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We present proofs, some of which are very simple, of theorems on the second-order

properties of quasi-concave functions.

1 Introduction

Quasi-concavity is an important concept in economics, e.g. we often assume that utility functions

and production functions are quasi-concave. Arrow and Enthoven (1961) studied the problem

of maximizing a quasi-concave function subject to constraints as well as gave properties of

quasi-concavity in terms of bordered determinants. These properties are equivalent to the

condition that the Hessian matrix be negative-definite subject to a constraint (Debreu 1952).

First-order properties of quasi-concave functions are given in e.g. Mangasarian (1969, chapter 9).

In this paper we give theorems on the relation between quasi-concavity and negative definiteness

of the Hessian matrix and prove these theorems directly.

2 Quasi-concavity

Let 𝑓 be a function from an open convex set 𝐶 in R𝑛 to the real line R.

Definition 1. 𝑓 is quasi-concave if for every 𝑥 and 𝑦 in 𝐶 such that 𝑓 (𝑦) ≥ 𝑓 (𝑥), we have

𝑓
(

𝜆𝑥 + (1 − 𝜆)𝑦
)

≥ 𝑓 (𝑥) for every 𝜆 with 0 < 𝜆 < 1. 𝑓 is strictly quasi-concave if for every 𝑥

and 𝑦 in 𝐶 such that 𝑓 (𝑦) ≥ 𝑓 (𝑥), we have 𝑓
(

𝜆𝑥 + (1 − 𝜆)𝑦
)

> 𝑓 (𝑥) for every 𝜆 with 0 < 𝜆 < 1.
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For every point 𝑥 in 𝐶 and for each vector ℎ from R𝑛 such that 𝑥 + ℎ lies in 𝐶,we define a

function 𝑔 from the interval [0, 1] to the real line R by 𝑔(𝜆) = 𝑓 (𝑥 + 𝜆ℎ); cf. Berge (1959, p.

217). Quasi-concavity of 𝑓 can be characterized by quasi-concavity of the functions 𝑔, as shown

by the following lemma.

Lemma 1. The function 𝑓 is quasi-concave if and only if for each 𝑥 in 𝐶 and each ℎ in R𝑛, the

function 𝑔 is quasi-concave on [0, 1].

Proof. Trivial. □

Because 𝐶 is an open set, we can extend 𝑔 to the left such that it is defined on an interval

[−𝜖, 1] for some 𝜖 > 0. Lemma 1 also holds if we replace [0, 1] in its statement by [−𝜖, 1]. Thus

the derivatives of 𝑔, if they exist, are defined at 0.

We assume from now on that 𝑓 is twice continuously differentiable. Then 𝑔 is also twice

continuously differentiable.

3 Necessary second-order properties

Lemma 2. Let 𝑣 be a twice continuously differentiable quasi-concave function from an open

interval 𝐼 in the real line R to the real line R. If 𝑣′(𝑥) = 0 at a point 𝑥 in 𝐼, then 𝑣′′(𝑥) ≤ 0.

Proof. Suppose the contraryȷ 𝑣′′(𝑥) > 0. Then there exists a neighborhood 𝑁 of 𝑥 such that

𝑣(𝑦) > 𝑣(𝑥) for every 𝑦 ≠ 𝑥 in 𝑁 . Choose a point 𝑤 in 𝑁 to the left of 𝑥 and a point 𝑧 in

𝑁 to the right of 𝑥. There exists a 𝜆 with 0 < 𝜆 < 1 such that 𝑥 = 𝜆𝑤 + (1 − 𝜆)𝑧. Thus

𝑣(𝜆𝑤 + (1 − 𝜆)𝑧) < min{𝑣(𝑤), 𝑣(𝑧)},which contradicts the quasi-concavity of 𝑣. □

Theorem 1. If 𝑓 is quasi-concave then for every point 𝑥 in 𝐶 there holds ℎ′ D
2 𝑓 (𝑥)ℎ ≤ 0 for

every ℎ such that ℎ′ D 𝑓 (𝑥) = 0.

Proof. Choose a point 𝑥 in 𝐶 and let ℎ be a vector from R𝑛 such that ℎ′ D 𝑓 (𝑥) = 0. Define 𝑔

by 𝑔(𝜆) = 𝑓 (𝑥 + 𝜆ℎ). By Lemma 1, 𝑔 is quasi-concave. We have 𝑔′(𝜆) = ℎ′ D 𝑓 (𝑥 + 𝜆ℎ) and

𝑔′′(𝜆) = ℎ′ D
2 𝑓 (𝑥 + 𝜆ℎ)ℎ. Therefore 𝑔′(0) = 0 and thus by Lemma 2 we have 𝑔′′(0) ≤ 0. That

isȷ ℎ′ D
2 𝑓 (𝑥)ℎ ≤ 0. □

4 Sufficient second-order properties

The converse of Theorem 1 does not hold. For example 𝑓 (𝑥) = 𝑥4 is not quasi-concave; but

for all scalars ℎ such that ℎ 𝑓 ′(𝑥) = 0, there holds ℎ2 𝑓 ′′(𝑥) = 0. Another counterexample

is 𝑓 (𝑥1, 𝑥2) = (𝑥1 − 5)4(𝑥2 − 5)4. For all vectors ℎ such that ℎ′ D 𝑓 (𝑥) = 0 there holds

ℎ′ D
2 𝑓 (𝑥)ℎ = −8ℎ2

1
(𝑥1 − 5)2(𝑥2 − 5)4 ≤ 0 if 𝑥1 ≠ 5 and 𝑥2 ≠ 5, and ℎ′ D

2 𝑓 (𝑥)ℎ = 0 if

either 𝑥1 = 5 or 𝑥2 = 5; however 𝑓 is not quasi-concaveȷ 𝑓 (2, 2) < 𝑓 (2, 12), but 𝑓 (7, 7) =

𝑓 (1/2(2, 2) + 1/2(12, 12)) < 𝑓 (2, 2).

However, if at least one partial derivative of 𝑓 is everywhere on 𝐶 non-zero, then the converse

of Theorem 1 holds.

2



Theorem 2. Let 𝜕 𝑓 /𝜕𝑥𝑛 be non-zero on 𝐶 and let all the contour lines of 𝑓 lie in R𝑛−1 ∩ 𝐶. If

for every point 𝑥 in 𝐶 there holds ℎ′ D
2 𝑓 (𝑥)ℎ ≤ 0 for every ℎ such that ℎ′ D 𝑓 (𝑥) = 0, then 𝑓 is

quasi-concave.

Proof. (adapted from Arrow and Enthoven 1961, theorem 4, who prove this for the two-

dimensional case). We will show that each contour line (level set) of 𝑓 is convex, and that this

implies 𝑓 is quasi-concave.

Define for each point 𝑥 in R𝑛ȷ 𝑥 = (𝑥1, 𝑥2, · · · , 𝑥𝑛−1).

We define 𝑓𝑖 to be the 𝑖-th element of the gradient D 𝑓 . So 𝑓𝑛 ≠ 0 everywhere on 𝐶. Because

of the continuity of 𝑓𝑛 there holds either 𝑓𝑛 > 0 or 𝑓𝑛 < 0. Suppose 𝑓𝑛 < 0.

Choose two points 𝑥0 and 𝑦0 in 𝐶 and let 𝑓 (𝑦0) ≥ 𝑓 (𝑥0). Let 𝜆0 be the largest value of 𝜆 in

[0, 1] such that 𝑓 (𝜆𝑥0 + (1 − 𝜆)𝑦0) = 𝑓 (𝑥0) and define 𝑧0
= 𝜆0𝑥0 + (1 − 𝜆0)𝑦0.

Consider the contour line {𝑥 | 𝑓 (𝑥) = 𝑓 (𝑥0)}. Because 𝑓𝑛 > 0 there exists a twice continuously

differentiable function 𝐹 : R
𝑛−1 ∩ 𝐶 → R such that 𝑓 (𝑥, 𝐹 (𝑥)) = 𝑓 (𝑥0) and 𝐹 (𝑥) = 𝑥𝑛 for

each 𝑥 in R𝑛−1 ∩ 𝐶. Let ℎ̃ = (ℎ1, ℎ2, · · · , ℎ𝑛−1) be an arbitrary vector in R𝑛−1 and define ℎ𝑛 =

−
∑𝑛−1

𝑖=1
ℎ𝑖 𝑓𝑖 (𝑥, 𝐹 (𝑥))/ 𝑓𝑛 (𝑥, 𝐹 (𝑥)). Then ℎ′ D 𝑓 (𝑥, 𝐹 (𝑥)) = 0 and thus ℎ′ D

2 𝑓 (𝑥, 𝐹 (𝑥))ℎ ≤ 0.

But ℎ′ D
2 𝑓 (𝑥, 𝐹 (𝑥))ℎ = −ℎ̃′ D

2 𝐹 (𝑥) ℎ̃/ 𝑓𝑛 (𝑥, 𝐹 (𝑥)) (see Note at the end of the proof) and thus

ℎ̃′ D
2 𝐹 (𝑥) ℎ̃ ≥ 0 for every point 𝑥 in R𝑛−1 ∩ 𝐶 and for each vector ℎ̃ from R𝑛−1. Therefore 𝐹 is a

convex function.

Take an arbitrary 𝜆 in [0, 𝜆0] and define 𝑤 = 𝑥0 + (1 − 𝜆)𝑦0. There holds 𝑤 = 𝜇𝑥0 + (1 − 𝜇)𝑧0

with 𝜇 = (𝜆 − 𝜆0)/(1 − 𝜆0). Then by the convexity of 𝐹 we have 𝐹 (𝑤̃) = 𝐹 (𝜇𝑥0 + (1 − 𝜇)𝑧0) ≤

𝜇𝐹 (𝑥0) + (1 − 𝜇)𝐹 (𝑧0) = 𝜇𝑥0
𝑛 + (1 − 𝜇)𝑧0

𝑛 = 𝑤𝑛. Because 𝑓𝑛 > 0, it then follows that

𝑓 (𝑤) ≥ 𝑓 (𝑤̃, 𝐹 (𝑤̃)) = 𝑓 (𝑥0).

By definition of 𝜆0 we have 𝑓 (𝜆𝑥0 + (1 − 𝜆)𝑦0) > 𝑓 (𝑥0) for every 𝜆 in (𝜆0, 1]. Thus for each

𝜆 in [0, 1] there holds 𝑓 (𝜆𝑥0 + (1 − 𝜆)𝑦0) ≥ 𝑓 (𝑥0). Therefore 𝑓 is quasi-concave if 𝑓𝑛 > 0.

In the same way we can prove that 𝑓 is quasi-concave if 𝑓𝑛 < 0.

Note: Proof of ℎ′ D
2 𝑓 (𝑥, 𝐹 (𝑥))ℎ = −ℎ̃′ D

2 𝐹 (𝑥) ℎ̃/ 𝑓𝑛 (𝑥, 𝐹 (𝑥)) ℎ̃

Define 𝑓𝑖 and 𝐹𝑖 to be the 𝑖-th element of the gradient D 𝑓 (𝑥, 𝐹 (𝑥)) respectively D 𝐹 (𝑥), and 𝑓𝑖 𝑗
and 𝐹𝑖 𝑗 to be the (𝑖, 𝑗)-th element of the Hessian matrix D

2 𝑓 (𝑥, 𝐹 (𝑥)) respectively D
2 𝐹 (𝑥). We

have 𝐹𝑖 = − 𝑓𝑖/ 𝑓𝑛 and thus 𝐹𝑖 𝑗 = [ 𝑓𝑖 ( 𝑓𝑛 𝑗 + 𝑓𝑛𝑛𝐹𝑗) − 𝑓𝑛 ( 𝑓𝑖 𝑗 + 𝑓𝑖𝑛𝐹𝑗)]/ 𝑓
2
𝑛 = ( 𝑓𝑖 𝑓𝑛 𝑗 + 𝑓 𝑗 𝑓𝑖𝑛− 𝑓𝑛 𝑓𝑖 𝑗 −

𝑓𝑖 𝑓 𝑗 𝑓𝑛𝑛/ 𝑓𝑛)/ 𝑓
2
𝑛 . The proof now follows by substituting this in ℎ̃′ D

2 𝐹 (𝑥) ℎ̃ =
∑𝑛−1

𝑖=1

∑𝑛−1

𝑗=1
ℎ𝑖ℎ 𝑗𝐹𝑖 𝑗

and noting that −
∑𝑛−1

𝑖=1
ℎ𝑖 𝑓𝑖/ 𝑓𝑛 = ℎ𝑛. □

As shown by the following theorem, the condition that at least one partial derivative is non-zero,

is not required for a function to be strictly quasi-concave.

Theorem 3. If for every point 𝑥 in 𝐶 there holds ℎ′ D
2 𝑓 (𝑥)ℎ < 0 for each ℎ ≠ 0 such that

ℎ′ D 𝑓 (𝑥) = 0, then 𝑓 is strictly quasi-concave.

Proof. Suppose 𝑓 is not strictly quasi-concave. Then there exist two points 𝑥 and 𝑦 such that

𝑓 (𝑦) ≥ 𝑓 (𝑥) and 𝑓 (𝜆0𝑥 + (1 − 𝜆0)𝑦) ≤ 𝑓 (𝑥) for a 𝜆0 with 0 < 𝜆0 < 1. Define ℎ = 𝑦 − 𝑥, and

𝑔 by 𝑔(𝜆) = 𝑔(𝑥 + 𝜆ℎ). Then we have 𝑔(1) ≥ 𝑔(0) and 𝑔(𝜆0) ≤ 𝑔(0). So there exists an 𝛼 in

(0, 1) such that 𝑔(𝛼) ≤ 𝑔(𝜆) for every 𝜆 in [0, 1]. Therefore 𝑔′(𝛼) = 0 and 𝑔′′(𝛼) ≥ 0. That is

ℎ′ D 𝑓 (𝑥 + 𝛼ℎ) = 0, but ℎ′ D
2 𝑓 (𝑥 + 𝛼ℎ)ℎ ≥ 0, which gives a contradiction. □
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The converse of Theorem 3 does not hold. For example 𝑓 (𝑥) = 𝑥4 is strictly concave and thus

strictly quasi-concave, but for each ℎ ≠ 0 we have ℎ 𝑓 ′(0) = 0, but ℎ2 𝑓 ′′(0) = 0. The converse

of Theorem 3 does not hold even if a partial derivative is everywhere non-zero. For example

𝑓 (𝑥1, 𝑥2) = 3𝑥2 − (𝑥1 − 1)4 − 3𝑥1 is strictly concave and thus strictly quasi-concave, 𝜕 𝑓 /𝜕𝑥2 = 3

is everywhere non-zero, but if 𝑥1 = 1, then for all ℎ ≠ 0 such that ℎ′ D 𝑓 (𝑥) = 0 there holds

ℎ′ D
2 𝑓 (𝑥)ℎ = 0.
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