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SUMMARY

A one-sided asymptotically normal test for independence between two stationary time
series is proposed by first prewhitening the two time series and then basing the test on
the residual cross-correlation function. The test statistic is a properly standardised version
of the sum of weighted squares of residual cross-correlations, with weights depending on
a kernel function. Haugh's (1976) test can be viewed as a special case of our approach in
the sense that it corresponds to the use of the truncated kernel. Many kernels deliver
better power than Haugh's test. A simulation study shows that the new test has good
power against short and long cross-correlations.

Some key words: Coherency; Cross-correlation; Independence; Kernel function; Multivariate time series.

1. INTRODUCTION

Recently there has been growing interest in testing serial dependence within a univariate
time series, e.g. Chan & Tran (1992), Robinson (1991), Skaug & Tjostheim (1993a, b). In
contrast, relatively few attempts have been made to test dependence between time series.
Dependence between time series is important in multivariate time series analysis. In econ-
omics, for example, elucidation of various causalities between time series is vital to
forecasting and prediction.

In exploiting dependence between two covariance stationary time series, say (Xt) and
(Y,), one is often interested in testing whether they are mutually independent. Here we
propose a test for uncorrelatedness between (Xt) and (Yt) by first prewhitening X, and
Yt and then basing the test on the residual cross-correlation function. Our test statistic
is a properly standardised version of the sum of weighted squares of residual cross-correl-
ations, with weights depending on a kernel function. The test is asymptotically normally
distributed under the null hypothesis.

Haugh (1976) proposed an asymptotically x2 test based on the sum of finitely many
squares of residual cross-correlations. Haugh's test can be viewed as a special case of our
approach with the use of the truncated kernel. In an influential paper, Pierce (1977) used
Haugh's test to investigate relationships between a number of aggregate economic time
series, and found little or no relationships between most of the economic series. From an
econometric point of view, this might be partly due to low power of Haugh's test. Indeed,
Geweke (1981a, b) finds that Haugh's test often has low power. In this paper, we find that
many kernels deliver better power than Haugh's test or the truncated kernel based test.
Within a suitable class of kernel functions, the Daniell kernel maximises the power of our
test under both local and fixed alternatives. In addition, we avoid Haugh's assumption
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616 YONGMIAO HONG

that X, and Yt have an ARMA, autoregressive-moving average, representation, which, if
misspecified, will invalidate the asymptotic distribution of the test statistic.

In § 2, we introduce the test statistic. Asymptotic normality is established in § 3. In §§ 4
and 5, we investigate asymptotic local and global power. In § 6, we examine finite sample
performance of the new test in comparison with Haugh's (1976) test via Monte Carlo
methods. All mathematical proofs are available from the author upon request.

2. THE TEST STATISTIC

Throughout, we impose the following assumption on X, and Yt.

Assumption 1. The stochastic sequence (Xt, Yt) is a bivariate jointly stationary linear
process such that

;=o j=o

where (i) (u,) and (v,) are each an identically and independently distributed sequence, with
E(ut) = 0, E(vt) = 0, E(uf) = a2

u, E(vj) = a2,, £(u,4) < oo and E(v?) < oo; (ii) (a,) and (bj) are
sequences of real numbers such that EJLol

ajl < °°» EJL O I^I < 0 0 with Oo = b0 = l.
Furthermore, |EJLo

ajz-/l ar*d lEJL0^
z"'l a r e bounded away from zero for |z |< 1.

This includes as special cases AR, autoregressive, MA, moving average, and ARMA models
of finite but possibly unknown orders. For such linear processes, it is well known (Haugh,
1976, p. 379) that (Xt) and (Yt) are uncorrelated if and only if the innovations («,) and (vt)
are uncorrelated. Consequently, one can test independence between (X,) and (Yt) by first
prewhitening X, and Yt and then testing independence between the residuals, say (6,) and
(v,). This approach, as pointed out by Haugh (1976), is much easier to handle and interpret,
because it filters out the autocorrelation of X, and Yt.

Assumption 1 implies that Xt and Yt have an AR(OO) representation:

A{L)Xt = ut, B(L)Yt = vt,

where

A(L) = 1- £ *jV=( t ajlj) \ B(L) = l- t PjU

with L a lag operator. We fit Xt by an AR(P) model. The ordinary least squares residual is

where X,(p) = {Xt-1,..., X,-p)', and ${p) is the ordinary least squares estimator

ot(p)=i £ X,{p)Xt{p)'\ I X,(p)Xt.
»p+l

When X, is an AR(P0) process, u, will be consistent for ut if p ̂  p0. In general, there exists
no p0 such that a, = 0 for every j > p0. Hence, we must let p = p(N) grow with N properly
in order for u\ to be consistent for ut. We will provide proper conditions on p and (a,) to
ensure asymptotic normality of our test statistic.

Similarly, we fit Yt by an AR(^) model, with the ordinary least squares residual

C,= Yt-kq)'Yt(q).
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Testing for independence between time series 617

We define the residual cross-correlation function

where the residual cross-covariance function

?1 ?i
To construct our statistics, we introduce a kernel function k satisfying the following.
Assumption 2. The function k: K -> [— 1,1] is symmetric, continuous at 0 and at all but

a finite number of other points, with k(0) = 1 and J ̂  jfĉ z) dz < oo.

This includes such commonly-used kernels as the Bartlett, Daniell, Parzen, quadratic-
spectral and the truncated kernels; see e.g. Priestley (1981, pp. 446-7).

Our test statistic is

N E ^ 1 - „ k2(j/M)p2
uv(j) - SN(k)

where the smoothing parameter M = M(N)-* oo, M/N-+0, and

SN(k)= Y (l-\j\/N)k2(j/M),
j=l-N

DN(k)= Y (l-\j\/N)(l-(\j\ + l)/N)
j = 2-N

Under some additional conditions on k and M, we can obtain

N E^s k2(j/M)p2
uv(j) - MSjk)

y " {2MD{k)}112

where

S(k) = I k\z)dz, D(k)= I k\z)dz.
J -co J —oo

Both QN and Q% have the same asymptotic null distribution and power properties. We
will investigate their finite sample performances by simulation methods in § 6.

Both QN and Q* are essentially coherency-based tests because

\\Cm\\2= Y k2U/M)p2
uv(j),

j=l-N

where and hereafter

and

C u » = Y k(j/M)puv(j)e-lj<o

j=l-N
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618 YONGMIAO HONG

is a kernel estimator for coherency Cm{co) between u, and vt, which is a measure of cross-
correlation between u, and vt in the frequency domain and has the invariance property
that | Cuv(co)\ = |C»,(CB)| given Assumption 1 (Priestley, 1981, pp. 660-2). Hong (1996) used
an analogous frequency domain approach to test autocorrelation for the residual from a
linear regression model that includes both lagged dependent variables and exogenous
variables.

Haugh (1976) proposed an asymptotic x2 test statistic

s ^ I Plv{j)-
J=-M

Apart from standardisation factors SN(k) and DN(k), S can be viewed as a special case of
QN with the choice of the truncated kernel k{z) = 1 for | z | < 1 and k{z) = 0 for \z\ > 1. As
will be seen below, many choices of k yield better power than Haugh's test.

On the other hand, the residuals u\ and 6, used by Haugh (1976) are obtained by fitting
a univariate ARMA model of finite order for X, and Yt respectively. As pointed out by
Haugh (1976), this approach is of somewhat 'parametric nature', because the assumption
of an ARMA model is rather unrealistic in practice. Model misspecification may lead to
misleading conclusions because it will invalidate the asymptotic distribution of the test
statistic. In contrast, we approximate Xt and Yt by truncated autoregressions with lag
truncation numbers growing properly as the sample size increases (Berk, 1974). This
ensures that tit and vt are consistent for ut and vt.

3. ASYMPTOTIC NULL DISTRIBUTION

We now derive the asymptotic null distribution of QN, and thus Q*. For simplicity, we
assume that (ut) and (v() are mutually independent under the null hypothesis.

THEOREM 1. Suppose Assumptions 1 and 2 hold. Let M-*oo, M/W->0. Let p and q
satisfy

Ifutis independent of v, for all t, s, then Qs->N(0, 1) in distribution.

Under the conditions on p and q, the sampling effects of &(p) and f}(p) are asymptotically
irrelevant to the limiting distribution of QN. The condition p = o(iV1/2/M1/4) requires that
p not grow too fast; in particular, p must grow more slowly than iV1/2, as M-> oo. This
ensures that the sampling variance of &(p) is asymptotically negligible. On the other hand,
N EJLp+i a2 = o(N1/2/M1/4) requires that p not grow too slowly. This ensures that the bias
of the AR(P) model for Xt vanishes sufficiently fast so that it has negligible impact. When
txj decays to zero sufficiently quickly, the conditions on p will be satisfied. The discussion
for q is exactly the same.

For practical implications of the conditions on p, consider first the case where X, is an
AR(p0) process. This implies EJL^+i <*2 = 0. If p0 is known, p^p0 ensures both the con-
ditions on p for all N. When p0 is unknown, in general one has to let p grow in order to
be larger than p0. Next, for stationary and invertible ARMA processes of finite orders, a,
will decay at a geometric rate for large j , that is \<Xj\ ^ Aoq^ for some i i t ^ e (0,1). It
follows that N EJL p + 1a 2 = o(JV1/2/M1/4) holds provided p->oo at any rate faster than
ln(iV). Finally, for the general case where Xt is an AR(OO) process, we must let p grow
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Testing for independence between time series 619

with N properly. Suppose E"=-+ 1 a? = O(p~v) for some v > 2. Then N^M^/p"'1 ->0 will
suffice for JV EJLP + 1 a] = o{N^2/M{'4).

4. ASYMPTOTIC LOCAL POWER

We now investigate the asymptotic power of QN under a class of local alternatives. For
simplicity, we maintain the assumption that ut is independent of v,, and consider the
following sequence of completely specified models:

HaN: C(o>) = a(N)g(co), co e [ - n, * ] ,

where C*,,(a)) is the coherency function between u, and vt, g is a complex-valued continuous
function on [ — 7t, TZ], and a(A/)->0 so that the local alternative HaN converges to HO as
N -> oo. Here, the dependence of C£D on A/ has been made implicit for notational simplicity.
This approach is similar to those of Gallant & Jorgenson (1979) and Gallant & White
(1988), who also let the specified model approach the data generating process rather than
vice versa. This leads to a much simpler analysis and delivers conclusions identical to
those that would be reached by fixing the model C^ and moving the data generating
process properly.

THEOREM 2. Suppose Assumptions 1 and 2 hold, and u, is independent of v3 for all t, s.
Let M -*• oo, M/N -> 0. Let p and q satisfy

where C°e is as in HaN. If a{N) = M1/4/A/1/2, then Q°N-> N{n{k), 1} in distribution, where

Kk)=\\g\\2/{2D(k)}1'2, D(k)= ^ k\z)dz.
J —00

The test 0% is able to detect a class of local alternatives converging to Ho at rate a(N) =
M1/4/A71/2. The slower is M, the more powerful is the test. This is in contrast to the fact
that approximation of asymptotic normality improves when p grows fast.

Because Mll4/N1/2 grows more slowly than the parametric rate N~m, our test is less
efficient than Haugh's (1976) test under HaN; Haugh assumes an arbitrary but fixed M.
This is the price we have to pay for achieving consistency against a larger class of alterna-
tives. Of course, the claim that M1/4/A/1/2 is slower than N~m should not be taken too
literally. When M = N11*, for example, we have Mll4/N1'2 = N1'20'112, which is very close
to A7~1/2 even for fairly large N.

By Theorem 2, the asymptotic power of a test based on Q"N with size a e (0,1) is

Urn pr(Q°N > Z J = 1 - O{Za - / # ) } ,
N->ao

where 0 is the cumulative distribution function of A7(0,1), and Za is the upper-tail standard
normal critical value at level a. This power is a function of k. Suppose M = AT (0 < v < 1).
Then following an analogous derivation of Pitman (1979, Ch. 7), we obtain that for two
tests using kernels /ct and k^, the Pitman's asymptotic relative efficiency of k2 with respect
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620 YONGMIAO HONG

to /q is

For example, the relative efficiency of the Bartlett kernel kB(z) = (1 — |z | ) l ( | z |< 1) to the
truncated kernel kT(z) — l ( |z | ^ 1) is

AREP(fcB; kT) = 51 / ( 2 'y ) > 5*^2-23

for all 0 < v < 1, where 1(.) denotes the indicator function. Thus, kB is about 120% more
efficient than kT; the latter delivers a Haugh's (1976) type test. Many other kernels also
deliver better power than the truncated kernel.

We now consider the optimal kernel that maximises the power of Q"N over a suitable
class of kernel functions. Let r > 0 be the largest positive integer such that

z-0

exists, is finite and nonzero. This r is called the 'characteristic exponent' of the function
k(z). We consider the following class of kernels with r = 2:

K{X) = {k satisfies Assumption 2, fc*2) = ^r2, K(X) > 0 for X e (— oo, oo)},

where

1 f°°
K(A) = — k{z)e-izXdz.

2n J-co

This includes the Daniell, Parzen and quadratic-spectral kernels, but rules out the trunc-
ated and Bartlett kernels.

THEOREM 3. Suppose the conditions of Theorem 2 hold. Then the Daniell kernel

kD(z) = sin(3*Tz)/(3*Tz), z e ( - oo, oo)

maximises the asymptotic power of Qa
N over K{X).

This conclusion is in contrast to the quadratic-spectral kernel, which is optimal for
estimation of/„„ using various mean squared error criteria, e.g. Andrews (1991), Priestley
(1962). In fact, as shown in Hong (1996), the Daniell kernel is also optimal for entropy
and Hellinger metric-based tests for autocorrelation of the residual from a linear dynamic
regression model. For hypothesis testing, the quadratic-spectral kernel may be worse than
many other kernels.

Three commonly-used kernels, Daniell, Parzen and quadratic-spectral, have D(k) =
1-209200/T, 1-325414/T and 1-218851/T respectively. Thus, while the Daniell kernel is opti-
mal, we expect little power diflFerence among these kernels. Of course, kernels outside K(T)
may have D(k) significantly different from that of the Darnell kernel.

5. ASYMPTOTIC GLOBAL POWER

Next, we turn to examine asymptotic global power of QN. To state the consistency
theorem, we impose the following condition on the dependence between (u,) and (vt).
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Testing for independence between time series 621

Assumption 3. The innovations (u,) and (vt) are fourth order stationary processes with
OO CO 00 OO

E * « ( . / ) < « . Z E E | K » » p ( o , i , . / , / ) i < o o ,
j= — co / = — <x> ]= — OO I— — ao

where Kurat?(0, i,j, /) is the fourth order cumulant of u,i>,+ («,+; w,+j.

Here, £„,(./) need not be absolutely summable, as is the case for the alternatives that
have such long cross-correlations that the cross-spectral densities do not exist at fre-
quency 0. The cumulant condition is standard in multivariate time series; it characterises
the temporal dependence of {u,vt). When (ut, vt) is a bivariate jointly Gaussian process,
the cumulant condition holds trivially because KUPUI)(0, i, j , 0 = 0 for all i, j , I.

THEOREM 4. Suppose Assumptions 1-3 hold. Let M->oo, M/N-*0. Let

p = o(N/M), f «j = o(M-1), q = o(N/M), £ P) = o(M~l).
J=p+1 J=q+l

Then

in probability.

Theorem 4 implies QN -> oo at rate N/M112 under fixed alternatives. Asymptotically, the
slower M grows, the faster will QN diverge to infinity, and so the more powerful is QN.
This conclusion is analogous to that reached under HaN.

To compare the efficiencies of two tests under fixed alternatives, Pitman's criterion is
inappropriate because the asymptotic power of QN will approach unity as JV -»oo at any
given level <xe(0,1). Instead, we use Bahadur's (1960) asymptotic slope criterion, which
is pertinent for large sample tests under fixed alternatives. Bahadur's asymptotic slope is
the rate at which the asymptotic p-value goes to zero as N-* oo. Because QN is asymptoti-
cally N(0,1) under the null hypothesis, its asymptotic p-value is 1 —Q>(QN)- Now define

Because In{1-<!>(£)} = - ^ 2 { 1 + o(l)} as £->+oo (Bahadur, 1960), we have

in probability under fixed alternatives as M-KX>, M/iV->0. Following Bahadur, we call
^Cxy\\

2l{2D(k)y12 the 'asymptotic slope' of QN. A large asymptotic slope implies a fast
rate at which the asymptotic p-value of the test converges to zero as N -> oo. Furthermore,
the rate at which FN(k) diverges to infinity is N2/M; this rate is faster than the rate for
parametric tests including asymptotic normal and x2 tests, the latter equal to N (Bahadur,
1960). When M = ln(JV), for example, N2/M is close to the square of N. Consequently,
QN has an infinitely larger asymptotic slope than parametric tests, including Haugh's S test.
This conclusion on relative efficiency under fixed alternatives is in sharp contrast to that
reached under HaN.

It can also be shown that Bahadur's relative efficiency comparing two kernels is the
same as Pitman's efficiency. Thus, all the discussions on k in § 4 apply.

6. FINITE SAMPLE PERFORMANCE

We now examine finite sample performance of QN and Q* in comparison with Haugh's
(1976) tests using Monte Carlo methods. We consider two processes for Xt and Yt:
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622 YONGMIAO HONG

(a)
(b) Xt = u, + 0-5u,_1 and Yt = v, + 0-5vt-1,

where u, and vt are identically and independently distributed N(0,1) random variables.
Three alternatives are considered.

Alternative 1:

[0-2 for; =

Alternative 2:

Put>( ; ) ' 0 otherwise.

{0125 for; = 0,

sin(O-1257t;)/(7t;) for 1 < ; ^ 8,

0 otherwise.
Alternative 3:

fO-3 for; = 3,
Puv[J) | 0 otherwise.

Under Alternative 1, (ut) and (vt) are correlated simultaneously but not otherwise, and
the coherency is a nonzero constant (l/5re) for all frequencies. This pattern of very short
cross-correlation is similar to those of many financial time series. In contrast, the cross-
correlation function of Alternative 2 has a maximum at j = 0, and then decays slowly and
smoothly to 0 at j = 8. The coherency has a large nonzero value for all positive frequencies
near 0 but is zero otherwise. The correlation is long and smooth; this pattern might be
exhibited by two time series that are observed weekly and have strong quarterly relation-
ships, but whose weekly motions are only weakly related. As pointed out by Geweke
(1981a), this pattern is similar to the cross-correlations of many estimated innovations
that have exhibited to substantiate a rinding of little or no relationships between time
series, e.g. Pierce (1977). For Alternative 3, (u,) and (vt) are correlated only at lag j = 3.

The simulation experiment was carried out using a GAUSS random number generator
on a 486 PC. Two sample sizes are used: N = 100 and 200. For each N, we generate N + 50
observations and then discard the first 50 to reduce the effects of initial values. We use
AR(p)/AK(q) to fit XJYt, with p, q = 3 for N = 100, and p, q = 6 for N = 200. To examine
effects of using different k and M, we use three kernels from the class K(7I/3*), and three
rates for M. The three kernels are Daniell, Parzen and quadratic-spectral kernels. The
three rates are M = \\n(N)\, L3iV°"2J and L3Af°"3J, where [aj denotes the integer part of a.
These rates deliver M = 5, 8, 12 for N = 100 and M = 5, 9, 15 for N = 200.

We also compute Haugh's (1976) two statistics

S = N £ PLU), S* = N2 £ (N-JT^UA
J=-M i^-M

where the above three rules for M also apply. Both S and S* are asymptotically XIM+I

under the null hypothesis.
Because the performances of each test are much the same whether XJY, follow AR(1)

or M A ( 1 ) processes, we only report results when XJYt follow A R ( 1 ) processes. Table 1
reports size performances of all the tests at 10% and 5% nominal significance levels, based
on 1000 replications. Both QN and Q% have reasonable sizes, and there is no clear evidence

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/83/3/615/241351 by guest on 12 July 2021



Testing for independence between time series 623

Table 1. Rejection rates out of 1000 replications under the null hypothesis of
independence, Xt = 0-5Xt-1 + u,, Yt = 0-5Yt + vt, where u,, u r~iV(0,1), and

puv(j) = 0forallj

Qt

s
s*

DN

PZ

QS

DN

PZ

. Q S

M
10%

102
10-6
10-4

9-6
9-4

100

7-8

8-7

= 5
5%

6-4
5-9
6-2

51
5-4
5-6

3-6

4-5

N =
M

10%

9-6
9-0
9-3

7-9
7-6
8-5

6-5

7-8

= 100
= 8

5%

5-4
5-6
5-5

5-4
4-8
5-0

2-2

3-3

M =
10%

8-6
80
81

5-6
6-7
6-5

3-9

7-7

12
5%

4-8
4-6
5-0

3-7
4-0
41

11

3-2

M =
10%

9-0
91
8-8

8-7
8-8
8-8

8-3

8-6

5
5%

6-0
5-7
5-5
60
5-6
5-5
4-4
4-8

AT =
M

10%

9-9
101
8-5

80
9-5
8-5

7-7

9-2

200
= 9

5%

6-2
6-8
5-5

5-7
61
5-5

3-7

4-5

M =
10%

9-7
9-5
8-8

7-7
8-3
8-8

6-7

8-7

15
5%

6-5
6-3
5-7

51
5-4
5-7

2-7

4-2

DN, Daniel] kernel; PZ , Parzen kernel; QS, quadratic-spectral kernal.

favouring either one. At the 10% level, QN and Q% have better sizes than S and S*. At
the 5% level, QN and Q* exhibit a little over-rejection in some cases, while S and S*
exhibit a little under-rejection in some cases. The test S* has better size than S at both
the 10% and 5% levels, especially for N = 100.

Table 2 reports power performances under Alternative 1 at the 5% level, based on 500
replications. We use both asymptotic and empirical critical values, the latter obtained
from the 1000 replications under the null hypothesis. Both QN and Q% perform similarly.
The three kernels deliver similar power. For each kernel, the more slowly M grows, the
better is the power of the test. In fact, because Alternative 1 is a simultaneous cross-
correlation, including extra terms will sacrifice efficiency of the tests. On the other hand,
S and S* perform similarly, and smaller M gives better power. We see that QN and Q*
are about twice as powerful as Haugh's tests.

Table 2. Rejection rates out of 500 replications at the 5% level under Alternative 1:
Xt = OSX,^ + ut,Yt = 0-5Yt + vt, where i^v,- JV(O,1), puv(0) = 0-2 and Puv(j) =

0 for all j 4=0

Q%

s
s*

DN

PZ

QS

DN

PZ

QS

M
ACV

38-8
37-0
39-0

36-6
36-0
36-6

134
14-4

= 5
ECV

35-4
32-6
34-2

35-2
32-6
34-2

16-2

15-8

N =
M

ACV

29-0
28-8
29-4

26-8
260
27-8

104

12-8

100
= 8

ECV

28-4
27-2
27-8

28-4
27-2
27-8

16-4

15-8

M
ACV

24-0
23-8
24-6

19-2
206
21-4

60

106

= 12
ECV

24-6
25-2
24-6

24-6
25-2
24-6

15-2

14-6

M
ACV

66-6
650
66-8

65-8
64-6
65-8

350
35-8

= 5
ECV

62-4
63-4
64-4

62-2
63-4
64-4

36-8

360

N =
M

ACV

55-8
54-4
55-8

53-6
52-8
54-6

240

26-6

200
= 9

ECV

51-8
502
530
520
502
530

28-8

280

M
ACV

44-4
42-8
44-4

4O8
39-8
42-6

17-6

21-4

= 15
ECV

404
38-4
402
406
38-4
400

23-6

22-4

DN, Daniell kernel; PZ, Parzen kernel; QS, quadratic-spectral kernel; ACV, asymptotic critical value;
ECV, empirical critical value.
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624 YONGMIAO H O N G

Table 3 reports power performances under Alternative 2. Again, for QN and Q%, the
three kernels perform roughly the same. The effects of M, however, are somewhat different
from those under Alternative 1. Now the three choices of M give similar power, and there
is only weak evidence that smaller M delivers better power. In contrast, for S and S*,
smaller M still delivers better power. Both QN and Q* are more powerful than S and S*,
especially for small N and/or medium and large M.

Table 4 reports power performances under Alternative 3. For QN and Q*, the Parzen
kernel is a little more powerful than the Daniell and quadratic-spectral kernels when M
is small, but the three kernels perform similarly when Af is medium and large. For each
kernel, small M gives low power, while medium and large M give good power. On the
other hand, smaller M gives better power for S and S*. Interestingly, Haugh's tests have
better power than QN and Q% when M is small. This can be expected because Haugh's
tests put more weight than QN and Qf, on ; = 3 for which puv(j) =¥ 0. When M is large,

Table 3. Rejection rates out of 500 replications at the 5% level under Alternative 2:
i + u,, Yt = 0-5Yt + vt, where ut, v,~N(0,l), and puc{j) =
sin{0-l25nj)/(nj)for 0 ^ ; ^ 8, and puv(j) = 0 otherwise.

QN

Q.%

s
s*

DN

PZ

QS

DN

PZ

QS

Af
ACV

34-4
350
34-4

32-0
33-6
33-6

19-4

22-8

= 5
ECV

32-0
31-4
31-8

32-0
31-4
31-8

24-6

24-8

N =
Af

ACV

34-4
32-0
34-2

29-4
29-2
31-4

13-4

17-6

100
= 8

ECV

32-0
30-6
31-4

31-8
30-6
31-4

21-4

21-0

Af
ACV

29-6
28-8
29-2

23-2
230
26-2

9-2

13-4

= 12
ECV

29-6
29-6
29-8

29-6
29-6
29-4

18-0

18-0

Af
ACV

65-4
69-0
66-0

64-8
67-6
65-8

58-6

60O

= 5
ECV

62-2
660
63-6

62-2
65-6
63-6

61-8

61-6

N =
M-

ACV

704
70-8
70-8

68-4
68-6
69-4

40-4

430

200
= 9

ECV

65-8
660
67-0

65-8
66-0
67-0

46-2

45-0

Af
ACV

65-6
63-2
65-4

60-2
60-2
63-2

25-8

33-6

= 15
ECV

59-8
58-6
58-4

60-0
58-2
58-4

37-2

35-8

DN, Daniell kernel; PZ, Parzen kernel; QS, quadratic-spectral kernel; ACV, asymptotic critical value;
ECV, empirical critical value.

Table 4. Rejection rates out of 500 replications at the 5% level under Alternative 3:
Xt = 05Ar

r_1 + ut, Yt = Q-5Yt + vt, where u,, vt~N(0,1), and put,(3) = O3 and
Puv(j) — 0 for all j 4= 3

QS

s
s*

DN

PZ

QS

DN

PZ

QS

Af
ACV

15-8
26-0
17-4

14-6
25-0
16-4

400

44-2

= 5
ECV

14-6
21-6
14-6

14-6
22-0
14-6

45-6

46-2

N =
Af

ACV

42-8
44-2
42-8

39-0
42-4
41-2

28-2

33-2

= 100
= 8

ECV

41-6
42-8
41-2

41-6
42-8
41-2

38-0

37-6

Af
ACV

46-8
46-2
47-0

402
41-8
43-6

18-2

26-6

= 12
ECV

46-8
48-4
47-0

46-8
48-4
47-0

34-2

33-8

Af
ACV

402
61-4
45-0

39-6
610
44-4

82-6

82-6

= 5
ECV

33-2
58-6
408

33-0
58-4
41-2

83-2

83-4

N =
M

ACV

83-6
84-2
83-8

81-8
83-2
82-8

64-6

68-6

200
= 9

ECV

802
81 6
81-2

804
81-6
81-2

708

706

Af
ACV

83-6
82-6
83-2

81-4
81-4
82-2

47-6

53-0

= 15
ECV

81-4
802
81-2

81-4
802
81-2

57-2

54-8

DN, Daniell kernel; PZ, Parzen kernel; QS, quadratic-spectral kernel; ACV, asymptotic critical value;
ECV, empirical critical value.
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however, Haugh's tests become less powerful than QN and Q%. This is because, although
Haugh's tests put more weight on j = 3, they also, inefficiently, put more weights than QN

and Q* on many lags for which putJ(j) = 0.
In summary, the simulation study shows that the new tests perform reasonably well,

having good power against short and long cross-correlations. Different choices of kernel,
other than the truncated kernel, give similar power. In most cases, the new tests have
better power than Haugh's tests or the truncated kernel based tests.
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