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Abstract

Central to this study is the concept of disjointly productive players. Two players are
disjointly productive if there is no synergy effect if one of these players joins a coalition
containing the other. Our first new axiom states that the payoff to a player does not change
when another player, disjointly productive with that player, leaves the game. The second
new axiom means that if we merge two disjointly productive players into a new player,
the payoff to a third player does not change. These two axioms, along with efficiency,
characterize the Shapley value and may be useful in improving the run time for computing
the Shapley value in games with some disjointly productive players. Further axiomatizations
of the Shapley value are provided in which jointly productive players, known as mutually
dependent players, also play a role. Using a change of behavior property, the payoff for
two players in two games in which their behavior changed once to total dislike and once
to total like is equal to the payoff in the original game. Another axiomatization uses an
additivity property for games in which two players have also changed their behavior to total
non-cooperation.

Keywords Cooperative game · Shapley value · Disjointly productive players · Mutually

dependent players · Merged (disjointly productive) players game

JEL Classification: C71 - Cooperative Games

1 Introduction

An area of study within the cooperative game theory is how payoffs of TU-values change
when two or more players merge into a single one (see, e.g., Derks and Tijs [2000]). Ideally,
this also leads to axiomatizations like for the Banzhaf value (Banzhaf 1965) in Lehrer (1988).
Lehrer defines an amalgamated game where two players are merged into one who has the
same effect in the new game as the two merging players had in the old game. Together
with an axiom, known as standardness (Hart and Mas-Colell 1989), Lehrer axiomatizes
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the Banzhaf value with a reduction axiom for these games, called 2-efficiency. A TU-value
satisfies this axiom if the payoff to the merged player in the new game is equal to the sum
of the payoffs to the two merging players in the old game. Since the Shapley value (Shapley
1953b) also satisfies standardness, the Shapley value is bound to fail for this axiom.
2-efficiency is also used in the axiomatizations of the Banzhaf value in Nowak (1997),

Casajus (2011), and Casajus (2012). As pointed out in Alonso-Meijide, Álvarez-Mozos, and
Fiestras-Janeiro (2012), Casajus (2012) uses a somewhat different definition of 2-efficiency
and, therefore, comes up with somewhat contradictory solutions for the Banzhaf value
compared to Nowak (1997).
Haller (1994) investigates collusion properties of TU-values. Instead of merging two

players into one, one player becomes a proxy player with the power of both players and
the other player becomes a null player, meaning that this player contributes nothing to
any coalition. For general games, the results for the Shapley value can be transferred to
the amalgamation of players because this value satisfies for such games the null player out
property (Derks and Haller 1999), i.e., removing a null player does not change the payoffs
to the other players.
The study of Haller (1994) was inspired by the joint-bargaining paradox in Harsanyi

(1977), also known as the Harsanyi paradox (see Vidal-Puga [2012]). Harsanyi observes
that in simple bargaining processes, when two or more players join to form an acting bar-
gaining unit, their bargaining position worsens relative to the remaining players. Moreover,
Harsanyi notes that this holds for all solution concepts that satisfy efficiency and the sym-
metry axiom, hence also for the Shapley value.
Chae and Heidhues (2004) explain this paradox with the argument that, by merging,

players trade their multiple “rights to talk” for a single one, thereby weakening their power
position.
To axiomatize the class of weighted Shapley values (Shapley 1953a), Nowak and Ratzik

(1995) presented the concept of mutually dependent players. These are players who are
only jointly productive. Any coalition of mutually dependent players forms a partnership,
introduced in Kalai and Samet (1987). For so-called weighted games, which consist of a
classical TU-game and a weight vector λ, Ratzik (2012) formulates an amalgamating payoffs
axiom. Here, not arbitrary players merge into a new one, as in 2-efficiency, but only those
that form a partnership, i.e., only jointly productive players.
Besner (2019) introduces a player splitting axiom to axiomatize the proportional Shapley

value (Besner 2016; Béal et al. 2018). This axiom can also be interpreted as a merging
axiom for weakly dependent players who are jointly productive and, in addition, still have
a stand-alone worth.
Unlike all the studies above, Besner (2019) is not concerned with the ratio of the payoff

for the merged player versus the sum of the payoffs for the merging players in the original
game, but rather that any merger or split does not affect the payoff to untouched players.
This view is also central to the first part of this study. For this, as a contrast to mutually

dependent players, i.e. jointly productive players, we use the concept of disjointly productive
players. Two players are disjointly productive if their marginal contribution to any coalition
that does not include the other player is the same as if that coalition had previously been
joined by the other one. Therefore, this can be considered as the special case of “interaction
of cooperation” in Grabisch and Roubens (1999) without any interaction.
Our first new axiom then states that the payoff to a player does not change when a

player who is disjointly productive to that player leaves the game. For our second axiom,
we introduce a merged (disjointly productive players) game, corresponding to the merged
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game1 in Lehrer (1988), but only for disjointly productive players. Our axiom then has the
meaning that the payoff does not change for players who are not affected by the merger.
As the first main result, we show that the Shapley value, along with efficiency, is axioma-

tized by our two new axioms. In addition to our merging axiom, if a TU-value also satisfies
efficiency, like the Shapley value, then the payoff to the merged player is equal to the sum
of the payoffs to the merging players from the original game. Thus, the Harsanyi paradox
does not apply to disjointly productive players and they do not lose their ”right to talk.”
The crucial role in the proof of our theorem is played by a new split game that contains
one new player for each old player and each coalition containing that player.
In the case of the occurrence of disjointly productive players in practice, both new axioms

can help to reduce the computational time for the payoff calculation of the Shapley value,
which can often be the deciding factor for performing an exact calculation instead of using
approximation methods.
In the second main part of this study, we examine games in which the behavior of two

players towards each other has changed compared to the original game, but the other players
behave as before. In the first game, the two players delete their cooperation in all coalitions
containing both players. In the other game, both only want to participate in coalitions that
also contain both players. Our last axiom then states that the payoff to the two players in
the initial game is fixed by the payoff in the two new games. Also with this axiom, we can
present a new axiomatization of the Shapley value.
Our last axiomatization uses a weak additivity property. The payoff to a player in a game

is equal to the sum of the payoff to that player in a game in which two arbitrary players
changed their behavior to mutual non-cooperation and the payoff in the complementary
game to that game.
The remainder of this paper is organized as follows. Section 2 contains some preliminaries.

In Section 3, we introduce the concept of disjointly productive players, related axioms, a first
theorem and an additional compact corollary. In addition to disjointly productive players,
jointly productive players also play a significant role in the axiomatizations of Section 4
and 5. Section 6 gives a conclusion and some hints on how to reduce the complexity of
computing the Shapley value in some situations. The Appendix (Section 7) shows the
logical independence of the axioms used in the axiomatizations.

2 Preliminaries

Let the countably infinite set U be the universe of players. We denote by N the set of all
non-empty and finite subsets of U. A (TU-)game is a pair (N, v) such that N ∈ N and v
is a coaltion function, i.e., v : 2N → R, v(∅) = 0. We call the subsets S ⊆ N coalitions
and v(S) is the worth of the coalition S, ΩS denotes the set of all nonempty subsets of S,
(S, v) is the restriction of (N, v) to the player set S ∈ ΩN, and the set of all games (N, v)
is denoted by V(N).
Let N ∈ N , (N, v) ∈ V(N). For all S ⊆ N , the dividends ∆v(S) (Harsanyi 1959) are

1Lehrer (1988) introduces also another merged players game that uses as a new worth for certain coalitions
the maximum worth of certain subcoalitions from the old game..
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defined recursively by

∆v(S) :=

{

0, if S = ∅, and

v(S)−
∑

R(S ∆v(R), if S ∈ ΩN.
(1)

A TU-game (N, uT ) ∈ V(N), T ∈ ΩN, is called a unanimity game if for all S ⊆ N we
have uT (S) := 1 if T ⊆ S and uT (S) := 0 otherwise. By (Shapley 1953b), any coalition
function v on N has a unique representation

v =
∑

T∈ΩN

∆v(T )uT . (2)

We call a coalition S ⊆ N inessential in (N, v) if ∆v(S) = 0, otherwise S is called
essential in (N, v). The marginal contribution MCv

i (S) of a player i ∈ N to a coalition
S ⊆ N\{i} is given by MCv

i (S) := v(S ∪ {i})− v(S). A player i ∈ N is called a dummy
player in (N, v) if v(S∪{i}) = v(S)+v({i}), S ⊆ N\{i}, a dummy player i is called a null
player in (N, v) if we have v({i}) = 0. We call two players i, j ∈ N, i 6= j, symmetric
in (N, v) if for all S ⊆ N\{i, j}, we have v(S ∪ i) = v(S ∪ j), they are called mutually
dependent (Nowak and Radzik 1995) in (N, v) if

v(S ∪ {i}) = v(S) = v(S ∪ {j}), (3)

which is equivalent (see Casajus [2018]) to

∆v(S ∪ {k}) = 0, k ∈ {i, j}. (4)

For all N ∈ N , a TU-value ϕ is an operator that assigns to any (N, v) ∈ V(N) a payoff
vector ϕ(N, v) ∈ RN. The Shapley value Sh (Shapley 1953b) is given by

Shi(N, v) :=
∑

S⊆N,S∋i

∆v(S)

|S|
for all i ∈ N. (5)

We make use of the following standard axioms for TU-values.

Efficiency, E. For all N ∈ N , (N, v) ∈ V(N), we have
∑

i∈N ϕi(N, v) = v(N).

Dummy player, D. For all N ∈ N , (N, v) ∈ V(N), and i ∈ N such that i is a dummy
player in (N, v), we have ϕi(N, v) = v({i}).

Null player, N. For all N ∈ N , (N, v) ∈ V(N), and i ∈ N such that i is a null player in
(N, v), we have ϕi(N, v) = 0.

Symmetry, S. For all N ∈ N , (N, v) ∈ V(N), and i, j ∈ N such that i and j are sym-
metric in (N, v), we have ϕi(N, v) = ϕj(N, v).

Additivity, A. For all N ∈ N , (N, v), (N,w) ∈ V(N), we have ϕ(N, v) + ϕ(N,w) =
ϕ(N, v + w).

3 Disjointly productive players

Nowak and Radzik (1995) introduced the concept of mutually dependent players. This
means that two mutually dependent players are only jointly productive. The contribution
of each of these players to any coalition that does not contain the other is zero. The
following concept represents the opposite to this. Here, certain players are only productive
when a certain other player is not in the group.
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Definition 3.1. For all N ∈ N , (N, v) ∈ V(N), two players i, j ∈ N are called disjointly
productive in (N, v) if, for all S ⊆ N\{i, j}, we have MCv

i (S ∪ {j}) = MCv
i (S) which is

v(S ∪ {i, j})− v(S ∪ {j}) = v(S ∪ {i})− v(S). (6)

Remark 3.2. Note that MCv
i (S ∪ {j}) = MCv

i (S) in Definition 3.1 is equivalent to
MCv

j (S ∪ {i}) = MCv
j (S). Grabisch and Roubens (1999) use the quantity v(S ∪ {i, j}) −

v(S ∪ {i}) − v(S ∪ {j}) + v(S), or, respectively, the average of it over all coalitions, for
their study of ”interaction indices.” Thus, our definition is equivalent to this quantity if it
is zero for all coalitions.

If we consider the dividend as ”the pure contribution of cooperation in a TU-game” (Billot
and Thisse 2005), it is consequent that any coalition containing only one of two mutually
dependent players has a dividend of zero (see (4)). In this sense, the contribution of
cooperation made by the formation of coalitions with two disjointly productive players
should be also zero.

Lemma 3.3. Let N ∈ N , (N, v) ∈ V(N). Two players i, j ∈ N are disjointly productive
in (N, v) if and only if for all S ⊆ N , we have

v(S) =
∑

R⊆S, {i,j}*R

∆v(R) or, equivalent by (1), ∆v(S) = 0, if {i, j} ⊆ S. (7)

Proof. Let N ∈ N , (N, v) ∈ V(N), i, j ∈ N , and T ⊆ N\{i}, T ∋ j. It is sufficient to show
the equivalence

v(T ∪ {i}) = v
(

(T\{j}) ∪ {i}
)

− v(T\{j}) + v(T ) ⇔ v(T ∪ {i}) =
∑

R⊆T∪{i}, {i,j}*R

∆v(R).

(8)

We have

v
(

(T\{j}) ∪ {i}
)

− v(T\{j}) + v(T )

=
(1)

∑

S⊆(T\{j})∪{i}

∆v(S)−
∑

S⊆T\{j}

∆v(S) +
∑

S⊆T

∆v(S)

=
∑

S⊆T∪{i}, {i,j}*S

∆v(S),

and (8) and, therefore, Lemma 3.3 is shown.

Since two disjointly productive players do not mind each other’s business, so to speak, they
should not mind if the other player leaves the game. This is the statement of our first new
axiom.

Disjointly productive players, DP. For all N ∈ N , (N, v) ∈ V(N), and i, j ∈ N such
that i and j are disjointly productive players in (N, v) we have

ϕi(N, v) = ϕi(N\{j}, v).

The following definition considers games that result from the union of disjointly productive
players into a single player.
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Definition 3.4. Let N ∈ N , (N, v) ∈ V(N), i, j ∈ N be two disjointly productive players
in (N, v), k ∈ U, k, /∈ N, and Nk

ij := (N\{i, j}) ∪ {k}. The TU-game (Nk
ij, v

k
ij) ∈ V(Nk

ij) is
called a merged (disjointly productive) players game to (N, v) where vkij is given by

vkij(S) :=

{

v(S), k /∈ S,
v
(

(S\{k}) ∪ {i, j}
)

, k ∈ S,
for all S ⊆ Nk

ij. (9)

That is, any coalition consisting of the same players in the new and old game has the same
worth in both games. Coalitions in which the merged player is a member receive the worth
of the corresponding coalition with all the original merging players from the old game.
This definition corresponds to the definition of the merged game in Lehrer (1988) with the
difference that only disjointly productive players are merged.
The following lemma states that for a player in any game, we have split games where that

player is split into two disjointly productive players and the old game is a merged players
game to those games. The dividends from coalitions containing some players and the split
player in the original game are equal to the sum of the dividends from coalitions containing
the same other players and only one each of the two split disjointly productive players in
the split game.

Lemma 3.5. Let N ∈ N , (N, v) ∈ V(N), k ∈ N, i, j ∈ U, i, j /∈ N, and N ij
k := (N\{k})∪

{i, j}. Then, we have some (N ij
k , vijk ) ∈ V(N ij

k ) such that i, j are disjointly productive
in (N ij

k , vijk )(which we will call split (in disjointly productive) players games) and
(N, v) is a merged players game to each (N ij

k , vijk ) where, for all S ⊆ N\{k}, vijk is given by

∆vij
k
(S) = ∆v(S) and (10)

∆vij
k
(S ∪ {i}) + ∆vij

k
(S ∪ {j}) = ∆v(S ∪ {k}). (11)

Proof. Let (N, v) ∈ V(N), k ∈ N, i, j ∈ U, i, j /∈ N, N ij
k := (N\{k}) ∪ {i, j} and be

(N ij
k , vijk ) ∈ V(N ij

k ) such that (10) and (11) are satisfied. We define vijk (S ∪{i, j}) such that

∆vij
k
(S ∪ {i, j}) := 0 for all S ⊆ N ij

k \{i, j}. (12)

This is always possible and, by Lemma 3.3, i, j are disjointly productive in (N, v). Therefore,
by (9), we have the merged players game (N, ṽ) to (N ij

k , vijk ), given, for all S ⊆ N\{k}, by

ṽ(S) :=vijk (S), and (13)

ṽ(S ∪ {k}) :=vijk (S ∪ {i, j}). (14)

By (1), (10), and (13), we have v(S) = ṽ(S) for all S ⊆ N\{k}. We will show, by induction
on the size s := |S|,

v(S ∪ {k}) = ṽ(S ∪ {k}) for all S ⊆ N\{k}. (15)

Initialization: Let s = 0 and therefore S = ∅. Then, by (1), (11), (12), and (14), (15) is
satisfied.
Induction step: Let s ≥ 1. Assume that (15) is satisfied for all s′, s′ < s, (IH). We have

∆ṽ(S ∪ {k})
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=
(1)

ṽ(S ∪ {k})−
∑

R((S∪{k})

∆ṽ(R)

=
(9)

vijk (S ∪ {i, j})−
∑

R((S∪{k}),R∋k

∆ṽ(R)−
∑

R((S∪{k}),k /∈R

∆ṽ(R)

=
(13)

vijk (S ∪ {i, j})−
∑

R(S∪{k},R∋k

∆ṽ(R)−
∑

R⊆S

∆vij
k
(R)

=
(IH)
(11)

vijk (S ∪ {i, j})−
∑

R(S∪{i},R∋i

∆vij
k
(R)−

∑

R(S∪{j},R∋j

∆vij
k
(R)−

∑

R⊆S

∆vij
k
(R)

=
(7)

∑

R⊆S∪{i,j}, {i,j}*R

∆vij
k
(R)−

∑

R(S∪{i},R∋i

∆vij
k
(R)−

∑

R(S∪{j},R∋j

∆vij
k
(R)−

∑

R⊆S

∆vij
k
(R)

= ∆vij
k
(S ∪ {i}) + ∆vij

k
(S ∪ {j}) =

(11)
∆v(S ∪ {k}),

and (15) is satisfied.

The following new axiom states that if two disjointly productive players merge into one
player who has the same impact on the new game as the two players together had previously,
the payoff for the other players should not change.

Merged (disjointly productive) players game property, MP. For all N ∈ N ,
(N, v) ∈ V(N), i, j ∈ N such that i and j are disjointly productive in (N, v), k ∈ U, k, /∈ N,
and a merged players game (Nk

ij, v
k
ij) ∈ V(Nk

ij) to (N, v), we have

ϕℓ(N
k
ij, v

k
ij) = ϕℓ(N, v) for all ℓ ∈ Nk

ij\{k}. (16)

Our interest is also in the payoffs for the merging players versus the merged player. If the
value is efficient, we get an obvious result.

Remark 3.6. Let N ∈ N , (N, v) ∈ V(N), i, j ∈ N such that i and j are disjointly pro-
ductive in (N, v), k ∈ U, k, /∈ N, and (Nk

ij, v
k
ij) ∈ V(Nk

ij) a merged players game to (N, v).
If ϕ is a TU-value that satisfies E and MP, we have, by (9) and (16),

ϕk(N
k
ij, v

k
ij) = ϕi(N, v) + ϕj(N, v). (17)

(17) corresponds to the condition for 2-efficiency in Lehrer (1988), but our merging players
must be disjointly productive and the TU-value must be efficient.

Remark 3.7. Let Let N ∈ N , (N, v) ∈ V(N), and I ⊆ N, |I| ≥ 3, be a coalition of players
where each i ∈ I is mutually disjointly productive to all other players j ∈ I\{i}. If we merge
two players i, j ∈ I, accordingly to Definition 3.4, into a new player k ∈ U, resulting in a
merged players game (Nk

ij, v
k
ij) ∈ V(Nk

ij), by (7) and (11), we have ∆vkij
(S ∪{k}) = 0 for all

S ∩ I 6= ∅. This means, by (7), all ℓ ∈ (I\{i, j}) ∪ {k} are mutually disjointly productive
in V(Nk

ij). Therefore, we can apply Definition 3.4 repeatedly to all i ∈ I and have, finally,

for the last merged players game, here denoted by (N, v), a player set N = (N\I) ∪ k and
a coalition function v, given by

v(S) :=

{

v(S), k /∈ S,

v
(

(S\{k}) ∪ I
)

, k ∈ S,
for all S ⊆ N.
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Accordingly, (11) can be adapted to

∆
vkij
(S ∪ {k}) =

∑

i∈I

∆v(S ∪ {i}),

and (17) can be adapted to

ϕk(N, v) =
∑

i∈I

ϕi(N, v).

The following lemma is similar to Lemma 2 in Besner (2019), where it is shown that a
TU-value that is efficient and satisfies a player splitting axiom defined there also satisfies
symmetry.

Lemma 3.8. If a TU-value ϕ satisfies E and MP, then ϕ also satisfies S.

Proof. The proof is similar to the proof of Lemma 2 in Besner (2019).
Let N = {1, 2, ..., n}, n ≥ 2, (N, v) ∈ VN, ϕ be a TU-value that satisfies E and MP, and,

w.l.o.g., player 1 and player 2 be symmetric in (N, v). If we split player 1, in accordance
to MP and Lemma 3.5, into two new disjointly productive players, player n+1 and player
n+ 2, and define Nn+1,n+2

1 := {2, 3, ..., n, n+ 1, n+ 2}, we have

ϕ2(N
n+1,n+2
1 , vn+1,n+2

1 ) = ϕ2(N, v). (18)

If we split player 2, in accordance to MP and Lemma 3.5, into the same players as before,
player n + 1 and player n + 2, instead, and define Nn+1,n+2

2 := {1, 3, 4, ..., n, n + 1, n + 2},
we have

ϕ1(N
n+1,n+2
2 , vn+1,n+2

2 ) = ϕ1(N, v), (19)

where we choose, for all S ⊆ N\{1, 2},

vn+1,n+2
2 (S ∪ {n+ 1}) := vn+1,n+2

1 (S ∪ {n+ 1}),

vn+1,n+2
2 (S ∪ {n+ 2}) := vn+1,n+2

1 (S ∪ {n+ 2}),

vn+1,n+2
2 (S ∪ {1} ∪ {n+ 1}) := vn+1,n+2

1 (S ∪ {2} ∪ {n+ 1}), and

vn+1,n+2
2 (S ∪ {1} ∪ {n+ 1}) := vn+1,n+2

1 (S ∪ {2} ∪ {n+ 1}).

This is possible because players 1 and 2 are symmetric in (N, v).
In the same way, now in the game (Nn+1,n+2

1 , vn+1,n+2
1 ), we split player 2 into two new

disjointly productive players, player n+ 3 and player n+ 4, and, analogously, in the game
(Nn+1,n+2

2 , vn+1,n+2
2 ) player 1 into the same players as before, player n+3 and player n+4.

Note that we have N
(n+1,n+2)n+3,n+4

12 = N
(n+1,n+2)n+3,n+4

21 = {3, 4, ..., n, n+1, n+2, n+3, n+4},
and, since players 1 and 2 are symmetric in (N, v), we can choose

v
(n+1,n+2)n+3,n+4

21 (S) = v
(n+1,n+2)n+3,n+4

12 (S) for all S ( N
(n+1,n+2)n+3,n+4

12 = N
(n+1,n+2)n+3,n+4

21 .

By E, we obtain

ϕn+3

(

N
(n+1,n+2)n+3,n+4

12 , v
(n+1,n+2)n+3,n+4

12

)

+ ϕn+4

(

N
(n+1,n+2)n+3,n+4

12 , v
(n+1,n+2)n+3,n+4

12

)

=
Rem. 3.6

ϕ2(N
n+1,n+2
1 , vn+1,n+2

1 ) =
(18)

ϕ2(N, v),

ϕn+3

(

N
(n+1,n+2)n+3,n+4

21 , v
(n+1,n+2)n+3,n+4

21

)

+ ϕn+4

(

N
(n+1,n+2)n+3,n+4

21 , v
(n+1,n+2)n+3,n+4

21

)

=
Rem. 3.6

ϕ1(N
n+1,n+2
2 , vn+1,n+2

2 ) =
(19)

ϕ1(N, v).

It follows, ϕ1(N, v) = ϕ2(N, v), and S is shown.
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We present our first main result.

Theorem 3.9. Sh is the unique TU-value that satisfies E, DP, and MP.

Proof. Let N ∈ N , (N, v) ∈ V(N).
I. Existence: It is well-known that Sh satisfies E. By (5) and Lemma 3.3, it is obvious that
Sh satisfies DP.
•MP: Let i, j ∈ N be such that i and j are disjointly productive in (N, v) and (Nk

ij, v
k
ij) ∈

V(Nk
ij) be a merged players game to (N, v). We have

Shℓ(N
k
ij, v

k
ij) =

(5)

∑

S⊆Nk
ij ,

S∋ℓ

∆vkij
(S)

|S|

=
(10)
(11)

∑

S⊆(N\{i,j}),
S∋ℓ

∆v(S)

|S|
+

∑

S⊆(N\{j}),
{i,ℓ}⊆S

∆v(S)

|S|
+

∑

S⊆(N\{i}),
{j,ℓ}⊆S

∆v(S)

|S|

=
∑

S⊆N,{i,j}*S,
S∋ℓ

∆v(S)

|S|
=
(7)

Shℓ(N, v) for all ℓ ∈ Nk
ij\{k},

and MP is shown.
II. Uniqueness: Let ϕ be a TU-value that satisfies all axioms of Theorem 3.9 and, therefore,
by Lemma 3.8, also S. By MP, applying Lemma 3.5 and Remark 3.7, we split succesively
each player i ∈ N of the n = |N | players in 2n−1 disjointly productive players iS, S ⊆
N, S ∋ i. In the final split game, we call it (N, v), we have n · 2n−1 players. Each of the
coalitions containing all players with the same coalition S ⊆ N as a subscript get a worth
of the dividend ∆v(S) and all other coalitions are defined as inessential in (N, v), i.e., we

have, for all T ∈ ΩN,

∆v(T ) :=

{

∆v(S), T =
⋃

i∈S{iS}, S ∈ ΩN,
0, otherwise.

(20)

We illustrate our procedure with a small example: Let (N ′, w) ∈ V(N ′), N ′ =
{1, 2, 3}. At first, we split for a new game (N ′

1, w1) player 1, using Lemma
3.5 and Remark 3.7, into four players 1{1}, 1{1,2}, 1{1,3}, 1{1,2,3} with the player set
N ′

1 := (N ′\{1}) ∪ {1{1}, 1{1,2}, 1{1,3}, 1{1,2,3}}. By Remark 3.7, we define w1 by

∆w1
({1{1}}) := ∆w(1), ∆w1

({1{1,2}, 2}) := ∆w({1, 2}),
∆w1

({1{1,3}, 3}) := ∆w({1, 3}), ∆w1
({1{1,2,3}, 2, 3}) := ∆w({1, 2, 3}),

w1(S) := w(S) for all S ⊆ N ′\{1}, and all other coalitions are defined as inessential in
(N ′

1, w1).
In the next step, we split for a new game (N ′

12, w12) player 2, using Lemma 3.5 and
Remark 3.7, into four players 2{2}, 2{1,2}, 2{2,3}, 2{1,2,3} with the player set N ′

12 := (N ′
1\{2})∪

{2{2}, 2{1,2}, 2{2,3}, 2{1,2,3}}. By Remark 3.7, we define w12 by

∆w12
({2{2}}) := ∆w(2), ∆w12

({1{1,2}, 2{1,2}}) := ∆w({1, 2}),
∆w12

({2{2,3}, 3}) := ∆w({2, 3}), ∆w12
({1{1,2,3}, 2{1,2,3}, 3}) := ∆w({1, 2, 3}),

w12(S) := w1(S) for all S ⊆ N ′
1\{2}, and all other coalitions are defined as inessential in

(N ′
12, w12).
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Finally, we split for a new game (N ′
123, w123) player 3, using Lemma 3.5 and Re-

mark 3.7, into four players 3{3}, 3{1,3}, 3{2,3}, 3{1,2,3} with the player set N ′
123 :=

1{1}, 1{1,2}, 1{1,3}, 1{1,2,3}, 2{2}, 2{1,2}, 2{2,3}, 2{1,2,3}, 3{3}, 3{1,3}, 3{2,3}, 3{1,2,3}. By Remark
3.7, we define w123 by

∆w123
({1{1}}) := ∆w(1), ∆w123

({2{2}}) := ∆w({2}),
∆w123

({3{3}}) := ∆w(3), ∆w123
({1{1,2}, 2{1,2}}) := ∆w({1, 2}),

∆w123
({1{1,3}, 3{1,3}}) := ∆w({1, 3}) ∆w123

({2{2,3}, 3{2,3}}) := ∆w({2, 3}),

∆w123
({1{1,2,3}, 2{1,2,3}, 3{1,2,3}}) := ∆w({1, 2, 3}),

and all other coalitions are defined as inessential in (N ′
123, w123).

Back to our original split game (N, v), by E, MP, Lemma 3.5, and Remark 3.7, we have
that the sum of the payoffs to all players who are split from the same player in the original
game equals the payoff to that player in the original game, i.e.,

∑

iS , S∈ΩN, S∋i

ϕiS(N, v) = ϕi(N, v) for all i ∈ N. (21)

By (20), for each T ∈ ΩN, T =
⋃

i∈S{iS}, S ∈ ΩN, all j ∈ N\T are disjointly productive to

any k ∈ T . Therefore, repeatedly using DP, we have, for each T ∈ ΩN, T =
⋃

i∈S{iS}, S ∈
ΩN,

ϕk(N, v) = ϕk(T, v) for all k ∈ T.

All k ∈ T are symmetric in (T, v). Thus, by E and S, ϕ is unique for all j ∈ N in (N, v),
and therefore, by (21), for all i ∈ N in (N, v), and Theorem 3.9 is shown.

The crucial step in our theorem is to replace an arbitrary game with the split game, which
contains one new player for each original player and each coalition containing that player.
Then, each of the new players is a member of (at most) one essential coalition. To derive a
unique solution with efficiency and symmetry from this, one could use weaker axioms than
the disjointly productive players property. In what follows, however, we will use an axiom
that implies both the dummy player property and efficiency.
In the context of coalition structures (Aumann and Drèze 1974; Owen 1977), Hart and

Kurz (1983) presented an axiom, called dummy coalition, which can be seen as a gener-
alization of the dummy player property for games with a coalition structure. We adapt
this axiom for TU-games and call a coalition S ∈ ΩN a dummy coalition in (N, v) if
v(T ∪R) = v(T ) + v(R) for all T ⊆ N\S and R ⊆ S.

Dummy coalition, DC. For all (N, v) ∈ V(N) and S ∈ ΩN such that S is a dummy
coalition in (N, v), we have

∑

i∈S ϕi(N, v) = v(S).

By this axiom, all players of a dummy coalition receive together as a payoff what the
coalition alone generates for itself.

Remark 3.10. Obviously, DC implies D. Note that the grand coalition is always a dummy
coalition. Therefore, DC implies E.

Remark 3.11. It is well-known and easy to show that i ∈ N is a dummy player in (N, v)
if and only if we have ∆v(S) = 0 for all S ⊆ N, {i} ( S.
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A similar result holds for a dummy coalition.

Lemma 3.12. Let N ∈ N , (N, v) ∈ V(N). S ∈ ΩN is a dummy coalition in (N, v) if
and only if we have ∆v(T ) = 0 for all T ⊆ N, T * S, (T ∩ S) 6= ∅.

Proof. Let N ∈ N , (N, v) ∈ V(N), and S ∈ ΩN. We have to show, for all R ∈ ΩS and all
T ∈ ΩN\S,

v(R ∪ T ) = v(R) + v(T ) ⇔ ∆v(R ∪ T ) = 0; (22)

We use a first induction I1 on the size s := |S|.
Initialization I1: Let s = 1. Then, R = S and (22) follows by Remark 3.11.
Induction step I1: Let s ≥ 2. Assume that (22) is satisfied for all s′, s′ < s, (IH1). We

use a second induction I2 on the size t := |T |.
Initialization I2: Let t = 1 and, therefore, T = {i}, i ∈ N\S. We have

0 = v(R ∪ {i})− v(R)− v({i}) =
(1)

∑

Q⊆(R∪{i})

∆v(Q)−
∑

Q⊆R

∆v(Q)−∆v({i})

=
∑

Q⊆(R∪{i})
Q∋i

∆v(Q) +
∑

Q⊆R

∆v(Q)−
∑

Q⊆R

∆v(Q)−∆v({i}) =
(IH1)

∆v(R ∪ {i}),

and (22) is shown.
Induction step I2: Let t ≥ 2. Assume that (22) is satisfied for all t′, t′ < t, (IH2). We

have

0 = v(R ∪ T )− v(R)− v(T ) =
(1)

∑

Q⊆(R∪T )

∆v(Q)−
∑

Q⊆R

∆v(Q)−
∑

Q⊆T

∆v(T )

=
∑

Q⊆(R∪T )
R∩Q 6=∅,T∩Q 6=∅

∆v(Q) +
∑

Q⊆T

∆v(Q) +
∑

Q⊆R

∆v(Q)−
∑

Q⊆R

∆v(Q)−
∑

Q⊆T

∆v(T )

=
(IH1)
(IH2)

∆v(R ∪ T ),

and (22), and therefore, Lemma 3.12 is shown.

Remark 3.13. Let N ∈ N and (N, v) ∈ V(N). By Lemma 3.12, each coalition S ∈ ΩN in
a unanimity game uS is a dummy coalition. Since Sh satisfies A and by (2), it is obvious
that Sh also satisfies DC.

By Lemma 3.12, all coalitions T ∈ ΩN, T =
⋃

i∈S{iS}, S ∈ ΩN in the proof of Theorem 3.9

are dummy coalitions in (N, v). Since, by Remark 3.10, DC implies E, and, by DC, E,
and (20), ϕk(N, v) is unique for all k ∈ T if ϕ satisfies MP and DC. By (21), the proof of
Theorem 3.9, and Remark 3.13, the following compact axiomatization is obvious.

Corollary 3.14. Sh is the unique TU-value that satisfies DC and MP.
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4 Modification of behavior.

While the previous section focuses on a reduction of the set of players, here, we consider
games in which the behavior of two players towards each other changes compared to the
initial game. For example, suppose two players would suddenly quarrel and end their
previous cooperation in all coalitions that contain both players. In the 2-player case, we
would then let the two players keep their individual worth and the worth of the grand
coalition is the sum of those two worths. We define the general case.

Definition 4.1. For all N ∈ N , (N, v) ∈ V(N), and two players i, j ∈ N , we define the
(i, j)-disjointly productive game (N, vdpij ) to (N, v) by

vdpij (S) :=

{

v(S\{i}) + v(S\{j})− v(S\{i, j}), if {i, j} ⊆ S,
v(S), otherwise,

for all S ⊆ N. (23)

Remark 4.2. By (23) and Definition 3.1, i, j are disjointly productive in (N, vdpij ).

In an (i, j)-disjointly productive game, all coalitions containing both players i, j are inessen-
tial and all other coalitions have the same dividend as in the initial game.

Lemma 4.3. Let N ∈ N , (N, v) ∈ V(N), i, j ∈ N , and (N, vdpij ) be the (i, j)-disjointly
productive game to (N, v). Then, we have

∆vdpij
(S) :=

{

0, if {i, j} ⊆ S,
∆v(S), otherwise,

for all S ⊆ N. (24)

Proof. Let N ∈ N , (N, v) ∈ V(N), i, j ∈ N , and (N, vdpij ) be the (i, j)-disjointly productive

game to (N, v). For all S ⊆ N, {i, j} * S, it is obvious that we have, by vdpij (S) = v(S)
and (1), ∆vdpij

(S) = ∆v(S). If we have {i, j} ⊆ S, immediately follows, by Remark 4.2 and

Lemma 3.3, ∆vdpij
(S) = 0.

Now, we consider the reverse case, where two players get along so well that they only want
to do everything together. In the 2-player case, we would then have the stand-alone worths
of the two players equal to zero and the worth of the grand coalition is just the initial
coalition gain. Again, we define the general case.

Definition 4.4. For all N ∈ N , (N, v) ∈ V(N), and two players i, j ∈ N , we define the
(i, j)-mutually dependent game (N, vmd

ij ) to (N, v) by

vmd
ij (S) :=











v(S)−MCv
i (S\{j})−MCv

j (S\{i}), if {i, j} ⊆ S, S ⊆ N,

v(S\{k}), if S ⊆ (N\{i, j}) ∪ {k}, k ∈ {i, j},

v(S), if S ⊆ N\{i, j}.

(25)

Remark 4.5. By (25) and (3), i, j are mutually dependent in (N, vmd
ij ).

In an (i, j)-mutually dependent game, all coalitions containing only one of the two players
i, j are inessential and all other coalitions have the same dividend as in the initial game.
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Lemma 4.6. Let N ∈ N , (N, v) ∈ V(N), i, j ∈ N , and (N, vmd
ij ) be the (i, j)-mutually

dependent game to (N, v). Then, we have

∆vmd
ij
(S) :=

{

0 if k ∈ S, S ⊆ (N\{i, j}) ∪ {k}, k ∈ {i, j},

∆v(S), otherwise.
(26)

Proof. Let N ∈ N , (N, v) ∈ V(N), i, j ∈ N , and (N, vmd
ij ) be the (i, j)-mutually dependent

game to (N, v). For all S ⊆ N\{i, j}, it is obvious that we have, by vmd
ij (S) = v(S) and (1),

∆vdpij
(S) = ∆v(S). (27)

If S ⊆ (N\{i, j}) ∪ {k}, k ∈ {i, j}, immediately follows, by Remark 4.5 and (4),

∆vmd
ij
(S) = 0. (28)

Let now S ⊆ N, {i, j} ⊆ S. We show that

∆vdpij
(S) = ∆v(S) (29)

by induction on the size s := |S|, 2 ≤ s ≤ |N |.
Initialization: Let s = 2 and, therefore, S = {i, j}. We have

∆vmd
ij
({i, j}) =

(1)
(25)

v({i, j})− v({j})− v({i}) + 2 · v(∅)−
∑

R(S

∆vmd
ij
(R) =

(28)
∆v({i, j}).

Induction step: Let s ≥ 3. Assume that (29) is satisfied for all s′, s′ < s, (IH). We have

∆vmd
ij
(S) =

(1)
(25)

v(S)− v(S\{i})− v(S\{j}) + 2 · v(S\{i, j})−
∑

R(S

∆vmd
ij
(R)

=
∑

R⊆S

∆v(R)−
∑

R⊆S\{i}

∆v(R)−
∑

R⊆S\{j}

∆v(R) + 2 ·
∑

R⊆S\{i,j}

∆v(R)−
∑

R(S

∆vmd
ij
(R)

=
∑

R⊆S, {i,j}⊆R

∆v(S) +
∑

R⊆S\{i,j}

∆v(R)−
∑

R(S

∆vmd
ij
(R) =

(IH)
(27),(28)

∆v(S),

and Lemma 4.6 is shown.

The following axiom states that the payoff to any two players i, j in a game is uniquely de-
termined by the payoffs to those two players from the associated (i, j)-disjointly productive
and (i, j)-mutually dependent game.

Modification of behavior, MoB. For all (N, v) ∈ V(N), i, j ∈ N, the (i, j)-disjointly
productive game (N, vdpij ), and the (i, j)-mutually dependent game (N, vmd

ij ) to (N, v), we

have ϕk(N, v) = ϕk(N, vdpij ) + ϕk(N, vmd
ij ), k ∈ {i, j}.

For this axiom, for two players, e.g., consider games played multiple times in which the
other players do not change their behavior. If these two players now stop cooperating in
all coalitions in which they both participate, they must additionally play another game in
which they cooperate only in coalitions in which they both participate, to the same extent
as in the initial game, to receive the same payoff as before.
Note that modification of behavior is not a weakening of additivity since, in general, we

have (N, v) 6= (N, vdpij ) + (N, vmd
ij ). It follows a new axiomatization of the Shapley value.
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Theorem 4.7. Sh is the unique TU-value that satisfies E, DP, S, and MoB.

Proof. I. Existence: It is well-known that Sh satisfies E and S. By Theorem 3.9, Sh satisfies
DP, and, by (5), Lemma 4.3, and Lemma 4.6, it is obvious that Sh satisfies MoB.
II. Uniqueness: Let N ∈ N , (N, v) ∈ V(N), and ϕ be a TU-value that satisfies all axioms
of Theorem 4.7. If |N | = 1, ϕ is unique by E.
Let now, w.l.o.g., N = {1, 2, ..., n}, n ≥ 2. In the following, we replace the game (N,v) by

the (1, 2)-mutually dependent and the (1, 2)-disjointly productive game, these new games
in the next step by the (1, 3)-mutually dependent and the (1, 3)-disjointly productive games
of the new games and so on. In the last and (n − 1)th step, we have 2n−2 (1, n)-mutually
dependent games and 2n−2 (1, n)-disjointly productive games from the (n − 2)th step, in
total 2n−1 games.
For the (k − 1)th step, 2 ≤ k ≤ n, let the (R,Q)-game, R ⊆ N\{1, k + 1, ..., n}, Q ⊆

(N\{1, k+1, ..., n})\R, be the game which is obtained by replacing through a (1, i)-mutually
dependent game in the (i − 1)th step for all i ∈ R and through a (1, j)-jointly productive
game in the (j − 1)th step for all j ∈ Q.
In the first step, we replace (N, v) by the related games (N, vmd

1,2 ) and (N, vdp1,2). By Remark
4.5, in the (1, 2)-mutually dependent game, players 1 and 2 are mutually dependent, and,
by Remark 4.2, in the (1, 2)-disjointly productive game, players 1 and 2 are disjointly
productive. For each further step, we obtain an analogous result which can be easily shown
by induction on the size k, 2 ≤ k ≤ n: in the (k− 1)th step, in the (R,Q)-game, all players
i ∈ R ∪ {1} are mutually dependent and all j ∈ Q are disjointly productive to player 1.
In the (n − 1)th step, we have R ∪ Q ∪ {i} = N . If R = ∅, all players i ∈ N\{1} are

disjointly productive to player 1 and for this game, by DP and E, ϕ is unique for player
1. Otherwise, all players i ∈ T, T := R ∪ {1}, are mutually dependent and all players
j ∈ Q = N\T, are disjointly productive to the player 1. By DP, we can remove all players
j ∈ Q and, by S and E, ϕ is unique for player 1 in these games. Using MoB repeatedly, it
holds that the sum of the payoffs to player 1 in all final games is equal to 1’s payoff in the
game (N, v) and the proof is complete.

Remark 4.8. Similar to Corollary 3.14, for a new corollary, in Theorem 4.7, we could
replace E and DP by DC.

Nowak and Radzik (1995) introduced for a weight system ω an axiom, called ω-mutual
dependence. If we remove the weights or use only equal weights respectively, we finally end
up with the following property. The obvious term ‘mutual dependence’ is not applicable,
since this expression is already occupied by another axiom in Nowak and Radzik (1995).

Joint productivity, JP. For all (N, v) ∈ V(N) and two mutually dependent players i, j ∈
N , we have ϕi(N, v) = ϕj(N, v).

This property means that players who are only jointly productive should also receive the
same payoff. Since mutually dependent players are always symmetric but not vice versa, this
axiom can be seen as a weakening of symmetry. As the proof of Theorem 4.7 shows, we can
replace symmetry by the weaker joint productivity property and obtain an axiomatization
of the Shapley value where, besides efficiency, only properties based on jointly and disjointly
productive players are crucial.

Corollary 4.9. Sh is the unique TU-value that satisfies E, DP, JP, and MoB.
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5 Additivity for a disjointly productive game and its complement

This section is closely related to the previous one. Shapley (1953b) introduced the Shapley
value with an axiomatization using efficiency, linearity and a carrier axiom. Nowadays, the
following version of this axiomatization is common.

Theorem 5.1. (Shapley 1953b)) Sh is the unique TU-value that satisfies E, N, S, and A.

Often, in this axiomatization, the null player property is also replaced by the stronger
dummy player property. We next introduce a weakening of additivity that can replace
additivity in this axiomatization.

Disjointly productive game additivity, DPA. For all (N, v) ∈ V(N), i, j ∈ N, and
the (i, j)-disjointly productive game (N, vdpij ) to (N, v), we have

ϕk(N, v) = ϕk(N, vdpij ) + ϕk(N, v − vdpij ), k ∈ N.

.

Remark 5.2. Let N ∈ N , (N, v) ∈ V(N), i, j ∈ N , and (N, vdpij ) be the (i, j)-disjointly
productive game to (N, v). By Lemma 4.3 and (2), we have for the complement game
vcdpij := v − vdpij

∆vcdpij
(S) :=

{

∆v(S) if {i, j} ⊆ S, S ⊆ N,

0, otherwise.
(30)

The following is an alternative to Theorem 5.1 in which the additivity is weakened and the
null player property is strengthened.

Theorem 5.3. Sh is the unique TU-value that satisfies E, D, S, and DPA.

Proof. I. Existence: Since, obviously, DPA is implied by A, existence follows immediately
by Theorem 5.1.
II. Uniqueness: the proof is similar to the proof of Theorem 4.7. LetN ∈ N , (N, v) ∈ V(N),
and ϕ be a TU-value that satisfies all axioms of Theorem 5.3. If |N | = 1, ϕ is unique by E.
Let now, w.l.o.g., N = {1, 2, ..., n}, n ≥ 2. In the following, we replace the game (N,v)

by the complement game to the (1, 2)-disjointly productive game and the (1, 2)-disjointly
productive game, these new games in the next step by the the complement games to the
(1, 3)-disjointly productive games and the (1, 3)-disjointly productive games of the new
games and so on. In the last and (n − 1)th step, we have 2n−2 complement games to
the (1, n)-disjointly productive games and 2n−2 (1, n)-disjointly productive games from the
(n− 2)th step, in total 2n−1 games.
For the (k − 1)th step, 2 ≤ k ≤ n, let the (R,Q)-game, R ⊆ N\{1, k + 1, ..., n}, Q ⊆

(N\{1, k+1, ..., n})\R, be the game which is obtained by replacing through a complement
game to the (1, i)-disjointly productive game in the (i− 1)th step for all i ∈ R and through
a (1, j)-disjointly productive game in the (j − 1)th step for all j ∈ Q.
In the first step, we replace (N, v) by the related games (N, v − vdp1,2) and (N, vdp1,2). By

Remark 5.2 and (4), in the complement game to the (1, 2)-disjointly productive game,
players 1 and 2 are mutually dependent and all coalitions not containg both players i and
j are inessential, and, by Remark 4.2, in the (1, 2)-disjointly productive game, players 1
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and 2 are disjointly productive. For each further step, we obtain an analogous result which
can be easily shown by induction on the size k, 2 ≤ k ≤ n: in the (k − 1)th step, in the
(R,Q)-game, all players i ∈ R∪ {1} are mutually dependent, all coalitions not containg all
players i ∈ R ∪ {1} are inessential and all j ∈ Q are disjointly productive to player 1.
In the (n − 1)th step, we have R ∪ Q ∪ {i} = N . If R = ∅, all players i ∈ N\{1} are

disjointly productive to player 1 and for this game, byD, ϕ is unique for player 1. Otherwise,
all players i ∈ T, T := R ∪ {1}, are mutually dependent and all players j ∈ Q = N\T , are
null players. All players i ∈ T are symmetric in these games and, by D, E, and S, ϕ is
unique for player 1 in these games too. Using DPA repeatedly, it holds that the sum of
the payoffs to player 1 in all final games is equal to 1’s payoff in the game (N, v) and the
proof is complete.

Remark 5.4. As the proof shows, S could also be replaced by JP in this axiomatization.
That we cannot replace D in Theorem 5.3 with the weaker N shows the following TU-value
φ, which satisfies E, N, S, and DPA and is given by

φi(N, v) :=

∑

j∈N, v({j}) 6=0 v({j})

|{j ∈ N : v({j}) 6= 0}|
+

∑

S⊆N,S∋i,
|S|≥2

∆v(S)

|S|
, for all i ∈ N. (31)

6 Conclusion and a note on the complexity of computing the Shap-
ley value

The disjointly productive players property can also be understood as ‘loyalty’ to a group
of players. If a player is disjointly productive to all players outside a group of players, the
player is loyal to that group in the sense that the player does not engage in productive
activities outside the group. Therefore, a loyal player’s payoff is determined by the payoff
on a subgame on his/her group.
Grabisch and Roubens (1999) refer to two players as ‘acting independently’ when their

joint cooperation gain is zero. We deliberately use the term ‘disjointly productive’ because
our concern in forming coalitions with other players is not so much to be independent of
each other, but to express that we are not able to make cooperative gains with that player.
For example, the term ’mutually independent players’ is used in Hou et al. (2018) for
probability games in a completely different meaning. Although we find the term ‘jointly
productive’ more appropriate than ‘mutually dependent’ for the purposes of our research,
we stick with ‘mutually dependent’ because the term is now well established.
The merged players game property, when interpreted as a ‘split into disjointly produc-

tive players property,’ means that if a player splits into several other disjointly productive
players, the payoff to the players non-involved should not change. In this age of increas-
ing online activity, it is often impossible for participants to know whether different user
accounts always trace back to different users. If people in various groups cooperate to
different degrees and the resulting cooperation gains are to be distributed, it should not
matter under a fair solution concept whether a person participates with only one account
or with multiple accounts, as long as he or she makes the same total contribution overall.
However, these multiple accounts of a single individual may just be considered disjointly

productive, since this participant does not generate coalitional gains only with him/herself.
Therefore, satisfying the disjointly productive players property seems desirable for a fair
solution concept in this regard.
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Due to the steadily increasing use of artificial intelligence and machine learning, the
cooperative game theory is gaining importance, this is especially true for the Shapley value
(see, e.g., Štrumbelj and Kononenko [2014]), Takeishi [2019], and Rodŕıguez-Pérez and
Bajorath [2020]). Often, different (input) features are used as players and the payoffs are
calculated via the different interactions or effects of the features among each other using
the Shapley value. For reasons of complexity, approximation methods for the Shapley value
must already be used for relatively small sets of players. Nevertheless, if the players have
certain structures or properties among them, it may be possible to use exact algorithms.
It is well-known that null players and dummy players can be easily removed from a

(general) game. If we know that certain features or players have no influence on each other,
i.e., they are disjointly productive, both of the new introduced axioms come into play. Due
to the disjointly productive players property, the payoff to the other disjointly productive
players does not change when we remove a disjointly productive player. Especially, dummy
coalitions can be removed from the game, reducing the complexity of the calculation for
both the remaining players and the players within the dummy coalition. Due to the merged
players property, we can simply merge all mutually disjointly productive players into one
player and then compute the payoffs to the others with less complexity.
With a simple trick, mutually dependent players can also be valuable for calculating the

Shapley value. If we have a group of such only jointly productive players, we combine
them into a single player. For the payoff calculation, we then have to apply a weighted
Shapley value, where the merged player, e.g., gets as weight the number of merged players
and all others keep a weight of one (see Kalai and Samet [1987], Corollary 2). If we reduce
the number of players needed for a calculation, the accuracy of the results obtained by
approximation methods also improves.

7 Appendix

Wee show the logical independence of the axioms in our main results.

Remark 7.1. The axioms in Theorem 3.9 are logically independent:

• E: The TU-value ϕ := 2Sh satisfies DP and MP but not E.

• DP: The TU-value φ, defined for all N ∈ N , (N, v) ∈ VN, by

φi(N, v) :=











v({i})
∑

j∈N v({j})
v(N),

∑

j∈N v({j}) 6= 0,

Shi(N, v), otherwise,

for all i ∈ N. (32)

satisfies E and MP but not DP.

• MP: The TU-values φc, defined in Besner (2020) for all N ∈ N , (N, v) ∈ VN, and all
c > 0, by

φc
i(N, v) :=

∑

S⊆N,S∋i

|v({i})|+ c
∑

j∈S(|v({j})|+ c)
∆v(S) for all i ∈ N. (33)

satisfy E and DP but not MP.

Remark 7.2. The axioms in Theorem 4.7 and Theorem 5.3 are logically independent:
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• E: The TU-value ϕ := 2Sh satisfies DP/D, S, and MoB/DPA but not E.

• DP/D: The TU-value φ, defined by (31), satisfies E, S, and MoB/DPA but not
DP/D.

• S: Let W := {f : U → R++}, wi := w(i) for all w ∈ W, i ∈ U. The (positively) weighted
Shapley values Shw, given by

Shw
i (N, v) :=

∑

S⊆N,S∈i

wi
∑

j∈S wj

∆v(S) for all i ∈ N,

satisfy E, DP/D, and MoB/DPA but not S in general.

• MoB/DPA: The TU-values φc, given by (33), satisfy E, DP/D, and S but not
MoB/DPA.
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Štrumbelj, Erik, and Igor Kononenko. “Explaining prediction models and individual predictions
with feature contributions.” Knowledge and information systems 41.3 (2014): 647–665.

Takeishi, Naoya. “Shapley values of reconstruction errors of pca for explaining anomaly detec-
tion.” 2019 international conference on data mining workshops (icdmw). IEEE, (2019): 793–
798.

Vidal-Puga, Juan. “The Harsanyi paradox and the “right to talk” in bargaining among coali-
tions.” Mathematical Social Sciences 64.3 (2012): 214–224.


	Disjointly and jointly productive players and the Shapley value
	Abstract
	1 Introduction
	2 Preliminaries
	3 Disjointly productive players
	4 Modification of behavior.
	5 Additivity for a disjointly productive game and its complement
	6 Conclusion and a note on the complexity of computing the Shapley value
	7 Appendix
	References


