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Abstract

Central to this study is the concept of disjointly productive players. Two players are
disjointly productive if there is no synergy effect if one of these players joins a coalition
containing the other. Our first new axiom states that the payoff to a player does not
change when another player, disjointly productive with that player, is removed from the
game. The second new axiom means that if we merge two disjointly productive players
into a new player, the payoff to a third player in a game with the merged player does not
change. These two axioms, along with efficiency, characterize the Shapley value and can
lead to improved run times for computing the Shapley value in games with some disjointly
productive players.

Keywords Cooperative game · Shapley value · Disjointly productive players · Merged

(disjointly productive) players game

1 Introduction

An area of study within cooperative game theory is how payoffs of TU-values change when
two or more players are merged into a single one (see, e.g., Derks and Tijs (2000)). Ideally,
this also leads to axiomatizations as for the Banzhaf value (Banzhaf, 1965) in Lehrer (1988).
Lehrer defines an amalgamated game where two players are merged into one who has the
same effect in the new game as the two merging players had in the old game. Together
with an axiom, known as standardness (Hart and Mas-Colell, 1989), Lehrer axiomatizes
the Banzhaf value with a reduction axiom for these games, called 2-efficiency. A TU-value
satisfies this axiom if the payoff to the merged player in the new game is equal to the sum
of the payoffs to the two merging players in the old game. Since the Shapley value (Shapley
1953b) also satisfies standardness, the Shapley value is bound to fail for this axiom.
2-efficiency is also used in the axiomatizations of the Banzhaf value in Nowak (1997),

Casajus(2011), and Casajus(2012). As pointed out in Alonso-Meijide et al. (2012), Casajus
(2012) uses a somewhat different definition of 2-efficiency and, therefore, comes up with
somewhat contradictory solutions for the Banzhaf value compared to Nowak (1997).
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Haller (1994) investigates collusion properties of TU-values. Instead of merging two
players into one, one player becomes a proxy with the power of both players and the other
player becomes a null player. For the Shapley value, the results can be transferred to the
amalgamation of players because this value satisfies the null player out property (Derks and
Haller, 1999), i.e., removing a null player does not change the payoffs to the other players.
The study of Haller (1994) was inspired by the joint-bargaining paradox in Harsanyi

(1977), also known as the Harsanyi paradox (see Vidal-Puga (2012)). Harsanyi observes
that in simple bargaining processes, when two or more players join together to form an
acting bargaining unit, their bargaining position worsens relative to the remaining players.
Moreover, Harsanyi notes that this holds for all solution concepts that satisfy efficiency and
the symmetry axiom, hence also for the Shapley value.
Chae and Heidhues (2004) explain this paradox by arguing that, by merging, players trade

their multiple “rights to talk” for a single one, thereby weakening their power position.
To axiomatize the class of weighted Shapley values (Shapley 1953a), Nowak and Ratzik

(1995) presented the concept of mutually dependent players. These are players who are
only jointly productive. Any coalition of mutually dependent players forms a partnership,
introduced in Kalai and Samet (1987). For so-called weighted games, which consist of a
classical TU-game and a weight vector λ, Ratzik (2012) formulates an amalgamating payoffs
axiom. Here, not arbitrary players are merged into a new one, as in 2-efficiency, but only
those that form a partnership, i.e., only jointly productive players.
Besner (2019) introduces a splitting axiom to axiomatize the proportional Shapley value

(Besner, 2016; Béal et al., 2018). This axiom can also be interpreted as a merging axiom
for weakly dependent players who are jointly productive and still have a stand-alone worth.
Unlike all of the studies above, Besner (2019) is not concerned with the ratio of the payoff

for the merged player versus the sum of the payoffs for the merging players in the original
game, but rather that any merger or split has no effect on the players not affected by it.
This view is also central to this study. For this, as a contrast to mutually dependent

players, i.e. jointly productive players, we use the concept of disjointly productive players.
Two players are disjointly productive if their marginal contribution to any coalition that
does not include the other player is the same as if that coalition had previously been joined
by the other one. Therefore, this can be considered as the special case of ”interaction of
cooperation” in Grabisch and Roubens (1999) without any interaction.
Our first new axiom then states that the payoff to a player does not change when a

player who is disjointly productive to that player leaves the game. For our second axiom,
we introduce a merged (disjointly productive players) game, corresponding to the merged
game1 in Lehrer (1988), but only for disjointly productive players. Our axiom then states
that the payoff does not change for players who are not affected by the merger. As the main
result, we show that the Shapley value, along with efficiency, is axiomatized by our two
axioms. In addition to our merger axiom, if a TU-value also satisfies efficiency, as does the
Shapley value, then the payoff to the merged player is equal to the payoff to the merging
players from the original game. Thus, the Harsanyi paradox does not apply to disjointly
productive players and they do not lose their ”right to talk.”
The remainder of this paper is organized as follows. Section 2 contains some preliminaries.

In Section 3, we introduce the concept of disjointly productive players, related axioms, our
theorem and a compact corollary. Section 4 gives a brief conclusion and some hints on how
to reduce the complexity of computing the Shapley value in some situations.

1Lehrer (1988) introduces another merged players game that uses as a new worth for certain coalitions the
maximum worth of certain subcoalitions from the old game..
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2 Preliminaries

Let the countably infinite set U be the universe of players. We denote by N the set of all
non-empty and finite subsets of U. A (TU-)game is a pair (N, v) such that N ∈ N and v
is a coaltion function, i.e., v : 2N → R, v(∅) = 0. We call the subsets S ⊆ N coalitions
and v(S) is the worth of the coalition S, ΩS denotes the set of all nonempty subsets of S,
(S, v) is the restriction of (N, v) to the player set S ∈ ΩN, and the set of all games (N, v)
is denoted by V(N).
Let N ∈ N , (N, v) ∈ V(N). For all S ⊆ N , the dividends ∆v(S) (Harsanyi, 1959) are

defined recursively by

∆v(S) :=

{

0, if S = ∅, and

v(S)−
∑

R(S ∆v(R), if S ∈ ΩN.
(1)

A TU-game (N, uT ) ∈ V(N), T ∈ ΩN, is called a unanimity game if for all S ⊆ N we
have uT (S) := 1 if T ⊆ S and uT (S) := 0 otherwise. By (Shapley, 1953b), any coalition
function v on N has a unique representation

v =
∑

T∈ΩN

∆v(T )uT . (2)

We call a coalition S ⊆ N inessential in (N, v) if ∆v(S) = 0. Themarginal contribution
MCv

i (S) of a player i ∈ N to a coalition S ⊆ N\{i} is given byMCv
i (S) := v(S∪{i})−v(S).

A player i ∈ N is called a dummy player in (N, v) if v(S∪{i}) = v(S)+v({i}), S ⊆ N\{i};
we call two players i, j ∈ N, i 6= j, symmetric in (N, v) if for all S ⊆ N\{i, j}, we have
v(S ∪ i) = v(S ∪ j), they are called mutually dependent (Nowak and Radzik, 1995) in
(N, v) if v(S ∪ {i}) = v(S) = v(S ∪ {j}).
For all N ∈ N , a TU-value ϕ is an operator that assigns to any (N, v) ∈ V(N) a payoff

vector ϕ(N, v) ∈ RN. The Shapley value Sh (Shapley, 1953b) is given by

Shi(N, v) :=
∑

S⊆N,S∋i

∆v(S)

|S|
for all i ∈ N. (3)

We make use of the following two standard axioms for TU-values.

Efficiency, E. For all N ∈ N , (N, v) ∈ V(N), we have
∑

i∈N ϕi(N, v) = v(N).

Symmetry, S. For allN ∈ N , (N, v) ∈ V(N) and i, j ∈ N such that i and j are symmetric
in (N, v), we have ϕi(N, v) = ϕj(N, v).

3 Disjointly productive players

Nowak and Radzik (1995) introduced the concept of mutually dependent players. This
means that two mutually dependent players are only jointly productive. The contribution
of each of these players to any coalition that does not contain the other is zero. The
following concept represents the opposite to this. Here, certain players are only productive
when a certain other player is not in the group.

Definition 3.1. For all N ∈ N , (N, v) ∈ V(N), two players i, j ∈ N are called disjointly
productive in (N, v) if, for all S ⊆ N\{i, j}, S ∋ j, we have MCv

i (S ∪ {j}) = MCv
i (S).
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Remark 3.2. Note that MCv
i (S ∪ {j}) = MCv

i (S) in Definition 3.1 is equivalent to
MCv

j (S ∪ {i}) = MCv
j (S). Grabisch and Roubens (1999) use the quantity v(S ∪ {i, j}) −

v(S ∪ {i}) − v(S ∪ {j}) + v(S), or, respectively, the average of it over all coalitions, for
their study of ”interaction indices.” Thus, our definition is equivalent to this quantity if it
is zero for all coalitions.

If we consider the dividend as ”the pure contribution of cooperation in a TU-game” (Billot
and Thisse, 2005), it is consequent that any coalition containing only one of two mutually
dependent players has a dividend of zero. In this sense, the contribution of cooperation
made by the formation of coalitions with two disjointly productive players is also zero.

Lemma 3.3. Let N ∈ N , (N, v) ∈ V(N). Two players i, j ∈ N are disjointly productive
in (N, v) if and only if for all S ⊆ N , we have

v(S) =
∑

R⊆S, {i,j}*R

∆v(R) or, equivalent by (1), ∆v(S) = 0, if {i, j} ⊆ S. (4)

Proof. Let N ∈ N , (N, v) ∈ V(N), and i, j ∈ N . By induction on the size t := |T |, T ⊆
N\{i}, T ∋ j, we show, for all S ⊆ T, S ∋ j, that

v(S ∪ {i}) = v
(

(S\{j}) ∪ {i}
)

− v(S\{j}) + v(S) ⇔ v(S ∪ {i}) =
∑

R⊆S, {i,j}*R

∆v(R). (5)

Initialization: Let t = 1 and therefore T = {j}. Then, by (1), obviously (5) is satisfied.
Induction step: Let t ≥ 2. Assume that (5) is satisfied for all t′, t′ < t, (IH). We have

v
(

(T\{j}) ∪ {i}
)

− v(T\{j}) + v(T )

=
(1)

∑

S⊆((T\{j})∪{i})

∆v(S)−
∑

S⊆T\{j}

∆v(S) +
∑

S⊆T

∆v(S)

=
(IH)

∑

S⊆T, {i,j}*S

∆v(S),

and (5) and, therefore, Lemma 3.3 is shown.

Since two disjointly productive players do not mind each other’s business, so to speak, they
should not mind if the other player leaves the game. This is the statement of our first new
axiom.

Disjointly productive players, DP. For all N ∈ N , (N, v) ∈ V(N), and i, j ∈ N such
that i and j are disjointly productive in (N, v) we have

ϕi(N, v) = ϕi(N\{j}, v).

The following definition considers games that result from the union of disjointly productive
players into a single player.

Definition 3.4. Let N ∈ N , (N, v) ∈ V(N), i, j ∈ N be two disjointly productive players
in (N, v), k ∈ U, k, /∈ N, and Nk

ij := (N\{i, j}) ∪ {k}. The TU-game (Nk
ij, v

k
ij) ∈ V(Nk

ij) is
called a merged (disjointly productive) players game to (N, v) where vkij is given by

vkij(S) :=

{

v(S), k /∈ S,
v
(

(S\{k}) ∪ {i, j}
)

, k ∈ S,
for all S ⊆ Nk

ij. (6)
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That is, any coalition consisting of the same players in the new and old game has the same
worth in both games. Coalitions in which the merged player is a member receive the value
of the corresponding coalition with all the original merging players from the old game.
This definition corresponds to the definition of the merged game in Lehrer (1988) with the
difference that only disjointly productive players are merged.
The following lemma states that for a player in any game, we have split games where that

player is split into two disjointly productive players and the old game is a merged players
game to those games. The dividends from coalitions containing some players and the split
player in the original game are equal to the sum of the dividends from coalitions containing
the same other players and only one each of the two split disjointly productive players in
the split game.

Lemma 3.5. Let N ∈ N , (N, v) ∈ V(N), k ∈ N, i, j ∈ U, i, j /∈ N, and N ij
k := (N\{k})∪

{i, j}. Then, we have some (N ij
k , vijk ) ∈ V(N ij

k ) such that i, j are disjointly productive
in (N ij

k , vijk )(which we will call split (in disjointly productive) players games) and
(N, v) is a merged players game to each (N ij

k , vijk ) where, for all S ⊆ N\{k}, vijk is given by

∆vij
k
(S) = ∆v(S) and (7)

∆vij
k
(S ∪ {i}) + ∆vij

k
(S ∪ {j}) = ∆v(S ∪ {k}). (8)

Proof. Let (N, v) ∈ V(N), k ∈ N, i, j ∈ U, i, j /∈ N, N ij
k := (N\{k}) ∪ {i, j} and be

(N ij
k , vijk ) ∈ V(N ij

k ) such that (7) and (8) are satisfied. Then, we define vijk (S ∪ {i, j}) such
that

∆vij
k
(S ∪ {i, j}) := 0 for all S ⊆ N ij

k \{i, j}. (9)

This is always possible and, by Lemma 3.3, i, j are disjointly productive in (N, v). Therefore,
by (6), we have the merged players game (N, ṽ) to (N ij

k , vijk ), given, for all S ⊆ N\{k}, by

ṽ(S) :=vijk (S), and (10)

ṽ(S ∪ {k}) :=vijk (S ∪ {i, j}). (11)

By (1), (7), and (10), we have v(S) = ṽ(S) for all S ⊆ N\{k}. We will show, by induction
on the size s := |S|,

v(S ∪ {k}) = ṽ(S ∪ {k}) for all S ⊆ N\{k}. (12)

Initialization: Let s = 0 and therefore S = ∅. Then, by (1), (8), (9), and (11), (12) is
satisfied.
Induction step: Let s ≥ 1. Assume that (12) is satisfied for all s′, s′ < s, (IH). We have

∆ṽ(S ∪ {k})

=
(1)

ṽ(S ∪ {k})−
∑

R((S∪{k})

∆ṽ(R)

=
(6)

vijk (S ∪ {i, j})−
∑

R((S∪{k}),R∋k

∆ṽ(R)−
∑

R((S∪{k}),k /∈R

∆ṽ(R)

=
(10)

vijk (S ∪ {i, j})−
∑

R(S∪{k},R∋k

∆ṽ(R)−
∑

R⊆S

∆vij
k
(R)

=
(IH)
(8)

vijk (S ∪ {i, j})−
∑

R(S∪{i},R∋i

∆vij
k
(R)−

∑

R(S∪{j},R∋j

∆vij
k
(R)−

∑

R⊆S

∆vij
k
(R)

=
(4)

∑

R⊆S∪{i,j}, {i,j}*R

∆vij
k
(R)−

∑

R(S∪{i},R∋i

∆vij
k
(R)−

∑

R(S∪{j},R∋j

∆vij
k
(R)−

∑

R⊆S

∆vij
k
(R)

= ∆vij
k
(S ∪ {i}) + ∆vij

k
(S ∪ {j}) =

(8)
∆v(S ∪ {k}).



6

The following new axiom states that if two disjointly productive players merge into one
player who has the same impact on the new game as the two players together had previously,
the payoff for the other players should not change.

Merged (disjointly productive) players game property, MP. For all N ∈ N ,
(N, v) ∈ V(N), i, j ∈ N such that i and j are disjointly productive in (N, v), k ∈ U, k, /∈ N,
and a merged players game (Nk

ij, v
k
ij) ∈ V(Nk

ij) to (N, v), we have

ϕℓ(N
k
ij, v

k
ij) = ϕℓ(N, v) for all ℓ ∈ Nk

ij\{k}. (13)

Our interest is also in the payoffs for the merging players versus the merged player. If the
value is efficient, we get an obvious result.

Remark 3.6. Let N ∈ N , (N, v) ∈ V(N), i, j ∈ N such that i and j are disjointly pro-
ductive in (N, v), k ∈ U, k, /∈ N, and (Nk

ij, v
k
ij) ∈ V(Nk

ij) a merged players game to (N, v).
If ϕ is a TU-value that satisfies E and MP, we have, by (6) and (13),

ϕk(N
k
ij, v

k
ij) = ϕi(N, v) + ϕj(N, v). (14)

(14) corresponds to the condition for 2-efficiency in Lehrer (1988), but our merging players
must be disjointly productive and the TU-value must be efficient.

Remark 3.7. Let Let N ∈ N , (N, v) ∈ V(N), and I ⊆ N, |I| ≥ 3, be a coalition of players
where each i ∈ I is mutually disjointly productive to all other players j ∈ I\{i}. If we merge
two players i, j ∈ I, accordingly to Definition 3.4, into a new player k ∈ U, resulting in a
merged players game (Nk

ij, v
k
ij) ∈ V(Nk

ij), by (4) and (8), we have ∆vkij
(S ∪ {k}) = 0 for all

S ∩ I 6= ∅. This means, by (4), all ℓ ∈ (I\{i, j}) ∪ {k} are mutually disjointly productive
in V(Nk

ij). Therefore, we can apply Definition 3.4 repeatedly to all i ∈ I and have, finally,

for the last merged players game, here denoted by (N, v), a player set N = (N\I) ∪ k and
a coalition function v, given by

v(S) :=

{

v(S), k /∈ S,

v
(

(S\{k}) ∪ I
)

, k ∈ S,
for all S ⊆ N.

Accordingly, (8) can be adapted to

∆
vkij
(S ∪ {k}) =

∑

i∈I

∆v(S ∪ {i}),

and (14) can be adapted to

ϕk(N, v) =
∑

i∈I

ϕi(N, v).

The following lemma is similar to Lemma 2 in Besner (2019), where it is shown that a
TU-value that is efficient and satisfies a player splitting axiom defined there also satisfies
symmetry.

Lemma 3.8. If a TU-value ϕ satisfies E and MP, then ϕ also satisfies S.
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Proof. The proof is similar to the proof of Lemma 2 in Besner (2019).
Let N = {1, 2, ..., n}, n ≥ 2, (N, v) ∈ VN, ϕ be a TU-value that satisfies E and MP, and,

w.l.o.g., player 1 and player 2 be symmetric in (N, v). If we split player 1, in accordance
to MP and Lemma 3.5, into two new disjointly productive players, player n+1 and player
n+ 2, and define Nn+1,n+2

1 := {2, 3, ..., n, n+ 1, n+ 2}, we have

ϕ2(N
n+1,n+2
1 , vn+1,n+2

1 ) = ϕ2(N, v). (15)

If we split player 2, in accordance to MP and Lemma 3.5, into the same players as before,
player n + 1 and player n + 2, instead, and define Nn+1,n+2

2 := {1, 3, 4, ..., n, n + 1, n + 2},
we have

ϕ1(N
n+1,n+2
2 , vn+1,n+2

2 ) = ϕ1(N, v), (16)

where we choose, for all S ⊆ N\{1, 2},

vn+1,n+2
2 (S ∪ {n+ 1}) := vn+1,n+2

1 (S ∪ {n+ 1}),

vn+1,n+2
2 (S ∪ {n+ 2}) := vn+1,n+2

1 (S ∪ {n+ 2}),

vn+1,n+2
2 (S ∪ {1} ∪ {n+ 1}) := vn+1,n+2

1 (S ∪ {2} ∪ {n+ 1}), and

vn+1,n+2
2 (S ∪ {1} ∪ {n+ 1}) := vn+1,n+2

1 (S ∪ {2} ∪ {n+ 1}).

This is possible because players 1 and 2 are symmetric in (N, v).
In the same way, now in the game (Nn+1,n+2

1 , vn+1,n+2
1 ), we split player 2 into two new

disjointly productive players, player n+ 3 and player n+ 4, and, analogously, in the game
(Nn+1,n+2

2 , vn+1,n+2
2 ) player 1 into the same players as before, player n+3 and player n+4.

Note that we have N
(n+1,n+2)n+3,n+4

12 = N
(n+1,n+2)n+3,n+4

21 = {3, 4, ..., n, n+1, n+2, n+3, n+4},
and, since players 1 and 2 are symmetric in (N, v), we can choose

v
(n+1,n+2)n+3,n+4

21 (S) = v
(n+1,n+2)n+3,n+4

12 (S) for all S ( N
(n+1,n+2)n+3,n+4

12 = N
(n+1,n+2)n+3,n+4

21 .

By E, we obtain

ϕn+3

(

N
(n+1,n+2)n+3,n+4

12 , v
(n+1,n+2)n+3,n+4

12

)

+ ϕn+4

(

N
(n+1,n+2)n+3,n+4

12 , v
(n+1,n+2)n+3,n+4

12

)

=
Rem. 3.6

ϕ2(N
n+1,n+2
1 , vn+1,n+2

1 ) =
(15)

ϕ2(N, v),

ϕn+3

(

N
(n+1,n+2)n+3,n+4

21 , v
(n+1,n+2)n+3,n+4

21

)

+ ϕn+4

(

N
(n+1,n+2)n+3,n+4

21 , v
(n+1,n+2)n+3,n+4

21

)

=
Rem. 3.6

ϕ1(N
n+1,n+2
2 , vn+1,n+2

2 ) =
(16)

ϕ1(N, v).

It follows, ϕ1(N, v) = ϕ2(N, v), and S is shown.

We come to our main result.

Theorem 3.9. Sh is the unique TU-value that satisfies E, DP, and MP.

Proof. Let N ∈ N , (N, v) ∈ V(N).
I. Existence: It is well-known that Sh satisfies E. By (3) and Lemma 3.3, it is obvious that
Sh satisfies DP.
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•MP: Let i, j ∈ N be such that i and j are disjointly productive in (N, v) and (Nk
ij, v

k
ij) ∈

V(Nk
ij) be a merged players game to (N, v). We have

Shℓ(N
k
ij, v

k
ij) =

(3)

∑

S⊆Nk
ij ,

S∋ℓ

∆vkij
(S)

|S|

=
(7)
(8)

∑

S⊆(N\{i,j}),
S∋ℓ

∆v(S)

|S|
+

∑

S⊆(N\{j}),
{i,ℓ}⊆S

∆v(S)

|S|
+

∑

S⊆(N\{i}),
{j,ℓ}⊆S

∆v(S)

|S|

=
∑

S⊆N,{i,j}*S,
S∋ℓ

∆v(S)

|S|
=
(4)

Shℓ(N, v) for all ℓ ∈ Nk
ij\{k},

and MP is shown.
II. Uniqueness: Let ϕ be a TU-value that satisfies all axioms of Theorem 3.9 and, therefore,
by Lemma 3.8, also S. By MP, applying Lemma 3.5 and Remark 3.7, we split succesively
each player i ∈ N of the n = |N | players in 2n−1 disjointly productive players iS, S ⊆
N, S ∋ i. In the final split game, we call it (N, v), we have n · 2n−1 players. Each of the
coalitions containing all players with the same coalition S ⊆ N as a subscript get a worth
of the dividend ∆v(S) and all other coalitions are defined as inessential in (N, v), i.e., we

have, for all T ∈ ΩN,

∆v(T ) :=

{

∆v(S), T =
⋃

i∈S{iS}, S ∈ ΩN,
0, otherwise.

(17)

We illustrate our procedure with a small example: Let (N ′, w) ∈ V(N ′), N ′ =
{1, 2, 3}. At first, we split for a new game (N ′

1, w1) player 1, using Lemma
3.5 and Remark 3.7, into four players 1{1}, 1{1,2}, 1{1,3}, 1{1,2,3} with the player set
N ′

1 := (N ′\{1}) ∪ {1{1}, 1{1,2}, 1{1,3}, 1{1,2,3}}. By Remark 3.7, we define w1 by

∆w1
({1{1}}) := ∆w(1), ∆w1

({1{1,2}, 2}) := ∆w({1, 2}),
∆w1

({1{1,3}, 3}) := ∆w({1, 3}), ∆w1
({1{1,2,3}, 2, 3}) := ∆w({1, 2, 3}),

w1(S) := w(S) for all S ⊆ N ′\{1}, and all other coalitions are defined as inessential in
(N ′

1, w1).
In the next step, we split for a new game (N ′

12, w12) player 2, using Lemma 3.5 and
Remark 3.7, into four players 2{2}, 2{1,2}, 2{2,3}, 2{1,2,3} with the player set N ′

12 := (N ′
1\{2})∪

{2{2}, 2{1,2}, 2{2,3}, 2{1,2,3}}. By Remark 3.7, we define w12 by

∆w12
({2{2}}) := ∆w(2), ∆w12

({1{1,2}, 2{1,2}}) := ∆w({1, 2}),
∆w12

({2{2,3}, 3}) := ∆w({2, 3}), ∆w12
({1{1,2,3}, 2{1,2,3}, 3}) := ∆w({1, 2, 3}),

w12(S) := w1(S) for all S ⊆ N ′
1\{2}, and all other coalitions are defined as inessential in

(N ′
12, w12).
Finally, we split for a new game (N ′

123, w123) player 3, using Lemma 3.5 and Re-
mark 3.7, into four players 3{3}, 3{1,3}, 3{2,3}, 3{1,2,3} with the player set N ′

123 :=
1{1}, 1{1,2}, 1{1,3}, 1{1,2,3}, 2{2}, 2{1,2}, 2{2,3}, 2{1,2,3}, 3{3}, 3{1,3}, 3{2,3}, 3{1,2,3}. By Remark
3.7, we define w123 by

∆w123
({1{1}}) := ∆w(1), ∆w123

({2{2}}) := ∆w({2}),
∆w123

({3{3}}) := ∆w(3), ∆w123
({1{1,2}, 2{1,2}}) := ∆w({1, 2}),

∆w123
({1{1,3}, 3{1,3}}) := ∆w({1, 3}) ∆w123

({2{2,3}, 3{2,3}}) := ∆w({2, 3}),
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∆w123
({1{1,2,3}, 2{1,2,3}, 3{1,2,3}}) := ∆w({1, 2, 3}),

and all other coalitions are defined as inessential in (N ′
123, w123).

Back to our original split game (N, v), by E, MP, Lemma 3.5, and Remark 3.7, we have
that the sum of the payoffs to all players who are split from the same player in the original
game equals the payoff to that player in the original game, i.e.,

∑

iS , S∈ΩN, S∋i

ϕiS(N, v) = ϕi(N, v) for all i ∈ N. (18)

By (17), for each T ∈ ΩN, T =
⋃

i∈S{iS}, S ∈ ΩN, all j ∈ N\T are disjointly productive to

any k ∈ T . Therefore, repeatedly using DP, we have, for each T ∈ ΩN, T =
⋃

i∈S{iS}, S ∈
ΩN,

ϕk(N, v) = ϕk(T, v) for all k ∈ T.

All k ∈ T are symmetric in (T, v). Thus, by E and S, ϕ is unique for all j ∈ N in (N, v),
and therefore, by (18), for all i ∈ N in (N, v), and Theorem 3.9 is shown.

In the context of coalition structures (Aumann and Drèze, 1974; Owen, 1977), Hart and
Kurz (1983) presented an axiom, called dummy coalition, which can be seen as a gener-
alization of the dummy player property for games with a coalition structure. We adapt
this axiom for TU-games and call a coalition S ∈ ΩN a dummy coalition in (N, v) if
v(T ∪R) = v(T ) + v(R) for all T ⊆ N\S and R ⊆ S.

Dummy coalition, DC. For all (N, v) ∈ V(N) and S ∈ ΩN such that S is a dummy
coalition in (N, v), we have

∑

i∈S ϕi(N, v) = v(S).

By this axiom, all players of a dummy coalition receive together as a payoff what the
coalition alone generates for itself.

Remark 3.10. Note that the grand coalition is always a dummy coalition. Therefore, DC
implies E.

Remark 3.11. It is well-known and easy to show that i ∈ N is a dummy player in (N, v)
if and only if we have ∆v(S) = 0 for all S ⊆ N, {i} ( S.

A similar result holds for a dummy coalition.

Lemma 3.12. Let N ∈ N , (N, v) ∈ V(N). S ∈ ΩN is a dummy coalition in (N, v) if
and only if we have ∆v(T ) = 0 for all T ⊆ N, T * S, (T ∩ S) 6= ∅.

Proof. Let N ∈ N , (N, v) ∈ V(N), and S ∈ ΩN. We have to show, for all R ∈ ΩS and all
T ∈ ΩN\S,

v(R ∪ T ) = v(R) + v(T ) ⇔ ∆v(R ∪ T ) = 0; (19)

We use a first induction I1 on the size s := |S|.
Initialization I1: Let s = 1. Then, R = S and (19) follows by Remark 3.11.
Induction step I1: Let s ≥ 2. Assume that (19) is satisfied for all s′, s′ < s, (IH1). We

use a second induction I2 on the size t := |T |.
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Initialization I2: Let t = 1 and, therefore, T = {i}, i ∈ N\S. We have

0 = v(R ∪ {i})− v(R)− v({i}) =
(1)

∑

Q⊆(R∪{i})

∆v(Q)−
∑

Q⊆R

∆v(Q)−∆v({i})

=
∑

Q⊆(R∪{i})
Q∋i

∆v(Q) +
∑

Q⊆R

∆v(Q)−
∑

Q⊆R

∆v(Q)−∆v({i}) =
(IH1)

∆v(R ∪ {i}),

and (19) is shown.
Induction step I2: Let t ≥ 2. Assume that (19) is satisfied for all t′, t′ < t, (IH2). We

have

0 = v(R ∪ T )− v(R)− v(T ) =
(1)

∑

Q⊆(R∪T )

∆v(Q)−
∑

Q⊆R

∆v(Q)−
∑

Q⊆T

∆v(T )

=
∑

Q⊆(R∪T )
R∩Q 6=∅,T∩Q 6=∅

∆v(Q) +
∑

Q⊆T

∆v(Q) +
∑

Q⊆R

∆v(Q)−
∑

Q⊆R

∆v(Q)−
∑

Q⊆T

∆v(T )

=
(IH1)
(IH2)

∆v(R ∪ T ),

and (19), and therefore, Lemma 3.12 is shown.

Remark 3.13. Let N ∈ N and (N, v) ∈ V(N). By Lemma 3.12, each coalition S ∈ ΩN

in a unanimity game uS is a dummy coalition. Since Sh satisfies additivity2 and by (2), it
is obvious that Sh also satisfies DC.

By Lemma 3.12, all coalitions T ∈ ΩN, T =
⋃

i∈S{iS}, S ∈ ΩN in the proof of Theorem 3.9

are dummy coalitions in (N, v). Therefore, by DC, also (18) is satisfied. By Remark 3.10
and the proof of Theorem 3.9, the following compact axiomatization is obvious.

Corollary 3.14. Sh is the unique TU-value that satisfies DC and MP.

We complete this section by showing the logically independence of the axioms in our main
result.

Remark 3.15. The axioms in Theorem 3.9 are logically independent:

❼ E: The TU-value ϕ := 2Sh satisfies DP and MP but not E.

❼ DP: The TU-value φ, defined for all N ∈ N , (N, v) ∈ VN, by

φi(N, v) :=











v({i})
∑

j∈N v({j})
v(N),

∑

j∈N v({j}) 6= 0,

Shi(N, v), otherwise,

for all i ∈ N.

satisfies E and MP but not DP.

❼ MP: The TU-values φc, defined in Besner (2020) for all N ∈ N , (N, v) ∈ VN, and all
c > 0, by

φc
i(N, v) :=

∑

S⊆N,S∋i

|v({i})|+ c
∑

j∈S(|v({j})|+ c)
∆v(S) for all i ∈ N.

satisfy E and DP but not MP.
2Additivity: For all N ∈ N , (N, v), (N,w) ∈ V(N), we have ϕ(N, v) + ϕ(N,w) = ϕ(N, v + w).
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4 Conclusion and a note on the complexity of computing the Shap-
ley value

The merged players game property, when interpreted as a split into disjointly produc-
tive players property, means that if a player splits into several other disjointly productive
players, the payoff to the players non-involved should not change.
In this age of increasing online activity, it is often impossible for participants to know

whether different user accounts always trace back to different users. If different people in
different groups cooperate to different degrees and the resulting cooperation gains are to
be distributed, it should not matter under a fair solution concept whether a participant
participates with only one account or under multiple accounts, as long as he or she makes
the same total contribution overall.
However, these multiple accounts of a single individual may just be considered disjointly

productive, since this participant does not generate coalitional gains only with him/herself.
Therefore, satisfying the disjointly productive players property seems desirable for a fair
solution concept in this regard.
Due to the steadily increasing use of artificial intelligence and machine learning, coopera-

tive game theory is gaining importance, this is especially true for the Shapley value (see, e.g.,
Štrumbelj and Kononenko (2014), Takeishi (2019), Rodŕıguez-Pérez and Bajorath (2020)).
Often, different (input) features are used as players and the payoffs are calculated via the
different interactions or effects of the features among each other using the Shapley value.
For reasons of complexity, approximation methods for the Shapley value must already be

used for relatively small sets of players. Nevertheless, if the players have certain structures
or properties among them, it may be possible to use exact algorithms. It is well-known
that null players and dummy players can be easily removed from the game.
If we know that certain features or players have no influence on each other, i.e., they

are disjointly productive, both of the new introduced axioms come into play. Due to
the disjointly productive players property, the payoff to the other disjointly productive
players does not change when we remove a disjointly productive player. Especially, dummy
coalitions can be removed from the game, reducing the complexity of the calculation for
both the remaining players and the players within the dummy coalition. Due to the merged
players property, we can simply merge all mutually disjointly productive players into one
player and then compute the payoffs to the others with less complexity.
With a simple trick, mutually dependent players can also be valuable for calculating the

Shapley value. If we have a group of such only jointly productive players, we combine
them into a single player. For the payoff calculation, we then have to apply a weighted
Shapley value, where the merged player, e.g., gets as weight the number of merged players
and all others keep a weight of one (see Ratzik (2012)). If we reduce the number of players
needed for a calculation, the accuracy of the results obtained by approximation methods
also improves.
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