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Abstract

This paper studies the implication of the Uncertainty Aversion Axiom of Schmei-
dler (1989) on the problem of portfolio choice under ambiguity, which involves allo-
cating the proportions of an initial wealth to several assets of unknown probability
distributions. Our main result shows that if an investor is risk averse and conforms
to the uncertainty aversion axiom, then preference under ambiguity in a portfolio
space is convex. This means that the convexity in a portfolio choice problem can be
guaranteed without restricting preference representation to a particular functional
form.

1 Introduction

The Uncertainty Aversion Axiom of Schmeidler (1989) represents the first at-
tempt to formalize the notion that individuals dislike ambiguity... the intuition is
that, by mixing two acts, the individual may be able to hedge against variation in
utilities, much like, by forming a portfolio consisting of two or more assets, one
can hedge against variation in monetary payoffs.

— Machina and Siniscalchi (2014)

The standard definition of convexity in preference requires that if f is preferred to g ,
then any convex combination of f and g is also preferred to g . The following example
illustrates its interpretation in in a portfolio choice problem. Suppose there are two
assets f and g and two states of the world. Asset f gives a return of 4 (per unit of
money) in state 1 and pays 0 in state 2 while asset g gives a return of 0 in state 1 and
gives 4 in state 2. We will use the notation f = (4, s1;0, s2) and g = (0, s1;4, s2). Suppose
you have one pound to invest in these two assets and you decide to allocate half of it
to f and the other half to g , then you get a safe return h1 = (2, s1;2, s2). This implies
you prefer h1 to both f and g . Now consider allocating the one pound between h1 and
g equally, then this results in h2 = (1, s1;3, s3). It is sensible to assume that you would
prefer h2 to g given that it is a mixture of h1 and g , and you prefer h1 and g . In general,
if you prefer all such mixtures of h2 and g to g , then we say you conform to portfolio
convexity, which is formally defined in Definition 3.

*xueqi.dong@ncl.ac.uk
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Theoretically, portfolio convexity guarantees that a portfolio choice problem can be
represented by maximizing a quasiconcave function. It further means the optimal port-
folio is unique or it is an interval, which is a common assumption in the literature. This
paper investigates the basic theoretical question that if preference under ambiguity in a
portfolio mixture space is convex.

The problem of portfolio choice underlines much of finance and it is commonly
adopted by experimentalists to elicit risk preferences. Formally, it involves an investor
choosing the proportions α = (α1, ...,αN ) of an initial wealth w to allocate on N ≥ 2 as-
sets. Suppose asset n gives a return of zn per unit of money invested. Then a portfolio α
gives rise to a final wealth x = w(α1z1+...+αN zN ). It is commonly assumed that investors
only care about the final wealth of a portfolio, therefore preference is defined on x.

Under risk, a risky asset is typically represented by a cumulative probability dis-
tribution F(·) over deterministic monetary outcomes, which is often called a lottery 1.
Preferences under risk are defined on lotteries and are commonly assumed to yield ex-
pected utility (EU) representation in finance: any lottery is evaluated by its probability
cumulative distribution F(·) by the von-Neumann-Vorgenstern (vNM) utility function
U(F) =

∫

u(t)dF(t) where u(·) is a Bernoulli function. Conditioning on EU, Risk aversion
is defined as follows.

Definition 1 (Risk Aversion). Preferences over lotteries are risk averse if and only if u(·)
is concave.

Denote F(z1, ..., zN ) the joint distribution of the return of theN assets. Then the utility
of the final wealth of a portfolio of risky assets is

U(x) =

∫

u(α1z1 + ...+αN zN )dF(z1, ..., zN )

Since u(·) is concave, then it follows that U(·) is concave.

We can see the utility function of a portfolio is concave because risk aversion is rep-
resented by the concavity of utility function u(·) over monetary outcomes. However,
the probability distributions are usually unknown or do not exist (ambiguity) in reality.
Ellsberg (1969)’s seminal paper argues that people tend to be ambiguous averse, which
describes the phenomenon that people prefer betting on known probability to unknown
probability. Ambiguity has since been widely studied theoretically, experimentally and
its implications on financial market has been developed (See Trautmann and Van De
Kuilen (2015) for a survey.).

Similar to risk aversion, decision theorists also strive to derive concave functional
representations for ambiguity aversion by introducing a certain set of axioms, which are
restrictions on binary preference relation. Unlike risk aversion, there is not a unanimous
theoretical definition for ambiguity aversion. However most ambiguity models 2 share
a basic set of axioms, among which the Uncertainty Aversion is a key one.

Definition 2 (Uncertainty Aversion Axiom, Schmeidler 1989). For all acts f and g , pref-
erences % are uncertainty averse if f % g implies λf + (1−λ)g % g for any λ ∈ [0,1].

where an act is a mapping from states to objective lotteries, which are probability dis-
tributions over deterministic outcomes (henceforth lottery). This type of act is usually

1The outcomes for a lottery do not need to be monetary in general. It can be consumption bundles, health
status etc. In a financial problem, outcomes are naturally assumed to be monetary.

2For example, Schmeidler’s (1989)’s Choquet Expected Utility with convex capacity, Gilboa and Schmei-
dlerl’s (1989) max-min Expected Utility, Maccheroni, Marinacci, and Rustichini’s (2006) Variational Prefer-
ence, Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio’s (2011) penalization representation, Strza-
lecki (2011) Multiplier Preferences.
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called a horse-roulette act. The addition ”+” is the probability mixture. A probability
mixture of two horse-roulette acts f and g is defined as the state-by-state probability
mixture of their state-contingent purely objective lotteries.

As stated in the quotation at the beginning of this article, the intuition of uncertainty
aversion axiom is that mixing acts can give rise to diversification in a similar way of
forming a portfolio of several assets. However, probability mixture of acts is different
from mixture of assets that are characterized by acts in a portfolio, for which we name
it as portfolio mixture.

To lay out the difference in probability mixture and portfolio mixture is the meat of this
article, which is elaborated in Section 3. Intuitively, probability mixture of two lotter-
ies is about the convex combination of probabilities while portfolio mixture of lotteries
is about the convex combination of monetary outcomes. For the same pair of lotter-
ies, portfolio mixture results in a lottery that has a weakly higher risk averse expected
utility than the lottery resulted from probability mixture. When defining on acts, the
two mixtures are defined as state-by-state mixture of the acts’ state-contingent lotter-
ies. Therefore, for the same pair of acts, portfolio mixture would result in an act that is
weakly preferred to the act resulted from probability mixture, if preference over primi-
tive lotteries is risk averse.

Our main result, as stated in Proposition 1 in Section 4, shows that the Uncertainty
Aversion Axiom, combined with risk aversion, can directly imply portfolio convexity, that
is convexity of preferences in a portfolio choice problem when assets are characterized
by acts . This means portfolio convexity is guaranteed without imposing further axioms
on preferences to obtain a particular functional form.

For the rest of the paper, Section 2 sets up the portfolio choice under ambiguity
model. Section 3 formally defines portfolio mixture. Section 4 states the main result
and provides the proof. Section 5 offers discussions.

2 The Portfolio Choice under Ambiguity Model

Recent decision models under ambiguity are often (see Marchina and Siniscalchi 2014
for a survey) built on a type of Anscombe-Aumann (AA) framework, where f : S→ ∆(Z)
a horse-roulette act that maps states into the linear space X = ∆(Z). Z = R+ is the mone-
tary outcome space and ∆ is a probability simplex. Therefore, typical element in X is a
lottery. The classic Expected utility model is maintained for preferences over primitive
lotteries. This objective-subjective approach provides a framework for representing un-
certain prospects that involve both objective and subjective uncertainty. In this set-up,
ambiguity aversion attitudes featured in the Ellsberg paradox can be incorporated.

Applying this AA framework to portfolio choice under ambiguity, then the return
of ambiguous assets would be characterized by acts. Denote the set of states by S that
the outcome of the ambiguous assets will depend on. Slightly abusing notation, let S
also denote the finite number of states. The return of an asset is f : S → X. In state
s, its return is denoted by fs, which is a lottery. Hence, ambiguity is expressed in this
way: the subjective uncertainty (states) will solve and, depending on how it resolves the
return of the ambiguous asset is a lottery. While the information about the probability
of the subjective uncertainty is not available, the specification and the parameters of the
lotteries are known objectively or they can be estimated using statistics.

For example, consider how investors may formulate the effect of international travel
restrictions on an airline company’ return: in state 1 (with travel restrictions), the return
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is uniformly distributed on the region of two times the standard deviation of 0.2 around
the mean of 0.4 ; in state 2 (without travel restrictions), the region is then two times the
standard deviation of 0.2 around a higher mean of 1.4. While the mean and standard
deviations can be calculated based on statistical data, there is not enough information
to assign a probability on the event of travel restrictions.

Let f n,n = 1, ...,N denote asset n. Denote α = (α1, ..,αN ) ∈ RN the portfolio. We can
normalize the initial wealth w ∈ R+ to 1.Then preference% is defined on the final wealth
x, which is

x = α1f
1 ⊕ ...⊕αN f N

where
xs = α1f

1
s ⊕ ...⊕αN f N

s (1)

for all s ∈ S . We name the addition operation ”⊕” in (1) portfolio mixture and its interpre-
tation is vital. Note f n

s is a lottery. Let Rn,n = 1, ...,N denote N independent real-valued
random variable that distributes as f n

s . A portfolio mixture of lotteries yields a lottery
xs that the random variable α1R

1 + ...+αNRN distributes as. A portfolio mixture of acts
is defined as the state-by-state portfolio mixture of state-contingent purely objective lot-
teries of those acts.

Hence, portfolio mixture is similar to the one in Gollier (2013)’s portfolio choice
under uncertainty model. Since it involves convex combination of lotteries instead of
real numbers, it is different from algebraic addition in a classic portfolio choice model
within Arrow-Debreu framework. It is different from the probability mixture because
it involves convex combinations in outcomes whereas probability mixture only involves
convex combinations in probabilities. For example, let p = (0,0.5;2,0.5) denote a lottery
that yields two outcomes of 0 and 2 with the same probability 0.5. Then we have 0.5p ⊕
0.5p = (0,0.25;0.5,1;0.25,2) and 0.5p + 0.5p = p. The intuition is that even an investor
allocates her wealth among several identical assets, this is still a diversification and can
reduce the variations in monetary outcomes.

Hence, the budget set can be written as

B(f 1, .., f N ) = {x ∈ XS : x = α1f
1 ⊕ ...⊕αN f N ,

N
∑

1

αn = 1.} (2)

Definition 3 (Portfolio Convexity). A preference relation % satisfies portfolio convex if
x % x′ implies λx⊕ (1−λ)x′ % x′ for any λ ∈ [0,1].

If preferences satisfies portfolio convexity, then the portfolio choice can be repre-
sented by the following

max U(x), x ∈ B(f 1, .., f N ) (3)

where U(·) is a quasiconcave function.

3 Probability Mixture ”+” and Portfolio Mixture ”⊕”

In this section, we formally introduce how portfolio mixture and probability mixture
are defined on lotteries and acts. We use the following notional convention. Let f and
g denote two acts. The outcome of an act in a state s ∈ S is denoted by fs, which is a
lottery. (f + g)s should be read as the act f + g ’s outcome in state s. fs(z) should be read
as the probability that fs gives to the monetary payoff z. (fs + gs)(z) should be read as the
probability that the mixed lottery fs + gs gives to the monetary payoff z.
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3.1 Probability Mixture +

The definition of probability mixture on a pair of lotteries fs and gs is standard as in
literature:

(λfs + (1−λ)gs)(z) = λfs(z) + (1−λ)gs(z) (4)

where λ ∈ [0,1].

A probability mixture of two acts f and g is defined as the state-by-state probability
mixture of their state-contingent purely objective lotteries:

(λf + (1−λ)g)s = λfs + (1−λ)gs f or all s ∈ S.

3.2 Portfolio Mixture ⊕

The definition of portfolio mixture on a pair of lotteries fs and gs is:

(fs ⊕ gs)(z) =

∫

fs(y)gs(z − y)dy. (5)

Let R1 and R2 denote two independent real-valued random variables that distribute as fs
and gs, respectively. Define a new random variable R3 := R1 +R2. Equation (5) describes
the probability density function of R3.

It follows that for any α,β ∈ R

(αfs ⊕ βgs)(z) =

∫

fs(y)gs(
z −αy

β
)dy,

which describes the probability density function for the random variable αR1 + βR2.

A portfolio mixture of acts is defined as the state-by-state portfolio mixture of state-
contingent purely objective lotteries of those acts. That is

(αf ⊕ βg)s = αfs ⊕ βgs

for all s ∈ S .

3.3 Examples

An Example of Portfolio Mixture

Consider the special case when the act g is a constant real value r ∈ R. Let x = 0.2f ⊕0.8r.
The operation is rather simple: the probability distribution of xs is the same as fs while
the original outcome z of fs becomes 0.2z +0.8r.
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(a) Ambiguous Asset f and Safe Asset r

Suppose there are two states s1 and s2. In state 1,

f1 is a lottery that returns 30 and 0 with the same

probability of 0.5. In state 2, f2 returns 40 and 0

with the same probability of 0.5. The safe asset

pays a constant r of 2 in either of the two states.

(b) Portfolio Mixture 0.2f ⊕ 0.8r

Now suppose an investor allocates 20% to f and

the remain 80% to r. Then this portfolio mix re-

sults in a new act. Since f takes four outcomes

and the r = 2 is a constant, their weighted sum

only takes four outcomes.

Figure 1: Portfolio Mixture of One Ambiguous Asset and One Safe Asset

An Example of how the two mixtures differ

The following example illustrates how the two mixtures differ. Figure 2 compares how
they yield different lotteries in a typical state s.
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(a) Two Lotteries fs and gs
Suppose for some state s, f gives rise to a lottery fs and g gives rise to a lottery gs .

(b) Probability Mixture 0.4fs +0.6gs
The coefficients 0.4 and 0.6 are used for calculating the

probabilities.

(c) Portfolio Mixture 0.4fs ⊕ 0.6gs
The coefficients 0.4 and 0.6 are used for calculating the

weighted average of the outcomes. .

Figure 2: Probability Mixture and Portfolio Mixture of two acts in a typical state s

4 Proof for Proposition 1

Proposition 1. If a preference relation % is uncertainty averse and risk averse, then % is
portfolio convex.

The following basic axiom of monotonicity will be used for the proof.

Definition 4 (Monotonicity). For any acts f and g , if fs % gs for all s ∈ S , then f % g

Proof. The key of the proof is Lemma 1. It proves that the portfolio mixture of two
lotteries always has at least as great an expected utility as the corresponding probability
mixture of these lotteries.

Then, for any pair of actsf and g , in each state the portfolio mixture of their state-
contingent lotteries always has at least as great an expected utility as the corresponding
probability mixture of these lotteries. By the axiom of monotonicity, this implies that
the portfolio mixture of two acts is weakly preferred to their corresponding probability
mixture: λf ⊕ (1−λ)% λf + (1−λ).

Consider any arbitrary acts f and g such that f % g . By the axiom of uncertainty
aversion, for any λ ∈ [0,1] we have λf +(1−λ)f % g . Then by transitivity, λf ⊕(1−λ)% g .
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Lemma 1. Let fs and gs denote two lotteries. If preferences over lotteries are risk averse,
then the expected utility of the portfolio mixture λfs⊕(1−λ)gs is weakly higher than the
expected utility of the probability mixture of λfs + (1−λ)gs for any λ ∈ [0,1].

Proof. Recall that fs(z) denotes the probability that fs gives to the monetary payoff z.
Denote EU(·) the expected utility of a lottery. Let L1 denote λfs + (1 − λ)gs and let L2
denote λfs ⊕ (1−λ)gs.

Based on equation (4), the expected utility of the probability mixture is

EU(L1) =

∫

u(z)
(

λfs(z) + (1−λ)gs(z)
)

dz

=λ

∫

u(z)fs(z)dz + (1−λ)

∫

u(z)gs(z)dz

=λEU(fs) + (1−λ)EU(gs)

Based on equation (5), the expected utility of the portfolio mixture

EU(L2) =

∫

u(z)

∫

fs(y)gs(
z −λy

1−λ
)dydz

=

∫ ∫

u
(

λy + (1−λ)z
)

fs(y)gs(z)dydz.

Since u(·) is concave, for any λ ∈ [0,1] and any y,z, there is

u(λy + (1−λ)z) ≥ λu(y) + (1−λ)u(z).

Hence,

EU(L2) ≥

∫ ∫

(

λu(y) + (1−λ)u(z)
)

fs(y)gs(z)dydz

=

∫ ∫

λu(y)fs(y)gs(z)dydz +

∫ ∫

(1−λ)u(z)fs(y)gs(z)dydz

= λ

∫ (∫

u(y)fs(y)dy

)

gs(z)dz + (1−λ)

∫ (∫

u(z)gs(z)dz

)

fs(y)dy

= λ

∫

EU(fs)gs(z)dz + (1−λ)

∫

EU(gs)fs(y)dy

= λEU(fs)

∫

gs(z)dz + (1−λ)EU(gs)

∫

fs(y)dy

= λEU(fs) + (1−λ)EU(gs) = EU(L1)

(6)

5 Discussions

Proposition 1 states that the combination of Uncertainty Aversion Axiom and risk aver-
sion implies portfolio convexity. Note risk aversion implicitly assumes EU on prefer-
ences under risk, which can be be replaced or relaxed. For example, Appendix B shows
the popular Mean-Variance theory can also give rise to portfolio convexity.

One might also think about the result in the opposite direction: does portfolio con-
vexity, in turn, implies Uncertainty Aversion Axiom and/or risk aversion. Consider risk
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aversion first. Let p denote a lottery. Construct a constant act f such that fs = p for
all s ∈ S . Then λf ⊕ (1 − λ)f is a constant act where (λf ⊕ (1 − λ)f )s = λfs ⊕ (1 − λ)fs =
λp ⊕ (1−λ)p for all s ∈ S . By portfolio convexity we have λf ⊕ (1−λ)f % f .Then it must
be λp ⊕ (1 − λ)p % p by monotonicity. Suppose u() is non-concave somewhere, then by
similar arguments in equation (6), we have

EU(λp ⊕ (1−λ)p) <

∫ ∫

(

λu(y) + (1−λ)u(z)
)

p(y)p(z)dydz

= λEU(p) + (1−λ)EU(p) = EU(p),

which is a contradiction to λp⊕(1−λ)p % p. This means utility function must be concave
everywhere, hence risk aversion is implied by portfolio convexity. However, whether the
Uncertainty Aversion Axiom is implied by portfolio convexity is not clear. We leave this
for future research.
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Appendix A An Counter Example of Convexity without

risk aversion

Suppose there are two states of world with two set of priors p1 = [0.2,0.8] and p2 =
[0.6,0.4]. Denote f and g two assets that map states to monetary return where f = [0,4]
and g = [4,0]. Let [α,1 − α] denote the portfolio choice, which are the proportions of
wealth invested in f and g . Let x denote the final wealth of a portfolio, then x = αf+(1−
α)g. Let the utility function of monetary outcomes be convex u(x) = x2. The Maxmin
Expected Utility model postulates that an agent evaluates the portfolio x according two

MEU(x) =min
(

p1u(x),p2u(x)
)

Consider the following x1 = [2,2],x2 = [4,0],x3 = [3,1] It can be easily verified that
MEU(x1) > MEU(x2) and MEU(x2) > MEU(x3). This means x1 ≻ x2 and x2 ≻ x3 while
x3 = 0.5x1 +0.5 ∗ x2. A contradiction of convexity.

Appendix B HowUncertaintyAverse andVarianceAverse

implies Portfolio Convexity

Formally, Variance Aversion is defined as follows.

Definition 5. % on lotteries are variance averse if for two lotteries with the same mean,
the lottery with a smaller variance is preferred.

Proposition 2. If % is uncertainty averse and variance averse, then % is convex.

Proof. Lemma 2 proves that the portfolio mixture of two lotteries is preferred to the
probability mixture when variance aversion is assumed. Then following similar argu-
ments in the proof of Proposition 1, we have that for f % g , there is λf ⊕ (1 − λ)g %

λf + (1−λ)g % g .

Lemma 2. If preferences over objective lotteries are variance averse, then portfolio mix
of two lotteries is preferred to the probability mix of two lotteries.

Proof. Let fs and gs denote two lotteries. Let P and Q denote two independent random
variables that distributes as fs and gs, respectively.

Define a new random variable R1 := BP + (1−B)Q, where B is a binary, independent
random variable for which the probability that B = 1 is α and the probability that B = 0
is 1−α. Define another random variable R2 := αP + (1−α)Q. Thus, R1 distributes as the
probability mixture of f+gs. R2 distributes as the portfolio mixture of f⊕gs.

Using Law of Total Variance , we have Var(R1) = EB(VarB(R1|B)) + VarB(EB(R1|B)).
Since VarB(EB(R1)) ≥ 0, we have Var(R1) ≥ E(Var(R1|B)). Recall that R1 = P if B = 1and
R1 = Q if B = 0, so Var(R1) ≥ EB(VarB(R1)) = αVar(P) + (1 − α)Var(Q). Since α ∈ [0,1],
we have α ≥ α2 and (1−α) ≥ (1−α)2.

Var(R1) ≥ α2Var(P) + (1−α)2Var(Q)).
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Since P and Q are independent, we have

E(R2) = αE(P) + (1−α)E(Q)

and
Var(R2) = α2Var(P) + (1−α)2Var(Q).

In summary, E(R1) = E(R2) and Var(R1) ≥ Var(R2). By variance averse we have

αfs + (1−α)gs % αfs ⊕ (1−α)gs.
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