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Abstract

This paper studies competition between firms when consumers observe a pri-

vate signal of their preferences over products. Within the class of signal structures

which induce pure-strategy pricing equilibria, we derive signal structures which

are optimal for firms and those which are optimal for consumers. The firm-optimal

policy amplifies underlying product differentiation, thereby relaxing competition,

while ensuring consumers purchase their preferred product, thereby maximizing

total welfare. The consumer-optimal policy dampens differentiation, which inten-

sifies competition, but induces some consumers to buy their less-preferred prod-

uct. Our analysis sheds light on the limits to competition when the information

possessed by consumers can be designed flexibly.
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1 Introduction

Firms in many markets supply differentiated products and compete in prices. Con-

sumers might not always possess all information about product attributes before they

make their purchase decision, and market performance depends on how much informa-

tion consumers possess about products. If little such information is available, consumers

cannot meaningfully compare products and will regard them as close substitutes. This

induces firms to compete fiercely with low prices, but consumers often end up purchas-

ing a mismatched product. When more product information is available, the quality of

the consumer-product match improves, but firms enjoy greater market power and set

higher prices. This broad trade-off between match quality and price is well known, but

there has been little systematic investigation of the interaction between the amount of

product information consumers have and the intensity of competition. For example,

is more information for consumers always associated with increased market power of

firms? Can biased information provision which favors one firm over others help relax

price competition? At which point is the trade-off between match quality and market

price optimally resolved for consumers? More generally, what kind of information pro-

vision is optimal for firm profit and what kind is optimal for consumer surplus? This

paper aims to answer these questions.

These questions are also important when a third-party can design the information

environment that consumers face. For instance, consumers often gather information

and make their purchases via a platform (e.g., Amazon or Expedia) which hosts com-

peting firms. The platform can control many aspects of the information environment,

such as how much detail about product characteristics is revealed, whether to post

customer reviews and/or its own reviews, whether to offer personalized recommenda-

tions, how flexibly consumers can filter and compare products, and so on. How should

the platform design its information environment if it aims to maximize industry profit,

or the profit of selected firms, or consumer surplus, or a weighted sum of profit and

consumer surplus? Alternatively, when some products (e.g., insurance plans) are diffi-

cult for consumers to compare, regulators sometimes intervene by specifying how firms

should disclose product information, aiming to enhance consumers’ ability to select

their preferred product. But is a more transparent information environment always

better for consumers, given the potentially adverse effect on price competition when

more detailed product information is revealed?1

1See, e.g., https://go.cms.gov/2U2lZJe for information transparency regulation in the US health

insurance market. Sometimes the regulator may even require firms to offer “standardized” products to

facilitate comparison. This involves a similar trade-off to information regulation: more standardized
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Formally, as described in section 2, we study an ex ante symmetric duopoly market

where two firms each costlessly supply a single variety of a product and compete in

prices. Consumers are initially uncertain about their preferences for the varieties, but

before purchase they receive a private signal of these preferences. Consumers then

update their beliefs about their preferences and make their choice given the pair of prices

offered by firms. The information environment or signal structure, which governs the

mapping between consumers’ true preferences and the signals they receive, is publicly

known to both firms and consumers. We wish to understand how the signal structure

affects competition and welfare. In particular, we explore the limits to competition in

this market, and derive the signal structures that induce the highest profit for firms

and those that generate the highest surplus for consumers.2

Solving this problem at the most general level is challenging. Consumer preferences

are generally two-dimensional in our duopoly setup, and current understanding of in-

formation design in such cases is limited.3 For this reason, we mostly focus on the

case when the outside option for consumers is irrelevant, and so only the relative val-

uation between the two products–a scalar variable–matters for consumer decisions.

Even with scalar heterogeneity, under some signal structures the only equilibria in the

pricing game between firms involve mixed strategies, which can be hard to deal with.

For this reason, we mostly focus on signal structures which induce a pure-strategy

equilibrium in the pricing game.

Our analysis starts in section 3.1 where we study a stand-alone pricing problem

which does not concern information design per se. We describe the set of relative

valuation distributions, if any, which support a given pair of prices as equilibrium prices.

It turns out that a price pair can be implemented if and only if the valuation distribution

lies between two bounds, which are determined by each firm’s no-deviation condition.

Using these bounds we characterize the set of possible pure-strategy equilibrium prices

products are close substitutes and so facilitate competition on price, but prevent some consumers with

particular preferences from obtaining a product tailored to those preferences. See, e.g., Ericson and

Starc (2016) for a discussion and empirical analysis of this issue in the context of health insurance.
2Another interpretation of the consumer-optimal problem is that sometimes consumers can commit

to how much product information to acquire, or use, before firms make their pricing decisions. For

instance, a consumer could delegate her purchase decision to an agent who commits to focus more on

price than other product characteristics in order to stimulate competition between suppliers.
3It is well known that the posterior (expected) consumer valuation distribution induced by any

signal structure is a mean-preserving contraction of the underlying prior distribution. However, a

multidimensional mean-preserving contraction currently has no simple characterization, in contrast to

the scalar case where Rothschild and Stiglitz (1970) applies. See section 7.2 of Dworczak and Martini

(2019) for discussion of this point.
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when any valuation distribution is allowed.

In the information design problem, however, only some posterior distributions can

be induced by signal structures. Using the bounds approach, we show in section 3.2

that starting from an asymmetric signal structure which treats the two firms differently,

one can find a symmetric signal structure which improves consumer surplus and one can

find a symmetric signal structure which increases the profit of each firm. Intuitively,

when a firm is treated unfavorably with asymmetric signals, it has an incentive to

set a low price. Our result shows that this force is sufficiently strong so that even

the favored firm suffers from this fierce competition. This result suggests that firms

have congruent interests when it comes to the design of consumer information, and

that biased recommendations are not the best approach to improve profit even for an

individual firm.

The bounds are used in sections 3.3 and 3.4 to characterize the (necessarily symmet-

ric) firm-optimal and consumer-optimal information policies. The firm-optimal signal

structure amplifies perceived product differentiation in order to relax competition, and

does so by reducing the likelihood that consumers are near-indifferent between products

after receiving their signal. Compared to full information disclosure, the firm-optimal

information policy can significantly improve industry profit. This shows that provid-

ing consumers with more product information need not raise firms’ market power.

The firm-optimal policy typically enables consumers to buy their preferred product, in

which case total welfare is also maximized. The consumer-optimal signal structure by

contrast dampens perceived product differentiation in order to stimulate competition,

and does so by increasing the number of consumers who are near-indifferent between

products. In the consumer-optimal policy, a consumer with strong preferences can buy

her preferred product for sure, but a consumer with weaker preferences receives less

precise information and may end up with the inferior product. Thus, in contrast to

the firm-optimal policy, the consumer-optimal policy does not maximize total welfare.

The consumer-optimal policy typically induces rather low prices, suggesting that for

information design with two firms the price competition effect tends to outweigh the

match quality effect for consumers.

In section 3.5 we characterize all combinations of industry profit and consumer

surplus which can be implemented using some choice of signal structure. Any profit be-

tween zero and the firm-optimal profit level is feasible. The efficient (welfare-maximizing)

frontier is achievable if the profit is at least equal to that obtained under full disclosure;

otherwise, a degree of mismatch is needed to induce fierce competition and efficiency

is not feasible. This analysis can be used to solve the Ramsey problem, i.e., the in-

formation policy which maximizes a weighted sum of industry profit and consumer
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surplus.

In section 4 we discuss two extensions to this analysis. First, in section 4.1 we

explore whether considering the wider class of signals which allowmixed-strategy pricing

equilibria can improve outcomes. We show that allowing symmetric mixed-strategy

equilibria could at best improve consumer surplus only slightly.

Second, in section 4.2 we extend the analysis to allow for more than two firms and

for the outside option to be relevant for consumers. Optimal information design in this

general framework is a hard problem, and instead we study the relative performance of

three simple policies. We show that the “top product” policy, which informs consumers

of their most preferred product but nothing else, can sometimes enable firms to achieve

first-best profit (i.e., the profit equal to maximum total welfare). Moreover, even if this

policy does not achieve first-best profit, it typically performs better than full disclosure

of information for firms and bounds industry profit away from zero regardless of the

number of firms. When there are many firms, the trade off for consumers between

match quality and a low price vanishes. For instance, a policy of full disclosure can

approximately achieve the first-best for consumers when there are many firms. A third

policy, which we term the “top two” policy, informs consumers of their best two prod-

ucts (without ranking them). This policy induces firms to set price equal to marginal

cost, and when there are many firms it causes negligible mismatch and so also induces

approximately the first-best outcome for consumers. For any finite number of firms this

“top two” policy performs better for consumers than both full disclosure and the “top

product” policy.

Related literature. One strand of the relevant literature considers a monopolist’s

incentive to provide information to enable consumers to discover their valuation for its

product. An early paper on this topic is Lewis and Sappington (1994), who study a

monopoly market and show, within the class of “truth or noise” signal structures, how it

is optimal for the firm either to disclose no information or all information. Johnson and

Myatt (2006) derive a similar result for a more general class of information structures

which induce rotations of the demand curve. Anderson and Renault (2006) argue that

partial information disclosure before consumers search can be optimal for a monopolist if

consumers need to pay a search cost to buy the product (in which case they learn their

valuation automatically). Importantly, they allow for general signal structures as in

the more recent Bayesian persuasion literature and show that firm-optimal information

disclosure takes the coarse form whereby a consumer is informed merely whether her

valuation lies above a threshold.

Roesler and Szentes (2017) study the signal structure which is best for consumers in
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a monopoly model. They show that the optimal signal structure can be found within

the class of posterior distributions which induce unit-elastic demand functions. (These

unit-elastic demand functions play a similar role to the posterior distribution bounds

in our analysis.) They show that partial rather than complete learning is optimal for

consumers, and that the optimal information structure induces ex ante efficient trade

and maximizes total welfare.4 In their setup, where trade is always efficient, the firm-

optimal signal structure is simply to disclose no information at all, in which case the

firm can extract all surplus by charging a price equal to the expected valuation. With

competition, however, this is no longer true since without any information consumers

regard the firms’ products as perfect substitutes and firms earn zero profit. (Indeed in

our duopoly model we show that disclosing no information is nearly optimal for con-

sumers, rather than firms.) Therefore, the firm-oriented problem is more interesting

and challenging in our setting with competition than it is with monopoly. With com-

petition, the consumer-optimal policy also exhibits some significant differences from

the monopoly case in Roesler and Szentes. For example, it usually causes product

mismatch so that the allocation is sometimes inefficient, the induced residual demand

for each firm is unit-elastic for upward but not downward price deviations, and the

consumer-optimal signal structure is not the least profitable policy for firms.

Our paper concerns information design in an oligopoly setting. Most of the previous

research on this topic studies the “decentralized” disclosure policies of individual firms.

For example, Ivanov (2013) studies competitive disclosure when each firm decides how

much information about its own product to release and what price to charge. He focuses

on information structures which rotate demand as in Johnson and Myatt (2006), and

shows that full disclosure is the only symmetric equilibrium when the number of firms is

large.5 Hwang, Kim, and Boleslavsky (2020) show that the same result holds if general

signal structures are allowed (and more generally they are able to show that increasing

the number of firms induces each firm to reveal more information). Intuitively, with

many firms, a consumer’s valuation for the best rival product (if other firms fully

disclose their information) is high. To compete for the consumer, a firm discloses all

4Condorelli and Szentes (2020) study the related problem of how to choose the demand curve

to maximize consumer surplus, given the monopolist chooses its price optimally in response. (The

consumer accurately observes her realized valuation in this model.) Choi, Kim, and Pease (2019)

extend Roesler and Szentes (2017) to the set-up of Anderson and Renault (2006), and derive the

consumer-optimal policy in the context of a search good.
5Bar-Isaac, Caruana, and Cunat (2012) study competitive product design within a sequential search

market. They consider designs which rotate demand, and show that a reduction in the search cost in-

duces more firms to choose niche product design (which can be interpreted as full information disclosure

in the context of information design when consumers have a common prior).
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information as that is the policy which maximizes the posterior probability she has a

high valuation.6

Instead of studying equilibrium disclosure by individual firms, though, we focus on

a “centralized” design problem, such as when a platform mediates the information flow

from products to consumers. This enables us to discuss signals which reflect relative

valuations across products, such as the “top product” signal. This more general signal

structure introduces a number of additional features. In our framework, for instance,

full information disclosure is not the firm-optimal policy even with many firms, and

the “top product” policy sometimes yields first-best profit for firms (which can never

be achieved with a decentralized design). In addition, when decentralized signals are

not fully revealing, there are welfare losses since consumers sometimes choose a less

preferred product, while with a centralized structure it is possible to have a coarse

signal structure (e.g., the “top product” signal) which nevertheless maintains efficiency.

Finally, Hwang et al. (2020) show that the equilibrium price (and hence profit) often

falls relative to the full-information price when individual firms choose their disclosure

policy non-cooperatively, while by construction the centralized firm-optimal policy must

boost industry profit.

Other papers have also studied “centralized” aspects of the design of consumer in-

formation. Anderson and Renault (2009) study comparative advertising in a duopoly

model where each firm unilaterally chooses between fully disclosing its own product

information, fully disclosing information about both products, or disclosing nothing.

Among other results, they make the point that disclosing more information improves

match quality but also softens price competition. Jullien and Pavan (2019) make a sim-

ilar point when they study how platforms’ information management affects their com-

petition in two-sided markets. Both papers consider specific classes of signal structures.

When general signal structures are allowed, as we show in this paper, the monotonic

relationship between the amount of information and the degree of price competition

fails. Dogan and Hu (2021) study the consumer-optimal disclosure policy in a sequen-

tial search framework with many firms. Consumers receive a signal of their valuation for

a particular product only when they visit its seller. The information policy is chosen by

a third party, and the disclosure is only about each individual product (and so there is

no disclosure about relative valuations across products). Because the reservation value

in this search framework is static, their problem is similar to the monopoly problem

studied by Roesler and Szentes (2017). Moscarini and Ottaviani (2001) study a duopoly

model of price competition similar to ours, where the consumer receives a private signal

6A similar result appears in other recent works which study competitive disclosure but without

price competition, such as Board and Lu (2018).
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of her relative valuation for the two products. A major difference, however, is that

they assume the relative valuation is binary and the signal is binary and symmetric

across states. In that simple setting, they can allow firms to be ex ante asymmetric,

but the pricing equilibrium often involves complicated mixed strategies. Moscarini and

Ottaviani (2001) also point out that both firm profit and consumer welfare can vary

non-monotonically with the amount of information consumers have, but they do not

explicitly study the optimal signal structure for firms or consumers.

More broadly, our paper belongs to the recent literature on Bayesian persuasion

and information design. See Kamenica and Gentzkow (2011) for a pioneering paper

in this literature, and Bergemann and Morris (2019) and Kamenica (2019) for recent

surveys. Bergemann, Brooks, and Morris (2015) study third-degree price discrimination

by a monopolist. In contrast to the consumer-side design problem in Roesler and

Szentes (2017) and our model, their paper considers a firm-side design problem where

signals are sent to the firm about consumer preferences, and consumers accurately know

their valuation from the start. A given signal structure corresponds to a particular

partition of consumers. If all ways to partition consumers are possible, the paper shows

that any combination of profit (above the no-discrimination benchmark) and consumer

surplus which sum to no more than maximum total welfare can be implemented. Elliot,

Galeotti, and Koh (2020) extend Bergemann et al. to the case of competition with

product differentiation, and derive conditions under which flexible market segmentation

can earn firms their first-best profit. Li (2020) solves the consumer-optimal problem

in the case of competition with product differentiation by applying techniques from

Bergemann, Brooks, and Morris (2015). He shows that the optimal policy is for firms

to see a public signal which induces a pure-strategy pricing equilibrium, and involves

partitioning consumers into sub-markets within each of which one firm is “dominant”

and other firms set price equal to marginal cost. Unlike our consumer-optimal policy,

with this policy consumers always buy their preferred product.7

7Similar problems are also studied in the situation where firms supply a homogeneous product but

consumers consider different sets of firms. See, for instance, Armstrong and Vickers (2019), Bergemann,

Brooks, and Morris (2020), and Shi and Zhang (2020). In many circumstances, market segmentation

also depends on how much preference information consumers are willing to share with firms. See,

e.g., Ali, Lewis, and Vasserman (2020) and Ichihashi (2020) for relevant works which consider general

information structures. More broadly, the firm-side design problem is also related to the literature

on information design in auctions where how much information competing bidders receive on their

valuations for the object affects their bidding strategy and welfare (see, e.g., Bergemann, Brooks, and

Morris (2017), and Du (2018)).
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2 The model

A risk-neutral consumer wishes to buy a single unit of a differentiated product which

is costlessly supplied by two risk-neutral firms, 1 and 2. The consumer’s valuation for

the unit from firm i = 1, 2 is denoted vi ≥ 0. The consumer is initially uncertain

about her valuations and holds a prior belief about the joint distribution of (v1, v2).
8

Throughout the paper we assume that firms are symmetric ex ante, in the sense that

the prior distribution for (v1, v2) is symmetric between v1 and v2. We assume that

the support of the prior distribution lies inside the square [V, V + 1]2. Here, V ≥ 0

represents the “basic utility” from either product, while 1 is the normalized range of

product valuations. Let µ ≡ E[vi] denote the expected valuation of either product (or
a random product).

The consumer has an outside option which is sure to have payoff zero. Until section

4.2, however, we assume this outside option is irrelevant and the consumer always

purchases one of the two products. (As shown in Lemma 0 in the appendix, this is

the case if V > 2 and we restrict attention to signals that induce pure-strategy pricing

equilibria.) In this case the consumer cares only about the difference in her valuations,

x ≡ v1− v2, and so consumer heterogeneity becomes one-dimensional. Let F (x) be the
prior distribution for x which is symmetric around 0 and has support in [−1, 1].
Before purchase the consumer observes a private signal of x. The signal is generated

according to a signal structure {σ(s|x), S}, where S is the signal space and σ(s|x)
specifies the distribution of signal s when the true preference parameter is x. We

assume the signal structure is common knowledge to the consumer and to both firms,

and determined before firms choose prices. This assumption is plausible when the signal

structure is publicly chosen by some third-party such as a platform or a regulator as a

relatively long-term decision. After observing signal s, the consumer updates her belief

about her relative preference x to, say, Fs(x). Given the consumer is risk neutral, only

the expected x given s, EFs [x], matters for her choice. Let G(x) be the distribution of

this expected x, and which we refer to as the consumer’s posterior distribution. It is

jointly determined by the prior distribution for x and the signal structure. Even though

some signal structures may be hard to implement in practical terms, this approach is a

general way to model the information environment and enables us to explore the limits

to competition when information can be flexibly designed.9

8Our model can also be interpreted as having a continuum of consumers who have preferences

(v1, v2) independently drawn from the same prior distribution.
9One interpretation of the signal structure in our setup is that an information designer (e.g., a

platform) might know a consumer’s preferences (e.g., due to its past interactions with the consumer)

and can send the consumer a signal contingent on those preferences (e.g., personalized recommen-
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Firms know the consumer’s prior and the signal structure, and hence know the

posterior distribution G(x), but they do not observe her private signal, and so they

each choose a single price regardless of the signal received by the consumer. We assume

that prices are always accurately observed by the consumer. If pi is firm i’s price,

then the consumer prefers to buy from firm 1 if her expected x after seeing a signal

satisfies x > p1 − p2, prefers to buy from firm 2 if x < p1 − p2 (and is indifferent when
x = p1 − p2). Firms set prices simultaneously to maximize their expected profit, and
we use Bertrand-Nash equilibrium as the solution concept for the pricing game.

We aim to investigate how the signal structure affects the intensity of competition

and the ability of the consumer to buy her preferred product. In particular, we search

for those signal structures which maximize industry profit and those which maximize

consumer surplus. As discussed in the introduction, for tractability we focus on signal

structures which induce a pure-strategy pricing equilibrium. (We will discuss signal

structures which might induce mixed-strategy equilibria in section 4.1.)

2.1 Examples of signals

It is useful initially to consider some simple signal structures. To illustrate these, assume

here that the prior distribution is uniform, so F (x) = 1
2
(1 + x) for x ∈ [−1, 1].

Full information disclosure: Here the signal perfectly reveals the true preference x, e.g.,

where s ≡ x, and so the posterior and prior distributions for x coincide. The equilibrium
price is then 1, which is also industry profit (given full consumer participation). The

consumer always buys her preferred product, which maximizes total welfare, but the

market price is relatively high. The consumer’s expected surplus is (µ+ 1
4
)−1 = µ− 3

4
,

where µ is the expected match utility of a random product, and 1
4
= EF [max{x, 0}] is

the match efficiency improvement under full disclosure relative to random purchase.

No information disclosure: In this case the signal is uninformative and the posterior G

is degenerate at x = 0. In particular, the consumer views the two products as perfect

substitutes. Both the equilibrium price and industry profit are 0, and consumer surplus

is simply µ since the consumer buys a product randomly. This consumer surplus is

higher than that under full information disclosure, and so the disutility she incurs from

dations), but it commits to the signal structure before seeing the consumer’s preferences. The more

standard, also less informationally demanding, interpretation from the Bayesian persuasion literature

is that the signal structure is an information experimentation device, and even consumers with the

same preferences may learn different noisy signals from the same information environment.

10



buying a random product is outweighed by the low price she pays. (As we will see

in section 4.2, when there are more than two firms the “top-two” signal structure can

achieve the same pricing outcome but without causing so much product mismatch.)

“Truth or rank” signal : Here the signal accurately informs the consumer of her x

with probability θ < 1 and otherwise only informs her whether x > 0 or x < 0, i.e.,

which product she prefers. (Suppose the rank signals are distinguishable from the truth

signals.) Then the posterior distribution G has two mass points at −1
2
and 1

2
(with mass

1−θ
2
at each) and is otherwise the same as the prior but with a reduced density θ

2
. In

this case, if θ is sufficiently close to 1 (so the two mass points do not have too much

weight), a symmetric equilibrium price exists and is equal to 1
θ
> 1, and so firms earn

more than with full disclosure.10 (Consumer surplus, however, is lower than with full

disclosure because in either case the consumer buys her preferred product.)

The first two of these examples illustrate the consumer’s trade-off between match

quality and the intensity of competition, and how the latter effect can dominate. The

first and third examples suggest that one way to soften competition and enhance in-

dustry profit is to reduce the chance that the consumer is indifferent between the two

products, and more information for consumers is not always associated with more mar-

ket power of firms. The three examples together imply that full information disclosure

is optimal neither for firms nor for the consumer. As we will see in section 4.2, these

insights carry over to the case when there are more than two firms.

All these signal structures are symmetric in the sense that they induce a symmetric

posteriorG. More generally, as shown in this final example, a signal structure can induce

an asymmetric posterior and make ex ante symmetric products appear asymmetric.

“Truth or biased recommendation” signal : Modify the previous example so that when

the consumer is not provided with full information she learns whether x > b or x < b

for some b ∈ (0, 1). (An interpretation is that firm 1’s product is recommended if x > b
and otherwise firm 2’s product is recommended.) The posterior now has a mass point

with mass 1
2
(1 − θ)(b + 1) at 1

2
(b − 1) and a mass point with mass 1

2
(1 − θ)(1 − b) at

1
2
(b + 1). One can check that given b ∈ (0, 1), if θ is sufficiently close to 1 there is an
asymmetric pure-strategy equilibrium with prices p1 =

1
θ
(1−∆) and p2 = 1

θ
(1 + ∆),

10This is the case if θ ≥ 3 −
√
5 ≈ 0.76. If θ is below the threshold, the incentive for each firm

to undercut and steal the rival’s consumers on the mass points becomes so strong that there is no

pure-strategy equilibrium. When θ = 0, we have the “top product” signal structure which will be

discussed in section 4.2.
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where ∆ ≡ b
3
(1− θ) > 0. Compared to the symmetric case with b = 0, the favored firm

2 raises its price while firm 1 lowers its price. Firm 2’s equilibrium market share rises

to 1
2
(1 + ∆) and firm 1’s falls to 1

2
(1 − ∆), and so the biased recommendation helps

firm 2 but harms firm 1 relative to the previous symmetric example. Industry profit is
1
θ
(1 + ∆2), which is even greater than in the previous example. (The consumer then

must suffer from this biased recommendation as it harms match efficiency and total

welfare.) This final example suggests that the use of asymmetric signals might be a

useful tool to improve industry profit. However, as we will see in section 3.2, this turns

out not to be the case once we allow for more general signal structures.

2.2 Preliminaries

To study general signal structures we use the following well-known results to simplify

the problem. For a given prior F , the only restriction on the posterior G imposed by

Bayesian consistency is that it is a mean-preserving contraction (MPC) of F , i.e.,
∫ x

−1

G(x̃)dx̃ ≤
∫ x

−1

F (x̃)dx̃ for x ∈ [−1, 1], with equality at x = 1 . (1)

Moreover, any G which is an MPC of F can be generated by means of some signal

structure.11 Therefore, instead of analyzing the signal structure directly, we can work

with the posterior distribution G and look for a posterior which is optimal for firms or

consumers subject only to the MPC constraint (1). Figure 1 depicts some examples of

MPCs of the uniform prior (where the dashed line represents the uniform prior CDF

and the bold curve shows the posterior CDF).

-1 0 1
0.0

0.5

1.0

(a)

-1 0 1
0.0

0.5

1.0

(b)

-1 0 1
0.0

0.5

1.0

(c)

Figure 1: Some examples of MPCs

11See, for example, Blackwell (1953), Rothschild and Stiglitz (1970), Gentzkow and Kamenica (2016),

and Roesler and Szentes (2017).
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The following two observations will be useful: First, when G is symmetric as on

Figures 1a and 1b, the mean-preserving requirement is satisfied automatically, and so

the simpler condition
∫ x

−1

G(x̃)dx̃ ≤
∫ x

−1

F (x̃)dx̃ for x ∈ [−1, 0] (2)

is sufficient for G to be an MPC of F . Second, if a symmetric G crosses F at most once

and from below in the negative range x ∈ (−1, 0), as on Figures 1a and 1b, then
∫ 0

−1

G(x̃)dx̃ ≤
∫ 0

−1

F (x̃)dx̃ (3)

is sufficient for G to be an MPC of F .

We also need a measure of the efficiency of product choice corresponding to a (pos-

sibly asymmetric) posterior G. If the consumer always chooses her preferred product

(i.e., chooses product 1 if the expected x is positive and product 2 otherwise, as would

be the case if the two firms offered the same price), total welfare is

µ+ EG[max{x, 0}] = µ+
∫ 0

−1

G(x)dx , (4)

where the equality follows after integration by parts and uses the fact that G has mean

of zero (which implies
∫ 1
−1
G(x)dx = 1). Since µ is the expected value of a random

product, the integral term reflects the match efficiency improvement under posterior G

relative to a policy of disclosing no information.

Define

δ ≡ EF [ max{x, 0}] =
∫ 0

−1

F (x)dx . (5)

This parameter δ captures the underlying extent of product differentiation in the mar-

ket. Since G is an MPC of F , condition (1) at x = 0 implies that (4) cannot exceed

the maximum total surplus µ + δ. In other words, match efficiency cannot increase

when the consumer observes a noisy signal of her preferences, as is intuitive. When the

inequality (3) is strict–as in Figures 1a and 1c–mismatch occurs with the posterior

G. There is no product mismatch when there is equality in (3). This is the case under

full disclosure, and more generally when the consumer is fully informed about whether

x > 0 or x < 0, even though she may not be fully informed about the magnitude of x.

3 Optimal signal structures

We derive the firm and consumer optimal signal structures in two steps. First, we

ignore the MPC constraint (1) and derive the constraints on G needed to implement
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a target pair of prices (p1, p2) in pure-strategy equilibrium. Second, we search for the

prices, together with their supporting G, which are optimal for firms or the consumer,

subject to the constraint that G is an MPC of F .

3.1 Bounds on posteriors

In this section we derive bounds on the distributions G(x) which implement a given

pair of prices (p1, p2) in pure-strategy equilibrium. The analysis here is distinct from

the information design problem, and may have some independent interest for oligopoly

theory.

Define

Lp1,p2(x) ≡






0 if x ≤ π1 − p2

1− π1
p2 + x

otherwise

(6)

and

Up1,p2(x) ≡






π2
p1 − x

if x < p1 − π2

1 otherwise ,

(7)

where

πi =
p2i

p1 + p2
. (8)

(Here πi in (8) is continuous at p1 = p2 = 0, and so we set πi = 0 in this case.) The

following lemma shows that these functions are the required bounds on G.

Lemma 1 (i) A distribution G implements (p1, p2) as equilibrium prices if and only if

Lp1,p2(x) ≤ G(x) ≤ Up1,p2(x) (9)

for all x ∈ [−1, 1], where the two bounds are defined in (6) and (7) and πi in (8) is firm
i’s equilibrium profit; furthermore p1 = p2 > 0 if and only if G(0) =

1
2
.

(ii) (p1, p2) can be equilibrium prices for some G if and only if p2−1 ≤ π1 and p1−1 ≤ π2
(which implies |p1 − p2| ≤ 1 and pi ≤ 2).

The two bounds Lp1,p2 and Up1,p2 arise from each firm’s no-deviation requirement for

equilibrium. For example, if firm 2 deviates to price p′2 6= p2, the consumer buys from
firm 2 if x ≤ p1−p′2. (If G has a mass point at x = p1−p′2, the natural tie-breaking rule
is that firm 2 serves all consumers at that mass point, since firm 2 can always achieve
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this outcome by offering a price slightly below p′2.) Therefore, firm 2 has no incentive

to deviate if and only if

p′2G(p1 − p′2) ≤ π2
for all p′2, where π2 is firm 2’s equilibrium profit and which is shown in the proof to take

the form (8). By changing variables from p′2 to x = p1−p′2, we can write this no-deviation
requirement as (p1 − x)G(x) ≤ π2, or G(x) ≤ Up1,p2(x) for all x ∈ [−1, 1]. A similar
argument implies that firm 1 has no incentive to deviate if and only if G(x) ≥ Lp1,p2(x).
(See the proof of Lemma 1 for further details.) The way these two bounds are derived

is similar to the monopoly analysis in Roesler and Szentes (2017): the upper bound

corresponds to firm 2’s unit-elastic demand curve while the lower bound corresponds

to firm 1’s. The two bounds are illustrated in Figure 2 below.
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Figure 2: Bounds on G to implement pure-strategy equilibrium prices

The lower bound Lp1,p2 increases with x and begins to be positive at x = π1−p2 (which
exceeds −1 given that Lemma 1 implies p2 − 1 ≤ π1), and it is concave whenever it is
positive. The upper bound Up1,p2 also increases with x and reaches 1 at x = p1 − π2
(which is below 1 given p1 − 1 ≤ π2), and it is convex whenever it is less than 1. The
two bounds coincide and have the same slope at x = p1 − p2.
Part (i) of Lemma 1 says that for a distribution G to induce a pair of equilibrium

prices (p1, p2), it needs merely to lie between the two bounds, and in particular G can

be irregular (e.g., the distribution can have atoms). But G has to be differentiable at

x = p1 − p2 given the two bounds are tangent to each other at that point. In Figure
2a, we have G(0) > 1

2
for any G above the lower bound, i.e., it is more likely that

the consumer prefers firm 2’s product, and that is why firm 2 sets a higher price; the

opposite is true in Figure 2c.

From the equilibrium profit expression (8), firm i’s equilibrium market share is

pi/(p1+p2). Hence, both equilibrium profits and market shares are determined entirely
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by equilibrium prices and do not depend separately on the shape of G, and the firm

with the higher equilibrium price necessarily has higher market share and higher profit.

Part (i) also shows that if the distribution is symmetric and induces a pure-strategy

equilibrium, the equilibrium prices must be symmetric. (Notice, however, that an

asymmetric distribution also induces symmetric prices if G(0) = 1
2
.)
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Figure 3: Set of possible pure-strategy equilibrium outcomes

Part (ii) of Lemma 1 characterizes the set of possible pure-strategy equilibrium

prices when G can be any distribution on [−1, 1]. This set is depicted as the shaded
area in Figure 3a. In particular, the highest possible pure-strategy equilibrium price for

either firm is 2 and this can be implemented by distributions lying between the bounds

shown in Figure 4c below; the most asymmetric prices are pi = 1 and pj = 0 and these

can be implemented by a distribution which is degenerate at x = −1 or degenerate
at x = 1. Likewise, one can derive all possible pairs of profits (π1, π2) as described in

Figure 3b.12 It is clear that the best outcome for each firm is the symmetric outcome

with p1 = p2 = 2 in which case each earns profit 1. This suggests that firms have

congruent interests when it comes to jointly choosing the valuation distribution (e.g.,

via joint product design). No firm will be happy with an asymmetric distribution even

if it is favored and earns more than its rival. As we will see in next section, a similar

result holds when we consider the more constrained information design problem, when

some (posterior) distributions are not feasible due to the MPC constraint.

The symmetric case p1 = p2 = p, shown on Figure 2b, is important in the following

12Figure 3a depicts the range of (p1, p2) satisfying (pj − 1)(pi + pj) ≤ p2i for i, j ∈ {1, 2} and i 6= j;
Figure 3b depicts the range of (π1, π2) satisfying πj +

√
π1π2 ≤ 1+ πi for i, j ∈ {1, 2} and i 6= j. (The

latter inequality follows from pj − 1 ≤ πi and pj = πj +
√
π1π2 as solved from (8).)
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analysis. With symmetric prices the bounds simplify to

Lp(x) =






0 if x ≤ −1
2
p

1− p

2(p+ x)
otherwise

(10)

and

Up(x) =






p

2(p− x) if x < 1
2
p

1 otherwise .

(11)

As indicated on Figure 2b above, these bounds are mirror images of each other, in

the sense that Lp(x) ≡ 1 − Up(−x). Therefore, if a symmetric G lies between the

bounds in the negative range x ∈ [−1, 0], it will lie between the bounds over the whole
range [−1, 1]. A property of the two bounds (10) and (11), illustrated in Figure 4, is
that they rotate clockwise about the point (0, 1

2
) as p increases, and in particular both

bounds increase with p for x < 0. Intuitively, to induce a higher price we need fewer

price-sensitive consumers around x = 0, which requires the bounds to be flatter. (The

dashed line in each plot indicates the CDF corresponding to the uniform prior and can

be ignored for the current discussion.) Figure 4c also demonstrates why the highest

possible price is 2: once the price exceeds 2, Up(1) < 1 and likewise Lp(−1) > 0, and
so these cannot bound a valid CDF.
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Figure 4: Bounds on G to implement symmetric equilibrium prices

In the following, we often consider the case when the market has a pure-strategy

pricing equilibrium with a positive price in the benchmark with full disclosure. Lemma

1 implies that this is the case if and only if the (symmetric) prior distribution F lies

between the bounds Lp and Up for some p > 0. Since the two bounds are tangent at
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x = 0, F must be differentiable at that point and let f(0) be the corresponding density.

Then the symmetric equilibrium price under full information is pF = 1/(2f(0)).

Condition 1 F lies between the bounds LpF and UpF with pF = 1/(2f(0)).

Oligopoly models often invoke one of the following stronger conditions to ensure the

existence of a pure-strategy equilibrium:

Condition 2 (i) 1− F is log-concave on [−1, 0] and (ii) F is log-concave on [−1, 0].

Condition 3 F has density f which is log-concave on [−1, 1].

It is known from Caplin and Nalebuff (1991) and Bagnoli and Bergstrom (2005) that

Condition 3 implies both 1− F and F are log-concave on [−1, 1], and hence Condition
2.13 Using the observation that Up and 1 − Lp are log-convex whenever they are less
than one, one can also see that Condition 2 implies Condition 1.14 We will use some

of these conditions in parts of the following analysis. (In particular, Condition 3 is

sufficient for all of the main results in the remainder of section 3.)

3.2 The suboptimality of asymmetric posteriors

Ideally we would like to characterize the set of feasible price pairs which could be

implemented via information design, starting from a given prior. That is, we would like

to calculate how the set of prices in Figure 3a is modified once we impose the MPC

constraint. This, however, is in general a hard problem. Fortunately, Lemma 2 below

shows that when we derive optimal policies we can restrict attention to symmetric

policies which treat each firm the same.

Lemma 2 Relative to an asymmetric posterior which induces a pure-strategy equilib-

rium, there is (i) a symmetric posterior which induces a pure-strategy equilibrium with

greater profit for each firm and (ii) a symmetric posterior which induces a pure-strategy

equilibrium with greater consumer surplus. (The improvement in either case is strict if

the asymmetric posterior induces asymmetric prices.)

13A primitive condition for the difference x = v1 − v2 to have a log-concave density is that (v1, v2)
has a log-concave joint density (which includes the case where v1 and v2 are i.i.d. with a log-concave

density).
14Notice that at x = 0, both UpF and F equal 1

2
and have the same slope f(0). Then, if F is log-

concave on [−1, 0], we have F ≤ UpF over that range given the upper bound is log-convex. Similarly,
when 1− F is log-concave on [−1, 0], using the fact that 1−Lp is log-convex whenever Lp is positive,
we can also see that F ≥ LpF over that range. Therefore, Condition 2 implies that F lies between LpF
and UpF .
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The result concerning profit states that even if a firm earns more than its rival under

an asymmetric posterior, it will nevertheless prefer some symmetric posterior. Since

a symmetric posterior induces a symmetric equilibrium, both firms then are better

off and so industry profit improves. As with the case in the previous section where

there was no information constraint, firms have congruent interests when it comes to

the design of consumer information. Intuitively, when a firm is treated unfavorably

under an asymmetric signal structure, it has an incentive to set a low price. Lemma

2 shows that this force is sufficiently strong so that even the favored firm suffers from

the resulting fierce competition. This suggests regardless of whether a designer (e.g.,

a platform) wants to maximize industry profit or one firm’s profit (e.g., the profit of

the platform’s own product), “biased recommendations” achieved through asymmetric

signals may not be the best approach. In the example with biased recommendations in

section 2.1, we saw that relative to certain symmetric policies, asymmetric signals which

favor one firm over the other can improve industry profit and the favored firm’s profit.

Lemma 2 demonstrates that this possibility does not arise when general information

policies are feasible.

The proof of the result for profit is relatively straightforward. Suppose an asym-

metric posterior distribution G induces equilibrium prices p1 < p2, say, in which case

Lemma 1 shows that respective profits are π1 < π2 and G lies above the lower bound

Lp1,p2. Consider a symmetric posterior which equals L2π2 for x < 0. This posterior

induces a symmetric price 2π2 and earns each firm a profit π2, and so it benefits firm

1 while leaving firm 2 no worse off. Routine algebra (see the appendix) shows that

L2π2(x) ≤ Lp1,p2(x), and so
∫ x

−1

L2π2(x̃)dx̃ ≤
∫ x

−1

Lp1,p2(x̃)dx̃ ≤
∫ x

−1

G(x̃)dx̃ ≤
∫ x

−1

F (x̃)dx̃ , (12)

where the final inequality follows from G being an MPC of F . Therefore, from (2) this

new symmetric posterior is also an MPC of F , and so is a feasible policy which induces

weakly higher profit for each firm.

For the consumer, biased information provision from asymmetric signals can lead

to lower match efficiency, and in addition there is inefficiency caused by price disper-

sion with asymmetric signals, where the consumer sometimes buys her less preferred

product because it is cheaper. These negative match effects outweigh the potential

benefit from lower prices in an asymmetric market. More specifically, if an asymmet-

ric posterior yields relatively high profit which exceeds its match quality improvement

relative to random match, it is dominated for the consumer by the (symmetric) pol-

icy of disclosing no information which induces random matching and zero profit. If

an asymmetric posterior yields relatively low profit, we can construct a new symmet-
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ric posterior which yields the same profit but higher total welfare and so improves

consumer surplus. Specifically, suppose the asymmetric posterior induces equilibrium

prices p1 > p2 and industry profit π. Then we show in the proof that Up1,p2 ≤ Uπ,

i.e., the upper bound associated with asymmetric prices lies below that associated with

those symmetric prices which yield the same industry profit. This is the crucial step in

constructing a symmetric posterior which performs better for the consumer.

3.3 Firm-optimal policy

Using Lemma 2, we can restrict attention to symmetric posteriors and symmetric prices.

Since there is full consumer participation, maximizing industry profit corresponds to

maximizing the symmetric equilibrium price p. We therefore wish to find the highest p

such that there exists a G lying between Lp in (10) and Up in (11) which is an MPC of

the prior F . Notice that, whenever a symmetric G is a solution to this problem which

induces price p, a symmetric posterior which takes the form Lp for negative x (and so

takes the form Up for positive x) must be a solution as well.
15 Therefore, we can restrict

attention to symmetric posteriors which take the form Lp for x < 0.

We first illustrate our approach by considering the uniform-prior example with

F (x) = 1
2
(1+x). First of all, it is clear from Figure 4c that it is impossible to implement

p = 2 once the MPC constraint is introduced. (The lower bound L2 lies above F when

x < 0 and so cannot be an MPC of the prior.) Given that Lp is concave whenever it is

positive, it crosses the linear prior at most once and from below in the range of negative

x. Then according to (3) a symmetric G which is equal to Lp for negative x is an MPC

of the prior if and only if
∫ 0
−1
Lp(x)dx ≤

∫ 0
−1
F (x)dx = 1

4
. Since Lp increases with p for

negative x, the optimal price p∗ must make this inequality bind, so that
∫ 0

−1

Lp(x)dx =

∫ 0

− p

2

(
1− p

2(p+ x)

)
dx = 1

2
(1− log 2)p = 1

4

and so

p∗ =
1

2(1− log 2) ≈ 1.63 .

This optimal price is about 63% higher than the full-information price pF = 1 in this

example. The optimal symmetric posterior equals Lp∗ for negative x, and the way we

derive the optimal price also implies that this is the unique optimal solution.16 Notice

15Formally, we have
∫ x
−1
Lp(x̃)dx̃ ≤

∫ x
−1
G(x̃)dx̃ ≤

∫ x
−1
F (x̃)dx̃ for x ∈ [−1, 0], where the first inequal-

ity is because Lp is the lower bound of G and the second is because G is an MPC of F . Therefore,

according to (2) a symmetric posterior which equals Lp for negative x must be an MPC of F .
16If there is another posterior which induces the same price p∗ but differs from Lp∗ on a positive

measure of x < 0, then it must violate the MPC constraint.
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also that (3) holds with equality when G = Lp∗ , and so the firm-optimal posterior leads

to perfect matching and so maximizes total welfare. (The consumer does not possess

full information, but she has enough information to buy her preferred product.)

This argument continues to hold provided that for each p ≤ 2, Lp crosses F at most
once and from below in the range x < 0. This is true, for instance, when F is convex

for x < 0 (i.e., the density f is weakly single-peaked at x = 0). More generally, we have

the following result:

Proposition 1 Under Condition 2(i), the firm-optimal signal structure induces the

symmetric equilibrium price

p∗ =
2δ

1− log 2 , (13)

where δ is defined in (5), and it is uniquely implemented by the symmetric posterior

which is equal to Lp∗ in the range of negative x, where Lp is defined in (10). With the

firm-optimal signal structure there is no mismatch and total welfare is also maximized.

The firm-optimal posterior distribution depends on the prior only through the dif-

ferentiation parameter δ. (A prior with a higher δ leads to a higher optimal price and

so a flatter posterior.) Figure 5 illustrates the optimal posterior with a uniform prior

(where the dashed lines are the prior density and CDF, respectively). In particular, the

density is U-shaped to soften price competition, and consumers are pushed towards the

two extremes insofar as this is feasible given the pure-strategy and MPC constraints.17
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Figure 5: Firm-optimal posterior

17With this posterior distribution, when a firm, say, firm 2 deviates to a price lower than p∗, its

residual demand takes the form of the upper bound and so is unit-elastic (i.e., its profit is unchanged),

since the upper bound was derived from firm 2’s no-deviation condition. While if it deviates to a price

higher than p∗, its demand takes the form of the lower bound and so its profit strictly falls.
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The uniform example shows how the firm-optimal policy can significantly improve

profit compared to the simple benchmark of full disclosure, and so giving more infor-

mation to consumers does not always lead to greater market power for firms. More

generally, with a log-concave prior density firms can achieve profit at least 63% higher

than with full disclosure. The following result provides more details.

Corollary 1 Under Condition 3, the firm-optimal price in (13) satisfies ηpF ≤ p∗ ≤
2ηpF where η =

1
2(1−log 2)

≈ 1.63.

This result also shows that the advantage of considering general signal structures,

relative to some frequently-used signal structures, can be significant. For instance,

the often-used “truth-or-noise” structure (whereby the signal s is equal to the true x

with some probability and otherwise the signal is a random realization of x) induces a

degree of mismatch so that consumers become more concentrated around x = 0, and so

it cannot enhance profit relative to the full-information policy. The same is true more

generally when the distribution for x is “rotated” about x = 0 as studied by Johnson

and Myatt (2006). Therefore, the use of unrestricted signal structures, which allow

consumers to buy their preferred product, enables firms to do at least 63% better than

they could with those more restricted signals.
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Figure 6: Firm-optimal posterior with a less regular prior

For priors outside the class covered by Proposition 1, the firm-optimal price is the

highest p such that

∫ x̃

−1

Lp(x)dx ≤
∫ x̃

−1

F (x)dx for x̃ ∈ [−1, 0] .

In general, however, Lp and F can cross multiple times in the range of negative x, in

which case it becomes somewhat harder to solve for the optimal price. Moreover, (3)

might hold strictly and so there could be welfare loss associated with the firm-optimal
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signal structure. Figure 6 illustrates both points, where the prior shown as the dashed

curve is initially convex and then concave in the range of negative x. The highest price

such that Lp is an MPC of the prior is shown as the solid curve, where the integrals of

the two curves up to the crossing point a are equal (so with any higher price the MPC

constraint would be violated). Here, since Lp∗ lies below the prior for x above a, (3)

holds strictly and there is some mismatch at the optimum.

Notice also that if the prior distribution is so dispersed that the MPC constraint

never binds for any distribution which implements price p ≤ 2 (e.g., when the prior

distribution is the binary distribution with support {−1, 1}), the bounds analysis in
section 3.1 implies that the highest possible (pure-strategy) industry profit 2 is achiev-

able.

3.4 Consumer-optimal policy

We turn next to the optimal information policy for the consumer. Unlike firms, the

consumer does not care solely about the induced price but also about the reliability of

the product match. When a posterior G induces a symmetric equilibrium with price p,

the consumer always buys the product she prefers after seeing the signal, so from (4)

her expected surplus is µ− p+
∫ 0
−1
G(x)dx. To maximize this, we first find the highest

possible G to maximize match efficiency
∫ 0
−1
G(x)dx for a given price p, subject to the

bounds condition Lp ≤ G ≤ Up and the MPC constraint, and then identify the optimal
price.
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Figure 7: Consumer-optimal G for given price p

We illustrate our approach by considering the uniform example again. For the

consumer to do better than with full information disclosure (when the equilibrium

price is pF = 1), the induced price must be below 1 to counteract any potential product
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mismatch. In this case the associated bounds are steep enough at x = 0 that they lie

below the prior CDF for x close to zero. This is illustrated in Figure 7a, where the bold

curves are the two bounds in the range of negative x. Since we want G to be as high

as possible, it is now the upper bound Up which will constrain G, rather than the lower

bound which was relevant for the firm-optimal policy. Since the upper bound is convex

and takes the form in (11), for any price p < 1 the upper bound cuts the prior CDF at

the point xp ≡ p− 1 ∈ [−1, 0) and from above, again as illustrated in Figure 7a.

Therefore, for a given price p < 1, a consumer-optimal (symmetric) G is simply

G(x) = min{F (x), Up(x)} (14)

for negative x, as shown as the bold curve in Figure 7b. First, this G is clearly between

the two bounds associated with price p and is also an MPC of the prior.18 Second, for

x ∈ [xp, 0], this G already equals the upper bound; for x < xp, this G equals F and so∫ xp
−1
G(x)dx already reaches its maximum given the MPC constraint.

Notice, however, for x < xp, the consumer-optimal G can take other forms provided

that it is between the two bounds and satisfies
∫ xp
−1
G(x)dx =

∫ xp
−1
F (x)dx. Figure 7c

depicts one alternative solution. It is also clear that for any consumer-optimal G, the

strict inequality of (3) must hold because G is below F for x ∈ [xp, 0]. Therefore,

in contrast to the firm-optimal solution, there must be welfare losses at the consumer

optimum and the consumer sometimes buys her less preferred product.

Expression (14) implies that the maximum consumer surplus for a given price p < 1

is

µ+

∫ 0

−1

min{F (x), Up(x)}dx− p . (15)

One can check that the derivative of (15) with respect to p is 1
2
(p− log p− 3) when F

is uniform, which decreases with p in the range [0, 1]. Therefore, the optimal price is

p∗∗ ≈ 0.05 which is the root of p− log p = 3 in the range [0, 1], and a consumer-optimal
symmetric posterior is given by expression (14) with p = p∗∗ for negative x.

The above argument based on a uniform prior continues to hold if for each price

p < pF , the upper bound Up crosses F once and from above in the range of negative

x. This is true, for example, when F is concave. More generally, we have the following

result:

18Note that at the full information price pF we have LpF ≤ F , and so Lp < F for negative x when

p < pF given the lower bound increases in price for negative x. Hence, for any price p < pF , (14) must

be above Lp.
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Proposition 2 Under Conditions 1 and 2(ii), a consumer-optimal signal structure in-

duces the symmetric equilibrium price

p∗∗ =
−γ
1− γF

−1(1
2
γ) , (16)

where γ ≈ 0.05 is the root of γ− log γ = 3 in the range [0, 1], and it can be implemented
by a symmetric posterior which is equal to min{F (x), Up∗∗(x)} in the range of negative
x, where Up is defined in (11). With the consumer-optimal signal structure there is

mismatch and total welfare is not maximized.

(Here Condition 1 is needed to ensure that the full-information benchmark has a pure-

strategy equilibrium price pF , so the argument that the consumer-optimal price must

be below pF continues to hold.)

Figure 8 depicts the consumer-optimal posterior distribution when the prior is uni-

form (and when the posterior takes the form in Figure 7b). The number of price-

sensitive consumers near x = 0 is amplified compared with the prior distribution, and

this forces firms to reduce their price in equilibrium. Those consumers near x = 0 do

not have strong preferences about which product they buy, and so there is only limited

welfare loss due to product mismatch. Those consumers with very strong preferences,

however, are sure to buy their preferred product and at a low price.19
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Figure 8: Consumer-optimal posterior

In this uniform example, the consumer-optimal policy induces a rather low price.

This remains true more generally:

Corollary 2 Under Condition 3, the consumer-optimal price in (16) satisfies γpF ≤
p∗∗ ≤ min{γ, 1

2
pF} where γ ≈ 0.05 is defined in Proposition 2.

19In contrast to footnote 17, the consumer-optimal posterior distribution implies that when a firm

unilaterally increases its price its residual demand is unit-elastic.

25



Therefore, the insight from the no-disclosure example in section 2.1 is generally true

that for the consumer the price effect appears more important than the match quality

effect. When there are more firms, though, the match quality effect will become more

important, and we will discuss this issue further in section 4.2.

For more general prior distributions, we can consider the family of posteriors illus-

trated by Figure 7c above. Given Lemma 2, it can be shown that the consumer-optimal

policy can be implemented by a symmetric posterior which is equal to Gmp (x) = Up(x)

for x ∈ [m, 0] and = 0 for x < m, where m ∈ [−1, 0] is a constant. (This is in the
spirit of Roesler and Szentes (2017).) The consumer problem is then to choose (p,m)

to maximize µ +
∫ 0
−1
Gmp (x)dx− p, subject to Gmp being an MPC of F . This is a well-

defined optimization problem, albeit hard to solve when the upper bound Up crosses F

multiple times in the range of negative x. Nevertheless, this approach can be used to

show that, unless the two products are perfect substitutes, disclosing no information

cannot be optimal for the consumer. This implies that the consumer-optimal informa-

tion policy is not the worst policy for firms, in contrast to the monopoly case in Roesler

and Szentes (2017).

3.5 The limits to competition

Having discussed the signal structures which maximize profit and which maximize con-

sumer surplus, we now describe the combinations of profit and consumer surplus which

are feasible with some choice of signal structure. Let p∗ be the firm-optimal price or

industry profit. (This need not take the form (13) if the assumption in Proposition 1

does not hold.) We know that it is implemented by a symmetric posterior which equals

Lp∗ for negative x. Then any price or industry profit p < p
∗ is feasible, since it can be

implemented by a symmetric posterior which equals Lp for negative x. (This is because

Lp < Lp∗ and so Lp is an MPC of the prior whenever Lp∗ is.)

To derive all possible combinations of profit and consumer surplus, we first calculate

the minimum possible consumer surplus for each industry profit p ≤ p∗. As shown in
the proof of Proposition 3 below, this minimum consumer surplus is achieved by a

symmetric posterior. Then for a given p ≤ p∗, the lowest value of consumer surplus

is generated by the associated lower bound Lp. This is because consumer surplus is

µ− p+
∫ 0
−1
G(x)dx and so is lower with a smaller G, and the smallest possible G which

induces symmetric price p is Lp (which is an MPC of F as explained above). The

integral of Lp(x) over [−1, 0] is 1
2
(1 − log 2)p and so the minimum consumer surplus

with profit p ≤ p∗ is µ− 1
2
(1 + log 2)p.

We then calculate the maximum possible consumer surplus for each industry profit
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p ≤ p∗. Lemma 2 shows that for the consumer any asymmetric posterior is dominated
by some symmetric one (which may induce a different industry profit). What we need

here is a stronger result that for the consumer any asymmetric posterior is dominated

by a symmetric posterior which induces the same industry profit. This turns out to

be true when the prior satisfies the assumptions used for Proposition 2. Once we rule

out asymmetric posteriors, the analysis for the consumer-optimal problem immediately

yields the maximum possible consumer surplus for a given price p.

Proposition 3 Any profit between 0 and p∗ is feasible. For a given profit p ∈ [0, p∗],
the lowest possible consumer surplus is µ− 1

2
(1+ log 2)p; if Conditions 1 and 2(ii) hold,

the highest possible consumer surplus is µ+δ−p if p ≥ pF and is (15), which is concave
in p, if p < pF .

For a given profit p ≤ p∗, the minimum and the maximum possible consumer surplus
are respectively generated by two symmetric posteriors which lie within the bounds Lp

and Up and which are an MPC of the prior. Therefore, any value of consumer surplus

in between can be generated by a linear combination of these two symmetric posteriors.

That is, Proposition 3 also determines the whole set of feasible profit and consumer

surplus, and considering asymmetric signals does not change this set at all. The shaded

area in Figure 9 illustrates the combinations of profit and consumer surplus in the

uniform prior example.
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Figure 9: Feasible combinations of profit and consumer surplus

The two dots indicate the firm-optimal and the consumer-optimal outcome respectively.

The higher dashed line is the efficient frontier with maximum total welfare µ+δ (where

δ = 1
4
and for convenience we have set µ = 2). The higher bold curve shows the feasible

outer frontier. Here, the full-information price is pF = 1, and for prices above pF the
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feasible frontier coincides with the efficient frontier. For lower prices, the feasible fron-

tier lies strictly inside the efficient frontier and it is concave. Intuitively, to intensify

price competition, information policy needs to induce mismatch which leads to more

consumers who are near-indifferent between products. Figure 9 remains qualitatively

the same for other prior distributions. In particular, due to competition it is impossible

in our setup to have both low profit and low consumer surplus simultaneously, in con-

trast with the corresponding figure for monopoly in Roesler and Szentes (2017, Figure

1).

This discussion enables us to solve the Ramsey problem of maximizing a weighted

sum of profit and consumer surplus. If the weight on profit is higher than that on

consumer surplus, it is clear from Figure 9 that the solution simply coincides with the

firm-optimal policy. While, as is more usual, if the weight on consumer surplus is higher

the solution lies on the concave part of the outer frontier, where the optimal price is

below pF but above the consumer-optimal price p
∗∗ and is lower when the weight on

consumer surplus is greater. This also implies that full information disclosure is optimal

only in the knife-edge case when we wish to maximize (unweighted) total welfare.

4 Extensions and discussions

We have so far focused on the situation with two firms, where the outside option never

binds for the consumer and where signal structures were required to induce a pure-

strategy pricing equilibrium. In this section, we report the progress we can make when

these restrictions are relaxed.

4.1 Allowing mixed pricing strategies

When signal structures induce mixed-strategy pricing equilibrium, the bounds approach

in section 3 does not apply. We have not been able to find a way to solve the optimal

information policy when mixed-strategy equilibria are allowed. Instead, in this section

we derive an upper bound for consumer surplus across all symmetric signal structures

which induce a symmetric (pure or mixed-strategy) equilibrium, and show that this

upper bound is close to the maximum consumer surplus available with pure strategies.

Consider the model introduced in section 2 with a zero outside option and (v1, v2)

lying inside [V, V + 1]2. The following proposition reports the main result.

Proposition 4 Suppose V ≥ 1 and v1 − v2 has a log-concave density. Then the max-
imum consumer surplus available using only pure strategies attains at least 98.4% of

28



the maximum consumer surplus available across all symmetric signal structures which

induce a symmetric pure or mixed-strategy equilibrium.

This result demonstrates that it is not possible that the consumer does significantly

better if the class of (symmetric) signal structures is broadened to permit mixed pricing

strategies in equilibrium. (Note, however, we have not found an example where the

use of mixed strategies improves consumer surplus at all.) Intuitively, mixed-strategy

pricing usually does not intensify price competition and the resulting price dispersion

further causes product mismatch, in which case it does not benefit the consumer.

Ideally one would also like to obtain a tight upper bound on the profit obtained

using either pure or mixed strategies, and see how closely the optimal profit under the

pure-strategy restriction approaches such an upper bound. This appears to be a harder

problem, though, and we leave it for future work.

4.2 More than two firms

We now explore the general case with an arbitrary number of firms and an outside option

(of zero) which might possibly bind in equilibrium. Consider n ≥ 2 symmetric firms,

each of which supplies one variety of a differentiated product. Let v = (v1, . . . , vn) ∈ R+
denote the consumer’s valuations for the n varieties, and let F (v) be the symmetric

joint prior distribution. (We ignore the trivial case when the n varieties are identical.)

Before her purchase, the consumer receives a private signal of v which is generated by

a public signal structure {σ(s|v),S}. Let G(v) be the joint posterior distribution of
the expected valuations after receiving the signal. As before, G is an MPC of F (in

the sense that they have the same mean and
∫
φdG ≤

∫
φdF for any convex function

φ whenever the integrals exist), and any G which is an MPC of F can be generated

by some signal structure. (See for instance Blackwell (1953) and Strassen (1965).)

It would be interesting to know how the number of firms affects optimal information

design, but such analysis would require consideration of multi-dimensional consumer

heterogeneity even in situations where the outside option could be ignored. As discussed

in the introduction, current understanding of information design in multi-dimensional

environments is limited.

Here instead we compare the performance of three simple signal structures. First,

there is the “full disclosure” policy where consumers are accurately informed of their

preferences v = (v1, . . . , vn). Second, the “top product” signal structure informs the

consumer which product i is her best match but nothing else. Third, the “top two”

signal structure informs the consumer which two products i and j are her best matches

but nothing else. (With duopoly this corresponds to a completely uninformative signal.)
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We will argue that out of these three policies, firms tend to most prefer the “top

product” policy, and under certain conditions this policy even achieves the first-best

outcome for firms. The consumer, by contrast, tends to prefer the “top two” policy, and

in the limit with many firms both this policy and full disclosure achieve approximately

the first-best outcome for the consumer.

Recall that µ ≡ E[vi], and let µn:n ≡ E[max{vi}] denote the expected valuation of
the top product while µ<n:n denotes the expected valuation of a product which is not

the top product. These expectations are related as

µ = 1
n
µn:n + (1− 1

n
)µ<n:n . (17)

Note that µn:n is the maximum total welfare in the market. We say that first-best

industry profit is achieved if the maximum total welfare is achieved and is fully extracted

by firms.20

With a general joint valuation distribution F (v), analysis of price competition under

the policy of full disclosure can be complicated. The best understood scenario is the

“i.i.d.” case studied in Perloff and Salop (1985). They assume that valuations vi are

independently and identically distributed across the n products and have a log-concave

density function, and that the outside option is irrelevant. In this i.i.d. case, the price

competition has a unique symmetric pure-strategy pricing equilibrium. (The details of

the equilibrium price and the condition for irrelevant outside option in this case are

reported in the proof of Proposition 5 below.) In the following result, when we consider

the full-disclosure policy we focus on this i.i.d. case.

Proposition 5 (i) The “top product” signal structure achieves first-best industry profit

µn:n if

µn:n ≥ nµ<n:n . (18)

More generally, this signal structure generates equilibrium industry profit at least

µn:n − µ<n:n , (19)

and performs better for firms than the “top two” signal structure, and also better than

full disclosure in the i.i.d. case.

(ii) The “top two” signal structure performs better for the consumer than the “top

product” signal structure, and also better than full disclosure in the i.i.d. case.

20Notice that when first-best industry profit is achieved, the consumer has zero surplus in which

case the outside option must bind. Therefore, the approach used in section 3, which is based on the

assumption that the outside option is irrelevant, cannot be used to find instances where first-best profit

is achieved.
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The reason that the “top product” signal achieves first-best profit when condition

(18) holds is straightforward.21 If its rivals choose the first-best price p = µn:n, a firm

obtains profit 1
n
µn:n when it chooses the same price, as it then sells to that portion of

consumers who prefer its product to any other. All other consumers value its product

at µ<n:n, and the firm could attract all such consumers if it reduced its price to µ<n:n
(or slightly below this). Condition (18) ensures that this is not a profitable deviation,

in which case all firms choosing p = µn:n constitutes an equilibrium. For instance, when

n = 2 and (v1, v2) is uniformly distributed on the square [0, 1]
2, then µ<n:n =

1
3
and

µn:n =
2
3
and (18) is (just) satisfied. Typically, condition (18) is less likely to hold when

there are more firms in the market.22

When (18) fails to hold, the price competition under the “top product” signal has

no pure-strategy equilibrium. In any mixed-strategy equilibrium, industry profit is at

least (19).23 To see that, suppose a firm chooses price equal to (19), or slightly less.

Then when the consumer is informed that this firm supplies her top product, she will

buy from that firm, even if all other firms choose price zero. (This is because she values

each rival product at µ<n:n, and so she prefers the top product at this positive price

to any other product even when offered for free. In addition, since (19) is below µn:n,

the consumer prefers to buy this product than to buy nothing.) Therefore, by choosing

this price the firm is ensured profit of at least 1
n
(µn:n − µ<n:n), which is therefore a

lower bound on each firm’s profit and which proves the claim. This lower bound can be

substantial even when there are many firms. For example, when each vi is i.i.d. uniform

on [0, 1], the lower bound (19) is n
2(n+1)

, which is half of the maximum welfare µn:n for

any n. This contrasts with the literature discussed in the introduction in which firms

can disclose information only about their own product, where with many firms firms

disclose all information and industry profit converges to zero.

The “top two” signal induces perfect competition between firms, and each firm

chooses price p = 0 in equilibrium and industry profit is zero. (If its rivals choose

p = 0 then a firm has no demand if it chooses a positive price, since even when the

consumer has the firm’s product in her top two, there is another firm in her top two

21If instead of oligopoly the n products were jointly supplied by a multiproduct monopolist, the top-

product signal with associated prices p = µn:n would allow the firm to fully extract surplus regardless

of whether (18) holds. See Ichihashi (2020) for a related observation.
22When vi is i.i.d. and has a finite upper bound, condition (18) must fail when n is sufficiently large.

For example, when vi has a uniform distribution on [0, 1], it fails with more than two firms. However,

for a distribution with a heavy tail it can hold for a large n. For example, if vi is i.i.d. from the Pareto

distribution F (x) = 1− x−α with α > 1, (18) holds for n ≤ 38 if α = 1.2.
23In our working paper, Armstrong and Zhou (2021), we constructed an equilibrium in mixed strate-

gies, which is quite complex, when condition (18) fails to hold.
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which she regards as a perfect substitute and which has a lower price. More generally,

this Bertrand argument shows there can be no equilibrium in which a firm chooses a

positive price with positive probability.) Hence, the “top two” policy must be worse for

firms than the “top product” policy, as reported in part (i). When (18) does not hold,

the profit comparison with the policy of full disclosure is more delicate. Intuitively,

though, the “top product” policy eliminates the possibility that the consumer regards

the best and the second best product as close substitutes, and so it is more able to

relax price competition than full disclosure.

The consumer faces a trade off between price and match quality. For any finite n, it

is impossible for the consumer to achieve the first-best outcome. This is simply because

zero pricing requires the consumer regard all the products as identical but in that case

perfect match cannot be guaranteed. The “top two” signal structure, as explained

before, induces zero pricing, and meanwhile it enables the consumer to buy one of her

top two products. So intuitively it should perform well for the consumer, especially

when the number of firms is large. The result that the “top two” signal works better

for the consumer than the “top product” signal is easy to see. Under the former signal,

the consumer always participates as the price is zero, and so consumer surplus is

1
2
(µn:n + µn−1:n) , (20)

where µn−1:n is the expected valuation for the second best product; using the lower

bound (19), it follows that consumer surplus with the latter signal is at most µ<n:n.

Since both µn:n and µn−1:n are greater than µ<n:n (with the former strictly greater), it

follows from (20) that consumers are better off with the “top two” signal than with the

“top product” signal, as reported in part (ii) of the result.

The comparison for the consumer between the “top two” signal and full disclosure

in the i.i.d. case is less obvious. When there are many firms, under either information

policy the trade off between price and match quality vanishes, and both of them achieve

approximately the first-best outcome for the consumer (under a mild tail condition of

the valuation distribution as specified in the proof). Under the “top two” signal, the

price is always zero and the mismatch from buying one of the top two products vanishes

as n → ∞; under full disclosure, the consumer always buys the best matched product
and the price goes to zero as n→∞. However, for any finite n, it turns out the price
effect dominates the match quality effect, and the “top two” signal performs strictly

better for the consumer as reported in part (ii). This simple policy may have additional

advantages over full disclosure if the need to choose among many products involves high

information processing costs for the consumer.
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5 Conclusion

This paper has studied the limits to competition when product information possessed by

consumers can be designed flexibly. Among signal structures which induce pure-strategy

pricing equilibrium, we derived the optimal policy for firms and for consumers. As with

many other optimal policies in economics, the optimal information policies derived

in this paper might be “too complicated” to implement in practice. Nevertheless,

these optimal policies provide useful guidance for which kinds of informations help

boost profits and which help consumers. The firm-optimal signal structure amplifies

perceived product differentiation by reducing the number of consumers who regard

the products as close substitutes. The firm-optimal signal structure typically enables

consumers to buy their preferred product, and so it maximizes total welfare too. In

particular, the “top product” policy which only informs consumers of their best match

can sometimes be optimal for firms. The consumer-optimal policy, in contrast, dampens

perceived product differentiation by increasing the number of marginal consumers and

so implements a low price. This low price can only be achieved by inducing a degree

of product mismatch, however, and so the policy does not maximize total welfare. The

“top two” policy which informs consumers of their best two products (but without

ranking them) can be close to be optimal for consumers.

Besides the extensions discussed in section 4, there are other interesting extensions

to explore. One would be to consider situations where firms were asymmetric ex ante,

including the case of vertical differentiation where one firm was known to provide a

higher match utility than its rival. One way to model this asymmetry is to consider an

asymmetric prior distribution F , and then one could investigate whether the optimal

information policy maintains, amplifies or reduces this prior asymmetry, and whether

firms continue to have aligned interests over the design of consumer information. The

bounds analysis, which is independent of the information problem, still applies in this

more general problem, but the principal new challenge stems from dealing with the

MPC constraint when the prior is asymmetric.

Another possible extension would be to allow consumers to be heterogeneous ex

ante. For instance, a consumer’s valuation vi for product i might be decomposed

as vi = ai + bi, where consumers know the vector (a1, ...) from the start, from other

information sources, and there is scope to manipulate information only about the vector

(b1, ...). If there was enough heterogeneity in (a1, ...), then one might be able to rule out

mixed pricing strategies in equilibrium, rather than assuming them away as we mostly

did in this paper.

Finally, it would be valuable to embed this analysis within a framework in which
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the “information designer” is modelled explicitly as an economic agent. Platforms typi-

cally compete with each other to provide intermediation services. If a profit-maximizing

platform chooses what product information to reveal to consumers, and also chooses

its fees to each side of the market, then the relative competitive intensity among plat-

forms on the two sides of the market and the platform’s equilibrium fee structure will

presumably affect whether its information policy is focussed more on delivering firm

profit or consumer surplus.

Technical Appendix

A condition for the outside option to be irrelevant. Recall that in our model the con-

sumer’s valuations for the two varieties are (v1, v2) and they lie inside [V, V +1]
2. This

remains the same for her expected valuations for the two varieties after she observes

a signal of her true preferences. If we focus on pure-strategy pricing equilibria, the

following lemma reports a condition for the zero outside option to be irrelevant.

Lemma 0 If V > 2, then for any distribution of valuations which induces a pure-

strategy pricing equilibrium, equilibrium prices are no greater than 2 (so below V ) and

the consumer obtains positive surplus when she buys from either firm.

Proof: Suppose a distribution of valuations induces a pure-strategy equilibrium where

firm i, i = 1, 2, offers price pi and sells with probability qi. Note first that in equilibrium

neither price can exceed the highest possible valuation V + 1.24 Given firm i’s price

pi, if firm j 6= i deviates and sets a low price p = pi − 1 (or slightly below it), it will
serve the whole market as the maximum possible valuation difference between the two

varieties is 1. (This deviation price is such that V − p = V + 1− pi. Given pi ≤ V + 1,
this ensures that V −p ≥ 0 so that all consumers prefer to buy from firm j than to buy
nothing.) Therefore, in equilibrium we must have

pi − 1 ≤ pjqj (21)

where pjqj is firm j’s equilibrium profit.

Using these two no-deviation conditions we show that in equilibrium it is impossible

for any price to exceed 2. Suppose in contrast that p1 > 2, say. Then since p1−1 ≤ p2q2
24If p1 > V + 1, say, then no consumer wishes to buy product 1 and firm 2 can operate as a

monopolist, in which case it sets a price p2 ≥ V . But if firm 1 sets price V − 1 it serves the whole
market. Since V > 1, this generates positive profit for firm 1, which is a contradiction.
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and q2 ≤ 1 it follows that p2 > 1. On the other hand, (21) implies that p1 + p2 − 2 ≤
p1q1 + p2q2 and so

p1(1− q1) + p2(1− q2) ≤ 2 .

If p2 ≥ 2, the left-hand side would be strictly greater than 2(2 − q1 − q2) ≥ 2 given

q1 + q2 ≤ 1, which would be a contradiction. Hence, if p1 > 2 in equilibrium we have

1 < p2 < 2.

Since both prices are above 1, (21) implies q1, q2 > 0. Given V > 2 > p2, the

consumer always buys a product (i.e., q1+ q2 = 1) and obtains strictly positive surplus,

i.e., the outside option never binds. This remains true if either firm unilaterally changes

its price slightly. Let H(x) be the CDF of x ≡ v1− v2, and let πi = piqi denote firm i’s
equilibrium profit. If firm 2 deviates to a price p′2 close to p2, the consumer will buy its

product if v2−p′2 ≥ v1−p1 or x ≤ p1−p′2. So a necessary condition for the equilibrium
is

p′2H(p1 − p′2) ≤ p2q2 (22)

for all p′2 close to p2. (Here we suppose that if H has a mass point at x = p1−p′2, firm 2
serves all consumers at that mass point. This is the natural tie-breaking rule given that

the firm can achieve this outcome by charging a price slightly below p′2.) By changing

variables from p′2 to x = p1 − p′2, (22) requires H(x) ≤ p2q2
p1−x

for x sufficiently close to

p1 − p2.
Similarly, a necessary condition for firm 1 to have no incentive to deviate is

p′1[1−H((p′1 − p2)−)] ≤ p1q1

for all p′1 close to p1, where H(x
−) ≡ limz↗xH(z). (As with firm 2, if H has an atom

at x = p′1 − p2 the natural tie-breaking assumption is that firm 1 serves all consumers

at x. The deviation demand is written as 1−H((p′1 − p2)−) as a CDF is defined to be
right-continuous.) Since H(x) ≥ H(x−), this requires H(x) ≥ H(x−) ≥ 1− p1q1

p2+x
for x

sufficiently close to p1 − p2.
Notice that (a) the upper bound function p2q2

p1−x
is differentiable and convex in x

while the lower bound function 1 − p1q1
p2+x

is differentiable and concave in x, and (b)

they coincide and are equal to q2 at x = p1 − p2. Therefore, the above two necessary
conditions for the equilibrium will be satisfied only if these two bounds are tangent to

each other at x = p1 − p2. After differentiating the bounds, this implies q1
p1
= q2

p2
. Since

p1 > 2 > p2, we must then have q1 > q2 and so q2 <
1
2
. This, together with (21), implies

that

p1 − 1 ≤ p2q2 < 1
2
p2 <

1
2
p1 ,
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which implies p1 < 2, which is a contradiction. Therefore, when V > 2, in any pure-

strategy pricing equilibrium neither price is above 2. �

The outside option is then irrelevant in the sense that if one firm deviates from

equilibrium the consumer continues to buy one product and the market is fully cov-

ered. The condition of V > 2 essentially requires that valuations have a concentrated

distribution in the sense that the range of valuations is small relative to the basic util-

ity of the product. As we will show in Lemma 1 below, when the outside option is

irrelevant, p1 = p2 = 2 can be equilibrium prices for some valuation distributions, and

so the requirement V > 2 is tight.

Proof of Lemma 1. It is more convenient to prove this lemma by dealing with two cases

separately:

Case 1: both prices are positive. (i) Let πi, i = 1, 2, denote firm i’s equilibrium

profit when (p1, p2) are equilibrium prices. (We will show that πi is given by (8) but

for now these profits are undetermined.) As shown in the proof of Lemma 0, in any

pure-strategy equilibrium we must have pi− 1 ≤ πj for i 6= j to ensure that no firm has
an incentive to deviate to a low price to capture all demand. We can therefore focus

on prices and profits which satisfy these conditions.

We first show the “if and only if” condition on G for (p1, p2) to be the associated

equilibrium prices. Prices (p1, p2) constitute an equilibrium with G if and only if neither

firm has an incentive to deviate from their price. If firm 2 deviates to price p′2 6= p2, the
consumer buys from firm 2 if x ≤ p1− p′2. Therefore, firm 2 has no incentive to deviate
if and only if

p′2G(p1 − p′2) ≤ π2
holds for all p′2. (The tie-breaking rule if G has a mass point at x = p1−p′2 was explained
in the proof of Lemma 0.) By changing variables from p′2 to x = p1 − p′2, we can write
this no-deviation requirement as (p1 − x)G(x) ≤ π2. This requires G(x) ≤ π2

p1−x
if

p1 − x > π2 (or x < p1 − π2); otherwise any G(x) ∈ [0, 1] works. Therefore, firm 2’s

no-deviation condition is equivalent to G(x) ≤ Up1,p2(x) for all x ∈ [−1, 1].
Likewise, firm 1 has no incentive to deviate if and only if

p′1(1−G((p′1 − p2)−)) ≤ π1

for all p′. (Again, the tie-breaking rule when G has a mass point at x = p′1 − p2 and
why the deviation demand is written as 1 − G((p′1 − p2)−) have been explained in the
proof of Lemma 0.) By changing variables from p′1 to x = p

′
1−p2, this constraint can be

written as (p2+ x)(1−G(x−)) ≤ π1. This requires G(x−) ≥ 1− π1
p2+x

if p2+ x > π1 (or
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x > π1 − p2 which is no less than −1 given p2 − 1 ≤ π1); otherwise any G(x−) ∈ [0, 1]
works. Given the first part of the lower bound is continuous, we can replace G(x−) by

G(x), and so firm 1’s no-deviation condition is actually equivalent to G(x) ≥ Lp1,p2(x)
for any x ∈ [−1, 1].
It remains to show that Up1,p2 ≥ Lp1,p2 for any x ∈ [−1, 1] (so that a G between

the two bounds exists) if and only if πi is defined as in (8). Let qi ≡ πi/pi denote firm
i’s market share, where q1 + q2 = 1 since there is full consumer participation. Notice

that Lp1,p2 is increasing and concave whenever it is positive, and Up1,p2 is increasing

and convex whenever it is below 1. The two bounds coincide and equal firm 2’s market

share q2 at x = p1 − p2. These properties of the two bounds imply that Up1,p2 ≥ Lp1,p2
for any x ∈ [−1, 1] if and only if the two bounds have the same slope at x = p1 − p2,
which requires π2/p

2
2 = π1/p

2
1. Together with πi = piqi and q1+q2 = 1, this then implies

qi = pi/(p1 + p2) and πi = p
2
i /(p1 + p2) as in (8).

We now prove the symmetric-price result in (i). Notice that Up1,p2(0) =
π2
p1
and

Lp1,p2(0) = 1 − π1
p2
. The “only if” part is straightforward. If p1 = p2, then (8) implies

that Up1,p2(0) = Lp1,p2(0) =
1
2
, and so G(0) = 1

2
. To prove the “if” part, suppose

G(0) = 1
2
. If (p1, p2) are the equilibrium prices under G, the bounds condition (9) at

x = 0 requires

1− π1
p2
≤ 1

2
≤ π2
p1
,

from which we have p2
p1
≤ 2q1 and

p1
p2
≤ 2q2, where qi is firm i’s market share defined

before. This, together with q1 + q2 = 1, implies p1
p2
+ p2

p1
≤ 2. This can hold only if

p1 = p2.

(ii) If (p1, p2) are the equilibrium prices under some distribution G, we must have

pj − 1 ≤ πi as pointed out before, and part (i) implies that firm i’s equilibrium profit

πi must take the form in (8). To prove the “if” part, notice that when pj − 1 ≤ πi, we
have Up1,p2(1) = 1 and Lp1,p2(−1) = 0. Meanwhile, as shown in the proof of part (i)

we have Up1,p2 ≥ Lp1,p2 for any x when πi takes the form in (8). Hence, there exists a

distribution G which is between the two bounds. Then the desired result follows from

part (i). Finally, from pi − 1 ≤ πj ≤ pj, it is clear that the price difference cannot

exceed 1. The result pi ≤ 2 has been proved in Lemma 0.
Case 2: at least one price is zero. (i) The argument in case 1 which derives the

two bounds by using the two firms’ no-deviation conditions does not rely on whether

any price is zero. The only difference here is how to find the condition for the upper

bound to be nowhere below the lower bound. Consider first the case of p1 > p2 = 0.

(The case of p2 > p1 = 0 is similar.) In this case, firm 2 must make a zero profit (i.e.,

π2 = 0). Then the lower bound is 1 − π1
x
if x > π1 and 0 otherwise; the upper bound
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is 0 if x < p1 and 1 otherwise. (The upper bound is now a step function. This is why

the “tangency” argument in case 1 does not work here.) Given π1 ≤ p1, one can see

that the upper bound is nowhere below the lower bound if and only if π1 = p1. In the

case of p1 = p2 = 0, both firms must earn a zero profit. Then both bounds from the

no-deviation conditions become a step distribution function with a discontinuous point

at x = 0. (The lower bound is left-continuous while the upper bound is right-continuous

at x = 0.) Then the only CDF permitted by the two bounds is G which is degenerate

at x ≡ 0. (Intuitively, p1 = p2 = 0 is an equilibrium if and only if consumers regard

the two products as perfect substitutes. If there were any consumers with x 6= 0, a firm
could profitably serve them even if its rival sets a zero price.)

(ii) If p1 = p2 = 0, they satisfy pj − 1 ≤ πi and is supported as equilibrium prices

by a degenerate distribution at x ≡ 0. If p1 > p2 = 0, then p1 − 1 ≤ π2 = 0 requires
p1 ≤ 1. In this case, the two prices can be sustained in equilibrium by, for example, a

degenerate distribution at x ≡ p1. (The case of p2 > p1 = 0 is similar.) �

Proof of Lemma 2. (i) First consider the firm problem. Suppose that an asymmetric

posterior G induces an equilibrium with prices (p1, p2). Without loss of generality let

p1 ≤ p2, and so π1 ≤ π2 according to Lemma 1. (Figure 2a illustrates the two bounds
on G in this case.) Now consider a symmetric CDF Ĝ(x) which equals L2π2(x) for

negative x, where L2π2 defined in (10) is the lower bound of the posteriors which induce

a symmetric equilibrium with price p = 2π2. We show below that Ĝ is an MPC of the

prior, and so it is a legitimate posterior and induces a symmetric equilibrium in which

each firm earns π2. That is, Ĝ weakly outperforms G for each firm.

To prove Ĝ is an MPC of the prior it suffices to show L2π2 ≤ Lp1,p2, in which

case (12) in the main text applies. Expression L2π2 is positive and equal to 1 − π2
2π2+x

when x > −π2; Lp1,p2(x) is positive and equal to 1 − π1
p2+x

when x > π1 − p2. Given
π1 + π2 ≤ p2, the latter is positive over a wider range of x, and at the same time for
x > −π2 we have

π1
p2 + x

≤ π1
π1 + π2 + x

≤ π2
2π2 + x

,

where the second inequality follows from π1 ≤ π2. Therefore, we have L2π2 ≤ Lp1,p2.

(With distinct prices p1 < p2, then π1 < π2 and π1 + π2 < p2, and so L2π2 < Lp1,p2(x)

whenever the latter is positive. The same argument then works for a symmetric price

p which is slightly above 2π2. As a result, Ĝ strictly outperforms G for each firm.)

(ii) Next consider the consumer problem. Suppose that an asymmetric posterior

G induces an equilibrium with prices (p1, p2) and industry profit π. It is now more

convenient to label firms as p1 ≥ p2, in which case we have π2 ≤ 1
2
π ≤ π1 and π ≤ p1.
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(Figure 2c illustrates the two bounds onG in this case.) Total welfare in this equilibrium

can be no greater than (4) since if the firms offer distinct prices there will be some

mismatch, and consumers sometimes buy the wrong product.

If in (4) we have
∫ 0
−1
G(x)dx < π then consumer surplus under G is less than µ, and

so G is dominated for consumers by the (symmetric) policy of disclosing no information

and the claim holds. Assume instead that
∫ 0

−1

G(x)dx ≥ π . (23)

We show that there exists a feasible symmetric posterior which induces a symmetric

equilibrium with the same industry profit π but weakly higher total welfare. (As with

part (i), with distinct prices p1 > p2 the following argument implies that a strict

improvement exists.)

Consider a symmetric CDF

Ĝ(x) =

{
0 if x < m

Uπ(x) if m ≤ x ≤ 0
,

where Uπ(x) defined in (11) is the upper bound of posteriors which induce a symmetric

equilibrium price p = π, and m ∈ (−1, 0) is chosen so that
∫ 0

−1

G(x)dx =

∫ 0

−1

Ĝ(x)dx . (24)

To see that such an m exists, note that given π2 ≤ 1
2
π and p1 ≥ π we have

G(x) ≤ Up1,p2(x) =
π2

p1 − x
≤ π/2

π − x = Uπ(x) (25)

for x < 0, since in this range these upper bounds are less than 1. Since Uπ(x) ≤ 1
2
for

x < 0 we have ∫ 0

−π/2

Uπ(x)dx ≤
π

4
<

∫ 0

−1

G(x)dx ,

where the second inequality is implied by (23). These two observations imply that (24)

has a unique solution m ∈ (−1,−π
2
), and Ĝ crosses G at most once and from below.

The latter observation and (24) imply that

∫ x̃

−1

Ĝ(x)dx ≤
∫ x̃

−1

G(x)dx ≤
∫ x̃

−1

F (x)dx

for x̃ < 0, where the second inequality follows because G is an MPC of F . Therefore,

the symmetric Ĝ is an MPC of F and so is a feasible posterior.
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Since m < −π
2
and −π

2
is the x at which the lower bound Lπ(x) becomes positive,

Ĝ lies between Lπ and Uπ when x < 0. Hence, Ĝ induces a symmetric equilibrium

with industry profit π. It also yields total welfare µ+
∫ 0
−1
Ĝ(x)dx, which is equal to (4)

given expression (24). Therefore, the symmetric posterior Ĝ induces at least as much

consumer surplus as G. �

Proof of Proposition 1. Notice that whenever Lp is positive, 1 − Lp = p
2(p+x)

is log-

convex. Therefore, when 1 − F is log-concave in the range of negative x, the single-

crossing property as in the uniform example continues to hold. Then the same argument

as in that example implies that the firm-optimal symmetric price must solve

∫ 0

−1

Lp(x)dx =

∫ 0

−1

F (x)dx = δ ,

from which we derive p∗ in (13). This equality immediately implies that the symmetric

posterior G which equals Lp∗ for negative x is the unique optimal posterior, and it also

leads to no mismatch and so maximizes total surplus. �

Proof of Corollary 1. When f is log-concave, the full-information price is well defined

and is equal to pF = 1/(2f(0)). When f is log-concave, it must be weakly increasing

and so F must be weakly convex in the range of negative x. Then we have

δ =

∫ 0

−1

F (x)dx ≥
∫ 0

−1
2f(0)

(1
2
+ xf(0))dx =

1

8f(0)
= 1

4
pF , (26)

where the inequality follows since F lies above its tangent at x = 0. Using this result

and (13), we have p∗ ≥ 1
2(1−log 2)

pF .

On the other hand, when f is log-concave, F is log-concave and so F (x)
f(x)

is increasing.

Then we have

δ =

∫ 0

−1

F (x)dx =

∫ 0

−1

F (x)

f(x)
dF (x) ≤ F (0)2

f(0)
= 1

2
pF . (27)

Using this result and (13), we have p∗ ≤ 1
1−log 2

pF . �

Proof of Proposition 2. Following the same argument as in the main text, we know

that the consumer-optimal symmetric price must be below the full-information price

pF . Notice that Up =
p

2(p−x)
is log-convex when it is less than one. Hence, when prior

CDF F is log-concave in the range [−1, 0], the upper bound Up crosses F once and from
above in that range for any p < pF . Then the same argument used for the uniform

example shows that an optimal G given p < pF is given by (14). This immediately
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implies that under the consumer-optimal solution there is mismatch and total welfare

is not maximized.

With G in (14), consumer surplus is (15) and its derivative with respect to p is

∫ 0

xp

∂Up(x)

∂p
dx− 1 = 1

2

(
p

p− xp
− log p

p− xp
− 3
)
, (28)

where xp is the intercept point of F (x) and Up(x). Since F (xp) ≡ Up(xp), it follows

that p
p−xp

= 2F (xp), and so (28) equals
1
2
(2F (xp) − log(2F (xp)) − 3). This decreases

in p since the intercept point xp increases with p (which is because the upper bound

crosses F from above). Therefore, the optimal intercept point x∗ satisfies 2F (x∗) = γ,

or x∗ = F−1(1
2
γ). The optimal price p∗∗ then satisfies p∗∗

p∗∗−x∗
= 2F (x∗) = γ, from which

we obtain p∗∗ = −γ
1−γ
x∗ and so (16). �

Proof of Corollary 2. When f is log-concave, F is convex on [−1, 0], and so it is below
the linear line 1

2
(1 + x). This implies F−1(1

2
γ) ≥ γ − 1. Using this result and (16),

we have p∗∗ ≤ γ. Also, p∗∗ should never exceed δ. (This is because δ is the maximum
match efficiency improvement relative to a random match. Given the consumer-optimal

policy is better than no-information disclosure (in which case consumers buy a random

product at a zero price), the consumer-optimal price should not exceed δ.) When f is

log-concave, we have known from (27) that δ ≤ 1
2
pF , and so p

∗∗ ≤ 1
2
pF .

On the other hand, when F is convex on [−1, 0], we have γ
2
= F (x∗) ≥ 1

2
+f(0)x∗ =

1
2
(1 + x∗

pF
), where the first equality is from the proof of Proposition 2 and the final

equality is from pF =
1

2f(0)
. This implies −x∗

pF
≥ 1 − γ. Since p∗∗ = −γ

1−γ
x∗, we deduce

p∗∗ ≥ γpF . �

Proof of Proposition 3. We first derive the minimum possible consumer surplus for a

given profit p ≤ p∗. The following lemma is the key step:

Lemma 3 If an asymmetric posterior induces a pure-strategy equilibrium, there exists

a symmetric posterior which induces the same profit but weakly lower total welfare (and

so weakly lower consumer surplus).

Proof. Suppose that posterior G induces an asymmetric equilibrium with industry

profit π. Suppose firms are labelled so that p1 ≤ p2, so the bounds for G are as shown
in Figure 2a. Let πi be firm i’s profit. Then we have π1 <

1
2
π < π2 and p1 < π < p2.

Let ∆ = p1 − p2 < 0. Total welfare under G is

µ+

∫ 0

−1

G(x)dx+

∫ 0

∆

xdG(x) = µ+

∫ ∆

−1

G(x)dx−∆G(∆) .
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(For those consumers with expected x ∈ (∆, 0), they buy the worse matched product
1 because of its lower price, which causes an efficiency loss

∫ 0
∆
xdG(x). The equality

is from integration by parts.) Notice that G(∆) is firm 2’s equilibrium demand and

according to Lemma 1 this should be greater than 1
2
.

Consider a symmetric posterior Ĝ(x) = Lπ(x) for x < 0, where Lπ is the lower

bound for posteriors which induce a symmetric equilibrium with price π. Notice that

Lπ(x) = 1− π/2
π+x

≤ Lp1,p2(x) = 1− π1
p2+x

, where Lp1,p2 is the lower bound of G. Following

a similar chain of inequalities as in (12), we can see that Ĝ(x) is an MPC of F . On the

other hand, we have
∫ ∆

−1

G(x)dx−∆G(∆) ≥
∫ ∆

−1

Lπ(x)dx−∆G(∆)

≥
∫ ∆

−1

Lπ(x)dx+

∫ 0

∆

Lπ(x)dx

=

∫ 0

−1

Lπ(x)dx ,

where the first inequality used G ≥ Lp1,p2 ≥ Lπ and the second used G(∆) ≥ 1
2
≥ Lπ(x)

for x ≤ 0. Therefore, the symmetric posterior Ĝ(x) induces lower total welfare and so
lower consumer surplus.

Therefore, we can focus on symmetric posteriors when we calculate the minimum

possible consumer surplus for a given profit level, and the argument in the main text

follows.

We then turn to the maximum possible consumer surplus for a given profit. Under

Conditions 1 and 2(ii), the full-information price pF is well defined and F is log-concave

on [−1, 0]. When pF ≤ p ≤ p∗, it is possible to find a supporting posterior G between
the bounds Lp and Up which is an MPC of F such that (3) holds with equality (i.e.,

total welfare is maximized). This is because given p < p∗ the lower bound Lp must

have (3) hold with strict inequality, while given p ≥ pF the upper bound Up must be

above F when x < 0 as Up ≥ UpF ≥ F . One way to construct such a G is to choose

G(x) = Lp(x) for x < m and G(x) = Up(x) for m ≤ x ≤ 0, where m is chosen to make

(3) bind. (This G is an MPC of F since Lp ≤ Lp∗ is an MPC of F .) Since there is no
mismatch with such a posterior, this achieves the maximum consumer surplus µ+ δ−p
for a given p.

To prove the result for industry profit p < pF , we need the following result to rule

out asymmetric posteriors:

Lemma 4 When F is log-concave on [−1, 0], if an asymmetric posterior induces a
pure-strategy equilibrium with industry profit less than pF , there exists a symmetric
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posterior which induces the same profit but weakly higher total welfare (and so weakly

higher consumer surplus).

Proof. Suppose that posterior G induces an asymmetric equilibrium with industry

profit π < pF . Suppose firms are labelled so that p1 ≥ p2, so the bounds for G are as

shown in Figure 2c. As in the proof of Lemma 2, ∆ = p1 − p2 ≥ 0, π2 ≤ 1
2
π ≤ π1 and

π ≤ p1, while total welfare is no greater than (4).
Consider the symmetric posterior Ĝ(x) = min{F (x), Uπ(x)} for x < 0, where Uπ is

the upper bound for posteriors which induce the symmetric equilibrium price p = π.

Since π < pF , the log-convex Uπ must cross the log-concave F once and from above in

the range x < 0. Since Ĝ ≤ F it is an MPC of the prior and so is a legitimate posterior.
It is also between the bounds Uπ and Lπ since Lπ < LpF ≤ F . Hence, Ĝ induces a

symmetric equilibrium with profit π, the same as with G, and results in total welfare

µ+
∫ 0
−1
Ĝ(x)dx. If this total welfare is higher than (4), an upper bound for welfare with

G, then Ĝ leads to higher consumer surplus.

Notice that Up1,p2, the upper bound of G, is log-convex, and so it crosses F once at,

say, x̂ ∈ (−1, 0). Then
∫ 0

−1

G(x)dx ≤
∫ x̂

−1

F (x)dx+

∫ 0

x̂

Up1,p2(x)dx

=

∫ 0

−1

min{F (x), Up1,p2(x)}dx

≤
∫ 0

−1

min{F (x), Uπ(x)}dx

=

∫ 0

−1

Ĝ(x)dx .

Here the first inequality follows since G is an MPC of F and lies below Up1,p2, and the

second inequality follows from (25). This proves the result.

Therefore we can focus on symmetric posteriors when we calculate the maximum

consumer surplus given industry profit p < pF . Then the same analysis as in the

consumer-optimal problem in section 3.4 applies, and the maximum consumer surplus,

for a given p < pF , equals (15). In this case total welfare is not maximized, and as

shown in the proof of Proposition 2, the derivative of (15) with respect to p decreases

in p. Hence, the welfare frontier is concave in p, and it reaches the optimum at the

positive consumer-optimal price in (16). �

Proof of Proposition 4. Let F denote the symmetric prior distribution of x = v1 − v2
and G denote a symmetric posterior distribution of (expected) x. Suppose there is
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a symmetric pure or mixed strategy pricing equilibrium under G. Consumer surplus

under G is no greater than µ +
∫ 0
−1
G(x)dx (which is total welfare when the consumer

buys her preferred product) minus industry profit in that equilibrium. We first derive

a lower bound on that industry profit:

Lemma 5 Suppose V ≥ 1 and let G be a symmetric distribution for x = v1−v2. Then
in any symmetric equilibrium (with pure or mixed strategies) industry profit is no lower

than

max
x∈[−1,1]

:
−2xG(x)
1−G(x) . (29)

Proof. Note that (29) is zero if and only if the distribution G is degenerate at

x = 0, in which case equilibrium profit is also zero and the result holds. Suppose

now that (29) is positive, and slightly abusing the notation denote its value by p > 0.

Since x which solves (29) must be negative, we have p ≤ 2. Suppose in contrast to the
statement that there is an equilibrium where each firm obtains profit π∗ strictly below

p/2. Firm 1, say, will never choose a price below π∗ in this equilibrium (as then it

obtains lower profit even if it serves all consumers). Since a firm’s profit increases with

its rival’s price, firm 2’s profit π∗ is then at least equal to the maximum profit it can

obtain if firm 1 chooses price π∗. Given π∗ < p/2 ≤ 1 ≤ V , if firm 1 chooses price π∗

the outside option is not relevant for consumers, regardless of the price chosen by firm

2. Hence firm 2’s profit π∗ satisfies

π∗ ≥ max
p′
: p′ × Pr{v2 − p′ ≥ v1 − π∗} = max

p′
: p′G(π∗ − p′) = max

x∈[−1,1]
: (π∗ − x)G(x) ,

where the final equality follows after changing to the variable x = π∗−p′. Thus for any
x ∈ [−1, 1] we have (1−G(x))π∗ ≥ −xG(x), in which case π∗ is at least equal to p/2.
As this contradicts our assumption, the result is proved.

Let p denote (29) for a given G. (The proof of Lemma 5 shows that p ≤ 2.) Then
an upper bound on consumer surplus with posterior G is µ +

∫ 0
−1
G(x)dx − p. By

construction, for any x ∈ [−1, 0) we have G(x)/(1−G(x)) ≤ p
−2x
, or G(x) ≤ p

p−2x
. (If

the lower bound p in Lemma 5 is attained, then G should equal p
p−2x

for some x < 0.)

Since G cannot exceed 1
2
for x ∈ [−1, 0], it follows that G in the negative range lies

below the upper bound

G(x) ≤ Ûp(x) ≡ min
{
1

2
,

p

p− 2x

}
. (30)

Here, the upper bound Ûp increases with p and x, and reaches
1
2
at x = −1

2
p ≥ −1.
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Given the prior distribution F , let τ p denote the maximum match efficiency when

the lower bound on industry profit is p, i.e., τ p =: maxG
∫ 0
−1
G(x)dx subject to (i)

G lying below the upper bound Ûp(x) in (30) (and touching it at some x < 0) and

(ii) G being a symmetric MPC of F . Then an upper bound on consumer surplus is

µ + maxp(τ p − p). Notice that for a given p, the optimization problem in defining τ p

is similar to the problem of finding the best symmetric G for consumers under the

pure-strategy restriction in section 3.4, except that here is the relevant upper bound

for G is Ûp instead of Up in (11) which for negative x equals p/(2p− 2x) and lies below
Ûp. However, for small p, which is usually the relevant case for the consumer-optimal

solution, the two bounds are very close and for this reason the use of mixed strategies

cannot significantly benefit the consumer.

The remaining task is to calculate τ p, and this can be done in a manner similar to

the way we found the consumer-optimal policy for a given price with pure strategies.

If the prior has a log-concave density, then F is log-concave on [−1, 0], while the upper
bound Ûp is log-convex in the range [−1,−1

2
p]. For relatively small p, which will be

the relevant case, the upper bound Ûp therefore crosses the prior F twice.
25 See Figure

10 for an illustration when the prior is uniform. Let x̂p denote the smaller of the two

crossing points given p (i.e., the smaller solution to p
p−2x

= F (x)). As in section 3.4,

two necessary conditions for a feasible G are that it satisfies the MPC constraint at the

intercept point x̂p, and that G lies below Ûp for x ∈ [x̂p, 0]. The bold curve on Figure
A1 is then a convenient candidate for the optimal G.

-1.0 -0.5 0.0
0.0

0.2

0.4

x

Figure 10: Consumer-optimal way to reach the profit lower bound p

We have not shown that the candidate G illustrated as the bold curve in Figure 10

25To see that with the p which maximizes τp − p the upper bound Ûp crosses the prior F , we argue
as follows. For any p we must have τp ≤ δ since G is an MPC of F . Let p̃ denote the price such that
Ûp̃ just touches F . Then setting G ≡ F solves the stated problem for τ p̃, in which case τ p̃ = δ. For

p > p̃, when the upper bound Ûp lies strictly above F , we must have τp − p ≤ δ − p < τ p̃ − p̃. As
claimed, then, the p which maximizes τp − p is no greater than p̃ and so the upper bound crosses F .
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is an MPC of F , as Ûp is above F for x close to zero. Therefore, the resulting τ p based

on this G is an upper bound on the feasible match efficiency when the MPC constraint

is fully considered.

As with expression (15), an upper bound on consumer surplus given p is therefore

µ+

∫ x̂p

−1

F (x)dx+

∫ 0

x̂p

Ûp(x)dx− p . (31)

The derivative of this expression with respect to p is
∫ − 1

2
p

x̂p

∂Ûp(x)

∂p
dx− 1 = 1

2

(
p

p− 2x̂p
− log 2p

p− 2x̂p
− 5
2

)
.

This equals 1
2
(F (x̂p)− log(2F (x̂p))− 5

2
) by using p

p−2x̂p
= F (x̂p). Note that x̂p increases

with p given that Ûp crosses F from above at the smaller of the two crossing points.

This derivative therefore decreases with p, and so the point x̂∗ which maximizes the

upper bound (31) satisfies F (x̂∗) = γ̂, where γ̂ ≈ 0.043 is the root of γ − log(2γ) = 5
2
.

Evaluating the upper bound (31) at this crossing point x̂∗ shows the maximum consumer

surplus upper bound to be

µ+

∫ x̂∗

−1

F (x)dx− x̂∗F (x̂∗) = µ−
∫ x̂∗

−1

xdF (x) . (32)

We next compare this with the optimal consumer surplus under the pure-strategy re-

striction as described in Proposition 2. Note that Corollary 2 implies that the consumer-

optimal price p∗∗ is (much) less than 1, and so the assumption V ≥ 1 implies the outside
option is not relevant in the consumer-optimal policy. Proposition 2 implies that opti-

mal consumer surplus is

µ+

∫ x∗

−1

F (x)dx+

∫ 0

x∗
Up∗∗(x)dx− p∗∗ = µ+

∫ x∗

−1

F (x)dx− p∗∗
(
1 + 1

2
log

p∗∗

p∗∗ − x∗
)

= µ+

∫ x∗

−1

F (x)dx− x∗F (x∗)

= µ−
∫ x∗

−1

xdF (x) . (33)

(Here, the second equality used p∗∗

p∗∗−x∗
= 2F (x∗) = γ, the definition of γ, and (16),

while the last equality follows by integration by parts.) This is the same expression as

(32) but using x∗ < x̂∗.

Finally, we show that consumer surplus with pure strategies in (33) comes close to

reaching the upper bound in (32). The ratio of (33) to (32) is

µ−
∫ x∗
−1
xdF (x)

µ−
∫ x̂∗
−1
xdF (x)

=
µ− x∗F (x∗) +

∫ x∗
−1
F (x)dx

µ− x̂∗F (x̂∗) +
∫ x̂∗
−1
F (x)dx

>
µ− x∗F (x∗) +

∫ x∗
−1
F (x)dx

µ− x∗F (x̂∗) +
∫ x∗
−1
F (x)dx
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>
µ− x∗F (x∗)
µ− x∗F (x̂∗) >

µ+ F (x∗)

µ+ F (x̂∗)
≥ 1 + F (x∗)

1 + F (x̂∗)
=
1 + 1

2
γ

1 + γ̂
≈ 0.984 .

Here, the first inequality uses
∫ x̂∗
x∗
F (x)dx < (x̂∗ − x∗)F (x̂∗), the third inequality uses

−1 < x∗ < 0, and the final inequality uses the fact that V ≥ 1 implies µ ≥ 1. Thus,
when the prior has log-concave density the maximum consumer surplus attainable with

pure strategies attains at least 98.4% of the consumer surplus which could be available

when mixed pricing strategies were permitted. �

Proof of Proposition 5: (i) All the results have been explained in the main text, except

for the comparison between the “top product” signal structure and full disclosure in

the “i.i.d.” case. Let us first report the equilibrium price under full disclosure. Suppose

(with some abuse of notation) that each vi has CDF F (vi) and density f(vi) on the

support support [v, v̄], where v̄ = ∞ is allowed. When the outside option is irrelevant

and the density f(·) is log-concave, the unique equilibrium price in the Perloff-Salop

model is

pF =
1

n
∫ v
v
f(v)dF (v)n−1

=
1

n(n− 1)
∫ 1
0
f(F−1(t))tn−2dt

, (34)

where the second equality is from changing the integral variable, and this price decreases

with n and converges to 0 as n→∞ if

lim
v→v

1− F (v)
f(v)

= 0 . (35)

(For this analysis, see for instance Lemma 1 in Zhou (2017).) Therefore, the outside

option is indeed irrelevant for consumers if v > pF when n = 2. Note that when the

outside option is irrelevant, pF is also the industry profit under full disclosure.

The profit lower bound (19) with the “top product” signal is

µn:n−µ<n:n =
n

n− 1(µn:n−µ) =
n

n− 1

∫ v

v

[F (v)−F (v)n]dv = n

n− 1

∫ 1

0

t− tn
f(F−1(t))

dt ,

where the first equality follows from the identity (17) and the final equality follows after

changing variables.

We first show that µn:n − µ<n:n ≥ pF if n ≥ 3. Note that µn:n − µ<n:n ≥ pF if

n2
(∫ 1

0

t− tn
f(F−1(t))

dt

)(∫ 1

0

f(F−1(t))tn−2dt

)
≥ 1 . (36)

The Cauchy-Schwartz inequality implies that the product of the two integrals is at least

(∫ 1

0

√
(t− tn)tn−2dt

)2
=

(∫ 1

0

√
tn−1(1− tn−1)dt

)2
.
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Therefore, (36) holds if

n

∫ 1

0

√
tn−1(1− tn−1)dt ≥ 1 .

Rewrite the left-hand side as

n

∫ 1

0

√
tn−1(1− tn−1)dt = 2n

n+ 1

∫ 1

0

√
1− tn−1dt(n+1)/2 = 2n

n+ 1

∫ 1

0

√
1− z2n−1n+1dz ,

where the last step follows from changing variable, which is therefore increasing in n.

With n = 3 it equals 3
2

∫ 1
0

√
1− zdz = 1. Therefore, (36) holds for all n ≥ 3.

The remaining case is n = 2. In this case the lower bound (19) is not a tight

enough bound on profit, and we need to calculate equilibrium profit with the “top

product” policy when n = 2. To do that, however, we need to rely on the mixed-

strategy characterization presented in our working paper, Armstrong and Zhou (2021,

pp. 53-54), and the analysis there can be used to show that industry profit with this

policy is greater than 2(µn:n − µ<n:n) when n = 2. This in turn is greater than the

profit under full disclosure if

8

(∫ 1

0

t− t2
f(F−1(t))

dt

)(∫ 1

0

f(F−1(t))dt

)
≥ 1 .

By Cauchy-Schwartz again, the left-hand side is greater than

8

(∫ 1

0

√
t(1− t)dt

)2
=
π2

8
> 1

as required, where π is the mathematical constant.

(ii) The first part of the result has been proved in the main text. We now compare

consumer surplus between the “top two” signal and full disclosure in the i.i.d. case.

Under full disclosure, the consumer always buys her preferred product, so her expected

surplus is µn:n−pF . As explained in the main text, with the “top-two” policy consumer
surplus is (20). Therefore, the consumer prefers this policy to full disclosure if 1

2
(µn:n+

µn−1:n) > µn:n − pF , i.e., if µn:n − µn−1:n < 2pF . (Both sides converge to zero as

n → ∞ under condition (35).) The CDF of the best match is F (v)n and the CDF of

the second-best match is F (v)n + n(1− F (v))F (v)n−1. Therefore,

µn:n − µn−1:n = n
∫ v

v

(1− F (v))F (v)n−1dv = n(µn:n − µn−1:n−1) .

That is, the expected gap between the best match and the second-best match equals

n times the expected difference between the best match among n options and the best

match among n − 1 options. Therefore, it suffices to show µn:n − µn−1:n−1 < 2
n
pF . In
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fact, a stronger version of this inequality has been shown previously to be true when

the density f is log-concave, namely

µn:n − µn−1:n−1 ≤
pF
n
.

(See Anderson, de Palma, and Nesterov (1995) and Tan and Zhou (2021) for this result.)

This completes the proof. �
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