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We present proofs, some of which are very simple, of theorems on the second-order
properties of quasi-concave functions.

1 Introduction

Quasi-concavity is an important concept in economics, €.g. we often assume that utility functions
and production functions are quasi-concave. Arrow and Enthoven (1961) studied the problem
of maximizing a quasi-concave function subject to constraints as well as gave properties of
quasi-concavity in terms of bordered determinants. These properties are equivalent to the
condition that the Hessian matrix be negative-definite subject to a constraint (Debreu 1952).
First-order properties of quasi-concave functions are given in e.g. Mangasarian (1969, chapter 9).
In this paper we give theorems on the relation between quasi-concavity and negative definiteness
of the Hessian matrix and prove these theorems directly.

2 Quasi-concavity
Let f be a function from an open convex set C in R" to the real line R.
Definition 1. f is quasi-concave if for every x and y in C such that f(y) > f(x), we have

fAx+ (1 =2)y) = f(x) forevery A with 0 < A < 1. f is strictly quasi-concave if for every x
and y in C such that f(y) > f(x), we have f(Ax + (1 — 2)y) > f(x) for every A with 0 < A < 1.



For every point x in C and for each vector & from R" such that x + & lies in C,we define a
function g from the interval [0, 1] to the real line R by g(1) = f(x + Ah); cf. Berge (1959, p.
217). Quasi-concavity of f can be characterized by quasi-concavity of the functions g, as shown
by the following lemma.

Lemma 1. The function f is quasi-concave if and only if for each x in C and each h in R", the
function g is quasi-concave on [0, 1].

Proof. Trivial. m|

Because C is an open set, we can extend g to the left such that it is defined on an interval
[—e, 1] for some € > 0. Lemma 1 also holds if we replace [0, 1] in its statement by [—¢, 1]. Thus
the derivatives of g, if they exist, are defined at 0.

We assume from now on that f is twice continuously differentiable. Then g is also twice
continuously differentiable.

3 Necessary second-order properties

Lemma 2. Let v be a twice continuously differentiable quasi-concave function from an open
interval I in the real line R to the real line R. Ifv'(x) = 0 at a point x in I, then v’ (x) < 0.

Proof. Suppose the contrary: v”/(x) > 0. Then there exists a neighborhood N of x such that
v(y) > v(x) for every y # x in N. Choose a point w in N to the left of x and a point z in
N to the right of x. There exists a 4 with 0 < A4 < 1 such that x = Aw + (1 — A)z. Thus
v(Aw + (1 = 2)z) < min{v(w), v(z)},which contradicts the quasi-concavity of v. O

Theorem 1. If f is quasi-concave then for every point x in C there holds h’ D* f(x)h < 0 for
every h such that ' D f(x) = 0.

Proof. Choose a point x in C and let & be a vector from R” such that A’ D f(x) = 0. Define g
by g(1) = f(x + Ah). By Lemma 1, g is quasi-concave. We have g’(1) = h’D f(x + Ah) and
g""(A) = k' D? f(x + Ah)h. Therefore g’(0) = 0 and thus by Lemma 2 we have g’’(0) < 0. That
is: ' D? f(x)h < 0. O

4 Sufficient second-order properties

The converse of Theorem 1 does not hold. For example f(x) = x* is not quasi-concave; but
for all scalars 4 such that 2f’(x) = 0, there holds A%f”(x) = 0. Another counterexample
is f(x1,x2) (x1 — 5)*(x, — 5)*. For all vectors i such that 4’ D f(x) = O there holds
h'D? f(x)h = —8h3(x; — 5)*(x = 5)* < 0if x; # Sand x, # 5, and ' D? f(x)h = 0 if
either x; = 5 or x = 5; however f is not quasi-concave: f(2,2) < f(2,12), but f(7,7) =
F(2(2,2) +14(12,12)) < £(2,2).

However, if at least one partial derivative of f is everywhere on C non-zero, then the converse
of Theorem 1 holds.



Theorem 2. Let 0. f/0x,, be non-zero on C and let all the contour lines of f lie in R"' 0 C. If
for every point x in C there holds h’ D* f(x)h < 0 for every h such that ' D f(x) = 0, then f is
quasi-concave.

Proof. (adapted from Arrow and Enthoven 1961, theorem 4, who prove this for the two-
dimensional case). We will show that each contour line (level set) of f is convex, and that this
implies f is quasi-concave.

Define for each point x in R™: ¥ = (x1,x2, "+ ,Xp—1).

We define f; to be the i-th element of the gradient D f. So f,, # 0 everywhere on C. Because
of the continuity of f;, there holds either f;, > 0 or f,, < 0. Suppose f,, < 0.

Choose two points x” and y* in C and let £(y°) > f(x°). Let A° be the largest value of A in
[0, 1] such that £(Ax% + (1 = 2)y°) = £(x°) and define z° = %% + (1 — 29)y°.

Consider the contour line {x|f(x) = f(x°)}. Because f, > 0 there exists a twice continuously
differentiable function F : R N C — R such that f(#, F(%)) = f(x°) and F(%) = x, for
each¥inR"!'NnC. Leth = (h1,hy, -+, hy—1) be an arbitrary vector in R™ ! and define h,, =
- Z;.“I_ll hi f; (%, F(%))/ fu(%, F(%)). Then h’ D f(%, F(%)) = 0 and thus h’ D? f(%, F(X))h < 0.
But 4’ D? f (%, F(%))h = —h’ D*> F(%)h/ f (%, F (%)) (see Note at the end of the proof) and thus
h’ D* F(%)h > 0 for every point X in R”~! N C and for each vector /& from R"~!. Therefore F is a
convex function.

Take an arbitrary A in [0, 1°] and define w = x° + (1 — 2)y°. There holds w = pux® + (1 — )z°
with ¢ = (1 = 2%)/(1 — 2%). Then by the convexity of F we have F(w) = F(ui® + (1 — u)z%) <
uF(E) + (1 - F(E) = wx® + (1 = )z = w,. Because f, > 0, it then follows that
fw) = fw, F()) = f(x°).

By definition of A° we have f(Ax? + (1 —2)y%) > f(x°) for every A in (2°, 1]. Thus for each
Ain [0, 1] there holds f(Ax% + (1 — 2)y°) > £(x°). Therefore f is quasi-concave if f,, > 0.

In the same way we can prove that f is quasi-concave if f;,, < 0.

Note: Proof of h’ D? f(%, F(%))h = —h’ D> F(Z)h/ f (%, F(X))h

Define f; and F; to be the i-th element of the gradient D f (X, F(¥)) respectively D F (%), and f;;
and F;; to be the (i, j)-th element of the Hessian matrix D? f(X, F (X)) respectively D? F(). We
have F; = — fi/ fu and thus F;; = [ i (fuj+ funF;) _fn(ﬁj-"flnFj)]/fr% = (fifnj+fifin—Infij—
fififan! fa)] £2. The proof now follows by substituting this in 4’ D? F(%)h = Z;’:_ll Z;:ll hih;F;j
and noting that — Z?:_ll hifil fn = hn. O

As shown by the following theorem, the condition that at least one partial derivative is non-zero,
is not required for a function to be strictly quasi-concave.

Theorem 3. If for every point x in C there holds h' D? f(x)h < O for each h # 0 such that
h'D f(x) =0, then fis strictly quasi-concave.

Proof. Suppose f is not strictly quasi-concave. Then there exist two points x and y such that
f(y) = f(x)and (2% + (1 = 2%)y) < f(x) fora 2’ with 0 < 2° < 1. Define & = y — x, and
g by g(1) = g(x + Ah). Then we have g(1) > g(0) and g(2°) < g(0). So there exists an « in
(0, 1) such that g(a) < g(A) for every A in [0, 1]. Therefore g’(@) = 0 and g”’ (@) > 0. That is
h’'D f(x + ah) = 0, but &’ D? f(x + ah)h > 0, which gives a contradiction. O



The converse of Theorem 3 does not hold. For example f(x) = x* is strictly concave and thus
strictly quasi-concave, but for each & # 0 we have i f’(0) = 0, but ~2f”(0) = 0. The converse
of Theorem 3 does not hold even if a partial derivative is everywhere non-zero. For example
f(x1,x2) = 3x3 — (x; — 1)* = 3x7 is strictly concave and thus strictly quasi-concave, 9 f /dx, = 3
is everywhere non-zero, but if x; = 1, then for all 2 # 0 such that 2’ D f(x) = 0 there holds
h'D? f(x)h =0.
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