to use of the long-memory filter. The poor performance of Holt-D is likely

due to over-differencing. Although Robust Trend also differences these data, parameter estimates are

often small in magnitude. Thus, forecast errors deteriorate gradually. The short-term good perfor-

mance of ARMA provides some assurance that automatic procedures can model time series reason-

ably well. In the longer term, ARMA overtakes Robust Trend, indicating that flexible estimation of

adaptive methods may be better for longer horizons.

Further evaluation is reported in Table II, which presents the GMRAE and MdRAE forecast error

measures. Both GMRAE and MdRAE compare each method to a ‘no-change’ benchmark forecast.

A score of less than one indicates the forecast method is at least more reliable than the Random Walk

benchmark. By these criteria Filtered Trend is the only method to consistently outperform the 

benchmark.

An important factor is accuracy variation over forecast horizons. M-competition results indicate

some methods are better for short-term forecasts, while others perform better over longer horizon.

f̂

f̂
r̂

r̂

ˆ ˆ ˆf t r t
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6 The Err(t) statistic is calculated for lags 1 to 100, correctly selecting lag 12. The calculated (t) is 1.021468.f̂
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Figure 6 reports the cumulative forecast errors for the initial estimation window. As Figure 6 clearly

shows, ARARMA is consistently worst. Interestingly, ARMA cumulative forecast accuracy improves

as the forecast horizon lengthens, overtaking Holt and Holt-D. However, in terms of cumulative

errors, none of the adaptive forecasts are particularly reliable.

Finally, Table III presents the proportion of better than Random Walk extrapolation forecasts.

Results suggest that the best forecast method, Filtered Trend, has only a one in two chance of per-

forming better than the naïve forecast. For relatively short horizons, Robust Trend outperforms the

naïve benchmark. Robust Trend’s gradual deterioration in forecasts corresponds to its fixed trend

direction, whereas ARMA and Holt are able to accommodate trend changes. Further, the results reaf-

firm the relatively poor performance of ARARMA.

To sum, the results show that Internet bandwidth is most reliably forecast in the short run by deter-

ministic trend methods. MAPE statistics show that Robust Trend tracks index values with an average

Table I. Mean absolute percentage error

Method Forecasting horizon

1 20 40 60 1–5 1–25 1–45 1–60

ARARMA 356 180 151 137 328 237 198 180
ARMA 15 53 13 14 151 159 116 94
Filtered Trend 8 10 15 5 13 18 8 8
Holt 17 67 36 50 100 110 116 122
Holt-D 136 134 132 132 133 134 134 134
Robust Trend 0 29 36 48 14 22 25 28

Note: Bold minimum MAPE statistic indicates the best performed method.

Table II. Geometric mean RAE and median RAE

Method Geometric mean RAE

1 12 24 36 48 60

ARARMA 2.97 2.51 2.36 1.95 2.08 2.12
ARMA 1.92 1.74 1.56 1.33 1.32 1.31
Filtered Trend 0.98 0.57 0.75 0.70 0.63 0.77
Holt 1.07 1.59 1.93 2.22 2.71 3.51
Holt-D 1.34 1.40 1.08 1.12 1.15 1.30
Robust Trend 0.84 1.07 1.14 1.58 1.83 1.77

Method Median RAE

1 12 24 36 48 60

ARARMA 5.33 3.19 3.12 2.43 2.55 2.97
ARMA 2.19 1.95 1.58 1.43 1.65 1.59
Filtered Trend 0.97 0.65 0.87 0.91 0.77 0.83
Holt 1.15 1.95 2.57 2.78 4.11 5.01
Holt-D 1.69 1.58 1.17 1.06 1.20 1.43
Robust Trend 1.00 1.06 1.09 1.45 1.72 1.93

Note: Statistic in bold indicates the best performed method.
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variation of 28%, while ARMA’s average forecast provides a slight improvement for longer time

horizons. The convergence in accuracy between ARMA and Filtered Trend suggests that ARMA may

be useful in confirming the long forecasts generated by Filtered Trend. Finally, the inherent station-

arity of these data may explain the failure of ARARMA and Holt-D forecast methods.

CONCLUSIONS

The study provides further evidence as to the link between data characteristics and forecast accu-

racy for specific univariate extrapolation methods. Forecast techniques employed here are extrapo-
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Figure 6. Cumulative mean absolute percentage error

Table III. Percent better

Method Forecast horizon

1 6 12 18 24 30 36 42 48 54 60

ARARMA 19 20 19 16 18 17 20 18 19 21 21
ARMA 32 44 39 35 46 41 44 38 35 41 48
Filtered Trend 47 53 62 53 51 41 53 55 59 47 56
Holt 49 40 32 29 27 23 24 20 18 14 14
Holt-D 44 49 40 47 52 47 53 44 53 48 46
Robust Trend 51 53 44 40 42 34 34 31 30 27 29

Note: Bold indicates best performed method.
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lation methods that perform well in the M-competition and are easily implemented. In evaluating

methods, a single data series is utilized to facilitate the analysis of forecast performance, conditional

on the properties of these data. Analysis of summary statistics reveals that bandwidth data exhibit

considerably less structure than telecommunications data as reported by Fildes (1992) and M-

competition data (Fildes et al., 1998). As a result, the univariate extrapolation methods perform

poorly when compared to previous studies. This outcome is not surprising as univariate extrapola-

tion methods are intended to exploit data regularities, such as autocorrelation and trend direction,

generally not present in bandwidth data. Study findings highlight the need to better understand the

data characteristics, prior to forecasting. In particular, the high degree of randomness and the pres-

ence of outliers are responsible for the performance of Filtered Trend and Robust Trend in relation

to the other forecast methods. Finally, future research directed at developing a consistent approach

to data classification may provide further useful insights into the optimal selection of forecast

method.
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