Existence of pure strategy equilibria in Bertrand-Edgeworth games with imperfect divisibility of money

Massimo A. De Francesco

Department of Economics, University of Siena

29. September 2008

Online at http://mpra.ub.uni-muenchen.de/10826/
MPRA Paper No. 10826, posted 29. September 2008 09:18 UTC
Existence of pure strategy equilibria in Bertrand-Edgeworth games with imperfect divisibility of money

Massimo A. De Francesco
Department of Economics, University of Siena

September 29, 2008

Abstract

This paper incorporates imperfect divisibility of money in a price game where a given number of identical firms produce a homogeneous product at constant unit cost up to capacity. We find necessary and sufficient conditions for the existence of a pure strategy equilibrium. Unlike in the continuous action space case, under discrete pricing there may be a range of symmetric pure strategy equilibria - which we fully characterize - a range which may or may not include the competitive price. Also, we determine the maximum number of such equilibria when competitive pricing is itself an equilibrium.

Keywords: Bertrand-Edgeworth competition, Price game, Oligopoly, Pure strategy equilibrium, Discrete pricing.

1 Introduction

In theoretical work on price competition among sellers of a homogeneous product, the price is customarily viewed as a continuous choice variable. This is an analytical simplification since there is in fact a minimum currency denomination (e.g., a cent). Once this is recognized, one has to reconsider the issue of the existence of a pure strategy equilibrium (henceforth, PSE) in a Bertrand-Edgeworth game. This has been done by Dixon (1993) and very recently by Chowdhury (2008) under strict convexity of costs, a setting where a PSE does not exist in the continuous-action space model (Tirole,
Assuming the firms to choose first price and next output (each firm producing the minimum between its competitive supply at the set price and its forthcoming demand), a sufficient condition is established by Dixon for the existence of PSE under efficient rationing, a condition that holds in a sufficiently large industry. Chowdhuri focuses mainly on a simultaneous price and quantity game. For a large class of rationing rules, he proves that, with sufficiently many identical firms, all firms charging the lowest feasible price above the competitive price is the unique symmetric PSE.

In the continuous-action space model, existence of PSE is also problematic when unit cost is constant up to capacity (Vives, 1986). We incorporate imperfect divisibility of money in this setup, assuming symmetric oligopoly, a decreasing and concave demand function and efficient rationing. Section 2 finds necessary and sufficient conditions for existence of a PSE and multiplicity of symmetric PSE. The findings can be summarized as follows. A pivotal role is played by the highest uniform price that is not worth undercutting \(p^* \): this is at least as high as the competitive price \(p^w \). If competitive pricing is an equilibrium, then there are multiple symmetric PSE so long as \(p^* > p^w \), any uniform price from \(p^w \) to \(p^* \) being a PSE. If instead competitive pricing is not an equilibrium, then \(p^* \) is definitely higher than \(p^w \) and a PSE will exist if and only if a unilateral price increase is unworthy at market price \(p^* \): then the set of symmetric PSE will include any uniform price from \(p^* \) down to the lowest price at which a unilateral price increase is not worth it.

Section 3 clarifies the role of the size of the market and the minimum currency denomination. In the former connection we derive, from an industry where a PSE does not exist, a family of larger industries by applying Dixon’s (1993) "replication" procedure. In a sufficiently large replica industry, all firms charging \(p^* \) becomes a PSE and, with further increases in the industry size, the range of symmetric PSE extends downwards to include the competitive price. Concerning the size of the minimum currency denomination \(\epsilon \), we show that, if competitive pricing is not an equilibrium with continuous pricing, then no PSE exists with discrete pricing either, provided \(\epsilon \) is sufficiently small. A second result relates to the case where there are several symmetric PSE including competitive pricing. As \(\epsilon \) decreases, the number of symmetric PSE tends to increase up to a well-defined maximum while at the same time the price converges asymptotically to \(p^w \) at any equilibrium. Section 4 briefly concludes and the Appendix contains proofs of main results.

1Competitive price is identified with marginal cost at zero output, \(c'(0) \). This identification relies on the following argument. Let there be \(n < \infty \) price-taking potential entrants. Under strict cost convexity, there will be \(n \) active firms, and the competitive price will converge to \(c'(0) \) (under perfect divisibility of money) as \(n \) increases.
2 The model

There are \(n\) firms, each producing a homogeneous good at constant unit cost (normalized to zero) up to capacity \(q = Q/n\), where \(Q\) is total capacity. \(R^+\) and \(I^+\) are the sets of nonnegative reals and integers, respectively. Demand and the inverse demand function are \(D(p)\) and \(P(Q)\), respectively, \(Q\) being total output. In the real domain, \(D'(p) < 0\) and \(D''(p) \leq 0\) for \(p \in (0, F)\), where \(D(p) = 0\) at \(p = F\) and \(D(p) > 0\) at \(p < F\). We denote by \(D'(p^e)\) the derivative of \(D\) at some specified price \(p^e\). The set of feasible prices is \(\{k\epsilon\}, \epsilon > 0\) being the minimum currency denomination. The competitive price, \(p^w\), is 0 if \(D(0) \leq Q\) and \(P(Q)\) if \(D(0) > Q\). (With \(D(0) > Q\) we let \(P(Q) \in \{k\epsilon\}\), so that a competitive equilibrium exists.) In the price game the firms choose prices, whereupon the buyers make purchasing decisions. \(\Pi_i(p_i, p_{-i})\) denotes firm \(i\)'s payoff at strategy profile \((p_1, ..., p_n)\) and \(\Pi_i(p'_i, p_{-i})\) its payoff if deviating to \(p'_i\). Symmetric pure strategy profiles \((p, ..., p)\) are referred to as \(\mathbf{p}\) and \(i\)'s associated payoff as \(\pi_i(\mathbf{p})\), where \(\pi_i(\mathbf{p}) = pD(p)/n\) for \(p > p^w\). We let \(\bar{p} = \max\{p_1, ..., p_n\}\), \(\bar{H} = \{i : p_i = \bar{p}\}\), and \#\(\bar{H}\) \(= \bar{p}\). Rationing is according to the efficient rule: thus, if \(\bar{p} = 1\), \(\pi_i(p_i, p_{-i}) = \bar{p} \min\{\bar{q}, \max\{0, D(\bar{p}) - (n - 1)\bar{q}\}\}\) for \(i \in \bar{H}\). Note that \(p\lfloor D(p) - (n - 1)\bar{q}\rfloor < \pi_i(\mathbf{p})\) at any \(p \in (p^w, \bar{p})\). We let \(\tilde{\bar{p}} = \arg \max_{p \in \{k\epsilon\}} p\lfloor D(p) - (n - 1)\bar{q}\rfloor\) and \(\tilde{\bar{q}} = \tilde{\bar{p}}\lfloor D(\tilde{\bar{p}}) - (n - 1)\bar{q}\rfloor\); \(\bar{p}\) is within \(\leq \epsilon\) of \(\tilde{\bar{p}}\) \(\in \mathcal{R}^+\), \(\tilde{\bar{p}}\) being the solution of \(D(p) - (n - 1)\bar{q} + pD'(p) = 0\). Further, \(\pi^e = \tilde{\bar{p}}\lfloor D(\tilde{\bar{p}}) - (n - 1)\bar{q}\rfloor\).

It is easily seen when competitive pricing is an equilibrium.

Proposition 1 (i) With \(p^w \geq 0\), \(p^w\) is an equilibrium iff

\[
\frac{(p^w + \epsilon) [Q - D(p^w + \epsilon)\epsilon q]}{\epsilon q} \geq 1, \text{ if } p^w \geq 0, \tag{1}
\]

which can be written

\[
(n - 1)\bar{q} \geq D(\epsilon) \text{ if } p^w = 0. \tag{2}
\]

(ii) In the continuous action space case \((\epsilon = 0)\), \(p^w\) is an equilibrium iff

\[
\frac{-p^w D'(p^w)}{\bar{q}} \geq 1 \text{ if } p^w > 0 \tag{1'}
\]

and

\[
(n - 1)\bar{q} \geq D(0) \text{ if } p^w = 0 \tag{2'}
\]

Proof. (i) (1) derives from \(p^w \bar{q} \geq (p^w + \epsilon) [D(p^w + \epsilon) - (n - 1)\bar{q}]\): necessity of the latter is obvious, sufficiency follows from \(D'' \leq 0\). (ii) (1') derives from \(\frac{d}{dp} [p(D(p) - (n - 1)\bar{q})]_{p=p^w(+)} \leq 0\); (2') is obvious. \(\blacksquare\)
Remark 1. (1') and (2') are slightly stricter than (1) and (2), respectively: thus, if \(p^w \) is an equilibrium with \(\epsilon = 0 \), a fortiori it is so with \(\epsilon > 0 \).

With \(\epsilon = 0 \), no \(p > p^w \) can be an equilibrium: by infinitesimally undercutting, the firm’s output jumps up and profit increases since the fall in revenue per unit is negligible. With discrete pricing, at any \(p > p^w \) let \(\Delta \Pi_{i|\Delta p_i}(p) \) be the change in \(i \)'s profit if deviating from \(p \) by \(\Delta p_i \). At \(p \in [p(\bar{q}) + \epsilon, \bar{p}] \) it pays to undercut: \(\Delta \Pi_{i|\Delta p_i} = -\epsilon(p) = (p - \epsilon)D(p - \epsilon) - (pD(p) / n) \), which is positive at \(p > \epsilon \). Also, a unilateral price increase leads to zero profit when \(D(p + \Delta p_i) \leq (n - 1)\bar{q} \). Here are further results on \(\Delta \Pi_{i|\Delta p_i}(p) \).

Lemma 1. (i) With \(p \in [p^w, P(\bar{q}) + \epsilon] \), \(\Delta \Pi_{i|\Delta p_i} = -\epsilon(p) \) is increasing in \(p \). (ii) Let \(p \in [p^w, P((n - 1)\bar{q}) - \epsilon) \) and consider any \(\Delta p_i > 0 \) such that \(D(p + \Delta p_i) > (n - 1)\bar{q} \); then \(d\Delta \Pi_{i|\Delta p_i}(p) / dp \) is decreasing in \(p \).

Proof. (i) \(\Delta \Pi_{i|\Delta p_i} = (p - \epsilon)\bar{q} - \frac{pD(p)}{n} \), which is increasing in \(p \).

(ii) \(\Delta \Pi_{i|\Delta p_i}(p) = (p + \Delta p_i)D(p + \Delta p_i) - (n - 1)\bar{q} - \frac{pD(p)}{n} \), hence \(d\Delta \Pi_{i|\Delta p_i}(p) / dp \) = \([D(p + \Delta p_i) - (n - 1)\bar{q} - \frac{pD(p)}{n}] + (p + \Delta p_i)D'(p + \Delta p_i) - \frac{pD(p)}{n} \). Thus \(d\Delta \Pi_{i|\Delta p_i}(p) / dp < 0 \) since \(D(p + \Delta p_i) - (n - 1)\bar{q} < \frac{pD(p)}{n} \) and \((p + \Delta p_i)D'(p + \Delta p_i) < \frac{pD(p)}{n} \).

One necessary condition for \(p > p^w \) to be an equilibrium is that at \(p \) it does not pay to undercut. \(\Delta \Pi_{i|\Delta p_i} = -\epsilon(p) \leq 0 \) iff \((p - \epsilon)\bar{q} \leq pD(p) / n \), i. e., iff

\[
p \leq \frac{\epsilon\bar{Q}}{\bar{Q} - D(p)}.
\]

Let \(p^* \) be the highest \(p \in \{k\epsilon \cap [p^w, P(\bar{q})] \) meeting (3) and let \(\hat{p}^* \in \mathcal{R}^+ \) solve (3) as equality over the range \([p^w, P(\bar{q})]\). Of course, \(\hat{p}^* > p^w \) and \(p^* = \{k\epsilon \cap (\hat{p}^* - \epsilon, \hat{p}^*) \). We have the following result on \(p^* \).

Lemma 2. \(p^* \geq \epsilon \) when \(p^w = 0 \), with \(p^* \geq 2\epsilon \) iff \(\bar{Q} \leq 2D(2\epsilon) \); \(p^* \geq P(\bar{Q}) \) when \(p^w = P(\bar{Q}) > 0 \), with \(p^* \geq p^w + \epsilon \) iff \(\frac{\bar{Q} - D(p^w + \epsilon)}{D(p^w + \epsilon)} \frac{p^w}{\epsilon} \leq 1 \).

Proof. With \(p^w = 0 \), \(p^* \geq 2\epsilon \) if \(2 \leq \frac{\bar{Q}}{D(2\epsilon)} \), i. e., \(\bar{Q} \leq 2D(2\epsilon) \), while \(p^* = \epsilon \) if \(\bar{Q} > 2D(2\epsilon) \). With \(p^w = P(\bar{Q}) > 0 \), \(p^* \geq p^w + \epsilon \) if (3) holds at \(p = p^w + \epsilon \), i. e., \(\frac{\bar{Q} - D(p^w + \epsilon)}{D(p^w + \epsilon)} \frac{p^w}{\epsilon} \leq 1 \); if not, then \(p^* = p^w \).

We can now address equilibrium multiplicity when \(p^w \) is an equilibrium.

Proposition 2 Let \(p^w \) be an equilibrium. Then: (i) the set of symmetric PSE is made up of any \(p \in \{k\epsilon \cap [p^w, p^*] \); (ii) if \(p^w = 0 \) there are further symmetric PSE besides \(0 \) and \(\epsilon \) if \(\bar{Q} \leq 2D(2\epsilon) \); if \(p^w > 0 \) there are further symmetric PSE besides \(p^w \) iff \(\frac{\bar{Q} - D(p^w + \epsilon)}{D(p^w + \epsilon)} \frac{p^w}{\epsilon} \leq 1 \).

Proof. (i) Since \(\Delta \Pi_{i|\Delta p_i} > 0(p^w) \leq 0 \), by Lemma 1 a price increase is unworthy at any \(p \in [p^w, \bar{p}] \). Undercutting is also unworthy at any \(p \in [p^w, p^*] \).
In the Appendix.

Proof.

(Proposition 3)

Examples. 1: \(D(p) = 50.4 - 12p, n = 24, \bar{q} = 2, \epsilon = .01\). Then \(p^w = .20\), and \(p^w\) is an equilibrium \((1)\) holds/private rate. \(p^* = .32\), hence any \(p : p \in \{.20, .21, ..., .32\}\) is a PSE. 2: \(D(p) = 60 - 10p, n = 10, \bar{q} = 2, \epsilon = .01\). Then \(p^w = 4; p^w\) is an equilibrium and a unique one since \(p^* = 4\).

PSE may exist even when \(p^w\) is not an equilibrium. Before seeing this, two points must preliminarily be made. First we have

Lemma 3. Suppose \(\Delta \Pi_i|_{\Delta p_i=\epsilon} (p + \epsilon) \geq 0\); then \(\Delta \Pi_i|_{D(p)\epsilon} (p) < 0\).

Proof. In the Appendix. ■

Secondly, when \(p^w\) is not an equilibrium, undercutting is definitely unworthy at \(p\) close enough to \(p^w\).

Lemma 4. Suppose \(p^w\) is not an equilibrium. Then: (i) \(p^* \in [p^w + \epsilon, P(\bar{q})]\); (ii) \(p^* \in [2\epsilon, P(\bar{q})]\) if \(p^w = 0\) and \(\epsilon\) is not an equilibrium; (iii) \(\pi_i(p)\) is increasing for \(p \in \{p^w, p^w + \epsilon, ..., p^*\}\).

Proof. In the Appendix. ■

Now, \(p^*\) is an obvious equilibrium candidate since at \(p^*\) an \(\epsilon\)-price increase is unworthy (by Lemma 3, \(\Delta \Pi_i|_{\Delta p_i=\epsilon} (p^*) < 0\) because \(\Delta \Pi_i|_{\Delta p_i=\epsilon} (p^*+\epsilon) > 0\)). However, for \(p^*\) to be an equilibrium it has to be \(\Delta \Pi_i|_{\Delta p_i} (p^*) \leq 0\) for any \(\Delta p_i > 0\). We have this result.

Proposition 3 Let \(p^w\) not be an equilibrium. Then: (i) \(p^*\) is an equilibrium if/iff \(\pi_i(p^*) \geq \bar{\pi}\). Holding this, let \(p^{**} \in \{k\epsilon\} \cap (p^w, p^*]\) be such that \(\pi_i(p^{**} - \epsilon) < \bar{\pi} \leq \pi_i(p^{**})\). The set of symmetric PSE is made up of any \(p : p \in \{k\epsilon\} \cap [p^{**}, p^*]\). (ii) There are no (symmetric or asymmetric) PSE if/iff \(\bar{\pi} > \pi_i(p^*)\).

Proof. In the Appendix. ■

Remark 2. (i) By concavity of \(p[D(p) - (n - 1)\bar{q}]\) and since \(p[D(p) - (n - 1)\bar{q}] < \pi_i(p)\) for \(p \in (p^w, \bar{\pi})\), a sufficient condition for \(p^*\) to be an equilibrium is \(\bar{\pi} \leq p^*\). (ii) If \(p^w\) is not an equilibrium, there will normally be several (if any) symmetric PSE, \(p^*\) being the only one if/iff \(\pi_i(p^* - \epsilon) < \bar{\pi} \leq \pi_i(p^*)\).

3 Comparative statics

We now see how the size of the market and of the minimum currency denomination affect the equilibrium. Let us begin with the former. Given \(\epsilon\) and \(\bar{q}\), an industry is a "demand function-number of firms" pair. Suppose there is no PSE in industry \((D(p), n)\): by Lemma 4 and Prop. 3, \(\bar{\pi} > p^* > p^w\) and \(\bar{\pi} > \pi_i(p^*) > \pi_i(p^w)\). To generate industries of different size, we adopt
Dixon’s (1993) replication procedure: from \((D(p), n)\) a family of larger industries is derived, \((D^{(r)}(p), n^{(r)}) = (rD(p), rn)\), where \(r > 1\) and \(rn \in \mathcal{I}^+\). Letting \(x\) be the value of some variable in industry \((D(p), n)\), \(x(r)\) denotes its value in the "\(r\)-replica" industry. Note that \(p^w(r) = p^w, p^*(r) = p^*\), and \(\pi_i(p(r)) = \pi_i(p)\) while \(\bar{p}(r)\) is decreasing in \(r\) and \(\bar{p}^0(r)\) is also decreasing (so long as \(\bar{p}^0(r) > p^w\)): for \(D(0) \neq n\), \(\bar{p}(r) = p^w\) and \(\bar{p}^0(r) = \pi_i(p^w)\) at some \(r\). (With \(D(0) = n\), \(\bar{p}(r)\) converges asymptotically to 0.) It follows immediately that \(p^*\) is an equilibrium in a sufficiently large \(r\)-replica industry; also, the set of symmetric PSE includes \(p^w\) when \(r\) is sufficiently large.

Proposition 4 Let there be no PSE in industry \((D(p), n)\). Then, in industry \((D^{(r)}(p), n^{(r)})\): (i) \(p^*\) is an equilibrium for any \(r \geq r', r'\) being the smallest \(r\) such that \(rn \in \mathcal{I}^+\) and \(\bar{p}(r) \leq \pi_i(p^*)\); (ii) with \(r \geq r'\), the set of symmetric PSE is made up of any \(p : p \in \{ke\} \cap \{p^{*r}(r), p^*\}\) where \(p^{*r}(r)\) is nonincreasing in \(r\) and \(p^{*r}(r) = p^w\) for \(r \geq r''\), \(r''\) being the smallest \(r\) such that \(rn \in \mathcal{I}^+\) and \((p^w + \epsilon)[rD(p^w + \epsilon) - (rn - 1)\bar{q}] \leq \pi_i(p^w)\).

Example. With \(\epsilon = .01\) and \(\bar{q} = 2\), consider the industry \((D(p) = 4.2 - p, n = 2)\). Then \(p^w = .2, \pi_i(p^w) = .4, p^* = .32\), and \(\pi_i(p^*) = .62\). There is no PSE: \(\bar{p} = 1.1\) and \(\bar{p} = 1.21 > \pi_i(p^*) > \pi_i(p^w)\). It is easily checked that \(r' = 3\), hence \(p^*\) is an equilibrium in any \(r\)-replica industry with \(r \geq 3\). In fact, \(\bar{p}(r') = .43\) and \(\bar{p}(r') = .56 < .62\). One can also check that \(p^{*r}(r') = .29\), so that there are four symmetric PSE in the \(r'\)-replica industry. As \(r\) increases the set of symmetric PSE increases: with \(r \geq r'' = 10\) any \(p \in \{p^w, p^w + \epsilon, ..., p^*\}\) is an equilibrium.

To see the relevance of the size of the minimum currency denomination, we now allow for changes in \(\epsilon\) while taking \(D(p), n, \bar{q}\) as given. We write \(\bar{p}(\epsilon), \bar{p}(\epsilon), p^* (\epsilon), \pi_i(p^* (\epsilon))\) since they all depend on \(\epsilon\). Obviously, \(\lim_{\epsilon \rightarrow 0} \bar{p}(\epsilon) = \bar{p}^0\) and \(\lim_{\epsilon \rightarrow 0} \bar{p}(\epsilon) = \bar{p}^0\). As to \(p^* (\epsilon)\) and \(\pi_i(p^* (\epsilon))\), we have

Lemma 5. (i) Let \(\bar{Q} \geq 2D(0)\) if \(p^w = 0\) and \(-\frac{D'(p^w)}{\bar{Q}}p^w \geq 1\) if \(p^w > 0\). Then, for any \(\epsilon > 0\), \(p^* (\epsilon) = \epsilon\) if \(p^w = 0\) and \(p^* (\epsilon) = p^w\) if \(p^w > 0\). (ii) Let \(\bar{Q} < 2D(0)\) if \(p^w = 0\) and \(-\frac{D'(p^w)}{\bar{Q}}p^w < 1\) if \(p^w > 0\). Then, for \(\epsilon\) small

\[\text{For comparison, let us review the main point made by Dixon through his replication procedure under strict cost convexity. As in our model, } p^w(r) = p^w \text{ and } p^*(r) = p^*. \text{ Now, at } p^* \text{ let firm } i \text{ deviate to } p^* + \epsilon; \text{ then its residual demand is decreasing in } r \text{ and falls to zero when } r \text{ increases above some critical level (call it } \tilde{r}) \text{: } r > \tilde{r} \text{ is the condition Dixon draws attention to - clearly, a sufficient condition for } p^* \text{ to be an equilibrium.}

\[\text{In contrast, } p^w \text{ does not depend on } \epsilon. (To preserve existence of the competitive equilibrium, with } P(\bar{Q}) > 0 \text{ only values of } \epsilon \text{ such that } P(\bar{Q}) \in \{ke\} \text{ are being considered.}\]
Lemma 5, for symmetric PSE and for any equilibrium for any.

In the Appendix.

Proof. (i), (ii.a) These follow from Lemma 2, $D' < 0$, and $D'' \leq 0$.

(ii) This follows from $d\pi_1'(\epsilon)/d\epsilon > 0$ and $\lim_{\epsilon \to 0} \pi_1'(\epsilon) = \pi_1(p^w)$.

This is a crucial result since $p \leq p^*$ at any symmetric PSE. One consequence is that, if p^w is not an equilibrium in the continuous action space case, then no PSE exists with discrete pricing provided ϵ is small enough.

Proposition 5 Suppose p^w is not an equilibrium in the continuous action space case. Then, if $\epsilon > 0$ is sufficiently small, no PSE exists.

Proof. Under the stated conditions, $\pi_i(p^w) < \pi_i^o$. For ϵ sufficiently small, p^w is not an equilibrium: $\pi_i(p^w) < \pi^o$ and $p^*(\epsilon) > p^w$. Furthermore, by Lemma 5, for ϵ sufficiently small $\pi_i(p^*(\epsilon)) < \pi_i(\epsilon)$ and no PSE exists.

The size of ϵ also matters when p^w is an equilibrium. Let $h^* \in I^+: p^*(\epsilon) = p^w + (h^* - 1)\epsilon$, so that $h^* = \{k\epsilon \cap [p^w, p^*(\epsilon)]\}$. Note that h^* is the number of symmetric PSE when p^w is itself an equilibrium. We also let $\hat{h}^* \in \mathcal{R}^+: \hat{p}^*(\epsilon) = p^w + (\hat{h}^* - 1)\epsilon$, hence $\hat{h}^* = \lceil(\hat{p}^*(\epsilon) - p^w)/\epsilon\rceil + 1$ while $h^* = \lceil(p^*(\epsilon) - p^w)/\epsilon\rceil + 1$. We can now address equilibrium multiplicity in the event of p^w being an equilibrium.

Proposition 6 Suppose p^w is an equilibrium in the continuous action space case. (i) Let $\overline{Q} \geq 2D(0)$ if $p^w = 0$ and $\frac{-D'(p^w)}{\overline{Q}}p^w \geq 1$ if $p^w > 0$. Then, for any $\epsilon > 0$: 0 and ϵ are the only symmetric PSE ($h^* = 2$) if $p^w = 0$ and p^w is the unique symmetric PSE ($h^* = 1$) if $p^w > 0$. (ii) Let $\overline{Q} < 2D(0)$ if $p^w = 0$ and $\frac{-D'(p^w)}{\overline{Q}}p^w < 1$ if $p^w > 0$. Then: (ii.a) with $\epsilon > 0$ small enough, $h^* \geq 3$ if $p^w = 0$ and $h^* \geq 2$ if $p^w > 0$; (ii.b) h^* increases or remains constant as ϵ decreases; (ii.c) max $h^* = I^+ \cap \{\frac{\overline{Q}}{D'(p^w) - D'(p^w)} + 1\}$. The size of ϵ also matters when p^w is an equilibrium. Let $h^* \in I^+: p^*(\epsilon) = p^w + (h^* - 1)\epsilon$, so that $h^* = \{k\epsilon \cap [p^w, p^*(\epsilon)]\}$. Note that h^* is the number of symmetric PSE when p^w is itself an equilibrium. We also let $\hat{h}^* \in \mathcal{R}^+: \hat{p}^*(\epsilon) = p^w + (\hat{h}^* - 1)\epsilon$, hence $\hat{h}^* = \lceil(\hat{p}^*(\epsilon) - p^w)/\epsilon\rceil + 1$ while $h^* = \lceil(p^*(\epsilon) - p^w)/\epsilon\rceil + 1$. We can now address equilibrium multiplicity in the event of p^w being an equilibrium.

Proof. In the Appendix.

Note that, when there are several symmetric PSE including p^w, any equilibrium price converges to p^w as $\epsilon \to 0$: this is because $p \leq p^*$ at any symmetric PSE and $\lim_{\epsilon \to 0} p^*(\epsilon) = p^w$.

Examples. Here are two examples to illustrate statement (ii) of Prop. 6.

1: $D(p) = 50.4 - 12p$, $n = 24$, $\overline{Q} = 2$. Then $p^w = .2$ and p^w is an equilibrium for any ϵ. For $\epsilon = .2$, $p^*(\epsilon) = 1$ and $h^* = 5$; for $\epsilon = .01$, $p^*(\epsilon) = .32$ and $h^* = 13$; for $\epsilon = .0001$, $p^*(\epsilon) = .0209$ and $h^* = 20$. Note that max $h^* = I^+ \cap [20, 21] = 20$.

2: $D(p) = 52 - p$, $n = 14$, $\overline{Q} = 2$. Then $p^w = 24$ and p^w is an equilibrium for any ϵ. For $\epsilon > 4$, $p^*(\epsilon) = 24$ and $h^* = 1$: p^w is the unique symmetric PSE. For any $\epsilon \leq 4$, $p^*(\epsilon) = p^w + \epsilon (h^* = \max h^* = I^+ \cap [\frac{28}{24}, \frac{52}{24}] = 2)$. 7
4 Conclusion

We have studied discrete pricing when identical price-setting firms produce a homogeneous commodity at constant unit cost up to capacity. Necessary and sufficient conditions have been found for the existence of a PSE and for multiplicity of symmetric PSE. We have seen that, with discrete pricing, there may exist PSE even when competitive pricing is not an equilibrium, although such an event does not occur when the minimum fraction (ε) of the money unit is sufficiently small. Also, the existence of several symmetric PSE including competitive pricing is a concrete possibility and we have computed the maximum number of such equilibria, obtaining for ε small enough.

Thus discrete pricing may lead to quite different results compared to the continuous-action space model. On the other hand, one basic prediction of that model - that the firms earn the competitive profit at any PSE of the price game - is not fundamentally misleading: if ε is sufficiently small, then either a PSE does not exist or the price must be equal to or cannot differ significantly from the competitive price at any symmetric PSE.

References

Appendix

Proof of Lemma 3. Since $\Delta \Pi_{ij}\Delta p_{i}=-\varepsilon(p + \varepsilon) \geq 0$, then $p+\varepsilon > p^w$ if $p^w > 0$ and $p + \varepsilon \geq 2\varepsilon$ if $p^w = 0$. Let $\Delta q_{ij}\Delta p_{i}(p)$ be the change in i’s output when deviating from p by Δp_{i}: then $\Delta \Pi_{ij}\Delta p_{i}=-\varepsilon(p + \varepsilon) = p\Delta q_{ij}\Delta p_{i}=-\varepsilon(p + \varepsilon) - \varepsilon D(p + \varepsilon)\frac{p}{n}$ and $\Delta \Pi_{ij}\Delta p_{i}(p) = p\Delta q_{ij}\Delta p_{i}=-\varepsilon(p + \varepsilon) + \varepsilon \max\{0, D(p + \varepsilon) - (n - 1)\bar{\tau}\}$. Obviously, $\Delta \Pi_{ij}\Delta p_{i}(p) < 0$ at $p \in [P((n - 1)\bar{\tau}) - \varepsilon, \bar{\tau} - \varepsilon]$, hence we focus
on $p \in (p^w, P((n-1)\bar{q}) - \epsilon)$. Here, $-\Delta q_l|_{\Delta p_i=\epsilon}(p) = [D(p)/n] - [D(p + \epsilon) - (n-1)\bar{q}]$ and $\Delta q_l|_{\Delta p_i=\epsilon}(p + \epsilon) = \bar{q} - [D(p + \epsilon)/n]$. Letting $-\Delta q_l|_{\Delta p_i=\epsilon}(p) = \Delta q_l|_{\Delta p_i=-\epsilon}(p + \epsilon) + \delta$ (where $\delta > 0$), it is found that $-\Delta \Pi_i|_{\Delta p_i=\epsilon}(p) = \delta[p]\Delta q_l|_{\Delta p_i=-\epsilon}(p + \epsilon) + \delta] - \epsilon[D(p + \epsilon) - (n-1)\bar{q}]$. The right-hand side is larger than $\Delta \Pi_i|_{\Delta p_i=-\epsilon}(p + \epsilon)$ since $D(p + \epsilon) - (n-1)\bar{q} < \frac{D(p + \epsilon)}{n}$. Thus $\Delta \Pi_i|_{\Delta p_i=\epsilon}(p) < 0$. ■

Proof of Lemma 4. (i) Since $\Delta \Pi_i|_{\Delta p_i=-\epsilon}(p^w) > 0$, then by Lemma 3, $\Delta \Pi_i|_{\Delta p_i=-\epsilon}(p^w + \epsilon) < 0$: at $p^w + \epsilon$ it does not pay to undercut. Further, $p^* \leq P(\bar{q})$ since profit is certainly raised by undercutting when $p \in [P(\bar{q}) + \epsilon, \bar{p}]$.

(ii) The argument runs as above.

(iii) The statement follows from concavity of $\pi_i(p)$ and $\pi_i(p^*) \geq (p^* - \epsilon)\bar{q} \geq \pi_i(p^* - \epsilon)$, where at least one inequality is strict. This last fact is obvious when $p^* > p^w + \epsilon$ since then $(p^* - \epsilon)\bar{q} > \pi_i(p^* - \epsilon) = (p^* - \epsilon)D(p^* - \epsilon)/n$. It is also obvious when $p^* = p^w + \epsilon = \epsilon$: then $\pi_i(p^*) > \pi_i(p^* - \epsilon) = 0$. When $p^* = p^w + \epsilon > \epsilon$, we distinguish among two cases. If p^* is an equilibrium, then $\pi_i(p^*) \geq \bar{q}$ while $\bar{q} > \pi_i(p^* - \epsilon)$ since $p^w = p^* - \epsilon$ and p^w is not an equilibrium. If p^* is not an equilibrium, then $\bar{q} > \pi_i(p^*)$ and $\bar{p} > p^*$. If it were $\pi_i(p^*) = \pi_i(p^* - \epsilon)$ it would be $\left[\frac{d\pi_i(p)}{dp}\right]_{p=p^*} < 0$ and hence a fortiori $\left[\frac{d\pi_i(p)}{dp}(D(p) - (n-1)\bar{q})\right]_{p=p^*} < 0$, contrary to the fact that $\bar{q} > \pi_i(p^*)$. ■

Proof of Proposition 3. (i) If $\pi_i(p^*) \geq \bar{q}$, a unilateral price increase is unworthy at p^*. It is also unworthy at p^{**} and, by statement (iii) of Lemma 4, at any p in between. Undercutting is also unworthy, by definition of p^*.

(ii) Given statement (iii) of Lemma 4, it follows from $\bar{q} > \pi_i(p^*)$ that $\bar{q} > \pi_i(p^*)$ at $p < p^*$: at any $p < p^*$, i’s profit is raised by deviating to \bar{p}. Next, we dispose of asymmetric strategy profiles with $D(\bar{p}) < \bar{Q}$ (those with $D(\bar{p}) \geq \bar{Q}$ are immediately ruled out.) Let $\pi_i(p_i, p_{-i}) > 0$ for $i \in \bar{P}$ (otherwise our case is obvious), so that $D(\bar{p}) - (n-\pi(\bar{p}))\bar{q} > 0$ and $\pi_j(p_j, p_{-j}) = p_j\bar{q}$ for $j \notin \bar{P}$. If $p_j < \bar{p} - \epsilon$ for some j, then any such j has not made a best reply because $\pi_j(p_j', p_{-j}) = p_j' \bar{q}$ for $p_j' \in (p_j, \bar{p})$.

We are left with strategy profiles such that $D(\bar{p}) < \bar{Q}$ and $p_j = \bar{p} - \epsilon$ for all $j \notin \bar{P}$ and $n \notin \bar{P}$. Suppose first $D(\bar{p} - \epsilon) - (n-\pi(\bar{p}))\bar{q} \geq \bar{q}$. If i’s profit (for $i \in \bar{P}$) is not raised by deviating to $\bar{p} - \epsilon$, i. e., $(\bar{p} - \epsilon)\bar{q} \leq \bar{p}\left[D(\bar{p}) - (n-\pi(\bar{p}))\bar{q}\right]$, then it pays for $j \notin \bar{P}$ to deviate to p^*: it is $(\bar{p} - \epsilon)\bar{q} < p^*D(\bar{p}) - (n-1)\pi(\bar{p})\bar{q} > D(\bar{p}) - (n-1)\pi(\bar{p})\bar{q}$ because $\frac{D(\bar{p}) - (n-1)\pi(\bar{p})\bar{q}}{n} > \frac{1}{1 + \pi}$ when $\pi > 1$ and $\bar{p} \leq \bar{p}$, the last inequality implying $D(\bar{p}) - (n-1)\pi(\bar{p})\bar{q} > 0$. Next consider strategy profiles such that $\bar{p} > \bar{p} > 1$, and $D(\bar{p} - \epsilon) - (n-\pi(\bar{p}))\bar{q} \leq \bar{q}$. Then it

Note that $-\Delta q_l|_{\Delta p_i=\epsilon}(p) > \Delta q_l|_{\Delta p_i=-\epsilon}(p + \epsilon)$ since $(n-1)[\bar{Q} - D(p+\epsilon)] > [\bar{Q} - D(p)].$
pays for \(i \in \mathcal{H}\) to deviate to \(\bar{p} - 2\epsilon\), i.e., \((\bar{p} - 2\epsilon)\bar{q} > \bar{p}\frac{D(\bar{p}) - (n - \bar{p})\bar{q}}{\bar{p}}\). In fact, this condition amounts to \(\frac{2}{\bar{p}} \frac{\bar{q}}{D(\bar{p})} < 1\), which certainly holds: \(\frac{\bar{q}}{D(\bar{p})} \in (1, 2)\) since \(D(\bar{p}) < (n - \bar{p})\bar{q} + \bar{q}\) and \(\bar{q} > 1\), and \(2\epsilon/\bar{p} \leq 1/2\) since \(\bar{p} \geq 4\epsilon\) (due to \(\bar{p} > \bar{p} > p^* > \epsilon\)). Finally, consider strategy profiles such that \(\bar{p} = 1\). These are easily dismissed if \(\bar{p} \neq \tilde{p}\). If instead \(\bar{p} = \tilde{p}\), then \(i \in \mathcal{H}\) would be better off by deviating to \(\bar{p} - 2\epsilon\). To see this, note that, since \(\bar{p} > p^*\) and given Lemma 1, at \(\tilde{p}\) it pays to undercut, hence \(\epsilon n\bar{q} < \bar{p}Q - D(\tilde{p})\). Consequently, at the asymmetric strategy profiles under consideration it pays \(i \in \mathcal{H}\) to deviate to \(\bar{p} - 2\epsilon\): the resulting payoff \((\bar{p} - 2\epsilon)\bar{q}\) can in fact be checked to be higher than \(\bar{p}[D(\tilde{p}) - (n - 1)\bar{q}]\) so long as \(2\epsilon\bar{q} < \bar{p}[Q - D(\tilde{p})]\). ■

Proof of Proposition 6. (i) and (ii.a) follow from Lemma 2 and \(D'' \leq 0\).

(ii.b) We first show that \(d\hat{h}^*/d\epsilon < 0\). By the definition of \(\hat{p}^*\) and \(\hat{h}^*\),

\[
\hat{h}^* - 1 - \frac{\bar{Q}}{Q - D(p^w + (\hat{h}^* - 1)\epsilon)\epsilon} + \frac{p^w}{\epsilon} = 0
\]

With \(p^w = 0\), it can easily be seen that \(d\hat{h}^*/d\epsilon < 0\). With \(p^w > 0\), implicit differentiation yields

\[
\frac{d\hat{h}^*}{d\epsilon} = \frac{\bar{Q}D'(\hat{h}^* - 1)\epsilon^2 + (\bar{Q} - D)^2p^w}{\epsilon^2[(\bar{Q} - D)^2 - \epsilon QD']},
\]

where \(D'\) and \(D\) are evaluated at \(p = \hat{p}^*\). Then \(d\hat{h}^*/d\epsilon < 0\) if and only if \(\bar{Q}D'(\hat{h}^* - 1)\epsilon^2 + (\bar{Q} - D)^2p^w < 0\). Note that \((\bar{Q} - D)^2p^w = (\bar{Q} - D)\epsilon[\bar{Q} - (\hat{h}^* - 1)((\bar{Q} - D)], \) hence the desired inequality becomes \(\bar{Q}\epsilon[D'(\hat{h}^* - 1) + (\bar{Q} - D)] - \epsilon(\hat{h}^* - 1)(\bar{Q} - D)^2 < 0\). It suffices that \(D'\epsilon(\hat{h}^* - 1) + \bar{Q} - D \leq 0\), or, more thoroughly:

\[
\frac{\bar{Q} - D(\hat{p}^*)}{\epsilon(\hat{h}^* - 1)} \leq -D'(\hat{p}^*).
\]

As soon as \(\hat{h}^* \geq 2\), validity of (6) follows from \(D'' \leq 0\). Finally, since \(d\hat{h}^*/d\epsilon < 0\), \(h^*\) decreases or stays constant as \(\epsilon\) decreases. (This follows since \(p^*(\epsilon) - \hat{p}^*(\epsilon) \in [0, \epsilon]\) and any change in \(h^*\) is not less than 1 in absolute value.)

(ii.c) Recalling the definition of \(\hat{h}^*\) and using l’Hopital’s rule, \(\lim_{\epsilon \to 0} \hat{h}^* = \lim_{\epsilon \to 0} d\hat{p}^* (\epsilon)/d\epsilon + 1\). By the definition of \(\hat{p}^*(\epsilon)\), \((\hat{p}^* - \epsilon)\bar{q} - [\hat{p}^*D(\hat{p}^*)]/n = 0\), so that \(d\hat{p}^*/d\epsilon = \frac{\bar{Q}}{Q - D(\hat{p}^*) - \hat{p}^*D'(\hat{p}^*)}\) and \(\lim_{\epsilon \to 0} \hat{h}^* = \frac{\bar{Q}}{Q - D(p^w) - p^wD'(p^w)} + 1\). (More

\(^5\)In particular, with \(\bar{p} > \tilde{p}\), deviating to \(\bar{p} - \epsilon\) yields \((\bar{p} - \epsilon)D(\bar{p} - \epsilon)/\bar{q}\), in its turn higher than \(i\)’s initial payoff, \(\bar{p}[D(\bar{p}) - (n - 1)\bar{q}]\).

\(^6\)For \(\epsilon\) sufficiently small, \(h^* \geq 2\) because of statement (ii.a) and the fact that \(\hat{h}^* \geq h^*\).
specifically, \(\lim_{\varepsilon \to 0} \hat{h}^* = \frac{\bar{q}}{q - D(p^w)} + 1 \) if \(p^w = 0 \) and \(\lim_{\varepsilon \to 0} \hat{h}^* = -\frac{\bar{q}}{p^w D(p^w)} + 1 \) if \(p^w > 0 \).) Thus we are done because \(h^* \leq \hat{h}^* \) and, at any \(\varepsilon, \hat{h}^* < \lim_{\varepsilon \to 0} \hat{h}^* \). ■