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Abstract

This note studies the implication of the general notion of uncertainty aversion
(Schmeidler 1989) on the problem of portfolio choice, which involves allocating the
proportions of fixed capital to several assets. We prove that if an investor is both
risk averse and uncertainty averse, then preference in a portfolio space is convex.
This result means that the convexity in a portfolio choice problem can be guaranteed
without restricting preference representation to a particular functional form.

Keywords Convexity, Portfolio Choice, Ambiguity, Uncertainty Aversion, Risk Aversion

1 Introduction

The problem of portfolio choice underlines much of finance and it is commonly adopted
by experimentalists to elicit risk preferences. Typically, it involves an investor choosing
the proportions of fixed capital allocated to several assets (one of the assets can be a safe
asset) with known return probability distributions (risk). However, the probability dis-
tributions are usually unknown or do not exist (ambiguity) in reality. Ellsberg (1969)’s
seminal paper argues that people tend to be ambiguous averse, which means they prefer
to bet on known probability to unknown probability. Ambiguity has since been widely
studied theoretically, experimentally and its implications on financial market has been
developed1.

This paper investigates a basic theoretical question: is preference under ambiguity
in a portfolio space convex? Without convexity, there is little analytical tractability and
it is difficult to derive meaningful economic prediction. Take comparatives statics as an
example, one can say very little about what happens to a portfolio choice if the return
of an asset is increasing. Hence, similar to how risk aversion is represented by a concave
Bernoulli utility function, decision theorists strive to derive concave representations for
ambiguity aversion. While different functional representations require different sets of

*xueqi.dong@ncl.ac.uk
1For example, Bossaerts et al.(2010) have studied how ambiguity aversion affects equilibrium asset prices

and asset holdings
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axioms, most ambiguity theories 2 share the axiom of uncertainty aversion.

Definition 1 (Uncertainty aversion, Schmeidler 1989). For all acts f and g , preferences
% are uncertainty averse if f % g implies λf ⊕ (1−λ)g % g for any λ ∈ [0,1].

where an act is a mapping from states to primitive lotteries (that is probability dis-
tributions over outcomes, henceforth lottery). The addition ”⊕” is called probability
mixture and it operates on acts state-by-state. Let fs and gs denote the realizations of
f and g in state s respectively. λfs ⊕ (1 −λ)gs is a compound lottery that gives rise to fs
with a probability of λ and gives rise to gs with a probability of 1−λ. Note Uncertainty
aversion by itself directly guarantees convexity in the probability mixture space3.

Just like risky financial assets are modelled by lotteries, ambiguous financial assets
are usually modelled by acts. A portfolio consisting of two ambiguous assets f and g can
be written as αf + (1 −α)g,α ∈ [0,1]. To guarantee preferences in the portfolio mixture
space is convex, the following is needed.

Definition 2 (Portfolio Convexity). For all acts f and g , preferences% are convex if f % g
implies αf + (1−α)g % g for any α ∈ [0,1].

where the addition sign ”+” refers to summing of two probability distributions state-
by-state, which is called portfolio mixture hereafter.

Our main result, as stated in Proposition 1, shows that uncertainty aversion can di-
rectly imply portfolio convexity when risk aversion is assumed.

Proposition 1. If % is uncertainty averse and risk averse, then % is portfolio convex.

It also can be easily seen from the proof that when strictly risk aversion is assumed,
then uncertainty aversion implies strictly portfolio convexity. In a similar proof, Ap-
pendix B demonstrates that portfolio convexity can also be implied by uncertainty aver-
sion and variance aversion, which is a common assumption in financial literature.

In what follows, Section 2 formally defines probability mixture and portfolio mix-
ture. Section 3 introduces the portfolio choice model. Section 4 provides the proof for
proposition 1. Section 5 demonstrates how to extend the result to the case of multiple
assets.

2 Portfolio Mixture ”+” and Probability Mixture ”⊕”

The definition of portfolio mixture ”+” is straightforward: it is the state-by-state sum
of two probability distributions. We still define it in details so that its difference to
probability mixture ”⊕” can be made clear. Let f and g denote two acts. The outcome of
an act in a state s ∈ S , denoted by fs, is a lottery. fs(z) should be read as the probability
that fs gives to the monetary payoff z. (fs + gs)(z) should be read as the probability that
the mixed lottery fs + gs gives to the monetary payoff z.

2For example, Schmeidler’s (1989)’s Choquet Expected Utility with convex capacity, Gilboa and Schmei-
dlerl’s (1989) max-min Expected Utility, Maccheroni, Marinacci, and Rustichini’s (2006) Variational Prefer-
ence, Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio’s (2011) penalization representation, Strza-
lecki (2011) Multiplier Preferences.

3It does not guarantee convexity in a portfolio mixture space. Appendix A provides an example that con-
vexity in a portfolio choice problem is violated under the standard ambiguity model of Maxmin expected
utility model (Gilboa, Itzhak and David Schmeidler, 1989).
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2.1 Portfolio Mixture

Let fs and gs denote two lotteries. The portfolio mixture of the two lotteries is

(fs + gs)(z) =

∫

fs(x)gs(z − x)dx. (1)

We can consider fs and gs the probability density functions for two independent real-
valued random variables F andG. Let random variableH be the sumH = F+G. Equation
(1) describes the probability density function of H .

It follows that for any α,β ∈ R

(αfs + βgs)(z) =

∫

fs(x)gs(
z −αx

β
)dx.

Portfolio mixture ”+” operates on acts state by state, that is it results in a new act for
which its outcomes in a state s is the portfolio mixture of the two resulting lotteries in
that state. That is

(αf + βg)s = αfs + βgs

for all s ∈ S .

An Example of Portfolio Mixture

Consider the special case when the act g is a constant real value r ∈ R. Let x = 0.2f +0.8r.
The operation is rather simple: the probability distribution of xs is the same as fs while
the original outcome z of fs becomes 0.2z+0.8r. For illustrative purpose, we use discrete
distributions as in Figure 1.

(a) Ambiguous Asset f and Safe Asset r

Suppose there are two states s1 and s2. In state 1,

f1 is a lottery that returns 30 with a probability of

0.5 and returns 0 with a probability of 0. In state

2, f2 is a lottery that returns 0 with a probability

of 0.5 and returns 40 with a probability of 0. The

safe asset pays a constant r of 2 in either of the

two states.

(b) Portfolio Mixture 0.2f +0.8r

Now suppose an investor allocates 20% to f and

the remain 80% to r. Then this portfolio mix re-

sults in a new act. Since f takes four outcomes

and the r = 2 is a constant, their weighted sum

takes four outcomes. Each (0.2p + 0.8q)s , s = 1,2

takes two outcomes and it follows the same dis-

tribution of fs .

Figure 1: Portfolio Mixture of One Ambiguous Asset and One Safe Asset
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2.2 Probability Mixture

Previous axiomatizing decision models under ambiguity often take advantage of the
following probability mixture operation ⊕ of two lotteries:

(λfs ⊕ (1−λ)g)(z) = λfs(z) + (1−λ)gs(z)

where the latter ”+” is the addition of real numbers and λ ∈ (0,1). The probability mix-
ture of two lotteries fs and gs gives a two-stage compound lottery (λfs ⊕ (1−λ)gs) where
at the first stage fs realizes with a probability of λ and gs realizes with a probability of
1−λ.

Similar to portfolio mix, probability mixture operates state by state on acts:

(λf ⊕ (1−λ)g)s = λfs ⊕ (1−λ)gs f or all s ∈ S.

An Example of how the two mixtures differ

The following example illustrates how the two mixtures differ. Figure 2 compares how
they yield different lotteries in a typical state s.

(a) Two Independent Lotteries fs and gs
Suppose for some state s, f gives rise to a lottery fs and g gives rise to a lottery gs .

(b) Probability Mixture 0.4p ⊕ 0.6q

This is the compounded lottery. The coefficients 0.4

and 0.6 are used for calculating the probabilities.

(c) Portfolio Mixture 0.4p +0.6q

This is the weighted sum of the outcomes.The coeffi-

cients 0.4 and 0.6 are used for weighting the outcomes.

.

Figure 2: Probability Mixture and Portfolio Mixture in a typical state s

Further examples of probability mixture can be found in Figure 7.2 of Kreps (1988).
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3 The Portfolio Choice Model

Recent decision models under ambiguity are often (see Marchina and Siniscalchi 2014
for a survey) built on a type of Anscombe-Aumann (AA) framework, where f : S→ ∆(Z)
is called an AA act or a two-stage horse-roulette act (hereafter act) that maps states into
the linear space X = ∆(Z). Z = R+ is the monetary outcome space and ∆ is a probability
simplex. The classic Expected utility model is maintained for preferences over primitive
lotteries. This objective-subjective approach provides a framework for representing un-
certain prospects that involve both objective and subjective uncertainty. In this set-up,
ambiguity aversion attitudes featured in the Ellsberg paradox can be incorporated.

Applying this AA framework to portfolio choice, then ambiguous assets would be
represented by acts4. Consider the typical two-assets portfolio choice problem: an in-
vestor decides the proportions (α,1 − α) ∈ R

2
+of fixed capital to allocate between two

ambiguous assets. Denote the set of states by S that the outcome of the ambiguous asset
will depend on. Suppose there is a finite number of states that is also denoted by S . The
gross return (hereafter return) of investing in an uncertain asset is f : S→ X. The return
of the uncertain asset in state s is denoted by fs, which is a lottery. And hence, ambi-
guity is expressed in this way: the subjective uncertainty (states) will solve and, depend
on how it resolves the return of the uncertain asset is a lottery. While the information
about the probability of the subjective uncertainty is not available, the specification and
the parameters of the lottery can be estimated using statistics 5.

Denote f and g the two assets. Then the final wealth of the investor’s portfolio in
state s is

xs = αfs + (1−α)gs.

and the generic form of the final wealth of the investor’ portfolio is written as

x = αf + (1−α)g. (2)

where the addition operation ”+” in (2) is the portfolio mixture defined in Section 2.1.
Hence, it is different from the algebraic addition in a classic portfolio choice model
within Arrow-Debreu framework. It is similar to the one in Gollier (2013)’s portfolio
model.

Preferences% are defined on final wealth x. Since S is finite, we let the vectors denote
acts, for example, f = (f1, ..., fS ) represents the act f . Let F denote the return matrix (f,g).
Then the budget set is

B(F) = {x ∈ XS : x = αf+ (1−α)g,0 ≤ α ≤ 1.} (3)

If preferences on B(F) are convex, then there exists a demand

x∗ ∈ {x ∈ B : ∀y ∈ B,u(x∗) ≥ u(y)}

where u(x) is a quasiconcave function. The corresponding portfolio choice is α∗ = (x∗ −
g)/(f− g). The proof of Proposition 1 demonstrates preference on B(F) is convex.

4In an Arrow Debreu framework under risk, assets are usually represented by f : S→ R.
5For example, consider how investors may formulate the effect of international travel restrictions on an air-

line company’ return: in state 1 (with a travel restriction), the return is uniformly distributed on the region of
two times the standard deviation of 0.2 around the mean of 0.4 ; state 2 (without travel restriction), the region
is then two times the standard deviation of 0.2 around a higher mean of 1.4. While the mean and standard
deviations can be calculated based on statistical data, there is not enough information on the probability of
the event of travel restrictions being imposed.
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4 Proof for Proposition 1

Risk aversion is defined formally as follows.

Definition 3. Preference over lotteries are risk averse if any lottery is evaluated by its
probability cumulative distribution F(·) by the von-Neumann-Vorgenstern (vNM) utility
function U(F) =

∫

u(t)f (t)dt where u(·) is a concave Bernoulli utility function.

Proof. The key of the proof is Lemma 1. It proves that the portfolio mixture of two
lotteries is preferred to the probability mixture of the two lotteries for all risk averse
investors. Essentially it shows the former second order stochastic dominates the latter.

Consider any arbitrary acts f and g such that f % g . By uncertainty aversion, for any
λ ∈ [0,1] we have λf ⊕ (1−λ)f % g .

Now consider an arbitrary state s. Let L1 = λfs ⊕ (1−λ)gs and L2 = λfs + (1−λ)gs. By
Lemma 1, we have L2 % L1. This holds for all states. Therefore λf +(1−λ)g % λf ⊕(1−λ)g .
By transitivity, it follows that λf + (1−λ)g % g .

Lemma 1. If preferences over lotteries are risk averse, then the portfolio mixture of two
lotteries is preferred to the probability mixture of two lotteries.

Proof. Let fs and gs denote two lotteries. Let P and Q denote two independent random
variables for which fs and gs describe their probability density distributions respectively.

Define a new random variable R1 := BP + (1−B)Q, where B is a binary, independent
random variable for which the probability that B = 1 is α and the probability that B = 0
is 1−α. Define another random variable R2 := αP+(1−α)Q. Thus, the probability distri-
bution for R1 is the probability mixture of fs and gs, denoted by L1. And the probability
distribution for R2 is the portfolio mixture of fs and gs, denoted by L2.

Let Fp(·),Fq(·),FL1(·),FL2(·) : R→ [0,1] denote the cumulative probability distribution
functions for P,Q,R1 and R2 respectively. Let u(·) denote an arbitrary concave Bernoulli
function. Then we have the expected utility of L1 as

U(L1) =

∫

u(z)dFL1(z) =

∫

(

αfs + (1−α)gs
)

dz = α

∫

u(z)dFp(z) + (1−α)

∫

u(z)dFq(z)

and the expected utility of the L2 as

U(L2) =

∫

u(z)dFL2(z) =

∫

u(z)

∫

fs(y)gs(
z −αy

β
)dy =

∫ ∫

u
(

αy + (1−α)z
)

dFp(y)dFq(z).

Since u(·) is concave, it has the property that for any α ∈ [0,1] and any y,z

u(αy + (1−α)z) ≥ αu(y) + (1−α)u(z).
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Hence

U(L2) ≥

∫ ∫

(

αu(y) + (1−α)u(z)
)

dFp(y)dFq(z)

= α

∫ ∫

u(y)dFp(y)dFq(z) + (1−α)

∫ ∫

u(z)dFp(y)dFq(z)

= α

∫ (∫

u(y)dFp(y)

)

dFq(z) + (1−α)

∫ (∫

u(z)dFq(z)

)

dFp(y)

= α

∫

E(u(P))dFq(z) + (1−α)

∫

E(u(Q))dFp(y)

= αE(u(P))

∫

dFq(z) + (1−α)E(u(Q))

∫

dFp(y)

= αE(u(P)) + (1−α)E(u(Q)) =U(L1)

By the definition of risk aversion, we have L2 % L1.

5 The Case of Multiple Assets

We have demonstrated that portfolio convexity, which involves only two assets by def-
inition, can be obtained from uncertainty aversion intuitively. This result can also be
leveraged to obtain the convexity when there are N ≥ 2 assets. Since we can arbitrarily
choose two assets f ,g ∈ XS , f % g that satisfy λf + (1 − λ)g % g for any λ ∈ [0,1], this
means preference % is convex everywhere in XS . Consider a return matrix of N ≥ 2
assets

F =



























f11 . . . fN1
... fns

...

f1S . . . fNS



























where its n-th column fn,n = 1, ...,N denote asset n. Denote α = (α1, ..,αN ) ∈ R
N the

portfolio vector. Then the budget set can be written as

B(F) = {x ∈ XS : x = Fα}.

Since B(F) is a convex subset of XS , preference is convex on B(F).
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Appendix A AnCounter Example of Convexity underUn-

certainty Aversion

Suppose there are two states of world with two set of priors p1 = [0.2,0.8] and p2 =
[0.6,0.4]. Denote f and g two assets that map states to monetary return where f = [0,4]
and g = [4,0]. Let [α,1 − α] denote the portfolio choice, which are the proportions of
wealth invested in f and g . Let x denote the final wealth of a portfolio, then x = αf+(1−
α)g. Let the utility function of monetary outcomes be convex u(x) = x2. The Maxmin
Expected Utility model postulates that an agent evaluates the portfolio x according two

MEU(x) =min
(

p1u(x),p2u(x)
)

Consider the following x1 = [2,2],x2 = [4,0],x3 = [3,1] It can be easily verified that
MEU(x1) > MEU(x2) and MEU(x2) > MEU(x3). This means x1 ≻ x2 and x2 ≻ x3 while
x3 = 0.5x1 +0.5 ∗ x2. A contradiction of convexity.

Appendix B HowUncertaintyAverse andVarianceAverse

implies Portfolio Convexity

Formally, Variance Aversion is defined as follows.

Definition 4. % on lotteries are variance averse if for two lotteries with the same mean,
the lottery with a smaller variance is preferred.

Proposition 2. If % is uncertainty averse and variance averse, then % is convex.

Proof. Lemma 2 proves that the portfolio mix of two lotteries is preferred to the proba-
bility mix for all variance averse investor. Following similarly arguments in the proof of
Proposition 1, we have that for f % g , there is λf + (1−λ)g % g .

Lemma 2. If preferences over objective lotteries are variance averse, then portfolio mix
of two lotteries is preferred to the probability mix of two lotteries.

Proof. Let fs and gs denote two lotteries. Let P and Q denote two independent random
variables for which fs and gs describe their probability density distributions respectively.

Define a new random variable R1 := BP + (1−B)Q, where B is a binary, independent
random variable for which the probability that B = 1 is α and the probability that B = 0
is 1−α. Define another random variable R2 := αP+(1−α)Q. Thus, the probability distri-
bution for R1 is the probability mixture of fs and gs, denoted by L1. And the probability
distribution for R2 is the portfolio mixture of fs and gs, denoted by L2.

Using Law of Total Variance , we have Var(R1) = EB(VarB(R1|B)) + VarB(EB(R1|B)).
Since VarB(EB(R1)) ≥ 0, we have Var(R1) ≥ E(Var(R1|B)). Recall that R1 = P if B = 1and
R1 = Q if B = 0, so Var(R1) ≥ EB(VarB(R1)) = αVar(P) + (1 − α)Var(Q). Since α ∈ [0,1],
we have α ≥ α2 and (1−α) ≥ (1−α)2.

Var(R1) > α2Var(P) + (1−α)2Var(Q)).

Since P and Q are independent, we have

E(R2) = αE(P) + (1−α)E(Q)

9



and
Var(R2) = α2Var(P) + (1−α)2Var(Q).

In summary, E(R1) = E(R2) and Var(R1) ≥ Var(R2). By variance averse we have

αfs + (1−α)gs % αfs ⊕ (1−α)gs.
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