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1 Introduction

International migration has risen signi�cantly in recent years. According to the UN Migra-

tion Data Portal (UN DESA, 2020), about two-thirds of global migrants (around 205 million

individuals) were migrant workers in 2020, 53 percent of which were located in North Amer-

ica and Europe.1 These regions are the most R&D-intensive economies of the planet, with

the US alone accounting for approximately 28% of the world�s R&D funding in 2018. UN

DESA (2020) also reveals that the number of working age migrants aging 20-64 years old lo-

cated in the developed regions increased by a factor of 2.6 from 1990 to 2020, while the same

statistics applied to less- and least- developed regions does not go beyond 1.3. A natural

question then arises: given that innovation is the main growth driver for most developed

countries, what are the e¤ects of an increase in migration on R&D spending and economic

growth? And what are the e¤ects of increasing R&D spending on immigration �ows of the

innovating countries? And Also: Is it possible to state that implementing R&D-enhancing

policies in big innovating countries such as the US increases immigration �ows?

This paper aims at answering these questions by presenting a lab-equipment variant

of the Schumpeterian growth models of Grossman and Helpman (1991) and Aghion and

Howitt (1992) where the size of the workforce of the economy is endogenous and determined

by immigration. At the aggregate level, there are at least two channels through which

immigration can a¤ect R&D investment and economic growth. Firstly, immigration can

relax the resource constraint of the receiving economy due to an increase in the size of

the workforce that it generates. This e¤ect is commonly referred to as the "scale" e¤ect

and tends to increase the incentive of �rms to invest in R&D. Secondly, the lower wage

rate resulting from immigration reduces production costs, thereby creating a positive "cost-

saving" e¤ect that can potentially enhance R&D spending and innovation in the receiving

economies.

The paper focuses on the �rst transmission channel and investigates to what extent

the "scale" e¤ect can serve it well to explain how migration a¤ects innovation and growth

in the receiving economies. As is known, the �rst-wave of Schumpeterian growth models

predicts that the long-run growth rate of the economy is a positive function of its scale,

and thus that larger economies grow faster than smaller economies. However, in a very

in�uential paper, Jones (1995a) empirically rejected the scale e¤ect prediction of most �rst-

generation endogenous growth models (including the R&D based ones), and showed that

in the presence of growing populations these models predict explosive growth in the long

run. This critique gave rise to the emergence of a new generation of Schumpeterian models

where: (i) R&D spending is still endogenous and determined by the investment decisions of

pro�t-maximizing �rms; (ii) Growth is scale-free, meaning that it no longer depends upon

the size of the population.2

1Data are from the UN Migration Data Portal (last retrive, March 24, 2021), available at

https://migrationdataportal.org/?i=stock_abs_&t=2020.
2This literature o¤ers three main approaches to sterilize the scale e¤ect: (i) Diminishing technological

opportunities and increasing complexity of R&D [Jones (1995b); Kortum (1997); Segerstrom (1998)]; (ii)
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The main objective of the paper is to show that extending a standard second-wave

Schumpeterian growth model to migration can rehabilitate the "scale" e¤ect to make it

usable to shape the market e¤ect without incurring in a situation of explosive growth. To do

this, the paper focuses on the perspective of the receiving country of migration (henceforth,

the domestic country) and assumes that the �ows of migrant workers are governed by a

migration function, similar to that recently used by Lecca et al. (2013), in which the

net rate of migration of the domestic economy is postulated to depend upon two di¤erent

components: (1) An exogenous component capturing the non-economic motivations that can

make foreign workers wish to move permanently to the domestic country; (2) An endogenous

component capturing all of the economic motivations that can make foreign workers wish

to move temporarily abroad to exploit international wage di¤erentials.

Since cross-country wage asymmetries can be due to the presence of di¤erences in la-

bor institutions as well as to the existence of international gaps in labor productivity and

growth performance, the paper carries out the analysis of the interplay between migration,

innovation and growth at two di¤erent levels. Initially, I focus on a benchmark scenario with

complete technology transfer where the cross-country technology gap is exogenous and �xed

by initial conditions. In such a scenario, immigration is a positive function of the di¤erential

between the wage rate paid to the immigrant worker in the domestic country and some ex-

ternal reference wage currently paid in their home country (henceforth, the foreign country).

Next, the paper extends the baseline model to the case in which technology transmission

is incomplete, meaning that all of the foreign countries involved in the process of migra-

tion present local barriers preventing their economies from fully absorbing the last-invented

technology of the domestic economy. In this further scenario, international technology gaps

can gradually bridge over time, with the result that changes in cross-country di¤erences in

productivity growth can contribute to the formation of cross-country wage di¤erentials.

When productivity growth is assumed to be the same for both the sending and the

receiving economy, and then the technology gap is exogenous and determined by initial

conditions, I �nd that the Schumpeterian economy with migration tends to grow faster

than its counterpart without migration. Under these circumstances, I �nd that permanent

increases in the immigration ratio of the domestic economy lead to permanent increases in

R&D spending and economic growth. However, when the e¤ects of a pro-innovation policy

in the form of an increase in patent breadth are introduced, I �nd that stronger patent

protection, though still bene�cial for innovation and growth, has no e¤ects on immigration.

To investigate whether the latter result can be seen as a side e¤ect of the fact that

new technological knowledge completely spreads among countries when new innovations are

developed, in the second part of the paper I consider an extension of the benchmark model

in which the technology gap between the receiving and the sending economy can narrow only

Variety expansion [Dinopoulos and Thompson (1998); Peretto (1998); Young (1998); Howitt (1999)]; (iii)

Rent Protection Activities [Dinopoulos and Syropoulos (2007)]. Though in these models R&D spending is

endogenous and driven by �rms� innovation e¤orts, the determinants of the long-run growth growth rates

di¤er markedly across these approaches.
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gradually over time. Surprisingly enough, I �nd that strengthening patent protection in the

domestic country increases the rates of innovation and growth of the domestic economy, but

decreases immigration. This result is due to the fact that pro-innovation policies tend to

compress international technology gaps and can be explained by recalling Gerschenkron�s

(1986) theory of the "Advantage of Backwardness", according to which the countries that

lags behind the technology frontier tends to grow faster than those laying close to it.

This paper relates to the literature that studies the dynamic e¤ects of migration on

macroeconomic stability and economic growth. This literature can be split into two main

strands of investigation. The �rst strand aims at studying the macroeconomic e¤ects of

international migration through either one- or two-country neoclassical growth models of

the Ramsey type. This literature is far from being homogeneous and comprises, among

others, studies focusing on: (i) the interplay between business cycle and migration [e.g.,

Mandelman and Zlate (2012), Furlanetto and Robstad (2019), and Smith and Thoenissen

(2019)]; (ii) The short- and long-run impact of migration on labor market performance

and unemployment [e.g., Kiguchi and Mountford (2019), Lozej (2019) and Ikhenaode and

Parello (2020)]; (iii) The welfare consequences of illegal migration [e.g., Hazari and Sgro

(2003), Palivos (2009), Palivos and Yip (2010) and Liu (2010)]; (iv) The long-run impacts of

migration policy on capital accumulation, macroeconomic stability and social welfare [Ben-

Gad (2004), Klein and Ventura (2007, 2009), Khraiche (2015) and Parello (2019, 2021)].

With respect to this literature, this paper presents the following distinctive features.

Firstly, the paper focuses on legal migration and endogenous productivity growth. Conse-

quently, one of its contributions to the literature is to propose a tractable model in which

the interplay between migration and growth can be jointly analyzed. Secondly, whereas this

literature does not pay attention to the role that international technology gap may play in

shaping international labor mobility, in this paper this topic is extensively addressed through

an extension of the baseline model in which cross-country di¤erences in technical knowledge

is the result of the combined e¤ect of past immigration and past R&D e¤orts exerted by

the receiving economies. In this vein, the main result of the paper consists in showing how

changes in international technology gaps might shape future migration �ows. To the best

of my knowledge, these features and results of the paper are new for the literature.

The second strand of literature this paper is related to is that on migration and en-

dogenous growth. Far from being thick, this literature includes models in which the growth

process follows an AK-type scheme as in Romer (1986, 1987) [e.g., Faini, (1996) Reichlin

and Rustichini (1998), Kemnitz (2001), Larramona and Sanso (2001), Ben-Gad (2008)], and

models in which TFP growth is the result of some form of R&D investment [e.g., Bretschger

(2001), Lundborg and Segerstrom (2000, 2002), Drinkwater et al. (2007), Mondal and Gupta

(2008) and Brunnschweiler et al. (2021)]. In particular, this paper is close to the studies

of Lundborg and Segerstrom (2000, 2002), who propose two-country Schumpeterian mod-

els of growth with international trade to study the steady-state implications of migration

and R&D policy on innovation, consumer welfare and growth; and Brunnschweiler et al.

(2021), who develop an R&D-based model of growth with endogenous population to study

the interactions between fertility, innovation-led productivity and wealth distribution.
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With respect to Lundborg and Segerstrom (2000, 2002), this study di¤ers for the fol-

lowing three reasons. First, the theoretical setting presented in this paper abstracts from

international trade and focuses on the perspective of the receiving country of migration. Sec-

ond, whereas Lundborg and Segerstrom consider immigrant workers as perfects substitutes

for native workers, my paper focuses on the more empirically-relevant case in which native

and immigrant workers are imperfect substitutes in production. Third, while in Lundborg

and Segerstrom�s models migration incentives are determined completely by international

di¤erences in worker�s utility levels, which, in turn, implies that the type of migration con-

sidered by their paper is only permanent migration, my model admits both permanent and

temporary migration and focuses on international wage di¤erences as the major motivation

for migrating. Here, the value added of incorporating temporary migration into a Schum-

peterian growth are that: (i) the economy with migration grows faster than that without

migration; (ii) strengthening of intellectual property rights (IPR) in the domestic country

reduces the productivity-adjusted level of consumption of the native population.

With respect to Brunnschweiler et al. (2021), this paper presents the following distinctive

features. First, whereas in Brunnschweiler et al. (2021) innovation is a result of intra-

muros R&D in the spirit of Peretto (1998), in my framework it is the result of extra-muros

R&D as in Grossman and Helpman (1991) and Aghion and Howitt (1992). Second, while

Brunnschweiler et al. (2021) present a model with heterogeneous agents and endogenous

fertility, in this paper agents are homogenous and the growth rate of the population is

exogenous over time. Finally, whereas in this paper migration is a¤ected by wages and

technology, in Brunnschweiler et al. (2021) it is treated as a pure exogenous parameter to

be used to shock the population size.

The paper is organized as follows. Sections 2 presents the baseline model with complete

technology transfer and exogenous technology gap. Section 3 discusses the conditions under

which the unique steady-state equilibrium of the model is asymptotically stable. Section

4 uses the model to assess the long-run e¤ects that permanent increases in immigrants�

reference wage and domestic patent protection might generate on international migration,

R&D and growth. Section 5 extends the baseline model to the case of endogenous technology

gap and then it checks whether the results of Section 4 are robust to such a change in the

pattern of technology transmission. Finally, Section 6 concludes.

2 The model with complete technology transfer

2.1 An overview of the model

I consider an innovation-driven economy populated by a continuum Ln (t) of in�nitely-

lived native consumers/workers and a continuum Lm (t) of in�nitely-lived immigrant con-

sumers/workers, such that m (t) := Lm (t) =Ln (t) is the immigration ratio of the host econ-

omy at time t. The growth rate of the native population is exogenous and equal to � > 0,

while the growth rate of the immigrant population is assumed to be endogenously deter-
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mined by the model through a migration function in the spirit of Harris and Todaro (1970).

In particular, to endogenize migration I follow Layard et al. (1991) and Lecca et al. (2013),

and assume that net migration �ows are positively related to the di¤erence between the log

of real wages currently o¤ered in national labor markets.

In the model, �nal output improves as R&D causes the average quality of technology

to increase over time. I begin by presenting a baseline model with complete technology

transfer in which technological knowledge is assumed to transfer from one country to another

instantaneously. Then, in Section 5, I shall focus on an alternate version of the model with

incomplete technology transfer in which technological knowledge is assumed to transfer only

gradually between countries.

2.2 Consumption

2.2.1 Preferences

Let the subscript ` = fn;mg denote the type of the consumer, where n identi�es native

individuals and m identi�es non-native individuals (hereinafter immigrants). Individuals

are endowed with one unit of labor each. I assume that labor supply is inelastically supplied

and that all workers of the same type earn the same wage rate w`. Regardless of whether

individuals are natives or immigrants, they are assumed to have the same lifetime utility

function

U` (t) =

Z
1

0

e��t ln c` (t) dt, � > �, (1)

where � is the subjective discount rate of consumers.

Given (1), in the next two subsections, I shall consider the utility maximization prob-

lem of each consumer type separately. For expositional convenience, I shall drop the time

dependency of the endogenous variables whenever notation is not confusing.

2.2.2 Natives

Natives own �rms in equal shares and receive pro�ts as dividends. Their goal is to choose

the time path of consumption, fcn (t)gt2[0;1), that maximizes (1) subject to a sequence of

budget constraints given by

_an = (r � �) an + wn � cn, an (0) given,

where an is the stock of �nancial assets owned by the representative native at time t, r is

the real rate of return on these assets and wn is the wage rate paid to native workers. The

current-value Hamiltonian associated with this problem writes

H = log cn + � [(r � �) an + wn � cn] ,

where � is the shadow price of wealth which is the costate variable of the problem. The �rst-

order conditions are @H=@cn = 0 and @H=@an = �� � _�, while the transversality condition
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is lim
t!1

n
e�

R t
0 [r(s)��]dt�an

o
= 0. Therefore, combining these conditions I can write

_cn = cn (r � � � �) (2)

lim
t!1

�
e�

R t
0 (r(s)��)ds

an
cn

�
= 0: (3)

Equation (2) is the familiar Euler equation for consumption, according to which only

when the real rate of return of assets r exceeds the rate of time preference � it is possible to see

the per capita consumption of natives grow over time. Equation (3) is instead the standard

transversality condition that prevents native consumers from jumping onto explosive paths.

2.2.3 Immigrants

At each time t, migration is supposed to depend upon two di¤erent components: a �rst, long-

lasting component not directly linked to the relative economic conditions of the countries

involved in the migration process; a second, temporary component in which people�s decision

to migrate is based on the need of exploiting, even for very short time frames, all of the

employment opportunities appearing around the world.

In order to get analytical results, in the remainder of the paper I shall assume that

the whole migration process towards the domestic economy is governed by the following

migration function (see Layard et al., 1991; Treyz et al., 1993; Lecca et al., 2013)

_Lm
Lm

= ' (lnwm � lnwf ) + �, � 2 [0; �) , ' > 0, (4)

where _Lm =Lm is the rate of net migration, wf is the reference wage of immigrants, ' is

an elasticity parameter measuring how a change in the wage gap may a¤ect the rate of net

migration and � is an exogenous parameter that captures all of the other motivations for

migrating not related to the relative conditions of local labor markets. From (4), it follows

that the immigration ratio of the domestic economy, m, changes over time according to the

following di¤erential equation

_m = [' (lnwm � lnwf )� (� � �)]m. (5)

Given an initial condition m (0), (5) governs the intertemporal evolution of the immi-

gration ratio of the domestic economy. However, to solve for the steady state, I make the

following assumption:

Assumption 1 The reference wage of immigrants is given by

wf := �wfAf ,

where Af denotes the level of technology of the foreign economy and �wf > 0 is the productivity-

adjusted reference wage of immigrants.
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Once in the domestic country, the goal of each immigrant consumer is to choose a

path for consumption, fcm (t)gt2[0;1), that maximize (1). To simplify the model, I assume

that immigrants are credit-constrained agents, not allowed to smooth consumption through

capital markets. This implies that immigrants are hand-to-mouth consumers bounded to

consume according to the individual consumption function3

cm = wm: (6)

Equation (6) completes the description of the demand side of the domestic economy.

2.3 Production

The production side of the domestic economy consists of a lab-equipment version of the

Schumpeterian growth models of Grossman and Helpman (1991) and Aghion and Howitt

(1992) extended to include immigrant labor.

2.3.1 The �nal output

Final output Y is produced by a unit continuum of competitive �rms using the following

Cobb-Douglas production function

Y = Z1��L�, � 2 (0; 1) , (7)

where Z and L are two composite inputs taking the following forms

Z := exp

�Z 1

0

ln z (i) di

�
(8)

L :=
�
(1� �)L1�1=�n + �L1�1=�m

�1=(1�1=�)
, � 2 [0; 1) , � > 1. (9)

The intermediate composite (8) is a Cobb-Douglas aggregator over a unit continuum

of di¤erentiated intermediate goods, where z (i) denotes the quantity of the intermediate i

used for the production of the �nal good at time t. The labor composite (9) is instead a

CES aggregator over labor types, where � is the distribution parameter of the CES and � is

the elasticity of substitution between labor types. This speci�cation of the composite input

L enables me to consider all degrees of substitutability between labor types that lie between

the extreme of � = 0 (perfect complementarity) and � = 1 (perfect substitutability).4

3When analyzing the dynamic stability of pure Neoclassical economy with circular migration, I have

shown that extending the model to fully-optimizing immigrants does not change the main �ndings of the

paper while it complicates the analysis (see Parello, 2019, 2021). Likewise, it can be shown that extending

the model to non-credit constraint migrants does not alter the main results of the model.
4Indeed, when � = 0, domestic and foreign workers are used in �xed proportions and (9) turns into the

"Leontief-like" composite: L = [min fLn; Lmg]
�
. Likewise, when � = 1, domestic and foreign workers are

perfect substitutes in production and L becomes linear in Ln and Lm: L = (1� �)Ln+ �Lm. Finally, when

� = 1, domestic and foreign workers are complements in production with unitary elasticity of substitution,

and (9) boils down to the Cobb-Douglas aggregator: L = L1��n L�m.
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However, since two in�uential contributions by Manacorda et al. (2012) and Ottaviano and

Peri (2012) �nd signi�cant values for � ranging from 7 to 20 (imperfect substitutability), in

the remainder of the paper I shall focus on � > 1 and restrict the scope of the analysis to

the special case in which natives and immigrants are imperfect substitutes in production.

Given (7), (8) and (9), pro�t maximization leads to the following necessary and su¢cient

conditions

p (i) =
(1� �)Y

z (i)
, for all i 2 [0; 1] , (10)

wn =
�Y (1� �)L

�1=�
n

L1�1=�
(11)

wm =
�Y �L

�1=�
m

L1�1=�
; (12)

where p (i) is the price of intermediate i at time t.

Equation (10) implicitly de�nes the conditional demand schedule of each intermediate

i. As is easy to verify, such a demand function has a constant price elasticity equal to

�1. Equations (11) and (10) are instead the conditional demand functions for native and

immigrant workers respectively. From these conditional demands, it follows that:

Lemma 1 The relative wage of natives is an increasing function of the immigration ratio

of the domestic economy, m = Lm=Ln, and is given by

wn
wm

=
(1� �)m1=�

�
:

Proof. The result follows straightforwardly by dividing (11) by (10).

2.3.2 Intermediates

The intermediate sector consists of a continuum of intermediate industries indexed on the

unit interval i 2 [0; 1]. Each industry is dominated by a local leader who has been given

fully-enforced patent rights for the use of the most advanced technological knowledge lastly

introduced in the industry. The production function of the leader is

z (i) = A (i)Z (i) , (13)

where Z (i) is the �ow of �nal output used for the production of the ith intermediate and

A (i) is the quality-level of technology used by the leader of industry i at time t.

To improve technology, �rms compete in innovation races. Following Grossman and

Helpman (1991) and Aghion and Howitt (1992), I focus on a step-size quality index of the

form A (i) := 
j(i), where 
 > 1 is the exogenous step size of the quality improvement and

j (i) is a counting for the number of quality improvements that have occurred in industry i as

of time t. Since the �nal good serves as the numéraire of the model, the above speci�cation

for A (i) implies that the marginal cost of production of the ith industry leader can be
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written as MC (i) = 1=A (i). Consequently, each time that an innovation occurs and the

quality index jumps from level Aj (i) := 
j(i) to level Aj+1 (i) := 
j(i)+1, the marginal cost

drops accordingly from 1=Aj (i) to 1=Aj+1 (i).

As the demand curve (10) is unit-elastic, each industry leader will charge the maximum

price that avoids competition by the next-best e¢cient producer. In Grossman and Helpman

(1991) and Aghion and Howitt (1992), the optimal pricing consists in charging a markup

over time marginal cost equal to the quality step size 
. In this paper, I follow Chu (2011)

and assume that the markup depends on the the degree of protection of IPR; this leads to

the limit price

p (i) =
�

A (i)
, � 2 (1; 
] , (14)

where � is the markup over the marginal cost capturing the breadth of patent protection of

the domestic country at each time t; i.e., the minimum size of improvements that the next

innovating �rm has to make in order to obtain a non-infringing patent.5

Substituting from (14) into the conditional demand for intermediates (10) and the �rm�

pro�t function � (i) = [p (i)� 1] z (i), it follows that the �ows of sales and pro�ts of each

industry leader i can be written as

z (i) =
A (i) (1� �)Y

�
(15)

� (i) =
(�� 1) (1� �)Y

�
: (16)

In (15) and (16), the presence of Y causes z (i) and � (i) to be dependant upon the

size of the domestic economy. However, while (16) turns out to be technology-free and

identical across industries, (15) is clearly �rm-speci�c and dependant upon the level of the

productivity index A (i). Yet, combining (13) and (15), it can be shown that all industry

leaders employ the same amount of �nal output equal to Z = (1� �)Y=�. In Section 2.5,

I shall show that a permanent increase in m generates a permanent increase in both Z and

� due to an increase in �nal output, Y . In the reminder of the paper, I shall refer to this

e¤ect as the "scale" e¤ect of migration.

2.4 R&D races

Innovations in any intermediate industry are assumed to follow a Poisson process with arrival

rate

� (i) =
R (i)

�ALn
, � > 0, (17)

5The explanation for optimal pricing (14) is the following. When � = 
, patent protection covers the

whole step size of innovation, implying that innovators are fully protected against imitation. However, when

� < 
, a fraction 
�� of the improvement in technological knowledge is not covered by the patent and can

therefore be imitated by rivals.
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where R (i) is R&D spending expressed in terms of �nal output, � is a technology parameter

and A is the aggregate level of technology of the domestic economy at time t. The presence

of A at the denominator of (17) captures the fact that the inventions that are easier to

discover tend to be discovered earlier in time, while the presence of Ln captures the idea

that introducing successfully new intermediate products and to replace old ones is more

di¢cult in a larger market. Both terms are necessary for the attainment of non-explosive

growth rates in the steady state.6

To fund the up-front cost of R&D, �rms sell equity shares to domestic households. Let

v (i) be the the value of a patented innovation in industry i at time t. Shares from innovating

�rms pay dividends at rate � (i)dt, earn capital gain at rate [ _v (i) =v (i)]dt and su¤er capital

loss v (i) with probability � (i)dt. This gives the following no-arbitrage condition for R&D

investment

rv (i) = � (i)� � (i) v (i) + _v (i) : (18)

Due to perfect competition in R&D, patents are priced at marginal cost. This requires

v (i) = �ALn: (19)

Equation (19) is the free-entry condition to R&D. Notice that when (19) holds, �rms are

indi¤erent between R&D projects in di¤erent industries and R&D spending can be chosen

such that each industry has the same �ow rate � (i) = �.

2.5 Aggregate �nal output and productivity growth

In Section 2.3.2, I have shown that all intermediate producers employ �nal output at the

same intensity. Consequently, combining (7), (9) and (15), it follows that the aggregate �nal

output is an increasing function of the immigration ratio

Y = A
�
1� � + �m1�1=�

�1=(1�1=�)
Ln; (20)

where A := exp
hR 1
0
lnA (i) di

i
= exp

hR 1
0
ln 
j(i)di

i
is an aggregate productivity index cap-

turing the overall level of technological knowledge of the domestic economy at time t. Ap-

plying the law of large numbers, it follows that the growth rate of aggregate productivity

can be written as

_A

A
= � ln 
: (21)

From (21) it is easy to see that an increase in immigration does not a¤ect productivity

growth directly. However, as (20) clearly shows, migration can a¤ect R&D spending and

6The approach used in this paper to get non-explosive growth rates is similar to that introduced by Li

(2003). It can be shown that using Ln + Lm to proxy the scale of the domestic economy does not change

the main results of the paper while it complicates the analytical structure. The formal demonstration of

this result is available upon request.
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innovation indirectly through changes in the size of �nal output. To see this more succinctly,

I combine (16), (18), (19), (20) and (21) to obtain the following expression for the rate of

return on R&D

r =
(1� 1=�) (1� �)

�
1� � + �m1�1=�

�1=(1�1=�)

�
+ � � � (1� ln 
) : (22)

As is easy to verify from (22), increases in the immigration ratio m lead to increases in

the real rate of return, r. This result is due to the "scale" e¤ect of migration introduced

in Section 2.3.2 and represents a distinguishing feature of this model with respect of the

standard Schumpeterian framework without migration.

2.6 Resource constraints

The domestic economy has three production inputs: �nal good, native labor and immigrant

labor. Given (20), the �nal-good market clearing condition requires the sum of aggregate

consumption, cnLn + cmLm, intermediates production,
R 1
0
Z (i)di, and R&D investment,R 1

0
R (i)di, to equate aggregate �nal good, Y ; that is, it must be that Y = cnLn + cmLm +R 1

0
Z (i)di+

R 1
0
R (i)di is satis�ed at each time t. Therefore, combining (6), (12) (13), (15),

(17) and (20), and recalling that in the symmetric equilibrium Z (i) = Z and � (i) = �, the

�nal-good market clearing condition reads

1 =
cn=A+��

(1� � + �m1�1=�)
1=(1�1=�)

+
��m1�1=�

1� � + �m1�1=�
+
1� �

�
: (23)

In the labor market, conditional demands for native and immigrant labor are given by

(11) and (10). Using (9) and (20) to substitute for L and Y in (10) and (11) yields

wn = � (1� �)A
�
1� � + �m1�1=�

�1=(��1)
(24)

wm = ��A
�
1� � + �m1�1=�

�1=(��1)
m�1=�: (25)

The wage rates from (24) and (25) both grow at same rate as productivity (21). To

ensure balanced growth, it is therefore necessary to make the following assumption:

Assumption 2 The level of technology of the foreign economy, Af , grows over time at the

same rate as the level of technology of the domestic economy, A.

Implicitly, Assumption 2 postulates that when a new innovation is introduced in the

domestic economy, it is instantaneously transferred to (and applied by) the foreign country.

This assumption is made just to make migration only dependant upon the relative conditions

of national labor markets and can be justi�ed in many ways. For instance, it can be justi�ed

by saying that no institutional barriers to the adoption of the innovations introduced by

domestic �rms exist in the foreign country, and that all of the newest technologies invented

by the domestic country are always appropriate for the production system of the foreign
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country. In Section 5, I shall remove this assumption and shall show that if domestic

innovations are only partially implementable abroad, many �ndings of the baseline model

may change substantially.

From Assumption 2, it follows that the cross-country technology gap A=Af is always

stationary over time and is �xed by initial conditions A (0) =Af (0).
7 Therefore, plugging

(25) into (5), it can be shown that the rate of net migration towards the domestic country

is independent of technical change and is given by

_m

m
= ' ln

(
��
�
(1� �)m1=��1 + �

�1=(��1)

!f (0)

)

� (� � �) ; (26)

where !f (0) := �wfAf (0) =A (0) is the productivity-adjusted reference wage of immigrants.

3 The perfect-foresight dynamic equilibrium

3.1 Characterization of the equilibrium

De�nition 1 For any initial levels of aggregate technology, A (0), and immigration ratio,

m (0), a perfect-foresight dynamic equilibrium consists of time paths fcn, cm, A, m, Z,

Rgt2[0;1) and fr, wn, wm, [p (i)]i2[0;1]gt2[0;1) that: (i) satisfy the system of equations (2),

(6), (14), (15), (17), (21), (24), (25), (26) and (22); (ii) ful�ll the inequality constraints

cn � 0, cm � 0, A � 0, m � 0,Z � 0, R � 0; (iii) satisfy the transversality conditions (3);

(iv) clear the resource constraint (23).

The intertemporal behavior of the model can be studied through a di¤erential-algebraic

system given by (2), (21), (22), (23) and (26). In the system, the di¤erential equations (2),

(21) and (26) determine the time paths of cn, A and m, and the algebraic equations (23)

and (22) determine the equilibrium values of � and r. For a long-run equilibrium to exist,

it must be that natives� consumption and productivity grow boundlessly at a common (and

constant) rate g > 0. When this happens, the immigration ratio m and the consumption-

to-technology ratio cn=A appearing on the right-hand side of (23) are both stationary over

time.

Therefore, de�ning the productivity-adjusted level of natives� consumption as xn :=

cn=A, di¤erentiating it with respect to time and then using (2), (21), (22) and (23) to get

rid of _cn, _A, � and r from the resulting expression, the study of the dynamic properties of

7Notice that assuming exogenous and everlasting di¤erences in TFP between the receiving and sending

economies is the custom in many dynamic two-country macro-models with endogenous migration and ex-

ogenous growth. Examples are the models of Klein and Ventura (2007, 2009), Mandelman and Zlate (2012)

and Ikhenaode and Parello (2020).
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the model reduces to study the time behavior of the following two-dimensional system of

di¤erential equations in xn and m

_xn
xn
=
xn � � (1� �)

�
1� � + �m1�1=�

�1=(��1)

�
� �: (27)

_m

m
= '

(

ln

�
��

!f (0)

�
+
ln
�
(1� �)m1=��1 + �

�

�� 1

)

� (� � �) ; (28)

where (28) comes directly from rearranging (26).

In system (27)-(28), xn acts as a "pseudo" jump variable and m acts as a state variable,

whose value at time t = 0 is predetermined by history. A steady-state equilibrium for the

domestic economy is reached if _xn = _m = 0 holds over time. When this happens, the long-

run ratio of immigrants over natives is constant over time and equal to m�, while natives�

per capita consumption, cn, and technology, A, are pure exponential functions of time in

the form

cn (t) = cn (0) e
gt and A (t) = A (0) egt. (29)

The following proposition shows under what conditions a steady-state equilibrium for

the domestic economy exists and is unique

Proposition 1 If

!f (0) < ���=(��1)e(���)=' (30)

� <
(1� 1=�) (1� �) (1� �)1=(1�1=�)

�
(31)

are satis�ed, then, for any given initial condition m (0), there exists a unique steady-state

equilibrium for the dynamic system (27)-(28) where: (i) The levels of the immigration ratio

m and productivity-adjusted per capita consumption xn are given by

m� =

8
<

:

"
!f (0) e

(���)='

�� (1� �)1=(��1)

#��1
�

�

1� �

9
=

;

�=(1��)

(32)

x�n = �� + � (1� �)
h
1� � + � (m�)1�1=�

i1=(��1)
; (33)

(ii) The rates of innovation and growth are both positive and equal to

�� =
(1� 1=�) (1� �)

h
1� � + � (m�)1�1=�

i1=(1�1=�)

�
� � (34)

g� =

8
><

>:

(1� 1=�) (1� �)
h
1� � + � (m�)1�1=�

i1=(1�1=�)

�
� �

9
>=

>;
ln 
; (35)

(iii) The unique equilibrium trajectory converging to the steady state (32)-(33) is saddle-path

stable.
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Proof. See appendix A.

Based on Proposition 1, if (30) and (31) are both satis�ed, a unique steady state exists

where the domestic economy grows smoothly over time at rate (35). The �rst restriction on

!f (0) identi�es an upper bound for the level of the productivity-adjusted reference wage of

immigrants beyond which emigration is no longer convenient for non-natives. In fact, when

(30) does not hold, foreign individuals do not �nd it convenient to leave their home country

and work abroad. Consequently, it is only when (30) is satis�ed that migration turns out

to be positive at the steady-state equilibrium. The second restriction on the rate of time

preference � guarantees that the rates of innovation and economic growth are both positive

in the long run, even in the absence of migration. Indeed, when (31) is binding, (34) and

(35) are both positive even in the case in which labor cannot move across countries (i.e.

when m� = 0).

Glancing at (35), it can be easily seen that one of the results of the paper is that

the Schumpeterian economy with migration grows faster than that with labor immobility.

Intuitively, this result is due to the presence of m� on the right-hand side of (35), which,

in turn, is due to the positive "scale" e¤ect that migration on �rms� pro�ts. Indeed, when

� = m� = 0 holds, the rates of innovation and growth of the domestic economy reduce to

~� = (1� 1=�) (1� �) =� � � and ~g = ~� ln 
, which are the rates of innovation and growth of

the lab-equipment version of a standard quality-ladder Schumpeterian growth model without

labor migration. This �nding can be summarized by the following proposition

Proposition 2 Suppose that restrictions (30) and (31) are satis�ed. Then, opening-up a

Schumpeterian economy to migration is bene�cial for innovation and economic growth.

Proof. See the text.

Propositions 1 and 2 complete the characterization of the dynamic properties of the

perfect-foresight equilibrium of the model. In the next section, I shall apply the model

to assess the macroeconomic e¤ects of increasing immigration and patent protection on

domestic R&D spending and growth.

4 Assessing the e¤ects of an increase in migration and

patent protection

4.1 The e¤ects of an increase in migration

Consider the domestic economy in its own steady-state equilibrium and suppose that, for any

given ��, the productivity-adjusted level of the reference wage of immigrants �wf decreases

permanently. The following proposition summarizes the main �ndings of this section:
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Figure 1: Transitional dynamics. The Figure assumes a permament fall in !f (0).

Proposition 3 A permanent fall in the productivity-adjusted reference wage of immigrants

�wf leads to: (i) a permanent increase in the steady-state immigration ratio, m
�; (ii) a

permanent increase in the steady-state level of consumption per native, x�n; (iii) a permanent

increase in the steady-state rates of innovation, ��, and economic growth, g�:

Proof. See Appendix B.

According to Proposition 3, an increase in migration is bene�cial for the growth perfor-

mance of the domestic economy. To see why this is so, suppose that the domestic economy

in its own steady-state equilibrium - see point E0 in Figure 1 - and assume that, at t = 0,

a negative shock makes !f (0) fall permanently. Before the shock, the long-run equilibrium

of the economy was characterized by the pair
�
m�
0; x

�
n;0

	
and for a time path of natives�

consumption equal to cn (t) = x�n;0A (0) e
g�0 t, where g�0 is the equilibrium growth rate of the

domestic economy when the equilibrium is at E0.

The fall in !f (0) causes the economy to deviate from the steady state
�
m�
0; x

�
n;0

	
: In

response, natives modify their consumption/saving decision by making their consumption-

to-productivity ratio jump from x�n;0 to xn (0). To do this, natives have to revise their initial

level of consumption and choose cn (0) = x�n;1A (0) so as to allow the economy to jump

onto the unique stable arm (the dashed line in Figure 1) that monotonically converges to

the after-shock steady-state equilibrium
�
m�
1; x

�
n;1

	
- see point E1 of Figure 1. Along the

converging path, both xn and m grow smoothly over time, implying that, for a temporary

time frame, consumption per capita, cn, has to grow faster than domestic technology A.
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It is worth noticing that while the long-run e¤ects on innovation and growth are clearly

positive, the short-run e¤ects on R&D spending and growth are negative because of the

short-run increase in consumption. Indeed, while it is incontestable that the increase in m

is bene�cial for the economic growth in the long run, in the short run the initial jump of

natives� per capita consumption cn (0) slows down innovation and growth because it reduces

the amount of resources that can be devoted to research.

4.2 The e¤ects of rising patent breadth

Consider now a further comparative statics exercise in which, starting from an initial steady-

state equilibrium
�
m�
0; x

�
n;0

	
, the government of the domestic economy decide to strength-

ening IPR protection by increasing patent breadth, �. Overall, the steady-state e¤ects of

increasing � can be summarized as follows

Proposition 4 A permanent increase in patent breadth, �: (i) has no e¤ects on the steady-

state immigration ratio, m�; (ii) has no e¤ects on the steady-state level of the technology-

adjusted consumption of natives, x�n; (iii) increases both the steady-state rate of innovation,

�� and economic growth, g�.

Proof. See Appendix B.

Whereas result (iii) of Proposition 4 lines up with the Schumpeterian growth literature,

results (i) and (ii) are new for literature and deserve to be discussed. Result (i) is quite

intuitive and can be easily explained by recalling Assumption 2 of the previous section.

Indeed, when the foreign country is always able to bridge the technology gap with the

domestic economy completely, each time that a new innovation occurs the wage ratio between

countries remains unchanged and migration is not a¤ected by domestic R&D. Therefore, in

such a scenario it is the local conditions of labor markets that matters in determining relative

wages and migration �ows.

The explanation for result (ii) of Proposition 4 is instead a bit more involving and relies

on the fact that (33) is independent of �. This, in turn, can be explained by the need of

the domestic economy to stay at the steady state when migration is unchanged, a need that

the model can only satisfy if and only if the increase in the quality-level of technology A

induced by the change in patent policy is exactly compensated by an increase in natives�

consumption cn.

To see this point more closely, consider again the initial steady-state equilibrium E0
depicted in Figure 1. When � increases, �rms �nd it convenient to increase their R&D

spending to speed-up the invention of new technologies. However, to accommodate the

increase in R&D spending, natives� consumption must instantaneously adjust to compensate

the increase in technology and thus let the domestic economy remain stuck at
�
m�
0; x

�
n;0

	
.8

8Graphically, this result follows from the fact that the two isoclines _xn = 0 and _m = 0 in Figure 1 do

not move because of the increase in �, and hence from the fact that that the initial steady-state equilibrium
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Evidently, this result is quite unrealistic, especially when the process of migration in-

volves least developed and emerging economies. Consequently, in the next section I shall

consider an alternate scenario in which the technology gap between countries is endogenously

determined by the model.

5 Endogenous technology gap

In this section, I shall remove Assumption 2 and postulate that: (i) international technology

transfer is incomplete, so that only a share of domestic R&D is useful to improve productivity

in the foreign country; (ii) the knowledge spillover that domestic innovations generate on

foreign productivity tend to fade away over time because of technology obsolescence.

5.1 The model with incomplete technology transfer

I consider the same innovation-driven economy with migration of Section 2, in which agents�

preferences and �rms� technologies are still given by (1), (7), (8), (9), (13) and (17). In this

economy, immigration still evolves according to (5), where the reference wage of immigrants

is still supposed to be proportional to the technology level of the foreign country; i.e. wf =

�wfAf . However, in contrast with the baseline model of Section 2, in this section I assume

that the foreign economy can update her technology to that of the domestic country only

gradually, so that Af always di¤ers from A, with Af < A.

More speci�cally, throughout this section I shall assume the following

Assumption 3 At each time t, the level of technology of the foreign economy is given by

Af (t) = "

Z t

0

�
R (s)

Ln (s)

�
e (s�t)ds, " 2 [0; 1) ,  � 0: (36)

In (36), the stock of technical knowledge of the foreign economy is described as a declining

weighted average of the past R&D investment of the domestic economy, R (t) =Ln (t), where

" is an externality parameter capturing how much of the domestic R&D spending contributes

in the formation of Af and  is a persistence parameter measuring how long an increase in

R=Ln contributes to the formation of Af .
9 Again, division by Ln of R&D spending R serves

to avoid the generation of explosive paths for innovation and growth rates.

obtained for system (28) and (27) is not a¤ected by the policy change of the domestic economy.
9The presence of the weighting function e (s�t) implies that new R&D spending contributes more to

foreign technology than those further back in time. Indeed, when s = t, only the share " of the domestic

country�s R&D spending to improve the state of the art of technology of the foreign country. However, when

s < t, the contribution of the domestic country�s R&D spending to the formation of Af (t) is smaller the

bigger is the distance of s from t. This feature of (36) is intended to introduce some form of obsolescence

induced by creative destruction even in the foreign country.
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Assumption 3 does not modify the main optimality conditions of the baseline model,

implying that natives� consumption and domestic technology still evolve over time according

to the same dynamic equations (2) and (21). Nor it modi�es the resource constraint of the

domestic economy, which can be still written as in (23). What it does change because of

Assumption 3 is (26) due to the fact that now the technology gap between countries plays

a key role in shaping the migration �ows towards the domestic country. Indeed, plugging

(25) into (5), it is easy to verify that the time path of the immigration ratio m now depends

on the technology gap A=Af according to

_m

m
= '

(

ln

�
��

�wf

�
+ ln

�
A

Af

�
+
ln
�
(1� �)m1=��1 + �

�

�� 1

)

� (� � �) ; (37)

where, upon di¤erentiation of (36), it can be easily shown that the level of technology of

the foreign country is expected to evolve over time according to the following di¤erential

equation

_Af =
"R

Ln
�  Af : (38)

Notice that, in contrast to (26), in (37) cross-country R&D spillovers play an active

role in shaping migration �ows. In fact, permanent changes in R&D spending per domestic

worker, R=Ln, have permanent e¤ects on the long-run immigration ratio m through (38).

5.2 Characterization of the dynamic equilibrium

A perfect-foresight dynamic equilibrium for the model with incomplete technology transfer

can be de�ned as follows:

De�nition 2 For any initial conditions A (0), Af (0) andm (0), a perfect-foresight dynamic

equilibrium for the extended model consists of time paths fcn, cm, A, m, Z, Rgt2[0;1) and

fr, wn, wm, [p (i)]i2[0;1]gt2[0;1) that: (i) satisfy the system of equations (2), (6), (14), (15),

(17), (21), (24), (25), (22), (37) and (38); (ii) ful�ll the inequality constraints cn � 0, cm �

0, A � 0, Af � 0, m � 0,Z � 0, R � 0; (iii) satisfy the transversality conditions (3); (iv)

clear the resource constraint (23).

From De�nition 2, it follows that the dynamics of the extended model can be studied

through a new di¤erential-algebraic system formed by the di¤erential of equations (2), (21),

(37) and (38), which establish the equilibrium paths of cn, A, m and Af , and by the

algebraic equations (22) and (23), which determine the values of � and r. Thus, by de�ning

the productivity-adjusted level of consumption of natives by xn = cn=A and the relative

technology level of the domestic economy by 
 := A=Af , the dimension of the dynamic

system of the model can be reduced to only three nonlinear di¤erential equations in xn, m

and 
. In particular, combining (2), (21), (23) and (22), it can be seen that the dynamic
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equation governing the time path of xn does not change because of Assumption 3 and is still

given by (27). Next, to yield the law of motion of m, it su¢ces to replace A=Af with 
 in

(37) to obtain

_m

m
= '

(

ln

�
��

�wf

�
+ ln
 +

ln
�
(1� �)m1=��1 + �

�

�� 1

)

� (� � �) : (39)

Finally, to determine the di¤erential equation governing the dynamics of the relative

productivity of the domestic economy 
, I log-di¤erentiate 
 with respect to time and then

use (17), (21), (23) and (36) to get rid to _A, � and _Af ; this gives the following expression

_




=  �

"
(�+ �� 1) (1� �) + (�� 1) (1� �) �m1�1=�

�� (1� � + �m1�1=�)
1=(1��)

�
xn
�

#

("�
� ln 
) . (40)

A steady state equilibrium for the domestic economy is given by the triple fm�;
�; x�ng

solving (27), (39) and (40) when _xn = _m = _
 = 0 holds. In the steady state, the immigration

ratio m and the relative technology of the domestic country are both constant over time and

equal to m� and 
�, while natives� per capita consumption, cn, and technology, A, are pure

exponential functions as in (29) growing smoothly over time at the common rate g > 0.

Analytically, the steady-state equilibrium of the model can be obtained by solving the

following algebraic system10

xn = ��+ � (1� �)
�
1� � + �m1�1=�

�1=(��1)
(41)




�
��

�wf

��
(1� �)m1=��1 + �

�1=(��1)
= e(���)=' (42)

(1� 1=�) (1� �)
�
1� � + �m1�1=�

�1=(1�1=�)

�
= �+

 

"�
� ln 

: (43)

The following proposition indicates under which restrictions a steady-state equilibrium

for the domestic economy exists and is unique.

Proposition 5 If

" >
���=(��1) ln 


� �wfe(���)='
(44)

� <
(1� �) (1� 1=�) (1� �)1=(1�1=�)

�
(45)

are satis�ed, then, for any given pair of initial conditions h
 (0), m (0)i, there exists a unique

steady-state equilibrium where: (i) m� > 0, 
� > 0 and x�n > 0 are the solution of system

(41)-(43); (ii) the rates of innovation and economic growth are both positive and still given

by (34) and (35).

10To obtain the steady-state system (41)-(43), it su¢ces to set _xn = _m = _
 = 0 in (27), (39) and (40),

and then rearrange the resulting equations.
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Figure 2: The ABGP of the extended model.

Proof. See Appendix C.

Figure 2 can help to explain the results summarized by Proposition 5. In the �gure, the

convex curve F (m) indicates all of the combinations ofm and 
 that cause the productivity-

adjusted level of per capita consumption of natives, xn, and the relative technology of the

domestic country, 
, to be stationary over time.11 The concave curve G (m) is instead the

isocline of the migration function (39), obtained upon setting _m = 0.

The equilibrium condition F (m) presents a positive vertical intercept F (0) and a positive

horizontal asymptote at F (1), where restriction (45) on the rate of time preference � makes

F (0) to be larger than F (1). The isocline G (m) has instead a zero vertical intercept and

a positive horizontal asymptote at G (1). For F (m) and G (m) to intersect it must be that

F (1) < G (1) is satis�ed, and then that the horizontal asymptote of G (m) lays above that

of F (m) as portrayed in Figure 2. However, for this to happen, " must satisfy restriction

(44); i.e. the cross-country R&D spillover must be su¢ciently larger to make the foreign

economy to bene�t from domestic innovation. Once that m� and 
� have been determined

through (42) and (43), (41) can be used to determine x�n.

Notice that when Assumption 3 holds, the upper bound for the reference wage of im-

migrants (see restriction (30) of Proposition 1) disappears from the model. This is due to

the fact that, when the technology gap is endogenous, the reference wage of immigrants

presents an additional (and ever-growing) component given by the variable 
 that always

a¤ects the foreign workers� decision to either migrate or not migrate to the domestic econ-

omy. However, in the next section I shall show that whereas all of the comparative statics

11To obtain the function F (m), it su¢ces to set _xn = _m = 0 to equations (27) and (39), and then

combining the two resulting expressions so as to cancel the variable xn. For the analytical details about the

derivation of the two curves appearing in Figure 2 see Appendix C.
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properties of the baseline model with respect to changes in migration are not a¤ected by the

presence of incomplete technology transfer12, those related to changes in the R&D policy of

the domestic economy change dramatically.

5.3 Increasing migration and patent breadth policy

In this section, I shall perform two comparative statics exercises to assess (i) how migration

can e¤ect innovation and growth and (ii) to what extent an increase in patent protection in

the domestic economy can serve as a propeller for new immigration.13 I begin by considering

the e¤ects of an increase in migration on innovation and growth. To do this, I keep assuming

that the domestic economy is in its own steady-state equilibrium and that, at a given point in

time, a negative shock hits the reference wage of immigrants causing �wf to fall permanently.

The following proposition summarizes how the fall in �wf impacts on the domestic econ-

omy

Proposition 6 A permanent decrease in the productivity-adjusted reference wage of immi-

grants �wf : (i) increases the steady-state immigration ratio, m
�; (ii) shrinks the technology

gap between countries, 
�; (iii) increases the steady-state level of consumption per native,

x�n; (iv) increases the steady-state rates of innovation, �
� and economic growth, g�:

Proof. See Appendix D

The steady-state results of Proposition 6 can be explained through of the two vertically-

integrated Cartesian diagrams of Figure 3. The upper diagram shows the values of m and


 that solves (42) and (43) simultaneously, while the lower diagram reports the isocline of

(41), showing all of the combinations of m and xn that makes the productivity-adjusted

value of natives� consumption be stable over time.

The permanent fall in �wf worsens the economic conditions of the foreign labor market,

thereby giving foreign workers more incentives to migrate. Graphically, this e¤ect can be

seen through the downward shift in the horizontal asymptote of the concave function G (m),

which moves from G0 (1) to G1 (1), with G0 (1) > G1 (1) - see the upper diagram

12Notice that since the steady-state rates of innovation and growth are identical to that shown by Proposi-

tion 1, all of the results summarized by Proposition 2 are still valid in the presence of incomplete technology

transfer.
13To be viable, any comparative statics exercise involving dynamic models should require long-run equi-

libria to be either globally or locally (i.e. saddle-path) stable. Unfortunately, due to the mathematical

complexity of the extended model, the dynamic properties of the steady-state equilibrium cannot be stud-

ied analytically. Nevertheless, in a supplementary appendix of this paper (available upon request), I show

that a calibrated version of the extended model exhibits saddle-path stability of the unique steady state

established by Proposition 5, meaning that the comparative-statics exercises presented on the next section

are acceptable.
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Figure 3: The steady-state e¤ects of a fall in the reference wage of immigrants, �wf :
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of Figure 3. The steady-state equilibrium thus moves from E0 to E1, implying that the

immigration rate of the domestic economy shifts upward from m�
0 to m

�
1, and the relative

technology index downward from 
�0 to 

�
1. Despite of the reduction in 
, the steady-state

consumption-to-technology ratio of natives x�n increases in the new steady-state, meaning

that - during the transition from E0 to E1 - natives� per capita consumption cn grew faster

than productivity A.

I now consider the e¤ects of a permanent increase in patent breadth, �. The steady-state

impacts of such a increase in the patent protection policy of the domestic government are

the following.

Proposition 7 A permanent increase in patent breadth �: (i) decreases the steady-state

immigration ratio, m�; (ii) decreases the technology gap between countries, 
�; (iii) decreases

the steady-state level of consumption per native, x�n; (iv) increases the steady-state rates of

innovation, �� and economic growth, g�:

Proof. See Appendix D.

Surprisingly enough, strengthening patent policy in the domestic economy is detrimental

for natives� consumption and immigration, despite it turns out to be e¤ective in enhancing

innovation and growth. To explain the economic logic of these results, I rely again on two

vertically-integrated charts as those portrayed in Figure 4.

A permanent increase in patent breadth � allows intermediate producers to charge an

higher markup over their marginal cost and makes innovation more pro�table. However, the

rise in R&D that follows the improvement in patent protection against imitation enhances

the transmission of technology towards the foreign economy, which, eventually, tends to

increase the reference wage of immigrants and therefore discourage emigration. In Figure 4,

this technology transfer e¤ect is captured by the downward shift of the vertical intercept of

the convex function F (m), which moves from F0 (0) to F1 (0). The steady-state equilibrium

of the domestic economy thus moves from E0 to E1, implying that both the immigration

ratio of the domestic economym�
1 and the cross-country technology gap 


�
1 decrease because

of the rise in �rms� markup �.

The fall in 
 can be explained by recalling Gerschenkron�s "advantage of backwardness"

(see Gerschenkron, 1962), according to which the further a country lags behind the world

technology frontier, the bigger the productivity improvement it will get if it implements

the frontier technology. However, the fact that 
� decreases because of the rise in patent

breadth might lead to conclude that permanent increases in � had negative impacts on the

long-run innovation rate, ��. Yet, even though 
� clearly decreases in the new steady state,

this result is not at odds with a scenario in which a possible increase in �� might cause

domestic productivity A to grow less that foreign productivity Af . To see this point more
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Figure 4: The steady-state e¤ects of an increase in patent breath, �:
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clearly, I di¤erentiate (34) with respect to � to obtain (after heavy simpli�cation)

d��

d�
=

��M (�)

�2 [(1� 1=�)M (�)� �]| {z }
+

+
��M (�) (1� 1=�) �

m� [(1� 1=�)M (�)� �]
h
(1� �) (m�)1=��1 + �

i dm
�

d�

| {z }
�

,

(46)

where �� is given by (34) and, for simplicity, I set

M (�) :=
(1� �)

h
1� � + � (m�)1�1=�

i1=(1�1=�)

�
:

The �rst term of the right-hand side of (46) is positive and includes the standard "pro�t-

margin" e¤ect captured by the term 1 � 1=� in (34). The second term on the right-hand

side of (46) is instead negative and stems from the indirect e¤ect that a higher value of �

has on innovation through the fall in the net rate of migration (dm=d� < 0). Indeed, the

fall in the immigration ratio that follows the rise in � generates a negative "scale" e¤ect on

�rms� pro�ts that tends to discourage innovation. In Appendix D, I show that the "pro�t-

margin" e¤ect always overrides the "scale" e¤ect, implying that, on balance, the long-run

e¤ects of stronger IPR protection on the steady-state innovation rate are always positive

(d��=d� > 0).

Notice that even though �� increases in the new steady-state equilibrium E1, the fall

in the immigration rate has a negative impact on the productivity-adjusted level of �nal

output, Y=A =
�
1� � + �m1�1=�

�1=(1�1=�)
Ln, because of the permanent fall in labor supply

due to the reduction in immigration. Moreover, as the lower diagram of Figure 4 makes

it clear, the ultimate impacts on the productivity-adjusted level of consumption of natives

x�n is also negative, meaning that, along the adjustment path, natives� consumption tend to

grow at a lower rate than productivity. This result enriches the literature in that it gives

a instance in which the strengthening of patent protection is not e¤ective in improving the

productivity-adjusted level of consumption of the population in the long run.

6 Concluding remarks

In this paper, I have presented a lab-equipment model of Schumpeterian growth with endoge-

nous migration to analyze the interlink between migration, innovation and long-run growth.

To do this, the paper focused on the perspective of the innovating country - which also

acts as the receiving country of migration - and analyzed two di¤erent scenarios in which:

(i) the technology transfer between countries is complete, meaning that all the productiv-

ity improvements occurring in the innovating country are always fully and instantaneously

transferred to the sending countries of migration; (ii) the technology transfer between coun-

tries is incomplete, meaning that each time that the innovating country is able to introduce

a productivity improvement in her economy, this is only partially transferred to the sending

countries of migration.
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When technology transfer is complete, I �nd that an increase in migration has a positive

impact on the innovation activity of the receiving country. In particular, compared with the

baseline Schumpeterian model without international labor mobility, the paper �nds that

migration tends to improve the long-run rates of innovation and economic growth of the

innovating economy. However, whereas the e¤ects of pro-innovation policies on migration

are analyzed, the paper �nds that the resulting increase in the innovation rate of the receiving

economy has no e¤ect on migration.

While the positive e¤ects of migration on innovation and growth are con�rmed even

when technology transmission turns into incomplete, the neutrality result of innovation

on migration is not and becomes negative. More speci�cally, I �nd that implementing

innovation-enhancing policies in the innovating economy reduces the �ow of migration to-

wards the domestic economy when the cross-country productivity gap is allowed to narrow

only gradually over time. The economic reason underlying this result stands in the fact that

a rise in innovation in advanced economies tends to compress the long-run technology gap

between countries, thereby causing international wage di¤erentials to reduce accordingly.

That, in turn, makes emigration less attractive for migrant workers, with the result that, as

Gerschenkron (1986) pointed out, countries lagging behind the technology frontier may en-

joy an advantage in backwardness that causes emigration to decrease because of technology

adoption.
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Appendix

A Proof of Proposition 1

I start demonstrating part (i) of the proposition. Rewrite system (27)-(28) as follows

_xn =
x2n
�
�

"
� (1� �)

�
1� � + �m1�1=�

�1=(��1)

�
� �

#

xn (A.1)

_m = '

�
ln

�
��

!f (0)

�
+

1

�� 1
ln
�
(1� �)m1=��1 + �

��
m� (� � �)m: (A.2)

In the system, xn acts as a "pseudo" jump variable and m as a state variable, whose

value at time t = 0 is predetermined and equal tom (0). Let "�" denote stationary values for

the endogenous variables of the model. A steady-state equilibrium for system (A.1)-(A.2)

is attained when _xn = _m = 0. This gives the following system of two algebraic equations in

xn and m

xn � � (1� �)
�
1� � + �m1�1=�

�1=(��1)
= �� (A.3)

��
�
(1� �)m1=��1 + �

�1=(��1)

!f (0)
= e(���)='; (A.4)

whose solution are given by (32)-(33). The following lemma provides the restriction of the

parameter space that makes both xn and m to be positive in the steady state.

Lemma 2 If

!f (0) < ��1=(��1)+1e�='

occurs, then it follows that x�n > 0 and m
� > 0.

Proof. From (33) it follows that for m� to present nonnegative values, it must be that

8
<

:

"
!f (0) e

(���)='

(1� �)1=(��1) ��

#��1
�

�

1� �

9
=

;

�=(1��)

> 0:

On rearranging:

8
<

:

"
!f (0) e

(���)='

(1� �)1=(��1) ��

#��1
�

�

1� �

9
=

;

�=(��1)

< 0 ! !f (0) < ��1=(��1)+1e(���)='.

When !f (0) < ��1=(��1)+1e(���)=' is satis�ed, from (A.3) and (A.4) it follows that x�n > 0

and m� > 0, and this completes the proof of the lemma.
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I now turn to parts (ii) and (iii) of the proposition. Suppose that !f (0) < ��1=(��1)+1e(���)='

holds. Plugging (32) and (33) into (21) and (23) gives (34) and (35) of Proposition 1. From

(34), it follows that the steady-state innovation rate of the economy is positive i¤

(1� 1=�) (1� �)
h
1� � + � (m�)1�1=�

i1=(1�1=�)

�
> �:

If � ! 0, from the above expression it follows that �� > 0 requires (1� 1=�) (1� �) =� > �;

i.e., when migration is not allowed, the rate of time preference must not exceed the threshold

(1� 1=�) (1� �) =�. When (1� 1=�) (1� �) =� > � is satis�ed, both (34) and (35) are

positive and this concludes the demonstration of part (ii) of Proposition 1.

Finally, to demonstrate part (iii) of the proposition, I Taylor-expand system (A.1)-(A.2)

about the steady state (32)-(33) to obtain

 
_xn
_m

!

=

 
z11 z12
0 z22

! 
xn � x�n
m�m�

!

, (A.7)

where

z11 =
x�n
�
> 0

z12 = �
� (1� �) �

h
1� � + � (m�)1�1=�

i1=(��1)�1
(m�)�1=� x�n

��
< 0

z22 = �
(1� �) (m�)1=��1

�
h
(1� �) (m�)1=��1 + �

i < 0:

The model exhibits saddle-path stability i¤ the determinant of the 2�2 coe¢cient matrix

in (A.7) is negative. When this happens, the coe¢cient matrix of the linearized system

presents two real eigenvalues with opposite sign. Straightforward computations show that

det = z11z22 = �
(1� �) (m�)1=��1

�
h
(1� �) (m�)1=��1 + �

i x
�
n

�
< 0, for m� > 0 and x�n > 0. (A.8)

The steady state (32)-(33) is thus locally saddle-path stable and the demonstration of

the part (iii) of Proposition 1 is done.

B Proof of Propositions 3 and 4.

In this appendix, I provide the formal demonstrations of Propositions 3 and 4. I begin by

studying the steady-state e¤ects of a decrease in �wf on m
�, �� and g� (Proposition 3) Let

the foreign and domestic economies be in their own steady-state equilibria and suppose that
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a fall in �wf makes !f (0) decrease permanently. Di¤erentiating (32)-(35) with respect to

!f (0) yields

dm�

d!f (0)
= �

8
<

:

"
!f (0) e

(���)='

(1� �)1=(��1) ��

#��1
�

�

1� �

9
=

;

�=(1��)�1

�
�
!f (0) e

(���)='
���1

!f (0)
��2

(1� �) (��)��1
< 0

dx�n
d!f (0)

=
� (1� �)

h
1� � + � (m�)1�1=�

i1=(��1)�1
� (m�)�1=�

�

dm�

d!f (0)
< 0

d��

d!f (0)
=
(�� 1) (1� �)

h
1� � + � (m�)1�1=�

i1=(1�1=�)
� (m�)�1=�

��

dm�

d!f (0)
< 0

dg�

d!f (0)
=

�
d��

d!f (0)

�
ln 
 < 0:

Since d!f (0) < 0 , the sign of the derivatives are reversed and all the statements of

Proposition 3 hold accordingly.

I now turn to Proposition 4 and analyze the steady-state e¤ects on m�, �� and g� of a

permanent increase in �. Di¤erentiation of (32)-(35) with respect to � gives

dm�

d�
= 0

dm�

d�
= 0

d��

d�
=
(1� �)

h
1� � + � (m�)1�1=�

i1=(1�1=�)

��2
> 0

dg�

d�
=

�
d��

d�

�
ln 
 > 0:

Since an increase in patent breadth requires d� > 0 , the sign of the derivatives are preserved,

implying that all the statements of Proposition 4 hold accordingly.

C Proof of Proposition 5

I start demonstrating part (i) of the proposition. Rewrite system (27), (39) and (40), as

follows

_xn =
x2n
�
�

"
� (1� �)

�
1� � + �m1�1=�

�1=(��1)

�
+ �

#

xn (C.1)

_m = '

(

ln

�
��

�wf

�
+ ln
 +

ln
�
(1� �)m1=��1 + �

�

�� 1

)

m� (� � �)m: (C.2)

_
 =  
�

"
(�+ �� 1) (1� �) + (�� 1) (1� �) �m1�1=�

�� (1� � + �m1�1=�)
1=(1��)

�
xn
�

#

("�
� ln 
) 
 (C.3)
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In the above system, xn acts as a "pseudo" jump variable and m and 
 as a state

variables, with predetermined values time t = 0 given by m (0) � 0 and 
 (0) > 0. A

steady-state equilibrium for system (C.1)-(C.3) is attained when _xn = _m = _
 = 0. This

gives the following system of three algebraic equations in xn, m and 
:

xn = ��+ � (1� �)
�
1� � + �m1�1=�

�1=(��1)
(C.4)

��
�
(1� �)m1=��1 + �

�1=(��1)



�wf
= e(���)=' (C.5)

(1� 1=�) (1� �)
�
1� � + �m1�1=�

�1=(1�1=�)

�
= �+

 

"�
� ln 

(C.6)

The following lemma provides the conditions under which a steady-state equilibrium for

system (C.1)-(C.3) with x�n > 0, m
� > 0 and 
� > 0 exists

Lemma 3 Let

~� :=
(1� �) (1� 1=�) (1� �)1=(1�1=�)

�

~!f :=
(� ln 
 �  )��(��2)=(��1)

"��e(���)='
:

denote two threshold levels for the rate of time preference � and the reference wage of im-

migrants �wf . If � > ~� and �wf > ~!f are both satis�ed, then the system (C.4)-(C.6) admits a

unique solution with x�n > 0, m
� > 0 and 
� > 0:

Proof. Rewrite equations (C.5) and (C.6) as follows


 =
�wfe

(���)='

�� [(1� �)m1=��1 + �]
1=(��1)

:= G (m) (C.7)


 =
ln 


"�
+

 ="

(1� 1=�) (1� �) (1� � + �m1�1=�)
1=(1�1=�)

� ��
:= F (m) (C.8)

Consider �rst (C.7). Because � > 1, for m ! 0, it follows that G (0) = 0; for m ! 1,

(C.7) approaches the horizontal asymptote:

G (1) =
�wfe

(���)='

���=(��1)
> 0:

Moreover, di¤erentiation of (C.7) with respect to t gives

G0 (m) =
(1� �) �wfe

(���)='m1=��2

��� [(1� �)m1=��1 + �]
1=(1�1=�)

> 0

G00 (m) = �
(1� �) �wfe

(���)='
�
(�� 1)

�
1� � + �m1�1=�

�
+ ��m1�1=�

�
m1=��2

���2 (1� � + �m1�1=�)
1�1=(1�1=�)

< 0,
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when m � 0. It can thus be established that (C.7) is concave and monotonically increasing

in the positive orthant of hm;
i space.

Consider next (C.8). Because � > 1, when m! 0 it follows that

F (0) =
ln 


"�
+

 ="

(1� 1=�) (1� �) (1� �)1=(1�1=�) � ��
:

Instead, when m!1 it follows that

F (1) =
ln 


"�
;

where F (0) > F (1) holds i¤ the following restriction is satis�ed

� <
(1� �) (1� 1=�) (1� �)1=(1�1=�)

�
:= ~�:

Hence, di¤erentiating (C.8) with respect to m yields

F 0 (m) = �
 (1� �) (�� 1) �

�
(1� �)m1=��1 + �

�1=(��1)

"
h
(�� 1) (1� �) (1� � + �m1�1=�)

1=(1�1=�)
� ���

i2 < 0

F 00 (m) =
 (1� �) (�� 1) �

�
(1� �)m1=��1 + �

�1=(��1)
m�1=�

"
h
(�� 1) (1� �) (1� � + �m1�1=�)

1=(1�1=�)
� ���

i2
(1� � + �m1�1=�)

�

"
(1� �)m1=��1

�
+

2 (�� 1) (1� �) �

(�� 1) (1� �) + ��� (1� � + �m1�1=�)
1=(1�1=�)

#

> 0,

for m � 0. Thus, it can be established that (C.8) is convex and monotonically decreasing

in hm;
i space.

For a steady state to exists, it must be that (C.7) and (C.8) intersects at least once in

the positive orthant of hm;
i space. This requires F (1) < G (1); i.e., it must be that

" >
���=(��1) ln 


� �wfe(���)='
:= ~":

When " > ~" holds, the horizontal asymptote of G (m) lays above of the horizontal asymptote

of F (m), implying that (C.7) and (C.8) cross only once in the positive orthant of hm;
i

space. This determines the steady-state values of m� > 0 and 
� > 0. To determine x�, it

su¢ces to substitute m� in (C.4) and the proof of Lemma 3 is done.

D. Proofs of Propositions 6 and 7

This appendix provides the formal proof of all of the comparative statics results of Propo-

sitions 6 and 7. Rewrite steady-state conditions (41)-(43) as follows
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xn = ��+ � (1� �)
�
1� � + �m1�1=�

�1=(��1)
:= � (m) (D.1)


 =
�wfe

(���)='

�� [(1� �)m1=��1 + �]
1=(��1)

:=M (m; �wf ) (D.2)


 =
ln 


"�
+

 ="

(1� 1=�) (1� �) (1� � + �m1�1=�)
1=(1�1=�)

� ��
:= � (m; �) : (D.3)

System (D.1)-(D.3) is bloc recursive; after solving (D.2)-(D.3) for m and 
, one can

proceed to solve (D.1) and obtain xn. Hence, total di¤erentiating (D.2)-(D.3) with respect

to 
, � and �wf . I obtain the following 2� 2 system

d
 =
@M (m; �wf )

@m
dm+

@M (m; �wf )

@ �wf
d �wf (D.4)

d
 =
@� (m; �)

@m
dm+

@� (m; �)

@�
d�; (D.5)

where:

�0 (m) =
� (1� �)

�
1� � + �m1�1=�

�1=(��1)�1
�m�1=�

�
> 0 (D.6)

@M (m; �wf )

@m
=

�wfe
(���)=' (1� �)m1=��2

��� [(1� �)m1=��1 + �]
1=(1�1=�)

> 0 (D.7)

@M (m; �wf )

@ �wf
=

e(���)='

�� [(1� �)m1=��1 + �]
1=(��1)

> 0 (D.8)

@� (m; �)

@m
= �

( =") (1� 1=�) (1� �)
�
1� � + �m1�1=�

�1=(��1)
�m�1=�

h
(1� 1=�) (1� �) (1� � + �m1�1=�)

1=(1�1=�)
� ��

i2 < 0 (D.9)

@� (m; �)

@�
= �

( =") (1=�2) (1� �)
�
1� � + �m1�1=�

�1=(1�1=�)
h
(1� 1=�) (1� �) (1� � + �m1�1=�)

1=(1�1=�)
� ��

i2 < 0: (D.10)

Proof of Proposition 6

Set d� = 0, so that the system (D.4)-(D.5) can be written as:
"
1 �

@M(m; �wf)
@m

1 �@�(m; �)
@m

#"
d

d �wf
dm
d �wf

#

=

"
@M(m; �wf)

@ �wf

0

#

The demonstration of points (i) � (ii) of Proposition 6 is a straightforward application

of the Cramer�s Rule, which gives:

d


d �wf
=

"
@M(m; �wf)

@ �wf
�
@M(m; �wf)

@m

0 �@�(m; �)
@m

#

"
1 �

@M(m; �wf)
@m

1 �@�(m; �)
@m

# =
�@�(m; �)

@m

@M(m; �wf)
@ �wf

@M(m; �wf)
@m

� @�(m; �)
@m

> 0 (D.11)
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dm

d �wf
=

"
1

@M(m; �wf)
@ �wf

1 0

#

"
1 �

@M(m; �wf)
@m

1 �@�(m; �)
@m

# =
�
@M(m; �wf)

@ �wf

@M(m; �wf)
@m

� @�(m; �)
@m

< 0 (D.12)

From (D.11)-(D.12), it can be shown that when d �wf < 0 holds, the following results

follow

d
 =
�@�(m; �)

@m

@M(m; �wf)
@ �wf

@M(m; �wf)
@m

� @�(m; �)
@m| {z }

+

d �wf < 0;
dm

d �wf
=

�
@M(m; �wf)

@ �wf

@M(m; �wf)
@m

� @�(m; �)
@m| {z }

�

d �wf > 0,

so the demonstration of (i)�(ii) of Proposition 6 is done. To demonstrate points (iii)� (iv)

of the proposition, I di¤erentiate (D.1), (34) and (35) with respect to �wf and then use

resulting expressions in (D.11)-(D.12) to obtain

dxn =

2

66
4�

0 (m)| {z }
+

dm

d �wf|{z}
�

3

77
5 d �wf|{z}

�

> 0,

d� =

2

66
4
(1� 1=�) (1� �)

�
1� � + �m1�1=�

�1=(1�1=�)�1
�m�1=�

�| {z }
+

dm

d �wf|{z}
�

3

77
5 d �wf|{z}

�

> 0

dg� =

8
>><

>>:

2

66
4
(1� 1=�) (1� �)

�
1� � + �m1�1=�

�1=(1�1=�)�1
�m�1=�

�| {z }
+

dm

d �wf|{z}
�

3

77
5 d �wf|{z}

�

9
>>=

>>;
ln 
 > 0

which completes the proof of Proposition 6.

Proof of Proposition 7

Set d �wf = 0, so that system (D.4)-(D.5) can be rewritten as

"
1 �

@M(m; �wf)
@m

1 �@�(m; �)
@m

#"
d

d�
dm
d�

#

=

"
0

@�(m; �)
@�

#

:

Likewise the proof of Proposition 6, the proof of the �rst two points of Proposition 7 is

another straightforward application of the Cramer�s rule:

d


d�
=

"
0 �

@M(m; �wf)
@m

@�(m; �)
@�

�@�(m; �)
@m

#

"
1 �

@M(m; �wf)
@m

1 �@�(m; �)
@m

# =

@M(m; �wf)
@m

@�(m; �)
@�

@M(m; �wf)
@m

� @�(m; �)
@m

< 0 (D.13)
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dm

d�
=

"
1 0

1 @�(m; �)
@�

#

"
1 �

@M(m; �wf)
@m

1 �@�(m; �)
@m

# =
@�(m; �)

@�

@M(m; �wf)
@m

� @�(m; �)
@m

< 0; (D.14)

from which I can conclude that a rise in � increases both 
 and m.

To demonstrate point (iii) of the proposition, I di¤erentiate (D.1) and then use (D.14)

to get

dxn
d�

= �0 (m)| {z }
+

dm

d�|{z}
�

< 0:

Finally, to demonstrate point (iv) of the proposition, consider the following reduced

version of (34)

�� (�) = (1� 1=�)M (�)� �, where:M (�) :=
(1� �)

h
1� � + �m (�)1�1=�

i1=(1�1=�)

�
:

(D.15)

Log-di¤erentiation of (D.15) with respect to � gives

d�� (�) =d�

�� (�)
=
M (�) + �2 (1� 1=�)M0 (�)

�2 [(1� 1=�)M (�)� �]
; (D.16)

from which it follows that d�� (�) =d� > 0 is satis�ed i¤ the following inequality holds true:

�M0 (�)

M (�)
> �

1

�� 1
. (D.17)

Upon di¤erentiation ofM (�) with respect to �, it can be shown that

�M0 (�)

M (�)
=

�

(1� �)m1=��1 + �

�m0 (�)

m (�)
:

Thus, substituting from �M0 (�) =M (�) into (D.17), I can establish that

d�� (�)

d�
> 0 i¤

dm

d�

�

m
> �

(1� �)m1=��1 + �

� (1� 1=�) �
. (D.18)

Plugging (D.7), (D.9) and (D.10) into (D.14), I can write

dm

d�
= �

(1=�2)[(1��)m1=��1+�]m
(1�1=�)�

�

(1�1=�)(1��)(1��+�m1�1=�)
1=(1�1=�)

���

�2

�wf e
(���)='(1��)m1=��2

( =")(1�1=�)�(1��)�2�[(1��)m1=��1+�]
+ 1

:

Therefore, substituting from dm=d� into (D.18), it follows that for d�� (�) =d� > 0 to

hold, the following inequality must satis�ed

�

(1=�2)[(1��)m1=��1+�]m
(1�1=�)�

�

(1�1=�)(1��)(1��+�m1�1=�)
1=(1�1=�)

���

�2

�wf e
(���)='(1��)m1=��2

( =")(1�1=�)�(1��)�2�[(1��)m1=��1+�]
+ 1

�

m
> �

(1� �)m1=��1 + �

� (1� 1=�) �
.

34



After heavy simpli�cation, the previous expression boils down to:

h
(1� 1=�) (1� �)

�
1� � + �m1�1=�

�1=(1�1=�)
� ��

i2
�wfe

(���)=' (1� �)m1=��2

( =") (1� 1=�)� (1� �) �2� [(1� �)m1=��1 + �]
> 0,

which always holds true for whatever constellation of the exogenous parameters. I can

therefore conclude that d�� (�) =d� > 0 always holds true when m� > 0. With this result in

hand, dg�=d� > 0 follows directly from di¤erentiation of (35), and this completes the Proof

of Proposition 7.
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Online Appendix
(Not to be published)

E. Stability Analysis of the Extended Model

In this appendix, I shall simulate the model to study the dynamic properties of the steady

state described by Proposition 5. My goal is to show that the comparative statics exercises

of Section 5.3 are meaningful when the values of the exogenous parameters are close to those

of the real economies. Therefore, the material collected in this section cannot be taken as

an alternate demonstration of the saddle-path stability of the steady state equilibrium of

the extended model.

To simulate the model, I proceed as follows. First, I calibrate the model to US data and

choose �wf and � such that the restrictions (44) and (45) are satis�ed. Next, I simulate a

linearized version of the extended model and analyze the eigenspace of the coe¢cient matrix.

Calibration

Table 1 shows the benchmark values for all the calibrated parameters.

Parameter Description Value

� Subjective discount rare 0:016

� Labor share 0:67


 Step-size of innovation 1:25

� Elasticity of substitution between intermediates 20

�wf Initial reference wage of immigrants 0:53

� R&D productivity 0:2

' Migration sensitivity 5

� "Secular" component of migration 0:04

� Industry leaders� mark-up 1:12

� Growth rate of the native population 0:006

� CES share parameter 0:4321

" Intensisty parameter of technology transfer 0:95

 Persistence parameter of technology transfer 0:01

Table 1: Calibrated parameter values.

Following Siegel (2002)14, I set the subjective discount rate of individuals to � = 0:016, so

14Gollin, D. (2002). Getting income shares right. Journal of Political Economy 110, 458-474.
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to obtain a steady-state rate of return on �nancial assets of roughly 3:8% and the growth rate

of the native population to � = 0:006, so as to capture the tendency of the US population of

the last three decades (see UN-DESA, 2019)15. Further, I choose the labor share parameter

� = 0:67 to match the empirical evidence of Gollin (2002) and a value for the labor-input

elasticity parameter � of 20 which is the value of the elasticity of substitution between native

and immigrant workers with similar levels of education that Ottaviano and Peri (2012) �nd

for the US. The share parameter � = 0:4321 is thus chosen to match a wage ratio between

native and migrant workers of about 1:2, which lines up with Bureau of Labor Statistics data.

Indeed, according to the Bureau of Labor Statistics annual release (BLS, 2020), in 2019 the

level of earnings of the foreign-born workers was only 85% of the earnings of their native-

born counterparts. This leads to a value of the relative wage of natives of wn=wm � 1:18,

which is not far away from the calibrated value of 1:2.16

As for immigration, according to UN-DESA (2019), in 2019 the stock of immigrants of

the US was 50.7 million from 23.3 million in 1990. On average, the yearly growth rate of the

immigrants is 4%, so in the simulation I set � = 0:04. As for the wages elasticity parameter

' and the productivity-adjusted reference wage �wf , my calibration strategy consists of set-

ting them so to obtain a long-run value for the migrant stock as a percentage of the total

population of 15:4%. Since in the model the ratio between the stock of immigrants and the

total population writes Lm= (Ln + Lm) = m= (1 +m), a value of the ratio of 0:154 implies

m � 0:182. To match this value, in the simulation I set ' = 5 and �wf = 0:553, which allow

me to get a steady-state immigration rate of 18:2%.

Finally, to calibrate the R&D parameters of the model, I proceed as follows. First, I

choose the productivity level of R&D �rms � = 0:2 because it is in line with a waiting time

for innovation of 10 years; i.e. 1=�� � 10. Patent breadth � is set to 1:12, which implies

a mark-up of 12% and a R&D share of GDP of US of about 3%, while the step size of

productivity improvement 
 to 1:25 so as to get a steady-state growth rate of 2:2% per year.

Last but not least, I set " = 0:95 and  = 0:01 so as to get an equilibrium technology gap

between the domestic and the foreign country 
� of 1:712, meaning that the technology level

of the domestic economy is almost twice as much as that of the foreign economy.

Determination of the steady state and eigenspace analysis

Table 2 displays the steady-state equilibrium generated by the model, while Table 3 shows

the values of the three eigenvalues (denoted by �) and associated eigenvectors of the lin-

earized version of the dynamic system. Since m and 
 are predetermined/state variables

while xn is a non-predetermined/"pseudo" jump variable, the steady state shown by Table

2 is determinate (i.e. it is saddle-path stable) if two eigenvalues out of three present nega-

tive real part. Based on Table 3, it follows that, for any initial values of m (0) and 
 (0),

15Data for immigration and population of the US economy are from the UN "Migration Data Portal"

2019, available at: https://migrationdataportal.org/about
16BLS (2020) Foreign-Born Workers: Labor Force Characteristics - 2019 (News Release: May 15, 2020).

Bureau of Labor Statistics, U.S. Department of Labor (visited: January 6, 2021)
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there exists a unique equilibrium trajectory that makes the economy converge to the unique

steady-state equilibrium of Table 2.

ABGP values.

Productivity-adjusted natives� consumption, x�n 0:375

Immigrantion ratio, m� 0:182

Relative technology, 
� 1:717

Relative wage of native workers, w�n=w
�
m 1:206

BGP rate of return, r� 3:8%

Innovation�s waiting time , 1=�� 10:3 years

BGP growth rate, g 2:2%

R&D share 3:0%

Table 2: The steady-state equilibrium

�1 �2 �3

Eigenvalues 1:873 �0:147 �0:098

Eigenvectors

0

BBB
@

�0:902

�0:106

�0:418

1

CCC
A

0

BBB
@

�0:012

�0:991

�0:131

1

CCC
A

0

BBB
@

0:012

0:976

0:219

1

CCC
A

Table 3: Stability properties of the ABGP equilibria.

F. Robustness check: Using Ln+Lm to remove the scale e¤ect

In this Appendix, I present a robustness check of the model in which the level of immigration

of the domestic economy enters in the determination of the Poisson arrival rate. In doing

so, I replace the Poisson arrival rate (17) with the following

� (i) =
R (i)

�A (Ln + Lm)
, � > 0, (F.1)

where (17) di¤ers from (F.1) because of the presence of Lm at the denominator of (F.1).

Due to (F.1), only the rate of return on R&D investment (22) and the resource constraint

(23) change to become

r =
(1� 1=�) (1� �)

�
1� � + �m1�1=�

�1=(1�1=�)
+ � _m

� (1 +m)
+ � � � (1� ln 
) (F.2)
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1 =
cn=A+� (1 +m) �

(1� � + �m1�1=�)
1=(1�1=�)

+
��m1�1=�

1� � + �m1�1=�
+
1� �

�
; (F.3)

whereas all of the other key equations of the model remain unchanged. Consequently, the

dynamic equilibrium of the model can be written as

_xn
xn

=
xn � � (1� �)

�
1� � + �m1�1=�

�1=(��1)
+ � (� +m�)

� (1 +m)
� �+

+
m'

1 +m

(

ln

�
��

!f (0)

�
+
ln
�
(1� �)m1=��1 + �

�

�� 1

)

(F.6)

_m

m
= '

(

ln

�
��

!f (0)

�
+
ln
�
(1� �)m1=��1 + �

�

�� 1

)

� (� � �) ; (F.7)

where !f (0) := �wfAf (0) =A (0) as in Section (2.6) of the paper.

A steady-state equilibrium for the domestic economy is attained when _xn = _m = 0.

When this happens, the long-run ratio of immigrants over natives is constant over time

and equal to m�, while natives� per capita consumption, cn, and technology, A, are pure

exponential functions of time as in (29).

I can therefore establish the following alternative version of Proposition 1:

Proposition 8 Suppose restrictions (30) and (31) of Proposition 1 are satis�ed. Then, for

any given initial condition m (0), there exists a unique steady-state equilibrium for the dy-

namic system (F.6)-(F.7) where: (i) The levels of the immigration ratio m and productivity-

adjusted per capita consumption xn are given by

m� =

8
<

:

"
!f (0) e

(���)='

�� (1� �)1=(��1)

#��1
�

�

1� �

9
=

;

�=(1��)

(F.8)

x�n = �� (1 +m�) + � (1� �)
h
1� � + � (m�)1�1=�

i1=(��1)
; (F.9)

(ii) The rates of innovation and growth are both positive and equal to

�� =
(1� 1=�) (1� �)

h
1� � + � (m�)1�1=�

i1=(1�1=�)

� (1 +m�)
� � (F.10)

g� =

8
><

>:

(1� 1=�) (1� �)
h
1� � + � (m�)1�1=�

i1=(1�1=�)

� (1 +m�)
� �

9
>=

>;
ln 
; (F.11)

(iii) The unique equilibrium trajectory converging to the steady state (F.8)-(F.9) is saddle-

path stable.
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Proof. Rewrite system (F.6)-(F.7) as follows

_xn =
x2n �

h
� (1� �)

�
1� � + �m1�1=�

�1=(��1)
� � (� +m�)

i
xn

� (1 +m)
� �xn +

+
m'xn
1 +m

(

ln

�
��

!f (0)

�
+
ln
�
(1� �)m1=��1 + �

�

�� 1

)

(F.12)

_m = '

�
ln

�
��

!f (0)

�
+

1

�� 1
ln
�
(1� �)m1=��1 + �

��
m� (� � �)m: (F.13)

A steady-state equilibrium for system (A.1)-(A.2) is attained when _xn = _m = 0. This

gives the following system of two algebraic equations in xn and m

xn
1 +m

�
� (1� �)

�
1� � + �m1�1=�

�1=(��1)

1 +m
= �� (F.14)

��
�
(1� �)m1=��1 + �

�1=(��1)

!f (0)
= e(���)='; (F.15)

whose solution are given by (32)-(33). Since Lemma 2 of Appendix A is still valid in

establishing the conditions under which xn and m are positive in the steady state, the proof

of parts (i) and (ii) of the proposition is done.

To demonstrate part (iii) of the proposition, I Taylor-expand system (A.1)-(A.2) about

the steady state (32)-(33) to obtain

 
_xn
_m

!

=

 
z11 z12
0 z22

! 
xn � x�n
m�m�

!

, (F.16)

where

z11 =
x�n

� (1 +m�)
+ � > 0

z22 = �
(1� �) (m�)1=��1

�
h
(1� �) (m�)1=��1 + �

i < 0,

and where the sign of z12 is irrelevant for determining the sign of the determinant of Jacobian

matrix in (F.16). Again, the steady state is saddle-path stable i¤ the determinant of the

2� 2 coe¢cient matrix in (F.16) is negative; which is the case since:

det = z11z22 = �
(1� �) (m�)1=��1

�
h
(1� �) (m�)1=��1 + �

i
�

x�n
� (1 +m�)

+ �

�
< 0, for m� > 0 and x�n > 0.

That demonstrates that the steady state (F.14)-(F.15) is locally saddle-path stable and

the proof of the part (iii) of Proposition 8 is done.
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