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“There’s two big frustrations of being an inventor. The first is when you can’t
solve a problem ... The second one [is when] you can’t get the world to adopt it.”
(Nathan Myhrvold, 2020)1

1 Introduction

Schumpeterian endogenous growth models routinely assume that successful innovators costlessly

and instantaneously capture their entire potential market share. This implies that all consumers

immediately recognize the superiority of newly improved products and that incumbent firms are

fully displaced as soon as an innovation occurs. Although analytically convenient, this assumption is

clearly counterfactual. Firms devote considerable resources to build and maintain market share. As

a whole, marketing expenditures are estimated to comprise as much as 8% of GDP, with advertising

alone accounting for over 2% (Gourio and Rudanko, 2014; Cavenaile and Roldan-Blanco, 2019).

Especially for innovative product categories, advertising is often necessary to establish product

awareness and inform consumers of a new product’s advantages (Goeree, 2008; Eliaz and Spiegler,

2011). In addition, new product advertising plays a fundamental role in weakening incumbent brand

loyalty, reducing perceived switching costs, and overcoming considerable consumer reluctance to

change status quo consumption behavior (Shum, 2004; Gourville, 2006).2

Still, firms often fail to profitably commercialize innovative technologies and products. Empirical

estimates suggest that 40-50% of new product launches fail within their first four years, despite

offering technical and functional improvements over competing products in many cases.3 Moreover,

even when commercialization is ultimately successful, it is typically a slow process. Most successful

new products experience an initial period of low penetration and slow growth followed eventually

by a sharp sales increase or “takeoff” to its market share as a mature product (Agarwal and Bayus,

2002; Golder and Tellis, 2004). Indeed, “the time to sales takeoff can vary considerably across

product innovations; some quickly achieve sales takeoff after commercialization, whereas others

languish for years with low sales” (Agarwal and Bayus, 2002).

In this paper, we develop a novel theoretical framework to examine the dynamic interaction

between product innovation, commercialization, and economic growth. As in standard Schumpete-

rian quality ladder models, entrepreneurial firms invest in R&D to innovate higher quality products

across a fixed (measure one) set of industries and new innovations arrive according to a stochastic

Poisson process. However, we introduce an endogenous commercialization process that takes place

in two phases. In the first phase, successful innovators instantaneously capture a small share of

the market comprised of consumers who immediately recognize the superiority of innovative prod-

1Former Chief Technology Officer at Microsoft and co-founder of the firm Intellectual Ventures, speaking on the
podcast “People I (Mostly) Admire.”

2See Bagwell (2007) for an extensive overview of the empirical literature analyzing the effects of advertising new
products.

3New product failure is defined in the empirical literature as either a total removal from the market or a sufficiently
large underperformance relative to a pre-specified sales target. See Asplund and Sandin (1999), Gourville (2006),
Chiesa and Frattini (2011) and Castellion and Markham (2013) for a summary of empirical research on new product
failure.
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ucts. Borrowing marketing terminology, we refer to this subset of consumers as early adopters. In

the second phase, innovators must invest in costly advertising in order to convince the remaining

mainstream consumers to recognize their innovative product’s quality advantage.

To capture the uncertain nature of sales takeoff, we model this diffusion of innovations into the

mainstream market as a stochastic Poisson process whose arrival rate depends upon advertising

intensity. We consider two distinct formulations for the relationship between advertising and the

probability of diffusion. First, we assume advertising is purely informative; only young innovators

invest in advertising to expand their market share by communicating their product’s advantages

to potential consumers. Second, we allow for advertising to be combative; incumbent firms also

invest in defensive advertising to protect their existing market share against new entrants. In this

formulation, the rate of new product diffusion depends upon the advertising contest between young

and old firms endogenously battling for consumers through advertising expenditure.4

In our framework, firms endogenously cycle through distinct life stages of stochastic length as

new innovations arrive and either commercialize successfully or fail. Each new innovator begins

life as a young technology leader, serves only early adopters, and invests in advertising to increase

its chances of diffusing its product into the mainstream. If a subsequent innovation arrives in

the industry before a young firm captures the mainstream market, its product fails. If the young

firm instead successfully diffuses into the mainstream prior to the arrival of the next competing

innovation, it fully replaces the existing incumbent and begins its tenure as an adult technological

leader. Once the next innovation occurs, the now incumbent adult firm transitions to its final

stage where it is no longer the technological leader, and early adopters abandon the old product

for the newest iteration. However, these old firms still retain a sizable market share until they

are fully displaced by the next young firm that diffuses its product successfully. In our combative

advertising formulation, old firms also endogenously invest in defensive advertising to protect their

market share and prolong their final stage of life.

As in traditional models, economic growth is driven by the incorporation of higher quality prod-

ucts into households’ consumption bundles. This implies that the growth rate depends positively

on both the rate of innovation and the rate of product diffusion since only innovations that commer-

cialize successfully are adopted by mainstream consumers. We show that this relationship provides

novel insights into the role of R&D subsidies in promoting economic growth. Unlike the traditional

models in which R&D subsidies always promote growth, we find that R&D subsidies can have a

non-monotonic effect on growth.5 This is because young firms’ incentives to invest in advertising in

order to diffuse their product depend upon the expected length of their reign of market dominance

as an adult firm. The more frequently new innovations arrive, the faster technology leaders transi-

tion to their old firm stage, and the smaller the incentive to invest in advertising. Thus, although

the traditional growth promoting effect of R&D subsidies of stimulating innovation is present in our

4This combative advertising formulation reflects empirical evidence that “advertising is often characterized over
time by reciprocal cancellation ... new entrants advertise to gain market share and thereby induce increased advertising
by incumbents ... in order to limit the sales of new entrants” (Bagwell, 2007).

5See for example, Grossman and Helpman (1991), Şener (2008), Chu et al. (2016), and Chu and Cozzi (2018).
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model, there is also a competing growth reducing effect as a smaller proportion of innovations com-

mercialize successfully. We show that this fundamental relationship holds in both the informative

and combative advertising versions of the model. Using numerical simulations, we find that R&D

subsidies exhibit an inverted U-shaped relationship with both economic growth and welfare. In our

benchmark case of a 25% product failure rate in the initial equilibrium, an R&D subsidy rate of

15.4% maximizes growth and a subsidy rate of 9.1% maximizes welfare. Furthermore, as the initial

product failure rate increases (i.e. less frequent successful diffusion in the baseline equilibrium),

the case for R&D subsidies becomes weaker. Indeed, we find that the optimal R&D policy shifts

to a tax when the initial failure rate is high but still within an empirically plausible range. Hence,

our results suggest that standard endogenous growth models that assume instantaneous innovation

diffusion may overstate the case for large R&D subsidies6

These findings are consistent with both a significant empirical literature that finds R&D subsi-

dies increase R&D investment and patenting, and recent evidence that suggests R&D subsidies are

associated with a lower average market return of new patents and products. For example, Svensson

(2013) finds that firms that receive subsidized R&D loans have a significantly lower renewal rate of

new patents. Similarly, Czarnitzki et al. (2011) find that R&D subsidies increase the average num-

ber of new products introduced by firms, but do not improve general firm performance indicators

such as profitability or market share. Indeed, as a possible explanation of their findings, Czarnitzki

et al. (2011) suggest that “the reduced cost of R&D funds may shift firms’ allocation of funding

for innovation activities away from necessary complementary activities such as marketing.” Our

analysis formalizes this intuition.

Finally, we use the model to examine the economic impact of an exogenous decline in the cost

of advertising. Following Grossman and Shapiro (1984) and Dinlersoz and Yorukoglu (2012), we

interpret this exercise as a stylized representation of the long run effects of technological advance-

ments in advertising, such as targeted digital advertising. We show that the effect of reduced

advertising costs depends critically on whether advertising is informative or combative. When ad-

vertising is informative, reduced advertising costs lead to faster product diffusion, which increases

economic growth and welfare. However, when advertising is combative, the cost reduction also

stimulates defensive advertising by existing incumbents. Since advertising is characterized by re-

ciprocal cancellation in this formulation, the primary effect is a socially wasteful increase in the

resources devoted to advertising, without the dynamic benefit of a substantial increase in product

diffusion. In this case, economic growth and welfare both fall with the decline in advertising costs.

Thus, our analysis suggests that the welfare impact of improved advertising technology hinges on

its influence on defensive advertising.

Our paper is related to several strands of endogenous growth literature, including analyses that

incorporate non-instantaneous new product diffusion, intangible advertising investment, and the

defensive behavior of market incumbents. Both Dinopoulos and Waldo (2005) and Dinopoulos

6Examples of Schumpeterian analyses that make the case for optimal R&D subsidies include Segerstrom (2007),
Şener (2008), Impullitti (2010), and Minniti et al. (2013).
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et al. (2021) allow for innovator market share to evolve over time, but focus on distinct underlying

processes. Dinopoulos and Waldo (2005) impose an exogenous diffusion process that mimics a sales

takeoff based S-curve. They use the model to explore the relationship between gradual product

diffusion and the dynamics of asset prices, but the relationship between R&D and advertising

incentives are absent by construction. In several respects, our methodological approach is most

similar to Dinopoulos et al. (2021), who allow for endogenous changes to innovator market share over

a firm life cycle. However, they focus on employment frictions as young firms expand and use the

model to examine the relationship between unemployment and economic growth. Similarly, Chu and

Furukawa (2013) and Cozzi and Galli (2014) develop models featuring a two stage innovation process

that requires both basic and applied research to bring a product to market. These papers analyze

the role of patent policy in shaping incentives through the profit division between distinct basic

and applied research firms. In contrast, we focus on the relationship between separate innovation

and commercialization stages of product development within a single firm.

To our knowledge, only Grossmann (2008), Cavenaile and Roldan-Blanco (2019), and Cavenaile

et al. (2021) have considered the interactions between advertising and innovation in an endogenous

growth framework. In these models, advertising acts as a demand shifter that increases consumers’

perceived quality of existing incumbent products with an established market position. While adver-

tising impacts innovator profits, and therefore R&D incentives, in these models, it does not impact

the dynamics of innovation diffusion into the mainstream market by construction. We contribute

to this existing work by focusing on the distinct role of advertising investment in determining the

endogenous commercial success and failure of product innovations.7 In this sense, our work follows

the literature that views advertising as fundamental to the process of building customer capital and

market share, such as Gourio and Rudanko (2014) and Arkolakis (2010) in the context of interna-

tional trade. Finally, several papers including Dinopoulos and Syropoulos (2007), Davis and Şener

(2012), and Klein (2020) have analyzed the defensive actions, or rent protection activities, of mar-

ket incumbents in an endogenous growth framework. In all cases, these papers consider defensive

actions that increase the effective cost of rival innovation, such as patent infringement litigation. By

incorporating defensive advertising, our model advances a distinct form of rent protection activities

that targets competitors after they have entered the market.

The remainder of this paper is organized as follows. In Section 2, we develop the informative

advertising version of the model. We explore the impact of R&D subsidies on economic growth

in Section 3. In Section 4, we examine the welfare properties of the model and analyze optimal

R&D policies numerically. Section 5 develops the combative advertising extensions of the model

and investigates the impact of lower advertising costs in both versions. Section 6 concludes.

7As argued by Agarwal and Bayus (2002), incorporating the “timing and causes of sales takeoff is critically
important ... because they have serious short- and long-term resource implications for research and development,
product development, marketing, and manufacturing.”
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2 The Model

2.1 Households and Perceived Quality

The economy is populated by a unit continuum of households indexed by i ∈ [0, 1]. Each

household is a dynastic family comprised of infinitely lived members that begins with a single

member at t = 0 and grows at rate n > 0. The size of each household at time t equals the

population of the economy given by N(t) = ent. Each household i maximizes discounted utility

Ui =

∞
∫

0

e−(ρ−n)t ln(ui(t))dt, (2.1)

where ρ > n is the subjective discount rate. Per capita sub-utility at time t is defined as

ln(ui(t)) =

∫ 1

0
ln
[

∑

k

q̃i(k, ω, t)yi(k, ω, t)
]

dω, (2.2)

where yi(k, ω, t) denotes household i’s quantity consumed of a product that has experienced k suc-

cessful innovations in industry ω ∈ [0, 1] at time t, and q̃i(k, ω, t) denotes household i’s perceived

quality of the associated product. Each household maximizes (2.1) by allocating individual con-

sumption expenditure ci(t) given prices at time t. Adjusted for perceived quality, products within

each industry are perfect substitutes and each household optimally purchases only the product

with the lowest perceived quality adjusted price. Products enter utility symmetrically, so house-

holds evenly spread consumption expenditure across industries. Establishing notation, household

i’s demand for the good with the lowest perceived quality adjusted price in a typical industry is

yi(t) =
ci(t)

p(t, i)
, (2.3)

where p(t, i) is the market price of the good for which perceived quality adjusted price is lowest for

consumer i. Maximizing (2.1) subject to the standard intertemporal budget constraint yields

ċi(t)

ci(t)
= r(t)− ρ, (2.4)

where r(t) is the market interest rate.

In each industry ω and time t, there exists a single firm that produces the current state of

the art product that all households perceive to be of quality q̃(k, ω, t) = λk(ω,t), where λ > 1

is the constant step size of the innovation quality ladder. Since all households share this quality

perception, this product represents the definitive quality standard at level “k.” Similar to traditional

models, we assume that a mass of challenger firms within each industry may produce products using

the previous k−1 quality standard, which all consumers perceive to be one step down the λ quality

ladder. Challengers invest resources in R&D to innovate new versions of the product that represent
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possible candidates or prototypes for the k + 1 quality standard. Each k + 1 prototype eventually

either succeeds or fails. A prototype succeeds if it establishes itself as the definitive k + 1 quality

standard by convincing all consumers to perceive it to be of quality λk(ω,t)+1. A prototype fails if

all consumers ultimately reject its attempted quality improvement.

There exist two types of households that are differentiated by how they perceive the quality

of k + 1 prototypes. A constant proportion of households, φ ∈ (0, 1), are early adopters who

immediately consider the latest prototype to be superior to all other existing options. In the

spirit of the traditional consumer classifications in marketing, we assume that early adopters derive

value from consuming the newest products.8 Specifically, these consumers always perceive a new

prototype to be a λ size quality improvement over the current quality standard, but view all

previously offered prototypes to be of quality level k − 1 or lower. In contrast, the remaining

1−φ proportion of households are mainstream consumers who initially do not consider prototypes

to be viable alternatives to the current k level quality standard. Instead, mainstream consumers

consider each prototype to be inferior unless they are persuaded, through endogenous advertising

efforts detailed in the following section, that the prototype constitutes an actual λ size quality

improvement over the current standard.

2.2 Innovation, Diffusion, and Industry Structure

The potential for different perceived quality among consumer types implies that industries

and firms endogenously cycle through distinct stages as new prototypes are innovated and either

succeed or fail to diffuse into the mainstream market. To see this, consider the evolution of a typical

industry up the quality ladder from the kth to the kth + 1 step.9 The industry achieves the kth

step on the quality ladder when a firm successfully establishes their prototype as the definitive k

quality standard. Until the first k+ 1 prototype arrives, this firm enjoys a λ size perceived quality

advantage over all other firms that can only produce inferior k − 1 level products. Standard limit

pricing implies that this technology leader captures the industry’s entire market share. We refer to

such a firm as an adult firm and all such industries served by an adult firm as an A industry.

A mass of challenger firms invest in R&D to innovate new k+1 prototypes. As is standard, we

model innovation as a stochastic Poisson process that depends on the intensity of R&D investment

by challengers within each industry. Specifically, a challenger j that invests Rj(t) in R&D at time t

innovates a new k + 1 prototype with instantaneous probability Ij(t) = Rj(t)/XR(t), where XR(t)

8Within marketing, consumers with this type of novelty seeking preference structure are categorized as “innovative”
consumers, which are defined by their “predisposition to buy new and different products and brands rather than
remain with previous choices and consumption patterns” (Steenkamp et al., 1999). Empirical evidence shows that
“novelty seeking plays an essential role in the early stages of consumer adoption of new products” (Tellis et al., 2009).
To avoid confusion with the concept of new product innovation, we choose to label these consumers under the broader
related term, early adopters. See also Furukawa et al. (2019, 2020) for recent analyses of the role of novelty seeking
preferences in creating demand for innovative products.

9Since industries are structurally identical, we omit the ω index to avoid clutter. In the following sections, we
show that the model is consistent with a balanced growth equilibrium with a common, constant rate of innovation
and diffusion across industries. That is, in equilibrium, we have I(ω, t) = I(t) for all ω and δ(ω, t) = δ(t) for all
prototypes.
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captures the difficulty of R&D in the industry. Following the now common approach advanced

by Dinopoulos and Segerstrom (1999) and Dinopoulos and Thompson (2000), we specify XR(t) =

κRN(t), with κR > 0, so that R&D difficulty is proportional to the size of the population and scale

effects are eliminated in a simple way.10 The industry wide innovation rate is obtained by summing

across all challengers,

I(t) =
∑

j

Ij(t) =
R(t)

κRN(t)
, where R(t) =

∑

j

Rj(t). (2.5)

As soon as the first k + 1 prototype is innovated, the measure φ ∈ (0, 1) of early adopters

immediately perceive the prototype to be a λ quality improvement over the k quality standard.

Under limit pricing, the innovative, or young, firm’s prototype captures this portion of the market

and partially displaces the incumbent adult firm. This forces the incumbent into its old firm stage

where it is no longer the undisputed technology leader. However, until they are convinced otherwise,

the remaining 1− φ mainstream consumers initially perceive the prototype to be of inferior k − 1

or lower quality, allowing the old firm to continue to serve this portion of the market as before. We

label all industries where a young and old firm are both active as a B industry.

In B industries, each young firm either succeeds or fails to establish its prototype as the defini-

tive k + 1 quality rung by persuading mainstream consumers that its prototype offers λ quality

improvement over the k quality standard. If successful, the prototype enjoys a λ perceived quality

advantage with all consumers. With limit pricing, the young firm captures the entire industry’s

market share, fully displaces the previous incumbent’s k quality standard product, and takes its

place as an adult technology leader. Note that this implies that the industry transitions back to

an A type industry at quality level k + 1, and the process begins anew with the search for k + 2

prototypes.

To capture the notion of uncertain new product sales takeoff, we model this prototype diffusion

into the mainstream market as a stochastic Poisson process that depends upon advertising intensity.

Let δ(t) denote the instantaneous probability of prototype diffusion. A young firm that invests αy

in advertising diffuses with probability,

δ(t) =
αy(t)

Xα(t)
, (2.6)

where Xα(t) represents the difficulty of diffusion in the industry. In our primary specification, we

assume that advertising is purely informative and set Xα(t) = καN(t), with κα > 0. That is,

we assume that diffusion depends only on young firm advertising as they build product awareness

and communicate product advantages to mainstream consumers. In Section 5.1, we consider com-

bative advertising through an alternate specification of Xα(t) = κααo(t), where αo(t) denotes the

endogenous defensive advertising investment by the old firm in the industry. Thus, the alternate

specification frames the diffusion process as a marketing contest between young and old firms who

10See for example Şener (2001), Impullitti (2010), Chu and Cozzi (2014), and Klein (2021).
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battle for the favor of mainstream consumers. Under either specification, until a second k + 1

prototype is introduced into the industry, the first k + 1 prototype has an endogenous probability

of successfully diffusing per unit time dt equal to δ(t)dt.

However, innovative efforts continue in B industries while prototypes struggle to win over main-

stream consumers. Should a second k+1 prototype be introduced into the market prior to successful

diffusion of the first prototype into the mainstream, early adopters no longer view the now outdated

prototype favorably. Recall that early adopters attach a λ quality advantage to the latest prototype

only, while viewing all others as quality inferior. Limit pricing implies that the second prototype

serves all early adopters and fully displaces the previous young firm from the market. Thus, from

the perspective of challengers conducting R&D, the reward for innovating a new prototype in A

and B industries is identical; new innovators always serve early adopters and attempt to diffuse

their prototype as a young firm. As we will see, this implies that the model is consistent with a

balanced growth equilibrium in which A and B industries share a common innovation rate. Finally,

note that the introduction of additional prototypes into the market does not impact the quality

perception of mainstream consumers, and therefore does not impact the old firm that serves them.

Let nA(t) and nB(t) = 1 − nA(t) denote the proportion of A and B industries in the economy

at time t respectively. An A industry cycles to a B industry when an innovation occurs. Over an

interval of time dt, the transition rate of A industries to B industries is nA(t)I(t)dt. Similarly, a B

industry switches to an A industry when a prototype diffuses successfully. The associated flow into

A industries is (1− nA(t))δ(t)dt. This implies that the proportion of A industries in the economy

evolves endogenously according to,

ṅA = (1− nA(t))δ(t)− nA(t)I(t). (2.7)

We define the diffusion failure rate as the proportion of prototypes that exit the market without

successfully diffusing into the mainstream. Over an interval of time dt, each existing prototype

has a δ(t)dt probability of diffusion success and an I(t)dt probability of failure. Therefore, the

endogenous rate of diffusion failure for the mass of prototypes is given by,

f(t) ≡
I(t)

I(t) + δ(t)
. (2.8)

2.3 Labor and Production

Labor is used for three separate tasks: advertising, R&D, and the production of consumption

goods. Households supply labor inelastically and labor is freely mobile across industries and tasks.

We normalize the wage rate common to all labor to unity and assume that one unit of labor

produces one unit of the consumption good in each industry. As discussed in the previous sections,

each type of firm (young, adult, old) enjoys a λ size perceived quality advantage over its nearest

competitor with a fixed proportion of the population (φ, 1, 1−φ respectively). Thus, each firm type

optimally captures its respective market share with limit pricing at a common price of p(t) = λ.
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In A industries, a single adult firm serves the entire market with corresponding quantity sold

equal to ya(t) = c(t)N(t)/λ, where c(t) denotes per capita consumption expenditure common to

all households. Thus, each adult firm earns flow profits equal to

πa(t) = p(t)ya(t)− ya(t) = c(t)N(t)
(λ− 1)

λ
. (2.9)

The situation is identical in B industries after accounting for the proportion of consumers

served by young and old firms. Young firms serve the economy’s φN(t) early adopters, sell

yy = c(t)φN(t)/λ units, and earn flow profits (gross of advertising expenditure) equal to πy(t) =

c(t)φN(t)(1 − λ−1) = φπa(t). Old firms serve the economy’s (1 − φ)N(t) mainstream consumers,

sell yy = c(t)(1 − φ)N(t)/λ units, and earn flow profits equal to πo(t) = (1 − φ)πa(t). Note that

total employment in production is common across A and B industries. For the economy as a whole,

labor used in the production of consumption goods is

Lc(t) =
c(t)N(t)

λ
. (2.10)

Finally, we assume that R&D and advertising are produced under constant returns to scale. Let

βR > 0 and βα > 0 denote the unit labor requirement in R&D and advertising respectively. Note

that advertising is conducted only by young firms in B industries and challengers target their R&D

efforts at all industries. Thus, total employment in R&D and advertising respectively are given by

LR(t) = βRR(t), Lα(t) = nB(t)βααy(t). (2.11)

2.4 Stock Market Valuations and Optimal Advertising

Let Vk(t) denote the value of firm of type k in a typical industry. The no-arbitrage condition

associated with a challenger’s R&D investment requires that stock issued by the challenger provides

the same expected return as a diversified investment of equal size. Consider a Vc(t) size investment

in challenger j. Over a dt unit of time, there is a Ij(t)dt probability of successful innovation and

a corresponding realized gain equal to the value of transitioning to a young firm, Vy(t) − Vc(t).

Innovation does not occur with probability (1− Ij(t)dt) and there is an associated capital change

of dVc(t) = V̇c(t)dt. Independent of the innovation outcome, challenger j incurs a R&D cost equal

to (1− σR)βRRj(t)dt, where 0 ≤ σR < 1 denotes the subsidy rate for R&D investment.

The total equity return of these components must equal the risk-free return of r(t)Vc(t)dt. Thus,

the no-arbitrage condition for challenger firms is

r(t)Vc(t)dt = Ij(t)(Vy(t)− Vc(t))dt− (1− σR)βRRj(t)dt+ (1− Ij(t)dt)V̇c(t)dt. (2.12)

Free-entry into R&D implies that V̇c = Vc = 0. Taking limits as dt → 0 yields the following
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free-entry condition equating the cost and expected return to R&D, Ij(t)Vy(t) = (1− σR)βRRj(t).

Given (2.5), the free-entry condition can be rewritten as

Vy(t) = (1− σR)βRκRN(t), (2.13)

which relates the value of a young firm to the cost of innovating a new prototype. Note that (2.13)

directly implies that the value of young firms grows with the population, with V̇y(t)/Vy(t) = n.

Next, consider the expected return from holding Vy(t) of stock in a young firm over time interval

dt. The young firm earns flow profit φπa(t)dt and incurs a cost of advertising βααy(t)dt. With

probability δ(t)dt, the firm successfully diffuses its product and enjoys a capital gain of Va(t)−Vy(t).

With probability I(t)dt, a new prototype arrives and displaces the young firm creating a capital

loss of Vy(t). With probability (1 − δ(t)dt − I(t)dt), the firm retains its position as a young firm

and there is an associated change in valuation of V̇y(t)dt. Combining terms, the corresponding

no-arbitrage condition is

r(t)Vy(t)dt = φπa(t)dt− βααy(t)dt+ δ(t)(Va(t)− Vy(t))dt−

I(t)Vy(t)dt+ (1− δ(t)dt− I(t)dt)V̇y(t)dt.
(2.14)

Each young firm chooses αy in order to maximize their valuation given by the left hand side of

(2.14). Using the definition of δ(t) from (2.6) and taking limits as dt → 0, the associated first order

condition can be written δ(t)(Va − Vy) = βααy(t), which equates the expected return and cost of

advertising expenditures.11 Substituting this optimal advertising condition into (2.14) yields the

following expression for the value of a young firm

Vy(t) =
φπa(t)

I(t) + r(t)− n
. (2.15)

Much like firms in traditional endogenous growth models, young firms discount flow profits by

the rate of replacement I(t) and the effective interest rate r(t) − n. After incorporating optimal

advertising, the valuation of a young firm does not directly depend on the expected value of diffusing

into the mainstream since it is exactly offset by advertising expenditure. Finally, again using (2.6),

note that the optimal advertising condition is equivalent to

Va(t)− Vy(t) = βακαN(t), (2.16)

which provides a useful expression for the value of successful diffusion.

The expected return of holding Va(t) of stock in an adult firm over interval dt includes the

profit flow πa(t)dt, minus the I(t)dt probability that a new prototype will be innovated and force

the firm into old age with associated capital cost Va(t) − Vo(t). With probability (1 − I(t)dt), no

such innovation occurs and the value of the adult firm changes by V̇a(t)dt. This gives the following

11Note from (2.6) that dδ(t)/dαy(t) = δ(t)/αy(t).
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no-arbitrage condition for adult firms

r(t)Va(t)dt = πa(t)dt− I(t)(Va(t)− Vo(t))dt+ (1− I(t)dt)V̇adt. (2.17)

Taking limits as dt → 0 and noting that V̇a/Va = n from (2.16), yields an expression for value of

an adult firm

Va(t) =
πa(t) + I(t)Vo(t)

I(t) + r(t)− n
. (2.18)

Finally, an old firm generates a profit flow (1 − φ)πdt and faces a capital loss of Vo(t)dt if the

young firm in the industry displaces it by successfully diffusing a new prototype with probability

δ(t)dt. If diffusion does not occur, the old firm experiences a change in valuation of V̇o(t)dt.

Combining terms yields the no-arbitrage condition for old firms

r(t)Vo(t)dt = (1− φ)πa(t)dt− δ(t)Vo(t)dt+ (1− δ(t)dt)V̇odt. (2.19)

Taking limits once again, we obtain an expression for the value of an old firm

Vo(t) =
(1− φ)πa(t)

δ(t) + r(t)− n
. (2.20)

2.5 Equilibrium

We now solve for a steady state equilibrium in which I(t), δ(t), c(t), f(t), and na(t) are constant,

πa(t), Vy(t), Va(t), and Vo(t) grow at the rate of population growth n, the labor market clears, the

free-entry condition of (2.13) holds, and young firms choose advertising expenditure to maximize

their value according to (2.16). Henceforth, we drop the time index for all variables that are constant

in equilibrium. We solve for the model’s steady state equilibrium by deriving two equilibrium

conditions in I and δ.

Imposing ṅA = 0 in (2.7) yields an expression for the equilibrium proportion of A and B type

industries in terms of the rate of innovation and diffusion,

nA =
δ

δ + I
, nB = 1− nA =

I

δ + I
. (2.21)

Observe from (2.8) that the economy’s endogenous failure rate f of new innovations is equal to the

proportion of B type industries nB in equilibrium. This is because industries cycle from their B to

A configurations if and only if a prototype diffuses successfully. In traditional models of endogenous

growth with instantaneous new product diffusion, all industries exhibit an A type structure and

innovations never fail. In our framework, this is equivalent to the limit case of δ → ∞.

Next, combine the free entry condition (2.13) and the value of a young firm (2.15), noting that

r = ρ in equilibrium, to derive the following equilibrium relationship between I and c based on the
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cost and reward from innovating a new prototype,

(1− σR)βRκR =
cφ(λ− 1)

λ(I + ρ− n)
. (2.22)

As in traditional models, a greater level of per capita consumption c implies a greater profit incentive

to conduct R&D and a corresponding higher rate of innovation. Similarly, combining the optimal

advertising condition (2.16) with the expressions for the value of each firm type (2.15), (2.18), and

(2.20), provides an equilibrium relationship between δ, I and c based on the cost and reward from

successfully diffusing a prototype into the mainstream,

βακα =
c(1− φ)(λ− 1)]

λ

[ δ + I + ρ− n

(I + ρ− n)(δ + ρ− n)

]

. (2.23)

Once again, a greater c implies young firms have a greater incentive to advertise since capturing

the entire industry’s market share as an adult firm becomes more profitable. On the other hand, a

greater rate of new prototype innovation I reduces the incentive to invest in advertising since the

expected duration of market dominance as an adult firm is shortened.

Combining (2.22) and (2.23) yields our first equilibrium condition in I and δ that captures the

relative incentive to invest in R&D over advertising,

I = (ρ− n+ δ)Γ, where Γ ≡

[ φβακα
(1− φ)(1− σR)βRκR

− 1
]

[RDAC] (2.24)

We refer to equation (2.24) as the “R&D - advertising curve” (RDAC) Clearly, in order to be

consistent with an equilibrium with a positive rate of innovation and diffusion the parameters of

the model must produce Γ > 0. This condition will be met when the benefit of R&D (an initial φ

market share as a young firm) relative to the cost of R&D (the (1− σR)βRκR term) is sufficiently

high compared to the benefit of diffusion (capturing an additional 1− φ market share) relative to

the cost of diffusion (the βακα term). Henceforth, we assume the following,

Assumption 1. Γ > 0, as defined in (2.24).

With this condition in place, the RDAC specifies a linear and upward sloping relationship when

graphed in (δ, I) space. To understand why, first recall that the incentives to invest in R&D and

advertising both scale proportionally with c. Thus, the c term vanishes in (2.24). Second, although

R&D incentives do not directly depend upon the rate of diffusion, advertising incentives are strictly

decreasing in the economy’s diffusion rate. This is because a higher overall diffusion rate decreases a

firm’s expected tenure as an old firm through equation (2.20), thereby decreasing the value of adult

firm through equation (2.18). For a given level of I, a larger δ implies a greater relative incentive to

invest in R&D over advertising. To restore the RDAC, I must change to realign relative incentives.

It follows from (2.22) and (2.23) that, although a greater I decreases the reward from both R&D

and advertising, the effect is stronger for R&D. Thus, a greater I decreases the relative incentive
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to invest in R&D and restores equilibrium.

Labor market clearing provides our second equilibrium condition. Market clearing requires that

the aggregate supply of labor N(t) equal aggregate demand for labor across production, R&D, and

advertising, given by (2.10) and (2.11) respectively. Recall that labor is used for advertising only

in B industries, while R&D is conducted across all industries. After eliminating N(t) and using

the expressions for the innovation rate (2.5), diffusion rate (2.6), and equilibrium proportion of B

industries (2.21), the labor market clearing condition can be written

1 =
c

λ
+ βRκRI + βακα

δI

I + δ
. (2.25)

Equation (2.25) captures the trade-off inherent to allocating finite labor resources across the three

market activities that require labor. Using the relationship between I and c from equilibrium R&D

incentives (2.22) to substitute for c, we can express the labor market clearing condition (LMCC)

in its final form in terms of I and δ only,

1 =
(1− σR)βRκR

φ(λ− 1)
(ρ− n+ I) + βRκRI + βακα

δI

I + δ
[LMCC] (2.26)

When graphed in δ, I space, the LMCC is strictly downward sloping. Note that the labor re-

quirement of increasing δ depends on the cost of diffusion in a particular industry βακα and the

proportion of industries with prototypes attempting to diffuse nB = I/(I + δ).

The model’s equilibrium is determined by solving the RDAC given by (2.24) and the LMCC

given by (2.26) for I and δ. Note that the LMCC provides an upper bound on the rate of innovation

the economy’s resources can support. Specifically, when δ → 0, the LMCC implies that I → Imax,

where

Imax =
1− Ω(ρ− n)

Ω + βRκR
, and Ω =

(1− σR)βRκR
φ(λ− 1)

. (2.27)

Intuitively, Imax represents the rate of innovation in the economy if no resources are devoted

to advertising and all firms remain in their young stage until they are displaced by subsequent

innovation. Similarly, the RDAC provides a lower bound on the rate of innovation that is consistent

with relative R&D and advertising incentives that produce a positive rate of diffusion in equilibrium.

That is, when δ → 0, the RDAC implies that I → Imin, where

Imin = (ρ− n)Γ. (2.28)

Figure 1 depicts the model’s equilibrium by graphing the RDAC and LMCC in (δ, I) space. As

illustrated in the figure, the following additional parameter restriction is necessary and sufficient

to guarantee a unique steady state equilibrium.

Assumption 2. Imax > Imin, as defined in (2.27) and (2.28) respectively.
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Figure 1: Equilibrium

After establishing I and δ, all other endogenous variables can be determined. We follow standard

practice in quality ladder models and define economic growth as the growth rate of per capita sub-

utility ln(u(t)). As shown in the Appendix, we can decompose per capita sub-utility into the

following three terms,

ln(u(t)) = ln(c/λ) + nBφln(λ) + ln(λ)(1− f)It. (2.29)

The first term captures the standard effect of per capita consumption given limit pricing. This

term is common across all industries since all firms charge the same price of p = λ. On the other

hand, in B industries, early adopters and mainstream consumers purchase products of different

perceived quality. The second term accounts for the nB industries in which a φ proportion of early

adopter consumers purchase products that they perceive to be one λ step up the quality ladder

from the current quality standard. The final term captures the dynamic effect of the arrival of

new innovations. In our framework however, only innovations that successfully diffuse into the

mainstream push the economy up the quality ladder.12

Differentiating (2.29) with respect to time yields an expression for the rate of economic growth,

g,

g = ln(λ)(1− f)I =
Iδ

I + δ
ln(λ). (2.30)

Note that innovation and diffusion have a complementary impact on economic growth; the marginal

increase in economic growth associated with an increase in innovation (diffusion) depends positively

on the rate of diffusion (innovation). As we discuss in the following sections, this relationship will

drive the growth impact of policy changes that move the innovation and diffusion rate in opposite

12Recall that transition from a B industry to an A industry occurs if and only if a prototype diffuses successfully.
Thus, the aggregate rate of successful diffusion is δnb =

δI
I+δ

, which is equal to (1− f)I with f defined as in (2.8).
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directions.

3 The Impact of R&D Subsidies

In this section, we conduct a comparative statics exercise to examine how the R&D subsidy rate

(σR) impacts the equilibrium rate of innovation, diffusion, product failure, and economic growth.

First, observe that our model includes the traditional innovation enhancing effect of R&D subsidies.

By directly reducing the cost of R&D, the subsidy implies a greater rate of innovation at any fixed

level of consumption expenditure through the free-entry condition of (2.22). Since the LMCC

incorporates R&D incentives, this effect manifests as a rightward shift in the LMCC as depicted in

Figure 2. Intuitively, the reduced cost of R&D implies that a lower level of c is required to align

incentives at any rate of innovation. The LMCC’s rightward shift in (δ, I) space represents the

additional labor resources available to both I and δ given this lower required c.

However, the R&D subsidy also shifts relative investment incentives towards R&D and away

from advertising. This is represented in Figure 2 by a leftward shift in the RDAC curve, and a

movement along the LMCC as more of the economy’s labor resources are devoted to R&D. While

both shifts to the RDAC and LMCC imply a higher equilibrium rate of innovation, note that

the change in the equilibrium rate of diffusion is determined by the relative importance of the

competing investment incentive effect and the resource allocation effect. In the Appendix, we show

that the relative incentive effect always dominates, and the equilibrium rate of diffusion always

falls when an R&D subsidy is implemented. This directly implies an increase in the equilibrium

product failure rate. However, since the change to I and δ have opposite signs, the overall change

to economic growth g is ambiguous in the general case. These findings are summarized in the

following proposition,

Figure 2: R&D Subsidy
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Proposition 1. Subsidizing R&D investment decreases the diffusion rate, increases the innovation

rate, increases the product failure rate, and has an ambiguous effect on economic growth. That is,
∂δ
∂σR

< 0, ∂I
∂σR

> 0, ∂f
∂σR

> 0, and ∂g
∂σR

>< 0.

Proof. See Appendix.

To illustrate the potential for a non-monotonic effect of R&D subsidies on the rate of economic

growth, we turn to numerical simulations of the model. As depicted in Figure 3, subsidizing R&D

always increases the equilibrium innovation rate and reduces the equilibrium rate of diffusion. As

a result, a greater proportion of newly innovated prototypes fail to diffuse into the mainstream

market. Since only prototypes that diffuse successfully push the economy up the quality ladder,

the net effect on the equilibrium rate of growth, g = ln(λ)I(1− f), is determined by the competing

effects of the increased arrival of new prototypes through innovation against the increased diffusion

failure rate of existing prototypes. At low levels of σR, the failure rate is sufficiently low so that the

innovation effect dominates and economic growth increases with the subsidy. At higher levels of

σR, the effect of the relatively large failure rate dominates and economic growth decreases with the

subsidy. This generates an inverted U-shaped relationship between R&D subsidies and economic

growth. In the numerical example presented in Figure 3, growth is maximized at an R&D subsidy

rate of σR = 0.154.

Figure 3: Numerical Example: The Impact of R&D Subsidies

(a) I and δ (b) g

Figure 3 plots equilibrium values of I, δ and g against the R&D subsidy rate σR. In this numerical example,
the model is calibrated so that g = 1.5% and f = 0.25 when σR = 0. The corresponding growth maximizing subsidy
rate is σ∗

R = 0.154. See Appendix B for a discussion of the calibration and the associated parameter values.
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4 Welfare

We consider a social planner who chooses c, I, and δ to maximize social welfare, subject to

the aggregate resource constraint (2.25). As is standard, we assume that the social planner can-

not impact firm pricing decisions. Using our expression for per capita sub-utility (2.29), welfare

discounted to time zero can be written as

(ρ− n)U =
ln(λ)Iδ

(ρ− n)(I + δ)
+ ln(c)− ln(λ)

[

1− φnB

]

. (4.1)

The Lagrangian associated with the social planner’s optimization problem is

L(c, I, δ, µ) = (ρ− n)U + µ
[

1−
c

λ
− βRκRI − βακαδnB

]

, (4.2)

where µ is the Lagrange multiplier and (ρ−n)U is given by (4.1). The welfare maximizing solution

for I is obtained from ∂L/∂I = 0, which equates the social cost and return to R&D at the margin:

βRκR + βακαδ
∂nB

∂I
=

c

λ

ln(λ)δ

(ρ− n)

∂nB

∂I
+ φln(λ)

c

λ

∂nB

∂I
. (4.3)

The analogous expression for the market cost and return to R&D is given by (2.22).

Comparing these expressions, we see several reasons for the market and socially optimal levels

of R&D to differ. To begin with, we capture two standard effects that are well established in the

Schumpeterian growth literature. The first is the monopoly distortion effect. The social planner

considers the utility benefit of a marginal innovation measured by ln(λ), whereas firms consider the

monopoly mark-up rate of λ− 1. Since λ− 1 > ln(λ), this effect implies the market overinvests in

R&D. The second is the intertemporal spillover effect. The social planner discounts the benefits of

innovation by ρ−n, while the effective market discount rate of I + ρ−n incorporates the expected

capital loss due to replacement. With I > 0, this effect implies that the market underinvests in

R&D.

Furthermore, our modeling of endogenous diffusion generates three novel effects.

1. The diffusion resource burden of marginal innovation. A greater innovation rate raises the

proportion of industries, nB, in which young firms invest resources in advertising to diffuse

their newly innovated prototypes. At a given diffusion rate δ, this reduces the resources

available for R&D and production. The corresponding social cost of R&D is captured by the

βακαδ(∂nB/∂I) > 0 term on the left hand side of (4.3). Since private firms do not consider

this additional resource burden on the aggregate economy, this effect implies that the market

overinvests in R&D.

2. The dynamic effect of stochastic diffusion. The social planner scales down the dynamic

impact of a marginal innovation since prototype diffusion is uncertain (prototypes fail to

diffuse at rate f). The first term on the right hand side of (4.3) captures this scaling factor of

δ(∂nB/∂I) = (1− f)2 ∈ (0, 1). Thus, the social planner recognizes that only prototypes that
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diffuse successfully push the economy up the quality ladder and generate economic growth.13

Although private R&D incentives also incorporate the effect of stochastic diffusion, firms

consider only the internal cost and benefits of their efforts to use advertising to gain market

share in the value of an innovation. Private firms scale the entire dynamic benefit of innovation

by φ ∈ (0, 1) to reflect their initial market share of early adopters, but market R&D incentives

do not directly incorporate the economy’s failure rate. Holding all else constant, this effect

implies that the market underinvests in R&D if φ < (1− f)2.

3. The the early adopter market effect. The social planner considers the one-time utility gain of

early adopters from marginal innovation. A higher innovation rate raises the aggregate mass of

the early-adopter market φnB and generates a social gain that is independent of the dynamic

effect of prototype diffusion. This utility gain is captured by (φcln(λ)/λ)(∂nB/∂I) > 0, the

last term on the right hand side of (4.3). Since private R&D firms do not consider this social

gain associated with early adopters, this effect implies that the market underinvests in R&D.

We now turn to the welfare maximizing solution for δ. This is obtained from ∂L/∂δ = 0, which

equates the social cost and benefit of prototype diffusion at the margin.

βακα =
cln(λ)

(ρ− n)λ
−

φcln(λ)

λI
. (4.4)

The analogous expression for the market based cost and return to diffusion is given by (2.23). In

addition to the monopoly distortion effect, we identify three novel differences between the market-

determined and socially optimal rates of diffusion.

1. Dynamic effect of life-cycle replacement. The social planner recognizes that prototype diffu-

sion always pushes the economy up the quality ladder and generates economic growth. Thus,

the social planner applies a (ρ − n) discount factor to the welfare benefit of diffusion. In

contrast, young firms discount the benefit of diffusion based on the different rate of replace-

ment they face over the firm life-cycle. That is, firms enjoy the adult status they gain from

diffusion only until an innovation occurs and they transition to their old stage. Once old, they

are displaced from the market entirely at the rate of diffusion. The corresponding market

discount rate is captured by the second term in brackets in (2.23). For all δ > 0 and I > 0,

this effect implies that the market underinvests in diffusion.

2. The effect of early adopters on the benefit of diffusion. The social planner recognizes that

early adopters do not immediately benefit from the diffusion of new prototypes since they

already purchase the prototype prior to diffusion. Instead, early adopters benefit only after

the next innovation arrives, which enables them to consume a prototype at the next quality

ladder step. The social planner accounts for this effect by subtracting φcln(λ)/(λI) from

13If diffusion success were instantaneous as assumed in traditional treatments, then δ → ∞, ∂nB/∂I → 1, and this
externality vanishes.
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the overall benefit of diffusion in (4.4).14 Young firms engaged in diffusion do not take this

effect into consideration. For any positive and finite I, this effect implies that the market

overinvests in diffusion.

3. Mainstream market effect. Since young firms already serve the early adopter market, they only

consider the benefit of the additional 1−φ market share gained by capturing the mainstream

market. In contrast, the social planner considers the dynamic full impact of diffusion through

the aggregate growth rate. This effect implies that the market underinvests in diffusion.

4.1 Optimal R&D Subsidies

In this section, we conduct numerical simulations to examine the welfare maximizing R&D pol-

icy. As the preceding discussion makes clear, the model’s market equilibrium features two potential

sources of dynamic inefficiency: the traditional allocative inefficiency from over or underinvestment

in R&D and a novel source of inefficiency from over or under investment in diffusion promoting

advertising. In general, using an R&D subsidy as a single policy instrument will be insufficient to

correct both potential distortions and achieve the socially optimal allocation. Nonetheless, we will

show that R&D policy may still improve welfare through its impact on the relative size of these

two distortions.

In all simulations, we choose the following benchmark parameters: λ = 1.25, ρ = 0.07, n = 0.01,

κR = κα = 1, and φ = 0.20. We then calibrate the unit labor requirements of R&D (βR) and

advertising (βα) to deliver a target rate of economic growth and diffusion failure. To highlight the

importance of the initial diffusion failure rate in determining the optimal R&D policy, we separately

examine three distinct target values of f0 = [0.01, 0.25, 0.45]. In each case, we target a common

initial growth rate of g = 1.5%. See Appendix B for parameter details. Numerical results are

displayed in Table 1 and Figure 4.15

Our central result is that the welfare maximizing R&D policy σ⋆
R,U can be a subsidy or a

tax depending on the initial diffusion failure rate f0. Specifically, we find that it is optimal to

subsidize R&D at low levels of f0 and tax R&D at high levels of f0. To clarify the intuition,

we first note that the market equilibrium exhibits underinvestment in both R&D and diffusion

across each value of f0.
16 However, since the growth rate is held constant at 1.5%, a higher

initial failure rate necessarily implies a higher rate of innovation and a lower rate of diffusion in

equilibrium. This difference in the relative resource allocation to R&D and advertising determines

the relative size of the equilibrium distortion from underinvestment in innovation and diffusion.

14If the next innovation occurred instantaneously with I → ∞, early adopters would immediately benefit from
diffusion, and this effect vanishes.

15We find these numerical results to be generally robust to a range of alternate parameter values and target rates.
Computational files are available upon request.

16This corresponds to the typical finding in endogenous growth models that the market equilibrium exhibits under-
investment in growth promoting activity. In traditional models, this equates to R&D. In our model, both R&D and
diffusion contribute positively to growth. One can show this underinvestment directly using the five effects identified
in the previous section that determine the social desirability of a marginal innovation and the analogous three effects
of marginal diffusion.
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Table 1: Optimal R&D Subsidies

f0 = 0.01 f0 = 0.25 f0 = 0.45

σR = 0 σ⋆
R,U = 0.238 σR = 0 σ⋆

R,U = 0.091 σR = 0 σ⋆
R,U = -0.078

g(%) 1.500 1.651 1.500 1.520 1.500 1.499

I 0.068 0.104 0.090 0.104 0.122 0.101

δ 6.636 0.259 0.269 0.199 0.149 0.174

c 1.104 1.076 1.092 1.086 1.087 1.090

f 0.010 0.286 0.250 0.342 0.450 0.387

U 2.097 2.306 2.106 2.127 2.167 2.177

σ⋆
R,g 0.317 – 0.154 – -0.038 –

σ⋆
R,U 0.238 – 0.091 – -0.078 –

Table 1 presents equilibrium values of the model’s endogenous variables for three distinct initial
values of the failure rate, f0 = [0.01, 0.25, 0.45], and g = 1.5%. In each case, we present results
for the initial equilibrium with σR = 0 and with R&D subsidized at the welfare maximizing
level. The final two rows of Table 1 display the associated R&D subsidy rates that maximize
economic growth (σ⋆

R,g) and welfare (σ⋆
R,U ) respectively.

Second, recall from Proposition 1 that subsidizing R&D always increases the equilibrium rate of

innovation and decreases the rate of diffusion. This implies that subsidizing R&D will reduce the

distortion associated with underinvestment in R&D but magnify the distortion associated with

underinvestment in advertising.

In our low failure case with f0 = 0.01, we find a large optimal subsidy of σ⋆
R,U = 23.8%.

This is because the social benefit of reducing the substantial underinvestment in R&D dominates

the social cost of exacerbating the market’s relatively less severe underinvestment in advertising.

Although the reallocation generated by the subsidy increases the failure rate sharply from 0.01

to 0.28, the increase in the rate of innovation is sufficient to raise economic growth from 1.5%

to 1.65%. Despite a small decline in the level of consumption per capita as fewer resources are

devoted to manufacturing, the dynamic welfare gain from higher growth and the static welfare

gains due to the increased share of early adopter markets (recall that f = nb) dominate the static

losses from lower consumption. In the intermediate case with f0 = 0.25, it remains optimal to

subsidize R&D, but at a substantially lower rate with σ⋆
R,U = 9.1%. The direction of change to

all endogenous variables mirrors the f0 = 0.01 case, just with smaller magnitudes. In contrast,

when the failure rate is relatively high with f0 = 0.45, the size of equilibrium underinvestment in

diffusion is sufficiently large relative to underinvestment in R&D that it becomes optimal to tax

R&D, with σ⋆
R,U = −7.8%. In this case, the increase in diffusion following the R&D tax almost

completely offsets the negative growth impact of reducing innovation. The social cost associated

with the minor decreases in economic growth and the share of early adopter markets is dominated

by the static benefit of greater consumption as more resources are available for manufacturing.
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This simulation exercise clearly demonstrates that the optimal R&D policy is highly sensitive

to the initial failure rate, even though the growth rate is held constant at 1.5%. In this way,

the model frames the typical finding of large optimal R&D subsidies in Schumpeterian models as

conditional on the implicit assumption of instantaneous diffusion and failure rate of zero. In fact,

even in the low initial failure rate case with f0 = 0.01, we emphasize that the relationship between

R&D subsidies and the endogenous rate of diffusion plays an important role in determining the

optimal subsidy level. This is because the equilibrium failure rate always increases with the R&D

subsidy. The negative growth and welfare effects of increasing the failure rate eventually dominate

the positive effects of stimulating innovation, even in cases where it is initially growth and welfare

enhancing to subsidize R&D. As illustrated in Figure 4, this dynamic implies that the relationship

between the R&D subsidy level and welfare and that between the R&D subsidy and growth are

both characterized by similar inverted U-shaped curves for each initial equilibrium failure rate.

Figure 4: Optimal R&D Subsidies

(a) g (b) Welfare

Figure 4 plots equilibrium values of growth g and welfare against the R&D subsidy rate σR for three distinct
initial values of the failure rate f0. In each case, we calibrate the model so that g = 1.5% and f0 = [0.01, 0.25, 0.45]
when σR = 0. Panel (b) plots U as specified in equation (4.1) after normalizing its value to one when σR = 0. See
Appendix B for a discussion of the calibration and the associated parameter vales.

5 Extensions

5.1 Combative Advertising

In this section, we consider an extension to the baseline model to incorporate defensive adver-

tising by old firms. As with advertising by young firms, we assume that the effectiveness of an old

firm’s investment in advertising, αo, decreases in the size of its costumer base. We now define the
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instantaneous probability of prototype diffusion as,

δ(t) =
αy(t)/καN(t)

αo(t)/N(t)
=

αy(t)

κααo(t)
. (5.1)

Under this specification, the rate of diffusion is determined by an advertising contest between young

and old firms battling for market share.

We assume a constant unit labor requirement for defensive advertising of βo > 0. Each old

firm chooses αo(t) to maximize its value. We include the cost of advertising βoαo(t) in (2.19)

and maximize with respect to αo. This yields the an optimality condition of βoαo(t) = δVo(t),

which equates the total cost of advertising to the expected capital loss. This condition is directly

analogous to the optimality condition for young firm advertising of βyαy(t) = δ(t)(Va(t) − Vy(t)),

which is unchanged aside from a change in the notation for the labor requirement of young firm

advertising to βy to avoid ambiguity. Incorporating optimal advertising expenditure into (2.19)

provides an expression for the value of an old firm

Vo(t) =
(1− φ)πa(t)

2δ(t) + r(t)− n
. (5.2)

As before, we solve for the model’s steady state equilibrium by deriving two equilibrium condi-

tions in I and δ. Labor market clearing provides our first equilibrium condition. Total employment

in advertising is now given by Lα(t) = nB(t)(βyαy(t) + βoαo(t)). Note that, since the combative

advertising formulation accommodates reciprocal cancelation, advertising has the potential to be

directly socially wasteful. That is, proportional increases in young and old advertising draw labor

resources away from production and R&D without increasing the diffusion rate. As shown in the

Appendix, the labor market clearing condition can be written as

1

βRκR
= I + (1− σR)(ρ− n+ I)

[

1

φ(λ− 1)
+

δI

I + δ

[(1− φ)[βyκαδ + βo]

φβo(2δ + ρ− n)

]

]

[LMCC] (5.3)

We establish in the Appendix that, as long as young firm advertising is sufficiently costly relative

to old firm advertising, (5.3) is strictly downward sloping in (δ, I) space. That is, an increase to

the diffusion rate always requires more total labor resources devoted to advertising, and the labor

market clearing condition under combative advertising continues to reflect a trade-off between the

resources allocated towards innovation and diffusion.

Our second equilibrium condition is derived from the equilibrium determination of the diffusion

rate based on the optimized advertising expenditures of old and young firms. Combining these

two advertising optimality conditions yields the following equilibrium diffusion curve (DC) that

captures relative advertising incentives,

I =
Ψ(ρ− n) + δ(2Ψ− (ρ− n))

δ −Ψ
[DC] (5.4)

where Ψ ≡ βo/βyκα captures the effective relative cost of old and young firm advertising. When
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graphed in (δ, I) space, this diffusion curve is strictly downward sloping. This is because a greater

innovation rate does not directly impact old firms’ incentives to invest in defensive advertising, but

it reduces young firms’ advertising incentives since the reward from successful diffusion, a firm’s

tenure as an adult firm, is reduced. Note that the equilibrium determination of δ under combative

advertising is now entirely independent of the equilibrium consumption level, c. Although greater

equilibrium consumption increases the reward from successful diffusion, thereby incentivizing young

firms to increase their advertising expenditure, it generates a proportional increase in the value of

serving the market as an old firm. The corresponding increase in defensive advertising exactly

offsets the effect of increased advertising by young firms. The net effect is an increase in total

advertising volume, without changing the diffusion rate.

In the following proposition, we establish the existence and uniqueness of the model’s balanced

growth equilibrium. The equilibrium is illustrated in Figure 5. Furthermore, we show that the in-

clusion of combative advertising does not change the model’s predictions for the effect of subsidies

to R&D. Subsidizing R&D impacts relative advertising incentives only indirectly through the gen-

eral equilibrium effect of the associated increase in the innovation rate. The increased innovation

rate decreases young firm advertising incentives, resulting in a decrease in the equilibrium diffusion

rate. As in the informative advertising specification, subsidizing R&D has an ambiguous effect on

economic growth when advertising is combative.17 Further details are provided in the Appendix.

Figure 5: Combative Advertising Equilibrium

Proposition 2. The model with combative advertising has a unique equilibrium with I > 0 and

δ > 0 under the following parameter restriction,

2βo
βyκα

< ρ− n <
φ(λ− 1)

(1− σR)βRκR
.

17Numerical simulations confirm that the quantitative effects of R&D subsidies are also very similar in the infor-
mative and combative advertising frameworks.
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Furthermore, subsidizing R&D investment decreases the diffusion rate, increases the innovation

rate, increases the product failure rate, and has an ambiguous effect on economic growth. That is,
∂δ
∂σR

< 0, ∂I
∂σR

> 0, ∂f
∂σR

> 0, and ∂g
∂σR

>< 0.

Proof. See Appendix.

5.2 Reduced Advertising Costs

In this section, we examine the economic impact of an exogenous decline in the cost of adver-

tising. Following Grossman and Shapiro (1984) and Dinlersoz and Yorukoglu (2012), we interpret

this cost reduction as a stylized representation of recent improvements to advertising technology. In

particular, we have in mind the role of targeted digital advertising in enhancing the reach and effec-

tiveness of firms’ efforts to disseminate information to their potential customer base. For simplicity,

we assume that the cost of advertising decreases by a fixed proportion, 0 < γ < 1.18

The advertising cost reduction changes the condition for young firms’ optimal advertising ex-

penditure to (1 − γ)βyαy(t) = δ(t)(Va(t) − Vy(t)). In the informative advertising version of the

model, this impacts the RDAC, equation (2.24), by reducing the cost of advertising relative to

R&D. In other words, the cost reduction shifts relative investment incentives away from R&D to-

wards advertising, and young firms endogenously devote more resources to their attempts to diffuse

products into the mainstream. This is represented in Panel (a) of Figure 6 by a rightward shift in

the RDAC. Although there is no direct change to the LMCC, equation (2.26), the cost reduction

induces movement along the curve as fewer labor resources are devoted to production and R&D.

The end result is an increase in the rate of diffusion, a decrease in the innovation rate, and a

decrease in the rate of product failure. Since the change to I and δ have opposite signs, and the

overall change to economic growth g is ambiguous in general.

In the combative advertising version of the model, the cost decrease also changes the optimality

condition for defensive advertising expenditure to (1 − γ)βoαo(t) = δVo(t). Since the cost of all

advertising decreases by the same proportion, there is no direct change to the relative advertising

incentives of young and old firms captured by the DC, equation (5.4). However, defensive advertis-

ing intensity determines the difficulty of diffusion in the combative advertising framework. Since the

cost reduction stimulates defensive advertising, there is an increase in the labor resources required

to maintain a constant rate of diffusion δ. This effect generates a leftward shift in the LMCC,

equation (5.3), as depicted in Panel (b) of Figure 6. Although relative advertising incentives are

not directly affected by the cost reduction, the movement along the downward sloping DC curve

represents the increased relative incentive for young firm advertising as a lower I implies a longer

expected reign as an adult firm if they diffuse successfully. Thus, a decline in advertising costs

has the same qualitative impact on the model’s endogenous variables in both the informative and

combative advertising specifications. This result is summarized in the following proposition,

18As argued by Mandel (2019), digital advertising has created “a supply-side change in the advertising market ...
increasing supply of digital ads at a relatively low price compared to the price of ‘equally effective’ print ads.”
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Figure 6: Reduced Advertising Costs

(a) Informative Advertising (b) Combative Advertising

Proposition 3. In both the informative and combative advertising models, a decline in advertising

costs increases the diffusion rate, decreases the innovation rate, decreases the product failure rate,

and has an ambiguous effect on economic growth. That is, ∂δ
∂γ

> 0, ∂I
∂γ

< 0, ∂f
∂γ

< 0, and ∂g
∂γ

>< 0.

Proof. See Appendix.

Despite this qualitative equivalence, the growth and welfare effects of declining advertising costs

can be markedly different when advertising is informative or combative. To illustrate, we turn to

numerical simulations and examine the effects of an exogenous 15% decline in advertising costs

from an initial equilibrium with f = 0.25 and g = 1.5%. Results are reported in Table 2. See

Appendix B for a discussion of the calibration and the associated parameter values.

In the informative advertising case, the decline in advertising costs shifts investment incentives

towards advertising and generates a huge increase in the diffusion rate from 0.269 to 1.005. This is

equivalent to a decrease in the expected duration before sales takeoff from 1/δ = 3.7 years to about

1 year. Although the innovation rate decreases modestly, the large increase in the diffusion rate

creates a substantial increase in economic growth from 1.5% to 1.78% and a decrease in the failure

rate from f = 0.25 to f = 0.079. Furthermore, since nb = f , this lower failure rate implies fewer

industries use labor resources for advertising. Consequently, the large increase in the diffusion rate

is achieved with only an additional 1.9% of the labor force used in advertising.19 Although this

19Although we do not target the proportion of the labor force used in advertising and R&D, we note that the
respective 10% and 2.6% generated by the model in the initial equilibrium is roughly in line with available estimates.
For example, Gourio and Rudanko (2014) report that 11% of US workers are employed in broadly defined sales-related
activities. Estimates for the proportion of the labor share employed in R&D range from 1% to 5% (Segerstrom, 2007;
Şener, 2008).
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Table 2: Reduced Advertising Costs

Informative Combative

γ = 0 γ = 0.15 γ = 0 γ = 0.15

g(%) 1.500 1.779 1.500 1.490

I 0.090 0.087 0.090 0.087

δ 0.269 1.005 0.269 0.287

c 1.092 1.070 1.082 1.063

f 0.250 0.079 0.250 0.233

U 2.106 2.414 1.940 1.612

Lαy 0.100 0.119 0.089 0.103

Lαo – – 0.019 0.021

LR 0.026 0.025 0.026 0.025

Table 2 presents results from a 15% reduction in advertising costs in both the
informative and combative advertising versions of the model. In both cases, the
model is calibrated to an initial equilibrium with f0 = 0.25 and g = 1.5%. The
final three rows report the proportion of labor resources allocated to young firm
advertising, old firm advertising (if applicable), and R&D.

still implies a static welfare loss from a reduced proportion of labor in manufacturing and lower

consumption, this is dominated by the dynamic welfare gain of increased economic growth.

In the combative advertising case however, the same decline in advertising costs leads to lower

economic growth and a decrease in welfare. Since combative advertising is characterized by recip-

rocal cancelation of young and old firm advertising, the 1.4% increase in labor devoted to diffusion

promoting young firm advertising is partially offset by the 0.2% increase in defensive old firm ad-

vertising. The net result of the full 1.6% increase in labor in advertising is but a small decrease

in expected duration before sales takeoff from 3.7 to 3.5 years. This is insufficient to compensate

for the decreased innovation rate, and economic growth falls. This dynamic welfare loss is coupled

with a static welfare loss from lower consumption.

6 Conclusion

In this paper, we analyze the dynamic interaction between product innovation, diffusion, and

economic growth. We contribute to the Schumpeterian growth literature by introducing a stochastic

diffusion process in which the rate of commercial success of product innovations is determined by

advertising intensity. Through this mechanism, firms endogenously cycle through distinct life stages

of stochastic length as new innovations arrive and either commercialize successfully or fail. Unlike

traditional quality ladder models, our framework is consistent with empirical evidence that (1) firms

devote substantial resources to advertising innovative products, (2) a large proportion of product
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launches fail despite these advertising efforts, and (3) even when ultimately successful, most new

products experience an initial period of low market penetration before an eventual sales takeoff to

their mature market share.

In this framework, economic growth depends positively on both the rate of innovation and

the rate of product diffusion since only product innovations that commercialize successfully enter

the mainstream market. In contrast to traditional models where R&D subsidies always promote

growth, we find that R&D subsidies can have a non-monotonic effect on growth by shifting incen-

tives towards R&D but away from the complementary advertising investment needed for innovation

diffusion. In particular, we show that this effect gives rise to an inverted U-shaped relationship

between R&D subsidies and both economic growth and welfare. Our simulation exercises illus-

trate that the optimal R&D policy is highly sensitive to the initial failure rate of newly innovated

products, even though the growth rate is held constant. While we find that a large subsidy is

optimal when the initial failure rate is very low, the optimal policy shifts to a modest tax when

the initial failure rate is high, but still within the empirically plausible range. In general, the scope

for using R&D subsidies to improve welfare diminishes with the failure rate because the social

benefit of stimulating innovation is lower when a smaller proportion of new innovations succeed.

We argue that these results suggest that standard endogenous growth models that assume costless

and instantaneous innovation diffusion may overstate the case for large subsidies to R&D.

In addition, we use the model to investigate the economic impact of an exogenous decline in

the cost of advertising. We interpret this cost reduction as a stylized representation of recent im-

provements in the effectiveness and reach of advertising through targeted digital media. When

advertising is purely informative, we show that lower advertising costs generate a large increase in

the diffusion rate, which boosts economic growth and improves welfare. However, when advertis-

ing is combative, much of the increase in diffusion promoting advertising by young technological

leaders is offset by the increase in defensive advertising by incumbent firms. The net result is a

decrease in economic growth and welfare as there is a substantial increase in resources devoted to

advertising, without the expected large increase in diffusion. Our analysis highlights the impor-

tance of understanding the responsiveness of different types of advertising to changes in advertising

technology.
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Appendix A

A.1 Growth Rate Derivation

At any point in time, an nA proportion of industries are served by an adult firm whose product

enjoys a perceived quality of k(ω, t) with all consumers. In the remaining (1 − nA) proportion of

B industries, old firms serve 1 − φ proportion of mainstream consumers that purchase a product

of perceived quality at the k(ω, t) quality standard, while young firms serve φ proportion of early

adopters that purchase a prototype they perceive to be one step up the λ quality ladder. All

products have a common price of p = λ. This gives the following expression for instantaneous per

capita sub-utility,

ln(u(t)) =

∫

nA

ln
[c(t)λk(ω,t)

λ

]

dω+

∫

(1−nA)(1−φ)

ln
[c(t)λk(ω,t)

λ

]

dω+

∫

(1−nA)φ

ln
[c(t)λk(ω,t)+1

λ

]

dω (A.1)

= ln(c(t)) +

1
∫

0

ln
[

λk(ω,t)−1
]

dw +

∫

(1−nA)φ

lnλdω

= ln(c(t))− ln(λ) + (1− nA)φln(λ) +

1
∫

0

ln(λk(ω,t))dω

= ln(c/λ) + (1− nA)φln(λ) + ln(λ)(1− f)It (A.2)

where the last line follows since I(1− f) is the expected aggregate rate of progress up the quality

ladder. Differentiating ln(u(t)) gives the rate of utility growth

g ≡
u̇

u
= ln(λ)I(1− f) = ln(λ)

Iδ

I + δ
(A.3)

A.2 Proof of Proposition 1

The LMCC used in the main text eliminated c by substituting the R&D condition (2.22) into

the labor market clearing condition (2.25). Instead, consider an alternate LMCC derived by using

the advertising condition (2.23) instead of (2.22) to eliminate c. This results in,

1 =
βακα

(1− φ)(λ− 1)

(ρ− n+ I)(ρ− n+ δ)

(ρ− n+ I + δ)
+ βRκRI + βακα

δI

I + δ
. (A.4)

The alternate LMCC remains strictly downward sloping in (δ, I) space, but no longer directly

depends upon σR. As illustrated in Figure A.1, subsidizing R&D always increases the rate of

innovation and decreases the rate of diffusion.
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Figure A.1: R&D Subsidy - Alternate LMCC

A.3 Derivation of the Labor Market Clearing Condition With Combative Ad-

vertising

As in the primary model, total employment in production is cN/λ and employment in R&D is

βRR. With combative advertising, total employment in advertising is Lα = nB(βyαy + βoαo). The

labor market clearing condition requires that this total labor demand equals the total supply of

labor N . Using the equilibrium expression of nB given by (2.21) and the definition of δ from (2.6),

we have

Lα =
I

I + δ

[

αo(βyκαδ + βo)
]

. (A.5)

Substituting the optimality condition for old firm advertising to eliminate αo and the expression

for the value of an old firm from (5.2) gives

Lα =
Iδ

I + δ

[(1− φ)(λ− 1 + σp)cN

λ(ρ− n+ 2δ)

(βyκα
βo

δ + 1
)]

. (A.6)

Finally, we use the equilibrium relationship between I and c from the R&D condition (2.22) to

eliminate c from both (A.6) and production employment. Rearranging terms gives the expression

for the LMC in the main text (5.3).

A.4 Proof of Proposition 2

First, we prove the existence and uniqueness of an equilibrium with I > 0 and δ > 0 by

establishing a single crossing of the LMCC displayed in (5.3) and the DC displayed in (5.4). As

noted in the main text the DC is strictly downward sloping in (δ, I) space. Plugging I = 0 into the

DC gives its horizontal intercept, δmax, where

δmax =
Ψ(ρ− n)

ρ− n− 2Ψ
> Ψ > 0, (A.7)
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since the parameter restriction in Proposition 2 implies that ρ− n > 2Ψ. Next, note that the DC

curve implies an asymptote of I → ∞ as δ → Ψ from the right. Thus, the DC is well defined with

0 < I < ∞ for δ ∈ (Ψ, Ψ(ρ−n)
ρ−n−2Ψ).

Let h(δ, I) denote the right hand side of the LMCC as written in (5.3). Clearly, ∂h(δ,I)
∂I

> 0.

This implies that, if ∂h(δ,I)
∂δ

> 0, then the LMCC is strictly downward sloping in (δ, I) space.

Differentiating, we have

∂h(δ, I)

∂δ
=

(1− σR)(ρ− n+ I)I

(I + δ)2(2δ + ρ− n)2

[

I(2δ + ρ− n)(βyκαδ + βo) + δ(I + δ)(βyκα(ρ− n)− 2βo)
]

(A.8)

Since the parameter restriction in Proposition 2 ensures that ρ − n > 2βo/βyκα, we have that
∂h(δ,I)

∂δ
> 0, and the LMCC is strictly downward sloping. As mentioned in the main text, this

parameter restriction implies that young firm advertising is sufficiently costly relative to old firm

advertising. To establish the single crossing, we show that the rate of innovation implicitly defined

by the LMCC is positive and finite over the domain δ ∈ (0,∞). When δ → 0, the LMCC gives

1

βRκR
= Imax +

(1− σR)(ρ− n+ Imax)

φ(λ− 1)
, (A.9)

and when δ → ∞, we have that

1

βRκR
= Imin + (1− σR)(ρ− n+ Imin)

[ 1

φ(λ− 1)
+

(1− φ)βyκα
φβo

]

. (A.10)

The parameter restriction in Proposition 2 ensures that ρ − n < φ(λ−1)
(1−σR)βRκR

, which implies that

0 < Imin < Imax < ∞. Therefore, single crossing obtains as illustrated in Figure 5,

To obtain the rest of Proposition 2, observe that σR enters only the LMCC. An increase to

σR shifts the LMCC right in 5, generating movement along the downward sloping DC as young

firms respond to the higher innovation rate by decreasing advertising expenditure. As a result, the

innovation rate increases and the diffusion rate decreases, just as in the informative advertising

case.

A.5 Proof of Proposition 3

As mentioned in the main text, an advertising cost reduction enters the equilibrium condition

for optimal advertising investment for young firms (1 − γ)βyαy(t) = δ(t)(Va(t) − Vy(t)) and old

firms (1 − γ)βoαo(t) = δVo(t). Following the solution method used in the informative advertising

model of Section 2, the corresponding expression for the RDAC is,

I = (ρ− n+ δ)
[ φ(1− γ)βακα
(1− φ)(1− σR)βRκR

− 1
]

(A.11)

The results of Proposition 3 follow immediately from the rightward shift in equation (A.11) as

depicted in Figure 6.
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In the combative advertising model, total employment in advertising remains Lα(t) = nB(t)(βyαy(t)+

βoαo(t)). The same procedure discussed in Section A.3 delivers the following labor market clearing

condition,

1

βRκR
= I + (1− σR)(ρ− n+ I)

[

1

φ(λ− 1)
+

δI

I + δ

[ (1− φ)[βyκαδ + βo]

φ(1− γ)βo(2δ + ρ− n)

]

]

. (A.12)

Equation (A.12) is nearly identical to its counterpart in the main text (5.3) and remains downward

sloping in (δ, I) space under the same parameter restriction. The only difference is the (1−γ) term in

the denominator of the final term on the right hand side. This captures the increased labor resources

needed to maintain a constant diffusion rate δ when the cost of advertising declines. Intuitively, the

subsidy encourages advertising expenditure by old firms, which increases the difficulty of diffusion

in the combative advertising framework. The results of Proposition 3 for the combative advertising

model follow immediately from the leftward shift in equation (A.12) as depicted in Figure 6.
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Appendix B - Numerical Simulations

B.1 Parameter Values

All numerical simulations use the following pre-set parameter values: ρ = 0.07, n = 0.01,

κR = κα = 1, λ = 1.25 and φ = 0.20. As is standard, we set ρ to 0.07 to reflect a 7% long run real

return of the U.S. stock market, and n = 0.01 to approximate the average growth rate of the U.S.

labor force. Since κR and κα impact the cost of R&D and advertising respectively only through

their values relative to βR and βα, we normalize κR = κα = 1. The size of each innovation’s quality

improvement is set to a standard value of λ = 1.25 to reflect intermediate empirical estimates of

firm gross markup over marginal cost of about 25%. Finally, recall that φ determines the proportion

of households that comprise our two broad consumer categories, early adopters (φ) and mainstream

consumers (1 − φ). These two categories represent a simplified version of the classic partition of

consumers used in the innovation diffusion marketing literature into five groups: innovators, early

adopters, early majority, late majority, and laggards. We choose φ = 0.20 to align with traditional

estimates of the combined size of the innovator and early adopter marketing categories of 12.5% to

23% of the market and the corresponding size of the remaining three categories of 77% to 87.5%

(Mahajan et al., 1990).

In the informative advertising model, we consider three distinct initial values of the proportion

of prototypes that fail to diffuse into the mainstream market, f0 = [0.01, 0.25, 0.45]. As noted

in the introduction, the rate new product failure is typically estimated in the range of 40-50%.

In this empirical literature, the definition of product failure often includes products that exhibit

a sufficiently large underperformance relative to sales targets, in addition to products that are

removed from the market entirely. In our model however, a new prototype fails only when it is

fully displaced from the market. To account for this difference, we analyze a case of f0 = 0.45 to

represent a relatively high rate of failure along side a more conservative value of f0 = 0.25. We

also analyze a case of a very low rate of failure f0 = 0.01 to approximate traditional models of

endogenous growth in which new products diffuse instantaneously and never fail. The calibrated

values of βR and βα corresponding to an initial equilibrium with g = 1.5% and f0 = [0.01, 0.25, 0.45]

are presented in Table B.1.

Table B.1: Calibrated Parameters

f0 = 0.0.1 f0 = 0.25 f0 = 0.45

βR 0.3451 0.2921 0.2385

βα 1.3944 1.4864 1.5110

In Section 5.2, we also examine a numerical simulation of the combative advertising model using

parameters calibrated to the intermediate case of f0 = 0.25 and g = 1.5%. Since the diffusion rate

is determined by the relative intensity of young and old firm advertising, we normalize βo = κα = 1
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and treat Ψ = βo/βyκα and βR as free parameters. The corresponding calibrated parameter values

are Ψ = 0.0585 and βR = 0.2891.
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