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Abstract 

 
This paper investigates the role of textual information in a U.S. bank merger prediction task. Our 
intuition behind this approach is that text could reduce bank opacity and allow us to understand 
better the strategic options of banking firms. We retrieve textual information from bank annual 
reports using a sample of 9,207 U.S. bank-year observations during the period 1994-2016. To 
predict bidders and targets, we use textual information along with financial variables as inputs to 
several machine learning models. Our key findings suggest that: (1) when textual information is 
used as a single type of input, the predictive accuracy of our models is similar, or even better, 
compared to the models using only financial variables as inputs, and (2) when we jointly use 
textual information and financial variables as inputs, the predictive accuracy of our models is 
substantially improved compared to models using a single type of input. Therefore, our findings 
highlight the importance of textual information in a bank merger prediction task.  
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1. Introduction 

Over the last decades, the U.S. banking industry has experienced a severe wave of 

consolidation through mergers and acquisitions (M&A). Aligned with this trend, the academic 

literature has given increased attention to the topic of bank M&As. The vast majority of the 

literature focuses on investigating the shareholder wealth effects around the announcement of 

bank mergers (Houston et al., 2001; DeLong and DeYoung, 2007; Filson and Olfati, 2014; 

Leledakis and Pyrgiotakis, 2021), while other studies analyze the merger-related performance 

changes (Cornett and Tehranian, 1992; Cornett et al., 2006), or the efficiency effects (Rhoades 

1993; 1998).  

Another strand of the literature attempts to identify the characteristics of merging U.S. banks, 

especially from the perspective of the target (Prasad and Melnyk, 1991; Wheelock and Wilson, 

2000). These studies report that smaller, less profitable, and poorly-managed banks are more 

attractive acquisition targets. In this respect, Katsafados et al. (2021) find that banks with more 

positive (negative) tone in their annual reports have a higher probability of becoming bidders 

(targets). However, the latter study focuses on the determinants of merger likelihood under an 

econometric framework. Up to date, therefore, there is a gap in the literature regarding the 

development of classification models in a U.S. bank merger prediction task.  

In the non-financial sector, there is a plethora of studies that utilize classification models to 

predict M&As (Palepu, 1986; Comment and Schwert, 1995; Espahbodi and Espahbodi, 2003; 

Edmans et al., 2012; Routledge et al., 2017). One possible explanation on why there is no 

substantial empirical work on this issue for U.S. banks could be that the banking industry is 

inherently more opaque than other industries (Flannery et al., 2004; Blau et al., 2017). Opacity 

means that banking assets are hard-to-value due to their financial nature which distinguishes 

banks from non-bank firms (Morgan, 2002). In other words, banks hold very few physically-
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fixed assets compared to other types of firms. Instead, banks primarily hold loans, which are 

privately negotiated transactions with their borrowers. The opaqueness of these types of assets 

limits the ability of investors to properly evaluate the financial condition of a bank (Huizinga and 

Laeven, 2012; Jones et al., 2013). Researchers in merger prediction for non-financial firms use 

accounting measures to evaluate the financial condition of the firm. Potential bidders are 

perceived to be in sound financial position, whereas potential targets may face financial 

constraints (Espahbodi and Espahbodi, 2003). Taken altogether, it is likely that bank opacity 

could be one possible reason for the lack of empirical work on bank merger prediction.  

Bank opacity is inversely related to disclosure of information, as the level of bank opacity 

decreases with the quality of disclosure (Flannery et al., 2013; Jiang et al., 2016; Zheng 2020). 

Banks disclose information to the public mainly through their financial statements and annual 

reports. On the one hand, financial statements may not effectively reduce opacity, as banks 

manage their statements to smooth their earnings and circumvent the capital requirements 

(Ahmed et al., 1999; Beatty et al., 2002; Bushman and Williams, 2012; Gandhi et al., 2019). On 

the other hand, bank annual reports contain one other important source of information besides 

balance sheet data: textual information.  

There is a growing literature on how textual information can reduce firms’ valuation 

uncertainty and the asymmetry of information on the initial public offerings (IPOs) in the U.S. 

(Hanley and Hoberg, 2010; Loughran and McDonald, 2013; Jegadeesh and Wu, 2013). 

Collectively, these studies find that the textual information of the IPO prospectuses can mitigate 

the uncertain valuation of IPO firms, a fact which leads to a more accurate pricing of the newly 

issued shares. In a similar manner, Gandhi et al., (2019) use the sentiment of banks’ annual 

reports to gauge financial distress. The authors argue that text is more informative than simple 

accounting measures, as the latter source of information could be influenced by bank managers. 
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This happens because over-optimism in annual reports by managers increases litigation risk 

(Rogers et al., 2011; Loughran and McDonald, 2013). Building on these arguments, it is 

reasonable to assume that the use of textual information could improve our ability to evaluate the 

financial condition of banks by reducing bank opacity. Hence, if this assumption is valid, textual 

information may also enable us to more accurately identify bidders and targets in the U.S. 

banking industry. 

Apart from reducing bank opacity, textual information could have an additional benefit in a 

merger prediction task. In most cases, the choice to engage in a merger is a strategic decision for 

the bank, especially on the part of the bidder (Ramaswamy, 1997). Potential bidders have 

different characteristics from potential targets, as they are usually larger and more profitable 

(Becher, 2009). However, the fact that a bank is financially healthier (according to its financial 

statements), does not necessarily imply that its strategy is to engage in M&As. For this reason, 

annual reports may be more insightful regarding the bank’s strategic options, as managers 

disclose information regarding the future prospects of their bank in these reports.  

Therefore, the primary aim of this paper is to investigate whether the use of textual 

information from bank annual reports is meaningful in a merger prediction task. More precisely, 

we develop classification models to identify bidders and targets in the U.S. banking industry, and 

we use both textual information and financial variables as inputs in these models. 

To address our research question, we collect annual reports from banks that filed the reports 

over the period 1994-2016. By doing so, we obtain a large sample of 9,207 U.S. bank-year 

observations, which includes bidders, targets, and banks that were not involved in a merger. For 

each year and for each bank, we retrieve the annual reports from the SEC’s Electronic Data 

Gathering, Analysis, and Retrieval (EDGAR) website. For the purpose of our analysis, we extract 

textual information by creating textual features from these reports using the bag of words 
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approach. In fact, we use the following textual features as inputs: term frequency (TF) features, 

and term frequency-inverse document frequency (TF-IDF) features corresponding to words (or 

combination of words and bigrams). Finally, we use these textual features along with financial 

variables in the classification machine learning models. More precisely, we use the following 

models: (1) support vector machine, (2) logistic regression, (3) random forest, and (4) multilayer 

perceptron. 

A key innovation of our study is that apart from the classical aforementioned textual features, 

we create textual features based on word embeddings. In addition to the frequently-used generic 

word embeddings, we also create our own finance word embeddings. Textual features based on 

word embeddings are used as inputs to the multilayer perceptron model. 

As the first step in our empirical analysis, we run our models using only financial variables as 

inputs. In the bidder prediction task, the highest accuracy score is 63.6%, while in the target 

prediction task, the highest score is 78.8%. As a second step, we repeat our analysis by using 

only textual features as inputs. In general, results for bidders are improved, while results for 

targets are comparable (or slightly better) to those reported in the first step. These findings 

suggest the importance of textual information in a bank merger prediction task. As a third step, 

we re-run our models using jointly textual features and financial variables. Overall, the 

combination of textual features with financial variables substantially improves the predictive 

ability of our models in both tasks. To illustrate this improvement, we report the accuracy scores 

of the best performing models in each task. In the bidder prediction task, the multilayer 

perceptron models with finance word embeddings achieve an accuracy score of 72%. In the target 

prediction task, the best performing model is the random forest, with an accuracy score of 89.7%. 

To further validate our findings, we use a second evaluation measure, the area under curve, which 

is computed from the receiver operating characteristic curves. The inferences from this analysis 
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are in line with the ones obtained from the accuracy scores. 

We conduct a series of robustness tests. First, we employ the bootstrap resampling method of 

Berg-Kirkpatrick et al. (2012) to validate the performance of our models. More precisely, in both 

tasks, we compare the best performing models with themselves using different types of inputs. 

Second, we re-run our analysis by excluding some special years from our sample. Third, we 

examine whether the dimensionality of our textual features has an impact on our results. Fourth, 

we compute the importance score for each variable in our random forest models using the Gini 

impurity technique of Kurt et al., (2008). By doing so, we illustrate how meaningful textual 

information is in our merger prediction task. Collectively, the results of these tests support our 

baseline findings.  

Our findings could benefit all key parties of a bank merger transaction. From the regulators’ 

perspective, identifying future acquirers may be more beneficial than identifying future targets. 

When acquirers grow large through M&As, they can become too-big-to-fail and enjoy 

oligopolistic market power (O’hara and Shaw, 1990; Demirgüç-Kunt and Huizinga, 2013). 

Therefore, the development of an accurate classification model could enable regulatory 

authorities to a priori evaluate any merger-related anticompetitive effects and ensure the stability 

of the banking industry. From the investors’ perspective, identifying future acquisition targets is a 

profitable strategy, due to the premium paid by the acquiring bank (Brook et al., 1998). Finally, 

the development of an accurate classification model could also be of use to bank managers. 

Managers of banks who want to expand via M&As can use such a tool to identify potential 

targets. At the same time, financially constrained banks that have to be acquired may use such 

classification models to identify and attract potential bidders (Pasiouras et al., 2010). 

We contribute to the literature in four main aspects. First, instead of focusing merely on 

predicting future acquisition targets, we also attempt to predict future acquiring banks, as this 
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task is more important to regulators and depositors. Second, instead of using econometric 

techniques to perform our task, we utilize several machine learning models, which have several 

advantages over traditional econometric methodologies (Mai et al., 2019). Third, we create our 

own finance word embeddings, which appear to be the most meaningful textual inputs in the 

bidder prediction task. Finally, we provide evidence that textual information can effectively 

complement traditional financial variables in bank merger prediction. Our interpretation for this 

result is that textual information reduces bank opacity, since the language used by managers in 

the annual reports provides a clearer picture of the financial condition of the bank and its future 

strategic options.  

The rest of the paper is organized as follows. Section 2 describes our sample collection and 

our textual analysis procedure. Section 3 discusses our classification models, and Section 4 

reports our empirical findings. Finally, Section 5 concludes the paper. 

 

2. Data and textual analysis 

2.1. Sample selection 

To construct our dataset, we follow a three-step approach. The first step is to collect bank 

annual reports (10-Ks, 10-K405s, 10-KSBs, and 10-KSB40s) from the SEC’s Electronic Data 

Gathering, Analysis, and Retrieval (EDGAR) website. To do so, we use a web-crawling 

algorithm, which gathers the reports and excludes all amended documents. In our primary 

sample, we require that banks’ filing dates are between 1994 and 2016. Furthermore, we exclude 

97 observations from our sample because the filing contained fewer than 2,000 words (Loughran 

and McDonald, 2011). Further, we also exclude 2 observations from our sample, due to the fact 

that 2 banks had more than one filing in the same fiscal year (we include only the first filing). By 

applying these criteria, our initial sample consists of 18,031 bank-year observations.  
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The second step is to gather bank-specific characteristics from the Federal Reserve Bank of 

Chicago (FRBC), as in Katsafados et al. (2021).1 More precisely, we collect banks RSSD IDs 

using the Federal Reserve Bank of New York’s CRSP-FRB link. Next, we use the bank names 

and locations (state and/or city) to merge our initial sample from EDGAR with FRBC data. By 

doing so, we are able to link the banks’ RSSD IDs with their corresponding Central Index Keys 

(CIK). To ensure the maximum number of observations, we manually match banks’ RSSD IDs 

with their CIKs using the National Information Centre (NIC) database. This matching process 

leaves us with a final sample of 9,207 bank-year observations consisting of 1,160 unique banks.  

As a third step, we obtain our bank merger sample from the Thomson ONE database. We 

focus on deals announced between February, 1994 and December, 2017.2 To filter our sample, 

we use the following criteria similar to Leledakis and Pyrgiotakis (2021) and Leledakis et al. 

(2021): 

1. Both bidders and targets are commercial banks with a three-digit primary SIC code of 

602, savings institutions with a three-digit primary SIC code of 603, or bank holding 

companies with a four-digit primary SIC code of 6712. 

2. The bidder is publicly-traded. The target can be a public firm, a private firm, or an 

unlisted subsidiary of a publicly-traded firm. 

3. All public firms are listed on NYSE, AMEX, or NASDAQ. 

4. The bidder acquired an interest of more than 50% of the target firm after the merger. 

Before the merger, its interest was below 50%.  

The above selection process results in a sample of 966 bank M&As. As described in the filter 

 
1 We acquire financial information of bank holding companies (BHCs) from the FR Y-9C reports and of commercial 
banks and savings institutions from Call Reports. 
2 To be included in our merger sample, a bank should be a bidder or a target in a twelve-month period after the filing 
date (Routledge et al., 2017). The earliest filing date of our sample is in the end of January, 1994 and the latest is in 
the end of December, 2016. 
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criteria, all bidders are publicly-traded. However, in the case of targets, 389 are publicly-traded, 

and the remaining ones are either private-owned banks or subsidiaries of listed banks. Since the 

sample also includes unlisted targets, our sample selection process ensures that our subsample of 

bidding banks includes all listed banks that had acquired another bank during our examination 

period.3 Hence, from the final sample of 9,207 bank-year observations, 7,874 refer to banks that 

are not involved in M&As (non-involved hereafter). Table 1 reports the number of bidders, 

targets, and non-involved banks on an annual basis over our examination period.  

Insert Table 1 here 

2.2. Financial variables 

We choose to use a set of financial variables as inputs in our predictive models that satisfy the 

following two criteria: (i) they are likely to influence acquisition decisions (Wheelock and 

Wilson, 2000; Pasiouras et al., 2010), and (ii) these variables are limited in number to avoid 

overfitting of our models (Palepu, 1986). In what follows, we briefly describe the nine financial 

variables used in this study.4 

The first two financial variables relate to the inefficient management hypothesis. According to 

this hypothesis, the motive behind M&As is to replace the inefficient management of the target 

firm (Manne, 1965). Hence, following Pasiouras et al. (2010), we employ two bank efficiency 

measures: the cost to income ratio (Cost efficiency), and the return on total assets (ROA). Further, 

we also account for the impact of size. Wheelock and Wilson (2000) find that smaller banks are 

more likely to become acquisition targets. Therefore, in line with Baele et al. (2015), we use the 

logarithm of total assets as a measure of bank size (Size). Capital strength is also an important 

determinant of bank acquisition behavior, as weaker-capitalized banks are more likely to be 

 
3 If we had restricted our sample to public-to-public deals, then bidding banks would be included in the non-involved 
subsample, a fact which could lead to biased estimates.  
4 All financial variables are measured at the most recent fiscal year end prior to the filing date. 
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acquired (Hannan and Rhoades, 1987; Pasiouras et al., 2007). For this reason, we use the ratio of 

common equity to total assets (Capital strength). Moreover, we control for the impact of loan 

activity on bank acquisition likelihood using the ratio of loans to total assets (Loans), as in 

Pasiouras et al. (2010).  

Market power is a commonly-stated motive behind bank M&As (Hankir et al., 2011). Hence, 

we also use in our models the ratio of each bank’s deposits to the total deposits of the U.S. 

banking industry at a given year (Market power). Further, acquired banks tend to have higher 

amounts of loan loss reserves relative to non-acquired banks (Wheelock and Wilson, 2000; 

Pasiouras et al., 2010). In line with these results, we include the ratio of loan loss provisions to 

total loans (Asset quality). Further, we proxy for the banks’ dependence on off-balance sheet 

activities using the ratio of non-interest income to total income (Non-interest income), as in Ellul 

and Yerramilli (2013). Finally, in the spirit of Cornett et al. (2006), we use the ratio of deposits to 

total assets (Deposits) as a measure of liquidity. Table A1 in the Appendices provides a detailed 

list of the variables, along with the corresponding codes from the FR Y-9C reports for bank 

holding companies and the Call reports for commercial banks and savings institutions. Table 2 

reports the summary statistics of all financial variables. Particularly, we split the sample into the 

following four categories: bidders (Panel A), targets (Panel B), non-involved (Panel C), and all 

(Panel D). 

Insert Table 2 here 

2.3. Textual analysis and parsing methodology 

2.3.1. Textual sources 

All bank annual reports are encoded in the hypertext markup language (HTML). Hence, as in 

most studies using textual analysis in finance, we follow the parsing process of Loughran and 

McDonald (2011). Through this process, we remove HTML formatting and any other non-textual 
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information, such as embedded images or spreadsheets that might be present in the text 

(Bodnaruk et al., 2015). Moreover, we exclude all identified HTML tables, if their numeric 

character content is higher than 10%, as effectively documented by Loughran and McDonald 

(2014). 

2.3.2. Pre-processing and bag of words 

After the parsing procedure, we have to transform the textual information into numerical 

features before we insert them as inputs to our models. To do so, we follow the pre-processing 

procedure, which consists of several steps (Jegadeesh and Wu, 2013; Loughran and McDonald, 

2014; Nassirtousi et al., 2014).  

First, we eliminate single letter words, abbreviations, numbers, punctuation marks, and stop 

words (Gandhi et al., 2019). Second, we impose a minimum occurrence threshold in order to 

remove words with low frequency. Following Mai et al. (2019), we consider the 20,000 most 

frequent words of the bank annual reports of the remaining text. Third, we use the bag of words 

(BOW) approach to transform our unstructured textual information into inputs with explicit 

numerical structure. More precisely, we use the Natural Language Toolkit (NLTK) to tokenize 

text into individual words. As a matter of fact, this approach treats each unique word as a separate 

textual feature, and constructs a document-term matrix, where each row and column represent a 

document and a word, respectively (Loughran and McDonald, 2011).  

In the textual analysis literature, raw counts of textual features are not considered the best 

measure of a text’s information content. Therefore, we represent each textual feature using the 

two most widely-used term weighting schemes: (1) the term frequency (TF) normalized by 

document length, and (2) the term frequency-inverse document frequency (TF-IDF). TF is 

calculated as the proportion of each textual feature in each document, so it assigns an equal 

weight for each feature. TF-IDF adjusts the TF scores by putting a lower weight on features that 
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appear more frequently in our sample of bank annual reports (Jegadeesh and Wu, 2013; Loughran 

and McDonald, 2016; Katsafados et al., 2021). Prior studies suggest that TF-IDF is a more 

effective weighting scheme compared to TF, as it assigns lighter weights to common words, 

which have a less meaningful impact on textual analysis tasks (Balakrishnan et al., 2010; Brown 

and Tucker, 2011; Loughran and McDonald, 2011; Loughran and McDonald, 2016; Mai et al, 

2019). We calculate the TF-IDF weight of word i in the jth document as reported in the equation 

below: 

- ( ) ( ) log i
ij ij

n
TF IDF t TF t

N

  =  −     
   (1) 

where TF(tij) is the number of times a term i appears in a document j, divided by the total word 

count of the same document for normalization purposes, N represents the number of documents 

in our entire dataset, and ni the total number of documents including at least one occurrence of 

the ith word. 

At this point, it is worth mentioning that one limitation of the BOW is that it does not control 

for the presence of polysemous words (words with multiple meanings) in the text. To control for 

this issue, we also use bigrams in our textual analysis. Bigrams are essentially word pairs, 

obtained using the word n-gram features (n equal to 2). The use of bigrams may improve the 

ability of our models to disambiguate the meaning of a polysemous word. Note that the BOW 

approach is also based on word n-gram features, when n equals to 1 (unigrams). 

2.3.3. Word embeddings  

The aforementioned BOW approach has a prevalent role in studies that employ textual 

analysis in finance. As mentioned before, a main drawback of this approach is that it does not 

account for polysemous words, an issue which can be partially resolved with the use of bigrams. 
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However, another drawback of the BOW approach is that it is not able to capture well the 

morpho-syntactic and semantic properties of the words of the text (Manning and Schutze, 1999; 

Kearney and Liu, 2014; Loughran and McDonald, 2016). This happens because conventional 

BOW models rely on the frequency of words under the assumption that each word occurs 

independently of all others. In this regard, it is likely that models that use conventional BOW 

representations as textual inputs are not fully capable of understanding the underlying semantics 

of the text (Loughran and McDonald, 2016). To alleviate this concern, we also employ the word 

embedding features to represent textual information.  

The word embedding approach is a relatively new representation for textual data in natural 

language processing (NLP). The fundamental concept behind this model is that words with 

similar properties co-occur with similar neighbors (Mai et al., 2019). In other words, a word 

embedding is a type of word representation which allows words with similar properties to have a 

similar representation. More precisely, this model represents each word as a vector in a low 

dimensional space (Goldberg, 2017). The word embedding vector includes real values, which 

reflect the morpho-syntactic and semantic properties of the word.  

Mikolov et al. (2013) develop the word2vec technique, where word embeddings can be 

produced either through the continuous bag of words (CBOW) model, or the skip-gram model. 

Both models use shallow neural networks to learn word representations for each unique word. 

The CBOW model combines the embeddings of surrounding words to predict the word in the 

middle of a window of text, whereas the skip-gram model tries to predict the context words in a 

window of text for a given word in the middle of the window. 

Pennington et al. (2014) introduce an alternative method for producing word embeddings, 

known as global vectors for word representation (GloVe). GloVe embeddings typically lead to 

similar performance in NLP tasks as word2vec embeddings, but GloVe embeddings are more 
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readily available in different dimensionalities, and pre-trained on diverse corpora. Therefore, in 

our paper, we employ the available 200-dimension generic embeddings created by Pennington et 

al. (2014). These embeddings are obtained from 6 billion tokens from Wikipedia 2014 and 

Gigaword 5, and have a vocabulary size of 400K words.5 

In our empirical setting, one possible concern with the generic word embeddings is that they 

are not trained on (obtained from) a finance-specific corpus. To account for this issue, we also 

employ domain-specific (DS) word embeddings. DS word embeddings are trained on data from a 

specific domain of interest. For this reason, they may be able to represent better the semantics of 

the text compared to generic word embeddings. In particular, we use word2vec to create our 200-

dimension finance word embeddings (FWE) induced from textual disclosure in the finance 

domain.6 In particular, our finance word embeddings are derived from 4.9 billion tokens of 

EDGAR financial disclosures from 1994 to 2016 (including all 10-K, 10-Q, and S-1 filings), and 

have a vocabulary size of 2.3M words.  

In more detail, we employ the skip-gram model to produce our finance word embeddings. As 

noted earlier, the skip-gram model learns word vector representations aiming to predict the 

context (surrounding words in a window) from the central word of each (sliding) text window 

(Mikolov et al., 2013). In this regard, if we have a corpus of T words w1, w2,.., wT, skip-gram 

aims to maximize the following log-likelihood objective: 

1 , 0

log ( | )
T m

t i t

t m m i m i

P w w
−

+
= + −  + 
     (2) 

where wt is the central word of the (sliding) window at location t in the corpus, wt+i is the context 

 
5 These word embeddings have been proved to be efficient to many tasks. Also, they are publicly available 
https://nlp.stanford.edu/projects/glove/  
6 To do so, we use the free available Python library of gensim (https://radimrehurek.com/gensim/).  

https://nlp.stanford.edu/projects/glove/
https://radimrehurek.com/gensim/
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word at location t+i, and m defines the window size (2 × 𝑚 − 1) of the window around wt.7 

Each word has two embeddings (vectors of real numbers), an input (win) and an output (wout) 

one, which are randomly initialized, and learned by minimizing the objective. For every token wt 

at position t of the corpus and every position t+i (i≠0) within a window [t-m, t+m] around 

position 𝑡, we aim to be capable of predicting which vocabulary word occurs at position t+i by 

multiplying (dot product) 𝑤𝑡𝑖𝑛 and 𝑤𝑡+𝑖𝑜𝑢𝑡. The basic form of skip-gram employs the softmax 

function to calculate the likelihood of a surrounding word wt+i given a center word wt: 

( ) ( )
( )

exp

e

w
( | ) softm

p wx
ax w

out

t iout

t i t t i out

in

tin

t in

t

w V

P
w

w
w

w w



+
+ +


 ==

    (3) 

where V is the vocabulary. We learn the 𝑤𝑡𝑖𝑛 and 𝑤𝑡+𝑖𝑜𝑢𝑡 by maximizing the probability we assign 

to the word wt+i that actually occurs at each position t+i of each window. In fact, we obtain the 

word embeddings as follows:  

, 1 , 0

log ( |g ), ar max
in out

T m

t i t

t m

in out

E m m i iE

E P w wE
−

+
= + −  + 

=      (4) 

where Ein and Eout are matrices that include in their columns all the in (𝑤𝑡𝑖𝑛) and out (𝑤𝑡+𝑖𝑜𝑢𝑡) 

vectors of all words in the vocabulary. We maximize the objective by stochastic gradient ascent. 

However, in practice the softmax of 𝑃(𝑤𝑡+𝑖|𝑤𝑡) is computationally expensive, because of the 

large size of the vocabulary 𝑉. We, therefore, use the negative sampling version of the skip-gram 

model. Instead of predicting the context word 𝑤𝑡+𝑖 from the central word 𝑤𝑡, we now aim to be 

able to identify the true context word 𝑤𝑡+𝑖, when given the true context word 𝑤𝑡+𝑖 and a 

randomly sampled word 𝑟 (multiple randomly sampled words are used in practice, instead of just 

 
7 Our FWE are created with window size equal to 5. 



16 

 

one). In effect, instead of aiming to produce a probability distribution over the vocabulary 𝑉 for 

position 𝑡 + 𝑖, we now have a binary classification problem, where we need to classify 𝑤𝑡+𝑖 in 

the true (positive) class, and 𝑟 to the false (negative) class. The objective now becomes:  

( ) ( )
, 1 , 0

, arg max lolo gg w 1
in out

T m
ouin out in in

t t

m

t out

t i

t iE m m iE

E E w wr
−

+
= + −  + 

 =  + −     (5) 

where 𝜎 is the sigmoid (logistic) function, and 𝜎(𝑤𝑡+𝑖𝑜𝑢𝑡 × 𝑤𝑡𝑖𝑛) is the probability estimate that 

word 𝑤 is the true context word. After maximizing the objective, we keep the vectors of 𝐸𝑖𝑛 as 

word embeddings, though the vectors of 𝐸𝑜𝑢𝑡 can also be used alternatively. 

Figure 1 visualizes the position of various words from our financial word embeddings in a 2-

dimensional vector space. Given that the FWE have 200 dimensions, we project them into 2 

dimensions using the t-Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality 

reduction technique. As shown in the figure, words with similar properties are located in close 

proximity to each other in the word embedding space. For instance, in the bottom of the figure, 

there is a set of words that express negativity, such as crisis, distress, weak, recession, and 

turmoil among others. Furthermore, words close to the upper right corner of the figure relate to 

merger events, such as, acquired, acquire, target, purchase, merger, and acquisition. This finding 

is in line with our conjecture that annual reports contain information regarding the banks’ 

strategic choices, and particularly their M&As strategies. Finally, words close to the upper side 

deal with profitability issues, such as sales, revenues, increase, decrease, earning, and profit. 

Considering the previous facts, we can infer that our FWE serve their purpose of being 

specialized in financial texts. 

Insert Figure 1 here 
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3. Methodology 

In this section, we describe the three parts of our methodological approach. First, we describe 

how we match the merging banks with the non-involved banks (not involved in mergers) to 

conduct our classification task and how we split our datasets into training set and out-of-sample 

(testing) set. Second, we analyze the machine learning models we use. Third, we describe the two 

measures we use to evaluate the performance of our models.  

3.1. Matching and splitting datasets 

To address our research question, we have to specify two binary models that are capable of 

distinguishing between: (1) bidders and non-involved and (2) targets and non-involved. To do so, 

we have to construct our two datasets in a proper way. The first dataset will include only bidding 

banks and non-involved banks, and the second dataset will include only target banks and non-

involved banks. Obviously, the number of bidders and/or targets is disproportionally smaller 

compared to non-involved banks, which suggests that both datasets are imbalanced.  

Imbalanced datasets are a common issue in classification tasks in finance, such as acquisitions 

or bankruptcy forecasting (Barnes, 1998, 1999; Laitinen and Kankaanpaa, 1999; Neophytou and 

Mar Molinero, 2004; Pasiouras et al., 2007, 2010). Following these studies, we mitigate this issue 

by adopting the undersampling approach of Veganzones and Severin (2018). This method 

generates a balanced subsample from our original sample by excluding observations from the 

majority category (in this case, the non-involved banks). By doing so, our first dataset consists of 

966 bidders and a matched equal number of non-involved banks, and our second dataset consists 

of 389 targets and a matched equal number of non-involved banks. The benefit of this approach is 

that a balanced sample may provide more relevant information than an imbalanced sample 

(Imbens, 1992). We use the filing year of the banks’ annual reports as the matching criterion. 

This matching criterion has two main benefits: (1) it helps us control for any time effects in our 
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analysis, (2) it allows us to include all the other variables as inputs in our models (Hasbrouck, 

1985).8 

After balancing our two datasets, we split them into training and out-of-sample datasets. 

Following Geng et al. (2015), Doumpos et al. (2017), and Routledge et al. (2017), we select 80% 

of each dataset as the training set, and the remaining 20% as the out-of-sample. The out-of-

sample is selected from a future period, as the usefulness of a classification model is evaluated 

according to its ability to correctly predict observations that occur in the future (Espahbodi and 

Espahbodi, 2003).  

3.2. Machine learning models 

To perform our merger classification task, we use our machine learning models.9 The machine 

learning models we use are: (1) support vector machine (SVM), (2) logistic regression (LOGIT), 

(3) random forest (RF), and (4) multilayer perceptron (MLP). SVM, LOGIT, RF, and MLP use as 

textual inputs the features obtained by the BOW approach. In the MLP, we further use the textual 

features obtained by word embeddings (generic or finance). Figure 2 illustrates this process step 

by step. 

We note that using centroids of word embeddings is still, in effect, a bag of words approach, 

since word order is discarded. More powerful deep learning models, like Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs) can be applied to text (Goldberg, 

2017), using word embeddings as inputs, in ways that consider word order. Also, more recent 

deep learning models for text, mostly Transformer-based models (Vaswani et al., 2017) can be 

pre-trained on gigantic corpora (Wikipedia and book collections) of unlabelled documents and 

 
8 Size is also frequently-used as a matching criterion. However, if we use size to match our datasets, then we have to 
exclude it from our classification models. In line with previous studies, we prefer to use size as a control variable 
rather than as a matching criterion, because it is an important factor in explaining merger behavior (Espahbodi and 
Espahbodi, 2003; Pasiouras et al., 2007, 2010). 
9 In all our models, all financial variables are standardized. Textual features are also standardized when they are 
combined with financial variables. 
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then fine-tuned (further trained) on much fewer (compared to a gigantic corpus) task-specific 

labelled training instances, achieving better performance than when using only the task-specific 

labelled training instances. However, models of this kind can so far cope only with very short 

documents. For example, the commonly used BERT models (Devlin et al., 2018), which employ 

Transformers, can typically process up to 512 sub-word tokens (sub-word tokenizers break words 

into smaller units). Even very recently proposed variants of Transformer-based models for “long” 

text (Zaheer et al., 2020) can only process text input of up to 4,096 sub-word tokens, whereas the 

documents we consider are much longer. By contrast, centroids of word embeddings have no 

input length limitation. 

Insert Figure 2 here 

3.2.1. Machine learning models with bag of words approach 

3.2.1.1. Support vector machine 

Support vector machine (SVM) is a non-probabilistic supervised learning algorithm, first 

introduced by Vanek (1998). So far, several studies have used SVMs in finance tasks, such as 

bankruptcy forecasting (Min and Lee, 2005; Shin et al., 2005; Wu et al., 2007), stock price 

forecasting (Cao, 2003; Pai and Lin, 2005). Given a set of training instances that explicitly 

belong to various pre-defined categories, the SVM learns a decision boundary that defines the 

predicted identity of each instance. This decision boundary is practically a hyperplane in the 

feature space. The aim is to find the optimal hyperplane that maximizes the width of the gap 

(margin) among the instances of different categories (Kumar and Ravi, 2016). Notably, only the 

training samples near the hyperplane, either at the boundaries of the margin or inside the margin 

in case of letting “slack” in the separation, matter when creating the hyperplane. It is worth 

mentioning that finding the maximum margin hyperplane belongs to the general quadratic 

programming optimization problems. Interestingly, SVM has the advantage that is able to handle 
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non-linearly separable data. In such a case, it can employ non-linear kernel functions such as 

radial basis function (RBF) kernel. As a result, our training data are projected into a higher 

dimensional space so that our data become more separable. (Nassirtoussi et al., 2014). Hence, in 

our paper we repeat our empirical analysis using: (i) a linear SVM, and (ii) an SVM with RBF 

kernel.10 

3.2.1.2. Logistic regression 

Logistic regression (LOGIT) is also one of the most commonly-used models in merger 

prediction task (Hasbrouck, 1985; Palepu, 1986; Ambrose and Megginson, 1992; Comment and 

Schwert, 1995; Barnes, 1998, 1999; Powel, 2001; Espahbodi and Espahbodi, 2003; Cremers et 

al., 2009; Routledge et al., 2017). LOGIT is capable of handling binary classification tasks by 

estimating a non-linear sigmoid function between inputs and the binary output. LOGIT’s 

rationale is to maximize the conditional log-likelihood of training samples in order to learn the 

parameters of the model. In fact, it typically uses stochastic gradient ascent or variants. To deal 

with overfitting the training dataset, regularization terms could be added to the log-likelihood. In 

our empirical setting, we employ L2 regularization, which subtracts the squared L2 norm of the 

weights vector (multiplied by a hyper-parameter), from the log-likelihood. 

3.2.1.3. Random forest 

Random forest (RF) is an ensemble machine learning algorithm, initially designed by Breiman 

(2001) as a variant of Bagging (Breiman, 1996). We employ RF by creating several uncorrelated 

decision tree classifiers. These decision trees are typically trained on bootstrap copies of original 

samples by randomly selecting a subset of features (Mai et al., 2019). The prediction process is 

then performed with each individual tree predicting a class. Based on majority voting, the class 

 
10 The hyper-parameters of our SVM models are tuned based on the 5-fold cross-validation performance of the 
training set. 
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with the most votes becomes the output of our model. In general, RF outperforms the classical 

decision trees (DT), since it addresses the DT issue of overfitting to the training sample. 

3.2.1.4. Multilayer perceptron  

Artificial neural networks (ANNs) have widely been used in several prediction tasks in the 

area of finance (Kumar and Ravi, 2016). Among them, one of the simplest kinds of neural 

networks, and at the same time very popular is the multilayer perceptron (MLP) model. Not only 

for these reasons but also because MLP is able to handle all the text representations we use (TF-

IDF-based or embedding-based) makes it an ideal choice for our analysis along with the rest of 

the machine learning models we use. In a typical MLP model, there is an input layer of neurons, 

where our variables, textual or financial, are used as inputs (Goldberg, 2017). Next, there are one 

or more hidden layers. Each neuron computes a weighted sum of its inputs, applies a non-linear 

activation function to the resulting sum, and passes its output to the neurons of the next layer. 

The weights are learned by minimizing a loss function via back-propagation, a version of 

stochastic gradient descent for networks with hidden layers. In a classification task, the non-linear 

activation functions allow the model to cope with non-linearly separable data. In binary 

classification, as in our case, the output layer contains a single neuron with a sigmoid activation 

function, which provides the probability the model assigns to the positive class. The loss function 

is typically binary cross-entropy, in effect minimizing the divergence of the predicted probability 

distribution over the two classes from the correct (one-hot) distribution, for each training 

example.11 

 
 

11 We use 5-fold cross-validation for hyper-parameter tuning. As a result, our MLP model has 3 hidden layers, each 
of which has 200 neurons. Given that MLP is a feed-forward model that maps inputs (financial variables and textual 
features) to a binary outcome (underpricing or not). Furthermore, we use Adam (a version of stochastic gradient 
descent) as the optimizer algorithm, and rectified linear unit (ReLU) as the activation function of each hidden layer. 
ReLU is defined as f(x) = max (0, x). Finally, we use early stopping to mitigate overfitting (Mai et al., 2019). To do 
so, we set aside 10% of training data as validation or development set. 
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3.2.2. MLP model with word embedding approach 

In all the previous models, we use the BOW text representations as textual inputs. To utilize 

textual information based on word embeddings, we represent each text as the centroid of the 

word embeddings of the words that make it up. Next, we use these textual features as inputs to a 

MLP model. In this paper, we employ the MLP model with word embedding approach, either 

with TF or TF-IDF weighting scheme. The former model computes the average of every 

dimension of the word embedding vector for each word in the text, while the latter computes the 

weighted average based on the TF-IDF score of each word. As follows, we firstly provide the 

mathematical formula of the TF centroid textual feature: 
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where i represents each text in the sample, j represents each word in the vocabulary (V), 𝑤𝑗⃗⃗⃗⃗  
represents the 200-dimensional word embedding of each word j, and 𝑇𝐹𝑖𝑗 represents the term 

frequency of the word j in the text i. Moreover, we present the mathematical formula for TF-IDF 

centroid textual feature: 
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where 𝐼𝐷𝐹𝑗 represents the inverse document frequency of each word j. 

In the MLP models with the word embedding approach, we represent each document with a (d 

x n) matrix, where d is the vectorized representation of each word and n refers to the document 

length. In practice, d is the pre-trained word embeddings, which can either be the generic word 

embeddings based on GloVe, or our finance word embeddings trained on the EDGAR 

documents. 
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Figure 3 illustrates the architecture of the MLP models with the word embedding approach. 

First, we use a 200-dimensional vector to represent each document, as the size of the pre-trained 

word embeddings is 200. Second, these vectors are inserted as inputs in the model, and then they 

are processed by two hidden layers with rectified linear unit (ReLU) activation function. Finally, 

there is the output layer where a sigmoid function provides the probability of the positive class. 

Insert Figure 3 here 

We create our models using the Keras library with a TensorFlow backend (Chollet, 2017). We 

employ a batch size of 16, and the models take less than 12 epochs to converge. Finally, to 

control for the issue of overfitting, we use the dropout technique and the early stopping strategy, 

as in Mai et al. (2019).12 

3.3. Evaluation measures 

We evaluate the out-of-sample performance of our classification models using two measures. 

First, we use the accuracy measure, which has been extensively used in finance classification 

tasks (Palepu, 1986; Pasiouras et al., 2010; Mai et al., 2019). The values of the accuracy measure 

are in the range of [0, 1]. In our classification task, we aim to achieve accuracy scores higher than 

50%, because our two datasets are fully balanced. Any score above this threshold would imply 

that our models yield better than chance, and vice versa. We compute Accuracy according to the 

following formula: 

TP TN
Accuracy

TP FP TN FN

+
=

+ + +     (8) 

where TP is the number of observations correctly identified as bidders (or targets) by the 

classifier, TN is the number of observations correctly identified as non-involved by the classifier, 

 
12 The dropout method randomly omits a subset of hidden neurons at every step of the training process. On the other 
hand, early stopping requires monitoring the performance of the validation set, a subset of the training set, so that we 
stop the training process when there is no more improvement. 
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FP the number of observations incorrectly identified as bidders (or targets) by the classifier and 

FN is the number of observations incorrectly identified as non-involved by the classifier. 

As the second step of our evaluation procedure, we employ the receiver operating 

characteristic (ROC) curves for the models with the highest accuracy scores in each task. ROC 

curves are frequently used in finance prediction tasks, such as bankruptcy prediction (Chava and 

Jarrow, 2004; Mai et al., 2019). The ROC curve plots the true-positive rate of the classifier on the 

vertical axis, and the false positive rate on the horizontal axis, as the classification threshold 

varies. In fact, models whose ROC curves are closer to the upper and left corner of the diagram 

(larger area under the curve) imply better out-of-sample classification ability. Next, we plot a 45-

degree line suggesting a random assignment of class labels. Based on the ROC curve, we 

compute the second evaluation measure, the area under the curve (AUC). AUC values are also in 

the range of [0, 1]. An uninformative classifier yields a 0.5 AUC score, while 1 represents a 

perfect classification.  

 

4. Empirical results and discussion 

4.1. Prediction with financial variables 

As the first step in our empirical analysis, we examine the predictive power of our models 

when we use only financial variables as inputs. In fact, we investigate whether financial variables 

alone can distinguish between bidders and non-involved banks and targets and non-involved 

banks. The results are reported in Table 3. First, we present the accuracy scores of our 

classification models for the bidding banks. The results indicate that financial variables have 

predictive power in this task, as the accuracy scores exceed the 50% threshold in all cases. In 

more detail, the best performing models are the RF and MLP, with accuracy scores of 62.7% and 

63.6%, respectively.  
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Second, we present the results for the target firms. In general, accuracy scores are higher 

compared to what reported for the bidding banks. With the exception of SVMs, the other models 

achieve accuracy scores that exceed 70%. More precisely, LOGIT produces an accuracy score of 

78.8%, while RF and MLP perform equally well with a score of 76.9%. These results could 

imply that target prediction is a more feasible task compared to bidder prediction.  

Insert Table 3 here 

4.2. Prediction with textual features 

In this section, we investigate whether the language used by managers in the bank annual 

reports has any predictive power in our merger classification task. To be consistent with our 

empirical setting, we will first analyze results based on the BOW approach, and then, we will 

report the results of the word embedding approach.  

Table 4 presents out-of-sample accuracy scores of our prediction models, using only textual 

data as inputs based on the BOW approach. We use four different types of textual features: (1) 

term frequency (TF), (2) term frequency-inverse document frequency (TF-IDF), (3) term 

frequency with bigrams (TF + bigrams), and (4) term frequency-inverse document frequency 

with bigrams (TF-IDF + bigrams).13  

Panel A of Table 4 shows the results for our first dataset (bidders/non-involved). Overall, our 

predictive models perform better than chance.14 MLP yields the highest accuracy score (68.0%), 

followed by LOGIT (66.4%) and RF (65.1%). Notably, these scores are higher compared to the 

ones reported in Table 3, where we used only financial variables as inputs. This fact indicates that 

textual information of the 10-K filings contains vital information for predicting future acquirers 

 
13 Types 1 and 2 use only unigrams, and types 3 and 4 use a combination of unigrams and bigrams. 
14 The only case where we obtain an accuracy score below the 50% mark is when we use TF + bigrams as textual 
features in the SVM-linear model (47.8%). 
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in the U.S. banking industry.  

Panel B of Table 4 shows the results for our second dataset (targets/non-involved). In this task, 

all our models achieve accuracy scores that exceed the 50% mark. In terms of model 

performance, MLP achieves again the highest score (84.0%), followed by LOGIT (79.5%), and 

RF (77.6%). The results for the target classification task are in many cases marginally better 

compared to the ones obtained with the use of financial variables. Therefore, we argue that 

textual features improve the classification ability of our models in both tasks.  

Insert Table 4 here 

Table 5 reports the results when we employ textual features based on the word embedding 

approach. We examine the performance of two different models, the TF Centroid embedding 

model and the TF-IDF Centroid embedding model. In each model, we use as inputs either the 

generic word embeddings based on GloVe, or our finance word embeddings. More precisely, we 

use the MLP model with four different word embedding features: (1) TF Centroid with generic 

word embeddings as inputs (TF Generic centroid), (2) TF-IDF Centroid with generic word 

embeddings as inputs (TF-IDF Generic centroid), (3) TF Centroid with finance word embeddings 

as inputs (TF Finance centroid), and (4) TF-IDF Centroid with finance word embeddings as 

inputs (TF-IDF Finance centroid). 

Panel A presents the results for the bidders and Panel B presents the results for the targets. In 

predicting future bidders, the TF-IDF Centroid embedding model has the best performance with 

both types of inputs (64.0%). In predicting future targets, the TF Centroid embedding model has 

the best performance, with accuracy scores of 78.0% with the use of generic word embeddings 

and 77.0% with the use of finance word embeddings. Taken altogether, these results suggest that 

textual features based on word embeddings are also meaningful inputs in our merger 

classification task. In fact, models using such textual data are able to predict more accurately 
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future bidders compared to models using only financial variables, while they have comparable 

performance in identifying future targets.  

Insert Table 5 here 

4.3. Prediction with both financial variables and textual features 

In this section, we jointly use both financial variables and textual features as inputs in our 

classification models. We do so, in order to investigate whether and to what extent textual 

information can effectively be combined with financial variables in our merger classification 

task.  

4.3.1. Combination of financial variables with bag of words textual features  

We now investigate the prediction performance when both financial variables and textual 

features based on BOW are utilized. One issue that emerges here is that textual features 

dramatically outnumber financial variables, and as a result, the plethora of textual data may 

overrule the role of financial variables. Such a model may suffer from the “curse of 

dimensionality” (Mai et al., 2019). To alleviate this concern, we have to decrease the 

dimensionality (number of words in the vocabulary) of our textual features.  

We project our high-dimensional document vectors into a low dimensional space using the 

singular value decomposition (SVD) dimensionality reduction technique as in Kim et al., (2005), 

and Degiannakis et al. (2018), among others. In our empirical analysis, we use SVD to project the 

original feature vectors to 100 dimensions (SVD100).15 In other words, this method reduces the 

dimensions of our textual features from 20,000 to 100. By using such a low level of textual 

representation, we able to deal with the curse of dimensionality, while preserving the meaningful 

 
15 It is worth mentioning that we take into account only the 100 first SVD components, as they were found to explain 
almost 80% of the joint variance of the 20,000 most frequent textual features in the 10-K filings. 
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information of the 10-K filings.16 

Table 6 presents the results of this analysis. Panel A reports the accuracy scores for our first 

dataset (bidders/non-involved). First, RF is the best performing model with an accuracy score of 

67.2%. This score is achieved with the combination of financial variables and TF-IDFSVD100 

textual features. Next, MLP produces the second best accuracy score (65.1%), followed by 

LOGIT (64.3%). Finally, SVMs (both linear and RBF) have the poorest performance, since their 

accuracy scores range between 45.0% and 57.9%. 

Two inferences are obtained when we compare the results of the models using both types of 

inputs with the models using a single type of input. On the one hand, the performance of our 

models is substantially improved when we use both textual features and financial variables 

instead of only financial variables. On the other hand, the performance of the former set of 

models is comparable to the performance of the models using only textual features as inputs. 

Collectively, these findings may indicate that textual information of the bank annual reports is 

more informative relative to financial variables in the bidder prediction task. 

Panel B of Table 6 reports the accuracy scores for our second dataset (targets/non-involved). 

Interestingly, the results indicate that in the case of targets, the combination of textual features 

with financial variables yields the best performance so far. Strikingly, accuracy scores exceed 

80% in many cases. Again, RF outperforms the other models, achieving an accuracy score of 

89.7% with the use of (TF-IDF + bigrams)SVD100. MLP comes second best with an accuracy score 

of 80.7%, when we use (TF-IDF + bigrams)SVD100 as textual features. LOGIT also performs 

reasonably well, as its best score equals 74.4%. In line with previous findings, SVMs have the 

lowest performance, as their accuracy scores range between 61.5% and 69.9%. Overall, the 

 
16 We present results without the SVD technique in Table A2 of the Appendices. In the bidder prediction task, the 
performance of our models is comparable with the ones using the SVD100 textual features. However, in the case of 
targets, our models performance is in general lower.  
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performance of our models in predicting future targets is substantially improved when we use 

both types of inputs than when we use a single type of input.17 These results indicate that in this 

task, textual information can effectively be combined with financial variables to produce more 

accurate estimates.  

Insert Table 6 here 

4.3.2. Combination of financial variables with word embedding textual features 

In this section, we examine the out-of-sample performance of the MLP model using a 

combination of word embedding textual features and financial variables as inputs. Table 7 

presents our findings for bidder classification (Panel A) and target classification (Panel B). 

The results of Panel A suggest that the combination of word embeddings with financial 

variables provides the most accurate estimates for our bidder classification task. More precisely, 

the TF-IDF Finance centroid achieves an accuracy score of 72.0%. This score is substantially 

higher compared to what reported in previous tables. In addition, even our lowest score (67.0%), 

which is produced by the TF Generic centroid, is higher than the vast majority of scores produced 

by other models (either with a single type of input or both types of inputs).  

Further, our results provide two additional important findings. First, the TF-IDF centroid 

embedding model outperforms the TF centroid embedding model. This means that the TF-IDF 

weighting scheme produces a set of weights for our textual features that enhance the ability of 

our models to classify bidders from non-involved banks. This result is consistent with previous 

findings, as the TF-IDF approach tends to perform better in many NLP tasks compared to simple 

proportional weighting (Loughran and McDonald, 2011; Loughran and McDonald, 2016; 

Katsafados et al., 2020). Second, the use of our finance word embeddings increases the 

 
17 We also re-run our models using as inputs only the SVD100 textual features (see Table A3 in the Appendices). 
The main inferences of this analysis remain the same.  
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performance of both the TF and the TF-IDF centroid embedding model, compared to using 

generic word embeddings. Therefore, we argue that the finance word embeddings are more 

meaningful inputs than generic word embeddings in a bidder classification task. This is expected 

to some extent, because FWEs take into account the most likely meaning of a word in a business 

context, and as such, they are able to understand better the semantics of the text.  

The results of Panel B of Table 7 indicate that the combination of financial variables with 

word embeddings performs well also in the target classification task. In fact, our models provide 

accuracy scores in the range of 78.0% to 81.0%. First, these findings suggest that textual features 

based on word embeddings can be effectively combined with financial variables in identifying 

future targets. The aforementioned accuracy scores are in general higher compared to the ones 

reported when we used either financial variables or textual data as separate inputs in our machine 

learning models. Second, our finance word embeddings produce again better estimates compared 

to the generic ones. Finally, it is worth mentioning that we have achieved even higher accuracy 

scores in this task using machine learning models (especially with the RF model). However, the 

accuracy scores of around 80% are high enough to suggest that the MLP models with the word 

embedding approach provide reasonably accurate estimates in the target prediction task.  

Insert Table 7 here 

4.3.3. ROC curves 

We further examine the predictive ability of our models using the ROC curves. In the bidder 

classification task, we construct the ROC curves for the TF and the TF-IDF centroid embedding 

models, as those were the best performing models in this task. In all models, we jointly use 

financial variables and textual features as inputs. Notably, in all cases, the AUC values are higher 

than 0.7, as we observe in Figure 4. To begin with, when we use the generic word embeddings, 

the AUC score is 0.70 for the TF Generic centroid model and 0.74 for the TF-IDF Generic 
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centroid model. Further, in line with our previous findings, AUC scores increase when we use 

our finance word embeddings. More precisely, the AUC score is 0.71 for the TF Finance centroid 

model and 0.76 for the TF-IDF Finance centroid model. In sum, our results suggest that the TF-

IDF weighting scheme offers better predictive power, while the use of our finance word 

embeddings enhances the classification ability of the MLP models with the word embedding 

approach. 

Insert Figure 4 here 

Figure 5 depicts the ROC curves for the three best performing machine learning models based 

on BOW features in the target prediction task. In practice, these models are the same as the ones 

in Table 6, where we used both types of inputs (textual and financial data), and four different 

types of textual features. When it comes to model performance, RF yields the most accurate 

estimates, as AUC values range from 0.90 to 0.93. MLP comes next with AUC values in the 

range of 0.80 to 0.88, and finally, LOGIT with values from 0.76 to 0.82. Remarkably, all three 

models achieve their highest AUC score with the use of (TF-IDF + bigrams)SVD100 textual 

features. Overall, these results support our previous findings.  

Insert Figure 5 here 

4.3.4. Bootstrap statistical significance test 

So far, our two performance measures have provided robust evidence regarding the 

performance of our models. In the bidder classification task, the best performing model is the TF-

IDF Finance centroid, where in the target classification task, the RF model with the use of the 

(TF-IDF + bigrams)SVD100 yields the more accurate estimates. However, it is important to test the 

consistency of these results, by including statistical significance tests to validate metric gains. To 

do so, we employ the bootstrap resampling method of Berg-Kirkpatrick et al. (2012). We provide 

a more detailed description of this technique in Appendix B. 
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In Panel A of Table 8, we compare the TF-IDF Finance centroid with the other MLP models 

based on the word embedding approach. The comparisons suggest that the TF-IDF Finance 

centroid significantly outperforms the TF-IDF Generic centroid (p=0.006) and the TF Generic 

centroid (p=0.000). Further, the TF Finance centroid significantly outperforms the TF Generic 

centroid (p=0.000). Then, we compare the performance of the TF-IDF Generic centroid against 

the TF Finance centroid and the TF Generic centroid. Interestingly, the TF-IDF Generic centroid 

significantly outperforms only the TF Generic centroid (p=0.049). Collectively, these findings 

provide strong evidence that the TF-IDF weighting scheme provides better results compared to 

TF, and our finance word embeddings have higher information content relative to generic word 

embeddings.  

In Panel B of Table 8, we compare the following four models: (1) RF with the use of TFSVD100 

(RF-TFSVD100), (2) RF with the use of TF-IDFSVD100 (RF-TF-IDFSVD100), (3) RF with the use of 

(TF + bigrams)SVD100 (RF-(TF + bigrams)SVD100), and (4) RF with the use of (TF-IDF + 

bigrams)SVD100 (RF-(TF-IDF + bigrams)SVD100). In particular, we compare the RF-(TF-IDF + 

bigrams)SVD100 with the remaining three models. In all three comparisons, the p-value equals 

0.000, which suggests that the RF-(TF-IDF + bigrams)SVD100 significantly outperforms all the 

other RF models. Also, RF-TF-IDFSVD100 appears to be the second-best performing model, since 

it outperforms RF-(TF + bigrams)SVD100 (p=0.036) and RF-TFSVD100 (p=0.014). Yet the 

performance of the RF-(TF + bigrams)SVD100 is comparable with the RF-TFSVD100 (p=0.684). In 

summary, TF-IDF weight enhances the overall performance of the models, while the combination 

of unigrams and bigrams is meaningful when we use the TF-IDF weighting scheme. 

Insert Table 8 here 
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4.3.5. Additional robustness tests 

Our examination period includes some special years that may have an impact on our results, 

such as the years of the dot-com bubble, and the years of the financial crisis (Cohen, 2020). To 

ensure that our results are not impacted by these time periods, we remove all bank-year 

observations from years 2000-2001 as the years of the dot-com bubble, and from years 2008-

2009 as the years of the financial crisis. Then, we repeat the analysis of Tables 6 and 7. Our 

results remain qualitatively similar (see Tables A4 and A5 in the Appendices). Furthermore, we 

examine whether the results of Table 6 are sensitive to the dimensions of our textual features. To 

do so, we lower the threshold of most frequent words from 20,000 to 10,000. Our results remain 

again similar to the ones reported in our baseline analysis (see Table A6 in the Appendices).  

To further illustrate the high importance of textual features, we adopt the Gini impurity 

technique (Kurt et al., 2008). Practically, this technique computes the importance score for each 

variable in the model, and it is applied to the RF models. Hence, we compute the Gini importance 

scores for the 20 most important features of our RF models. We limit the analysis to the 20 most 

important features, due to the fact that our textual features substantially outnumber our financial 

variables. Then, we compute the sum of these scores separately for textual features and for 

financial variables. By comparing those sums, we observe that textual features are more 

important inputs than financial variables in all cases and by a large margin (see Table A7 in the 

Appendices). 

 

5. Conclusions 

In this study, we utilize several machine learning models to predict bank mergers in the U.S. 

Our key innovation is that we investigate the role of textual disclosure of bank annual reports in 

our merger prediction task. More precisely, we examine whether the language used by bank 
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managers in the annual reports has any additional predictive power in our classification models 

beyond the traditional financial variables. The intuition behind this text-based approach is that 

textual information could reduce the opaqueness of bank assets and provide some important 

insights regarding the strategic options of the banking firms. Hence, our study contributes to the 

recent body of research that utilizes textual analysis in various finance tasks.  

We create a comprehensive dataset of 9,207 U.S. bank-year observations during the period 

1994-2016. To create our textual features, we use the bag of words and the word embedding 

approaches. One important aspect of our empirical approach is that we go beyond the frequently-

used generic word embeddings, and we create our own word embeddings specialized in the 

finance sector. Then, we use our textual features (with or without financial variables) as inputs in 

our classification models, and we evaluate the models’ out-of-sample performance according to 

the accuracy measure.  

Our findings provide strong evidence for the importance of textual information in a bank 

merger classification task. First, when we use a single type of input (textual data or financial 

variables), we observe that models using textual data provide better, or at least similar, accuracy 

scores compared to models using only financial variables. Second, when we jointly use both 

types of inputs, the out-of-sample performance is substantially improved. However, the best 

performing model is different in each task. In the bidder classification task, the MLP model with 

the finance word embeddings achieves the highest accuracy score of 72%. It is noteworthy that 

the MLP models with the word embedding approach generally produce the highest scores with 

our finance word embeddings compared with the generic ones. In the target prediction task, the 

TF-IDF weighted RF model using a combination of unigrams and bigrams achieves the highest 

score of 89.7%. In addition to accuracy scores, we also generate the ROC curves and evaluate the 
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performance of our models using the AUC scores. Notably, our inferences remain the same. 

Finally, our results are robust to a series of robustness tests.  

To conclude, this paper is the first that highlights the utility of textual information in a bank 

merger prediction task. We argue that the use of text is detrimental in the bank merger prediction 

due to the inherently opaque nature of the baking industry. Further, we introduce new 

methodological insights on how textual features can effectively be combined with financial 

variables in machine learning models to produce better out-of-sample performance. For these 

reasons, we hope that our study will provide fertile ground for future research in the fast-growing 

literature of textual analysis in finance.  
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Figure 1 

2-dimensional representation of finance word embeddings 

 

This figure visualizes the position of various words from our finance word embeddings (FWE) into a 2-
dimensional vector space. To reduce the dimensions of word embeddings from 200 to 2, we use the t-Distributed 
Stochastic Neighbor Embedding (t-SNE) dimensionality reduction technique. Words that share morpho-syntactic 
or semantic properties are mapped in close proximity to each other in the word embedding space. 
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Figure 2 

Flow chart of analysis 

 

This figure describes our textual analysis process step by step, including textual data 
collection, preprocessing, feature selection, feature representation and model evaluation. 
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Figure 3 

Architecture of the MLP models with the word embedding approach 

 

This figure illustrates the architecture of the MLP model with word embedding approach. 

Sigmoid refers to the 𝑓(𝑥) = 𝑒𝑥1+𝑒𝑥 and ReLU represents the 𝑓(𝑥) = max(0, 𝑥). The 

spheres stand for each neuron of the neural network, and TF-IDF for the term frequency-
inverse document frequency scheme. 
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Figure 4 

ROC curve of bidders using both textual features based on the word embedding approach and 
financial variables as inputs 

 

This figure depicts the receiver operating characteristic (ROC) curves of bidders for the MLP model using both 
textual features and financial variables as inputs. We use the MLP model with four different word embedding 
features: (1) TF Centroid embedding model with generic word embeddings (TF Generic centroid), (2) TF-IDF 
Centroid embedding model with generic word embeddings (TF-IDF Generic centroid), (3) TF Centroid 
embedding model with finance word embeddings (TF Finance centroid), and (4) TF-IDF Centroid embedding 
model with finance word embeddings (TF-IDF Finance centroid). The dotted line represents a 45-degree line 
which indicates a random assignment of class labels. Area stands for the area under curve (AUC) measure. TF 
and TF-IDF represent the two term weighting schemes. TF stands for the term frequency scheme normalized by 
document length, and TF-IDF for the term frequency-inverse document frequency scheme. 
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Figure 5 

ROC curve of targets using both SVD100 textual features based on bag of words approach and 
financial variables as inputs 

 

This figure depicts the receiver operating characteristic (ROC) curves of targets for three machine learning 
models: (1) logistic regression (LOGIT), (2) random forest (RF), and (3) multilayer preceptor (MLP). The dotted 
line represents a 45-degree line which indicates a random assignment of class labels. Area stands for the area 
under curve (AUC) measure. TF and TF-IDF represent the two term weighting schemes. TF stands for the term 
frequency scheme normalized by document length, and TF-IDF for the term frequency-inverse document 
frequency scheme. Bigrams are word pairs represented as a single textual feature. The figures on the left hand side 
report results using only unigrams, while the figures on the right hand side report results using combinations of 
unigrams and bigrams. Bigrams are pairs of consecutive words represented as a single textual feature. 
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Table 1 

Yearly distribution of observations 
Filing year Bidders Targets Non-involved All 
1994 39 5 76 120 
1995 39 11 120 167 
1996 55 14 295 363 
1997 84 33 382 494 
1998 81 30 396 504 
1999 49 24 441 513 
2000 43 29 438 509 
2001 35 21 430 486 
2002 35 17 429 481 
2003 66 32 402 496 
2004 48 16 449 512 
2005 57 18 417 492 
2006 57 25 391 471 
2007 37 13 353 403 
2008 15 8 360 383 
2009 4 3 366 373 
2010 10 11 339 360 
2011 11 7 323 341 
2012 29 10 311 350 
2013 40 16 319 375 
2014 48 16 301 364 
2015 52 17 283 352 
2016 32 13 253 298 
Total 966 389 7,874 9,207 

This table summarizes the yearly distribution of our sample based on 10-K filing year. Bidders is the number 
of banks that participate in a merger with the role of bidder within a twelve-month period after the 10-K 
filing date. Similarly, Targets is the number of banks that participate in a merger with the role of target 
within a twelve-month period after the 10-K filing date, and Non-involved is the number of banks that were 
not involved in a merger in that period. All represents the total number of bank-year observations per filing 
year. Note that All is not always the sum of three previous categories, because a bank it is possible to have 
the role of both bidder and target within the twelve-month period after the filing date. 
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Table 2 

Summary statistics 
Variables N Mean Median Std. Dev. 

Panel A: Bidders     

Cost efficiency % 966 63.15 63.09 10.37 
ROA % 966 1.07 1.08 0.48 
Size  966 15.19 15.04 1.60 
Capital strength % 966 9.58 9.24 2.37 
Loans % 966 65.97 66.93 10.17 
Market power % 966 0.35 0.06 1.08 
Asset quality % 966 0.34 0.28 0.47 
Non-interest income % 966 24.90 23.58 11.99 
Deposits % 966 76.22 77.87 8.66 
Panel B: Targets     

Cost efficiency % 389 67.88 66.42 15.66 

ROA % 389 0.82 0.91 0.79 

Size  389 14.24 13.89 1.50 

Capital strength % 389 9.28 8.69 2.94 

Loans % 389 66.56 67.17 10.23 

Market power % 389 0.17 0.02 0.65 

Asset quality % 389 0.43 0.25 0.86 

Non-interest income % 389 20.74 18.50 11.82 

Deposits % 389 77.31 78.61 9.64 

Panel C: Non-involved     

Cost efficiency % 7,874 68.16 65.32 21.60 

ROA % 7,874 0.73 0.91 1.08 

Size  7,874 14.24 13.89 1.56 

Capital strength % 7,874 9.34 9.00 2.87 

Loans % 7,874 66.25 67.36 12.17 

Market power % 7,874 0.21 0.02 1.22 

Asset quality % 7,874 0.58 0.29 1.00 

Non-interest income % 7,874 22.22 20.19 13.59 

Deposits % 7,874 77.11 79.21 10.30 

Panel D: All     

Cost efficiency % 9,207 67.63 65.02 20.56 

ROA % 9,207 0.77 0.94 1.03 

Size  9,207 14.34 13.98 1.59 

Capital strength % 9,207 9.37 9.02 2.83 

Loans % 9,207 66.24 67.30 11.90 

Market power % 9,207 0.22 0.02 1.19 

Asset quality % 9,207 0.55 0.29 0.96 

Non-interest income % 9,207 22.44 20.44 13.40 

Deposits % 9,207 77.03 79.04 10.12 

This table reports the summary statistics of our final (imbalanced) sample. In fact, we split the sample into 
the following categories: bidders (Panel A), targets (Panel B), non-involved (Panel C), and all (Panel D). The 
final (imbalanced) sample consists of 9,207 bank-year observations from 1994 to 2016. Cost efficiency is the 
cost to income ratio. ROA is calculated as the net income divided by the total assets. Size is the natural 
logarithm of the total assets. Note that total assets are measured in thousands of U.S. dollars. Capital strength 
is the ratio of common equity to the total assets. Loans is the ratio of loans to total assets. Market power is 
the ratio of each bank’s deposits to the total deposits of the U.S. banking sector at a specific year. Asset 

quality is the amount of loan loss provisions divided by the total assets. Non-interest income is the ratio of 
non-interest income to the total income. Deposits is the ratio of deposits to the total assets. See Table A1 in 
the Appendices for the corresponding codes from the FR Y-9C and the Call reports. Note that All is not 
always the sum of three previous categories, because a bank it is possible to have the role of both bidder and 
target within the twelve-month period after the filing date. 
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Table 3 

Out-of-sample performance using only financial variables 
 SVM-linear SVM-RBF LOGIT RF MLP 

Bidders 0.550 0.555 0.534 0.627 0.636 
Targets 0.506 0.557 0.788 0.769 0.769 

This table reports the accuracy scores for our machine learning models, using financial variables as inputs. 
The final (imbalanced) sample consists of 9,207 bank-year observations from 1994 to 2016. We use 80% of 
our sample as the training set and the remaining 20% as the out-of-sample (testing set). The analysis for 
bidders is based on a balanced sample of 966 bidders and 966 non-involved banks. The analysis for targets is 
based on a balanced sample of 389 targets and 389 non-involved banks. We use the following machine 
learning models: support vector machines (SVM-linear), support vector machines with radial basis function 
kernel (SVM-RBF), logistic regression (LOGIT), random forest (RF), and multilayer perceptron (MLP). 
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Table 4 

Out-of-sample performance using only textual features based on bag of words approach 
 SVM-linear SVM-RBF LOGIT RF MLP 

Panel A: Bidders      

TF 0.532 0.501 0.664 0.651 0.669 
TF-IDF 0.512 0.568 0.636 0.651 0.664 
TF + bigrams 0.478 0.504 0.659 0.610 0.661 
TF-IDF + bigrams 0.568 0.568 0.649 0.649 0.680 

Panel B: Targets     

TF 0.513 0.571 0.731 0.731 0.808 
TF-IDF 0.564 0.558 0.795 0.769 0.833 
TF + bigrams 0.558 0.583 0.737 0.705 0.801 
TF-IDF + bigrams 0.756 0.532 0.750 0.776 0.840 

This table reports the accuracy scores for our machine learning models, using textual features based on the 
bag of words approach. The final (imbalanced) sample consists of 9,207 bank-year observations from 1994 to 
2016. To construct the textual features, we use the 20,000 most frequent words of the 10-K filing. We use 
80% of our sample as the training set and the remaining 20% as the out-of-sample (testing set). Panel A 
reports results when we attempt to predict bidders. The analysis is based on a balanced sample of 966 bidders 
and 966 non-involved banks. Panel B reports results when we attempt to predict targets. The analysis is based 
on a balanced sample of 389 targets and 389 non-involved banks. The first two lines of each panel report 
results using only unigrams, while the last two lines report results using combinations of unigrams and 
bigrams. Bigrams are pairs of consecutive words represented as a single textual feature. We use the following 
machine learning models: support vector machines (SVM-linear), support vector machines with radial basis 
function kernel (SVM-RBF), logistic regression (LOGIT), random forest (RF), and multilayer perceptron 
(MLP). TF and TF-IDF are the two term weighting schemes. TF stands for the term frequency scheme 
normalized by document length, and TF-IDF for the term frequency-inverse document frequency scheme.  
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Table 5 

Out-of-sample performance of the MLP model using only textual features based on word 
embedding approach 

 Generic centroid Finance centroid 

Panel A: Bidders   

TF 0.510 0.540 
TF-IDF 0.640 0.640 

Panel B: Targets  

TF 0.780 0.770 
TF-IDF 0.740 0.760 

This table reports the accuracy scores for the MLP model using textual features as inputs. Particularly, we 
use the MLP model with four different word embedding features: (1) TF Centroid with generic word 
embeddings as inputs (TF Generic centroid), (2) TF-IDF Centroid with generic word embeddings as inputs 
(TF-IDF Generic centroid), (3) TF Centroid with finance word embeddings as inputs (TF Finance centroid), 
and (4) TF-IDF Centroid with finance word embeddings as inputs (TF-IDF Finance centroid).  The final 
(imbalanced) sample consists of 9,207 bank-year observations from 1994 to 2016. To construct the textual 
features, we use the 20,000 most frequent words of the 10-K filing. We use 80% of our sample as the training 
set and the remaining 20% as the out-of-sample (testing set). Panel A reports results when we attempt to 
predict bidders. The analysis is based on a balanced sample of 966 bidders and 966 non-involved banks. 
Panel B reports results when we attempt to predict targets. The analysis is based on a balanced sample of 389 
targets and 389 non-involved banks. TF and TF-IDF are the two term weighting schemes. TF stands for the 
term frequency scheme normalized by document length, and TF-IDF for the term frequency-inverse 
document frequency scheme. 

 

  



52 

 

Table 6 

Out-of-sample performance using both SVD100 textual features based on the bag of word 
approach and financial variables as inputs 

 SVM-linear SVM-RBF LOGIT RF MLP 

Panel A: Bidders      

TFSVD100 0.535 0.522 0.643 0.618 0.651 
TF-IDFSVD100 0.537 0.563 0.628 0.672 0.641 
(TF + bigrams)SVD100 0.450 0.545 0.641 0.643 0.651 
(TF-IDF + bigrams)SVD100 0.509 0.579 0.628 0.651 0.623 

Panel B: Targets     

TFSVD100 0.699 0.647 0.724 0.808 0.776 
TF-IDFSVD100 0.615 0.660 0.744 0.853 0.801 
(TF + bigrams)SVD100 0.647 0.673 0.679 0.814 0.756 
(TF-IDF + bigrams)SVD100 0.615 0.647 0.718 0.897 0.807 

This table reports the accuracy scores for our machine learning models, using both textual features based on 
the bag of word approach and financial variables. The final (imbalanced) sample consists of 9,207 bank-year 
observations from 1994 to 2016. To construct the textual features, we use the 20,000 most frequent words of 
the 10-K filing. However, the dimensions of textual features are further reduced to 100 using the singular 
value decomposition dimensionality reduction technique (SVD100). We use 80% of our sample as the 
training set and the remaining 20% as the out-of-sample (testing set). Panel A reports results when we 
attempt to predict bidders. The analysis is based on a balanced sample of 966 bidders and 966 non-involved 
banks. Panel B reports results when we attempt to predict targets. The analysis is based on a balanced sample 
of 389 targets and 389 non-involved banks. The first two lines of each panel report results using only 
unigrams, while the last two lines report results using combinations of unigrams and bigrams. Bigrams are 
pairs of consecutive words represented as a single textual feature. We use the following machine learning 
models: support vector machines (SVM-linear), support vector machines with radial basis function kernel 
(SVM-RBF), logistic regression (LOGIT), random forest (RF), and multilayer perceptron (MLP). TF and TF-
IDF represent the two term weighting schemes. TF stands for the term frequency scheme normalized by 
document length, and TF-IDF for the term frequency-inverse document frequency scheme. 
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Table 7 

Out-of-sample performance of the MLP model using both textual features based on the 
word embedding approach and financial variables as inputs 

 Generic centroid Finance centroid 

Panel A: Bidders   

TF 0.670 0.690 
TF-IDF 0.680 0.720 

Panel B: Targets  

TF 0.790 0.800 
TF-IDF 0.780 0.810 

This table reports the accuracy scores for the MLP model using both textual features and financial variables 
as inputs. Particularly, we use the MLP model with four different word embedding features: (1) TF Centroid 
with generic word embeddings as inputs (TF Generic centroid), (2) TF-IDF Centroid with generic word 
embeddings as inputs (TF-IDF Generic centroid), (3) TF Centroid with finance word embeddings as inputs 
(TF Finance centroid), and (4) TF-IDF Centroid with finance word embeddings as inputs (TF-IDF Finance 
centroid). The final (imbalanced) sample consists of 9,207 bank-year observations from 1994 to 2016. To 
construct the textual features, we use the 20,000 most frequent words of the 10-K filing. We use 80% of our 
sample as the training set and the remaining 20% as the out-of-sample (testing set). Panel A reports results 
when we attempt to predict bidders. The analysis is based on a balanced sample of 966 bidders and 966 non-
involved banks. Panel B reports results when we attempt to predict targets. The analysis is based on a 
balanced sample of 389 targets and 389 non-involved banks. TF and TF-IDF represent the two term 
weighting schemes. TF stands for the term frequency scheme normalized by document length, and TF-IDF 
for the term frequency-inverse document frequency scheme. 
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Table 8 

Bootstrap randomization and statistical significance 
Comparisons Winner p-value 

Panel A: Bidders   

TF-IDF Finance centroid vs TF-IDF Generic centroid  TF-IDF Finance centroid 0.006*** 
TF-IDF Finance centroid vs TF Finance centroid No winner 0.118 
TF-IDF Finance centroid vs TF Generic centroid TF-IDF Finance centroid 0.000*** 
TF-IDF Generic centroid vs TF Finance centroid No winner 0.452 
TF-IDF Generic centroid vs TF Generic centroid TF-IDF Generic centroid 0.049** 
TF Finance centroid vs TF Generic centroid TF Finance centroid 0.000*** 

Panel B: Targets   

RF-(TF-IDF + bigrams)SVD100 vs RF-TF-IDFSVD100 RF-(TF-IDF + bigrams)SVD100 0.000*** 
RF-(TF-IDF + bigrams)SVD100 RF vs RF-(TF + bigrams)SVD100 RF-(TF-IDF + bigrams)SVD100 0.000*** 
RF-(TF-IDF + bigrams)SVD100 RF vs RF-TFSVD100 RF-(TF-IDF + bigrams)SVD100 0.000*** 
RF-TF-IDFSVD100 vs RF-(TF + bigrams)SVD100 RF-TF-IDFSVD100 0.036** 
RF-TF-IDFSVD100 vs RF-TFSVD100 RF-TF-IDFSVD100 0.014** 
RF-(TF + bigrams)SVD100 vs RF-TFSVD100 No winner 0.684 

This table reports the p-values of our results based on bootstrap statistical significance tests. In each task (bidders 
or targets), we choose the four best-performing models. In practice, we compare the chosen models’ 
performance in order to classify them in terms of predictive power, however with respect to statistical 
significance. Panel A reports results when we attempt to predict bidders. Particularly, we use the MLP model 
with four different word embedding features: (1) TF Centroid with generic word embeddings as inputs (TF 
Generic centroid), (2) TF-IDF Centroid with generic word embeddings as inputs (TF-IDF Generic centroid), (3) 
TF Centroid with finance word embeddings as inputs (TF Finance centroid), and (4) TF-IDF Centroid with 
finance word embeddings as inputs (TF-IDF Finance centroid). Panel B reports results when we attempt to 
predict targets. In particular, we compare the following four models: (1) RF with the use of TFSVD100 (RF-
TFSVD100), (2) RF with the use of TF-IDFSVD100 (RF-TF-IDFSVD100), (3) RF with the use of (TF + bigrams)SVD100 
(RF-(TF + bigrams)SVD100), and (4) RF with the use of (TF-IDF + bigrams)SVD100 (RF-(TF-IDF + bigrams)SVD100). 
TF and TF-IDF represent the two term weighting schemes. TF stands for the term frequency scheme normalized 
by document length, and TF-IDF for the term frequency-inverse document frequency scheme. 
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Appendix A 

Table A1 

Financial variables definition 
Variables Description Commercial Banks  (Call Reports) Bank Holding Companies (FR Y-9C) 

Size Logarithm of Total Assets ln(RCFD2170) ln(BHCK2170) 
Capital strength Equity to Total Assets RCFD3210/RCFD2170 BHCK3210/BHCK2170 
Loans Loans to Total Assets RCFD2122/RCFD2170 BHCK2122/BHCK2170 
Non-interest income Non-Interest Income to Total Income RIAD4079/(RIAD4074+RIAD4079) BHCK4079/(BHCK4074+BHCK4079) 
Asset quality Loan Loss Provisions to Loans RIAD4230/RCFD2122 BHCK4230/BHCK2122 
Deposits Deposits to Total Assets (RCFD6631+RCFD6636)/RCFD2170 (BHDM6631+BHDM6636+BHFN6631+BHFN6636)/BHCK2170 

Market power Deposits market share 
(RCFD6631+RCFD6636)/Total 
industry deposits 

(BHDM6631+BHDM6636+BHFN6631+BHFN6636)/Total 
industry deposits 

Cost efficiency Non-Interest Expense to Total Income RIAD4093/(RIAD4074+RIAD4079) BHCK4093/(BHCK4074+BHCK4079) 
ROA Net Income to Total Assets RIAD4340/RCFD2170 BHCK4340/BHCK2170 

This table presents the construction of our financial variables and corresponding codes from the Call Reports and FR Y-9C Reports. 
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Table A2 

Out-of-sample performance using both textual features based on the bag of words approach 
and financial variables as inputs 

 SVM-linear SVM-RBF LOGIT RF MLP 

Panel A: Bidders      

TF 0.475 0.506 0.607 0.643 0.646 
TF-IDF 0.527 0.501 0.615 0.633 0.612 
TF + bigrams 0.504 0.506 0.615 0.680 0.662 
TF-IDF + bigrams 0.506 0.501 0.576 0.625 0.636 

Panel B: Targets     

TF 0.596 0.519 0.801 0.673 0.808 
TF-IDF 0.603 0.532 0.750 0.769 0.833 
TF + bigrams 0.545 0.538 0.750 0.744 0.801 
TF-IDF + bigrams 0.519 0.526 0.769 0.795 0.840 

This table reports the accuracy scores for our machine learning models, using both textual features based on 
the bag of words approach and financial variables. The final (imbalanced) sample consists of 9,207 bank-year 
observations from 1994 to 2016. To construct the textual features, we use the 20,000 most frequent words of 
the 10-K filing. We use 80% of our sample as the training set and the remaining 20% as the out-of-sample 
(testing set). Panel A reports results when we attempt to predict bidders. The analysis is based on a balanced 
sample of 966 bidders and 966 non-involved banks. Panel B reports results when we attempt to predict 
targets. The analysis is based on a balanced sample of 389 targets and 389 non-involved banks. The first two 
lines of each panel report results using only unigrams, while the last two lines report results using 
combinations of unigrams and bigrams. Bigrams are pairs of consecutive words represented as a single 
textual feature. We use the following machine learning models: support vector machines (SVM-linear), 
support vector machines with radial basis function kernel (SVM-RBF), logistic regression (LOGIT), random 
forest (RF), and multilayer perceptron (MLP). TF and TF-IDF are the two term weighting schemes. TF 
stands for the term frequency scheme normalized by document length, and TF-IDF for the term frequency-
inverse document frequency scheme. 
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Table A3 

Out-of-sample performance using only SVD100 textual features based on the bag of words 
approach 

 SVM-linear SVM-RBF LOGIT RF MLP 

Panel A: Bidders      

TFSVD100 0.553 0.476 0.631 0.581 0.612 
TF-IDFSVD100 0.507 0.519 0.628 0.631 0.649 
(TF + bigrams)SVD100 0.630 0.463 0.646 0.605 0.631 
(TF-IDF + bigrams)SVD100 0.519 0.563 0.641 0.625 0.641 

Panel B: Targets     

TFSVD100 0.596 0.564 0.750 0.756 0.737 
TF-IDFSVD100 0.628 0.680 0.763 0.795 0.776 
(TF + bigrams)SVD100 0.590 0.545 0.756 0.743 0.731 
(TF-IDF + bigrams)SVD100 0.609 0.667 0.769 0.801 0.795 

This table reports the accuracy scores for our machine learning models, using only textual features based on 
the bag of words approach. The final (imbalanced) sample consists of 9,207 bank-year observations from 
1994 to 2016. To construct the textual features, we use the 20,000 most frequent words of the 10-K filing. 
However, the dimensions of textual features are further reduced to 100 using the singular value 
decomposition dimensionality reduction technique (SVD100). We use 80% of our sample as the training set 
and the remaining 20% as the out-of-sample (testing set). Panel A reports results when we attempt to predict 
bidders. The analysis is based on a balanced sample of 966 bidders and 966 non-involved banks. Panel B 
reports results when we attempt to predict targets. The analysis is based on a balanced sample of 389 targets 
and 389 non-involved banks. The first two lines of each panel report results using only unigrams, while the 
last two lines report results using combinations of unigrams and bigrams. Bigrams are pairs of consecutive 
words represented as a single textual feature. We use the following machine learning models: support vector 
machines (SVM-linear), support vector machines with radial basis function kernel (SVM-RBF), logistic 
regression (LOGIT), random forest (RF), and multilayer perceptron (MLP). TF and TF-IDF are the two term 
weighting schemes. TF stands for the term frequency scheme normalized by document length, and TF-IDF 
for the term frequency-inverse document frequency scheme. 

  



58 

 

Table A4 

Out-of-sample performance using both SVD100 textual features and financial variables as 
inputs after excluding special years 

 SVM-linear SVM-RBF LOGIT RF MLP 

Panel A: Bidders      

TFSVD100 0.578 0.523 0.652 0.635 0.641 
TF-IDFSVD100 0.543 0.572 0.627 0.667 0.655 
(TF + bigrams)SVD100 0.586 0.526 0.667 0.658 0.647 
(TF-IDF + bigrams)SVD100 0.552 0.578 0.626 0.670 0.658 

Panel B: Targets     

TFSVD100 0.591 0.644 0.700 0.818 0.727 
TF-IDFSVD100 0.492 0.674 0.742 0.845 0.765 
(TF + bigrams)SVD100 0.621 0.598 0.689 0.841 0.795 
(TF-IDF + bigrams)SVD100 0.553 0.750 0.720 0.871 0.811 

This table reports the accuracy scores for our machine learning models, using both textual features based on 
the bag of words approach and financial variables. The final sample consists of 7,456 bank-year observations 
from 1994 to 2016, after we remove all bank-year observations from years 2000-2001 as the years of dot-
com bubble, and from years 2008-2009 as the years of the financial crisis. To construct the textual features, 
we use the 20,000 most frequent words of the 10-K filing. However, the dimensions of textual features are 
further reduced to 100 using the singular value decomposition dimensionality reduction technique (SVD100). 
We use 80% of our sample as the training set and the remaining 20% as the out-of-sample (testing set). Panel 
A reports results when we attempt to predict bidders. The analysis is based on a balanced sample of 868 
bidders and 868 non-involved banks. Panel B reports results when we attempt to predict targets. The analysis 
is based on a balanced sample of 328 targets and 328 non-involved banks. The first two lines of each panel 
report results using only unigrams, while the last two lines report results using combinations of unigrams and 
bigrams. Bigrams are pairs of consecutive words represented as a single textual feature. We use the following 
machine learning models: support vector machines (SVM-linear), support vector machines with radial basis 
function kernel (SVM-RBF), logistic regression (LOGIT), random forest (RF), and multilayer perceptron 
(MLP). TF and TF-IDF are the two term weighting schemes. TF stands for the term frequency scheme 
normalized by document length, and TF-IDF for the term frequency-inverse document frequency scheme. 
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Table A5 

Out-of-sample performance of the MLP model using both textual features based on the 
word embedding approach and financial variables as inputs after excluding special years 

 Generic centroid Finance centroid 

Panel A: Bidders   

TF 0.670 0.690 
TF-IDF 0.680 0.710 

Panel B: Targets  

TF 0.790 0.800 
TF-IDF 0.780 0.800 

This table reports the accuracy scores for the MLP model using both textual features and financial variables 
as inputs. Particularly, we use the MLP model with four different word embedding features: (1) TF Centroid 
with generic word embeddings as inputs (TF Generic centroid), (2) TF-IDF Centroid with generic word 
embeddings as inputs (TF-IDF Generic centroid), (3) TF Centroid with finance word embeddings as inputs 
(TF Finance centroid), and (4) TF-IDF Centroid with finance word embeddings as inputs (TF-IDF Finance 
centroid). The final sample consists of 7,456 bank-year observations from 1994 to 2016, after we remove all 
bank-year observations from years 2000-2001 as the years of dot-com bubble, and from years 2008-2009 as 
the years of the financial crisis. To construct the textual features, we use the 20,000 most frequent words of 
the 10-K filing. We use 80% of our sample as the training set and the remaining 20% as the out-of-sample 
(testing set). Panel A reports results when we attempt to predict bidders. The analysis is based on a balanced 
sample of 868 bidders and 868 non-involved banks. Panel B reports results when we attempt to predict 
targets. The analysis is based on a balanced sample of 328 targets and 328 non-involved banks. TF and TF-
IDF are the two term weighting schemes. TF stands for the term frequency scheme normalized by document 
length, and TF-IDF for the term frequency-inverse document frequency scheme. 
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Table A6 

Out-of-sample performance of the 10,000 most frequent textual features using both 
SVD100 textual features and financial variables as inputs 

 SVM-linear SVM-RBF LOGIT RF MLP 

Panel A: Bidders      

TFSVD100 0.535 0.535 0.643 0.631 0.627 
TF-IDFSVD100 0.494 0.574 0.628 0.666 0.636 
(TF + bigrams)SVD100 0.434 0.532 0.633 0.643 0.635 
(TF-IDF + bigrams)SVD100 0.574 0.587 0.625 0.659 0.638 

Panel B: Targets     

TFSVD100 0.603 0.699 0.724 0.814 0.756 
TF-IDFSVD100 0.571 0.705 0.744 0.859 0.802 
(TF + bigrams)SVD100 0.635 0.686 0.699 0.846 0.776 
(TF-IDF + bigrams)SVD100 0.692 0.602 0.724 0.865 0.782 

This table reports the accuracy scores for our machine learning models, using both textual features based on 
the bag of words approach and financial variables. The final (imbalanced) sample consists of 9,207 bank-year 
observations from 1994 to 2016. To construct the textual features, we use the 10,000 most frequent words of 
the 10-K filing. However, the dimensions of textual features are further reduced to 100 using the singular 
value decomposition dimensionality reduction technique (SVD100). We use 80% of our sample as the 
training set and the remaining 20% as the out-of-sample (testing set). Panel A reports results when we 
attempt to predict bidders. The analysis is based on a balanced sample of 966 bidders and 966 non-involved 
banks. Panel B reports results when we attempt to predict targets. The analysis is based on a balanced sample 
of 389 targets and 389 non-involved banks. The first two lines of each panel report results using only 
unigrams, while the last two lines report results using combinations of unigrams and bigrams. Bigrams are 
pairs of consecutive words represented as a single textual feature. We use the following machine learning 
models: support vector machines (SVM-linear), support vector machines with radial basis function kernel 
(SVM-RBF), logistic regression (LOGIT), random forest (RF), and multilayer perceptron (MLP). TF and TF-
IDF are the two term weighting schemes. TF stands for the term frequency scheme normalized by document 
length, and TF-IDF for the term frequency-inverse document frequency scheme. 
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Table A7 

Sum of Gini impurity scores 

 Financial variables Gini Textual variables Gini 

Panel A: Bidders   

TFSVD100 0.075 0.169 
TF-IDFSVD100 0.054 0.194 
(TF + bigrams)SVD100 0.092 0.152 
(TF-IDF + bigrams)SVD100 0.054 0.117 

Panel B: Targets  

TFSVD100 0.167 0.172 
TF-IDFSVD100 0.111 0.243 
(TF + bigrams)SVD100 0.141 0.189 
(TF-IDF + bigrams)SVD100 0.113 0.222 

This table reports the Gini impurity scores when both SVD100 textual features and financial variables are 
used as inputs in the RF model. In fact, we provide the sum of Gini scores separately for financial variables 
and textual features for comparative reasons. However, in our calculations we take into account only the 20 
most important features. The final (imbalanced) sample consists of 9,207 bank-year observations from 1994 
to 2016. To construct the textual features, we use the 20,000 most frequent words of the 10-K filing. 
However, the dimensions of textual features are further reduced to 100 using the singular value 
decomposition dimensionality reduction technique (SVD100). We use 80% of our sample as the training set 
and the remaining 20% as the out-of-sample (testing set). Panel A reports results when we attempt to predict 
bidders. The analysis is based on a balanced sample of 966 bidders and 966 non-involved banks. Panel B 
reports results when we attempt to predict targets. The analysis is based on a balanced sample of 389 targets 
and 389 non-involved banks. The first two lines of each panel report results using only unigrams, while the 
last two lines report results using combinations of unigrams and bigrams. Bigrams are pairs of consecutive 
words represented as a single textual feature. TF and TF-IDF are the two term weighting schemes. TF stands 
for the term frequency scheme normalized by document length, and TF-IDF for the term frequency-inverse 
document frequency scheme. 

 

  



62 

 

Appendix B 

In this section, we describe the bootstrap resampling method of Berg-Kirkpatrick et al. (2012). 

To understand this approach, let’s assume that we want to compare the out-of-sample performance 

of two learning algorithms, algorithm A and algorithm B. We construct the null hypothesis H0, 

which assumes that A is no better than B when it comes to their performance. If we fail to reject 

H0, then, any outperformance of A could be attributed to chance. We test this hypothesis by 

estimating the p-value of the null hypothesis using the bootstrap method, which simulates several 

out-of-samples (testing sets) from the original out-of-sample.18 

In particular, let’s suppose that a classifier A is better than another classifier B by δ(x) based on 

a test set x = x1,…,xn. We then generate b versions of out-of-sample x using the bootstrap method 

with replacement. To estimate how unexpected our observed δ(x) is, we compute the following p-

value: 

𝑃(𝛿(𝑋) > 𝛿(𝑥)|𝐻0) 
where X is a random variable over potential out-of-samples of size n drawn from the bootstrap 

method, and δ(x) is a constant that reflects the observed performance advantage of A over B. In 

essence, we check how frequently classifier A beats B by a more than δ(x) accuracy score on x(i), 

where i takes values from 1 to 10,000 and represents the new out-of-samples, known as bootstrap 

samples. Nevertheless, the x(i) were sampled from x, which implies that the average 𝛿(𝑥(𝑖)) would 

undoubtedly be not zero, as we expressed in the null hypothesis. In other words, the bootstrap 

samples are drawn from x, which is biased in favor of A by the amount of δ(x). The expected value 

of 𝛿(𝑋) tends to be close to δ(x), instead of zero. Το deal with that, we re-center the expected 

 
18 In practice, we pool the test sets from the underlying classifiers. Next, we create new test sets, called bootstrap 
samples, and drawn from the pooled sample with replacement. For the purposes of our analysis, we repeat the 
experiment 10,000 times. 
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value, by counting the number of 𝑥(𝑖) where A beating B with at least 2 ∗ 𝛿(𝑥). The p-value is 

computed as follows: 

𝑃(𝛿(𝑋) − 𝛿(𝑥) > 𝛿(𝑥)|𝐻0) 
𝑃(𝛿(𝑋) > 2 ∗ 𝛿(𝑥)|𝐻0) 

 


