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Abstract 
This article examines an important externality that polluting industries may impose on peoples’ health in 
their proximities. To ascertain the actual health outcomes and expenditure associated with mining 
pollution, this study (on a gold mine in Tanzania) used the Coarsened Exact Matching (CEM) approach, 
which matches the social, economic, and environmental risk-factor characteristics of households in 
treated and control groups. It also used a linear and logistics regression using CEM Weight to obtain 
robust treatment effects. 
The results show that health outcomes (proxied by stunting rate) were significant within 10km of the 
nearby mine. The probability of a child in the treated group being stunted was 0.226 greater than for a 
child with similar social, economic and environmental risk factors in the control group. Moreover, the 
OLS regression suggested similarly that the children in the treated group had height-for-age Z-scores 
(HAZ06) of 0.827 less than for similar children in the control group. Further regression of HAZ06 on the 
distance from the mine provided robust evidence that health scores (HAZ06) among children increased 
statistically by 0.0212 for every kilometre they were further away from the mining site. These findings 
suggest that the less a person is exposed to mining pollutions (i.e., the further from the mine), the less the 
health impact. 
Furthermore, the results showed that households within 10 km of the mine are spending 55 202 
Tanzanian shillings (TZS) more on health per person per year than those further than 10km away. The 
regression of per-capita health expenditure on distance provides more evidence that healthcare 
expenditure per capita decreases by TZS 712 for every 1km increase in the average distance from the 
residence to the mining site. Drawing intuition from the hedonic theory, we further interpreted the results 
in terms of ‘willingness to accept’ (WTA); it was found that on average, the households staying within 
10km of the mine (i.e., the victims of mining pollution) are willing to accept (WTA) minimum per-capita 
compensation for health expenditure of TZS 55 202 per annum (equivalent to USD 24.75). The 
minimum WTA increases closer to the mine site and decreases further away. 
These findings have an important implication for environmental and industrial policies. They suggest 
environmental regulations should be tightened, to ensure that the pollution emitted by mines is within 
acceptable limits for health as laid down by the WHO. Moreover, there is a need for a thorough review of 
industrial policies (especially in terms of local content) to ensure that compensation policies and local 
multiplier effects are adequate to offset the negative health and income effects. 
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1. Introduction  
The mining sector is one of the main economic sectors, with important linkages to the rest of the 
economy, both direct and indirect. Mining creates employment for local communities, generates revenue 
for governments, and contributes to economic growth and development. While positive effects such as 
employment and community development are vital, the negative impacts on local communities cannot be 
ignored, and they may be experienced long after mining activities end. The positive and negative effects 
of mining cannot be disputed; hence the two categories of mining externalities: positive externalities 
(desirable outputs) and negative externalities (undesirable outputs). Desirable outputs include the mineral 
product, the impact on GDP through the labour market, sectoral linkages, and local multiplier effects. 
Undesirable outputs include air, water and land pollution through carbon dioxide (CO2) and sulphur 
dioxide (SO2) emissions as well as other pollutants, which cause serious damage to health, environment 
and ecology.  
The challenge for policymakers considering the severe negative externalities due to mining activity is to 
create an environment in which mining can become more sustainable (i.e., cause minimal negative 
externalities). In developing regions such as sub-Saharan Africa, the negative effects of mining are 
potentially more severe than elsewhere, due in part to poor regulation. Considering mining is a primary 
source of direct foreign investment in developing countries, a better understanding of its negative effects 
is key to improving regulation and moving closer to sustainable mining.  
 
1.2 Statement of the problem 
Valuable mineral deposits in developing countries can create nearly as many problems as they solve, since 
environmental and industrial regulations are lax in most developing countries. Modern mining activities in 
developing countries (including Tanzania) take place in close proximity to local communities, and thus 
health issues are a major concern. Over the years there have been repeated fatal incidents reported in the 
vicinity of the large gold mines, associated with the seeping of toxic chemicals into water sources used by 
the local communities. In the empirical literature, the levels of these chemicals and heavy metals are 
reported to be higher than the allowed thresholds recommended by the WHO. The levels observed are 
associated with significant health impacts, especially to children.  
In most empirical studies, stunting rate5 (in children below 59 months) is used as a measure of health 
outcomes. In Tanzania, children's health-risk indicators are way above the WHO threshold; in 2016, for 
instance, 34% of children under five years old were stunted, while 5% suffered from acute malnutrition in 
terms of wasting or low weight for height (USAID, 2018). The 2019 country profile report on nutrition 
and child stunting trends shows that in Tanzania there are over three million children under five years 
who are stunted. The estimated number of stunted children increased from 3.319 million in 2012 to 3.415 
million in 2015 and is expected to rise to 3.569 million by 20256. Though the country has targeted a 
stunting rate of 28% by 2021, it is projected that the target may not be realised by 2025. Among other 
things, differences in environmental amenities and poverty have been suggested as two of the culprits 
believed to contribute to poor health. Thus, controlling pollution from polluting industries and taking 
advantage of the mining local multiplier to reduce poverty would support efforts to reduce stunting rates 
and improve health outcomes in Tanzania. 
Cunha and Heckman (2007) provided a capacity formation framework which shows that childhood 
health has significant effects on future health, educational attainment and labour market outcomes, 
through dynamic complementarities and cross-productivity with the development of cognitive and non-
cognitive skills. In addition, Currie (2008) and Almond and Currie (2011) found that parents' socio-
economic status is strongly linked to child health; the link suggests that parts of the intergenerational 
persistence of inequality are due to differences in childhood health conditions. Thus, addressing children's 
health issues has potential economic benefits, ranging from improving the labour market to reducing 
income inequality. In this paper, we focus on quantifying exposure to mining pollution impact on 
children’s health outcomes in the large gold mines surrounding communities in Tanzania. Moreover, 
from an environmental policy point of view, we estimate the economic costs associated with pollution on 
household health expenditure. We define this cost as the minimum amount of money households 

 

5
 Failing to grow along the optimum trajectory set out in the WHO Child Growth Standards (WHO, 2016) is known 

as ‘stunting’, a term given to impaired linear growth (length/height for age) in the early years of life, which results in 
failure to reach by adulthood the height implied by genetic potential. 
6
 See https://ec.europa.eu/europeaid/sites/devco/files/nutrition-graphs-tanzania-2016_en.pdf  

https://ec.europa.eu/europeaid/sites/devco/files/nutrition-graphs-tanzania-2016_en.pdf
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exposed to mining pollution are willing to accept as compensation for lower environmental quality. 
Establishing how much those in the vicinity of the mine will accept as compensation for improvements in 
environmental quality may guide policies regarding pollution control in the mining zone. 
 
1.3 Contribution  
The empirical literature shows pollution can affect not only human health but also welfare, with effects 
on everything from health expenditure to housing prices, wages, agriculture, and labour productivity 
losses. Though health effects and welfare loss associated with pollution are highly interlinked, most 
empirical studies have analysed them separately. This study’s first contribution was to link these two 
dimensions, first by establishing the existence and extent of health effects in terms of coverage in 
Tanzania, which in turn informed the calculation of the threshold distance separating the treated group 
and the control group – unlike other studies, which have established their threshold based on findings 
from other studies. This study also used the hedonic pricing approach to estimate welfare loss because of 
health expenditure as a defensive investment due to exposure to mining pollution. This contributes to the 
scant empirical evidence quantifying the costs of mining externalities, especially in Africa. 
The second contribution of this study is that in addition to the socio-economic household characteristics 
considered in most empirical studies, we have also controlled household environmental risk factors 
(housing floor material, latrine type, drinking water source, cooking fuel type, sold waste disposal and 
hygiene). Vilcins, Sly and Jagals (2018) showed that environmental risk factors work independently of 
nutrition intake and socio-economic attributes to affect health outcomes, and ultimately health 
expenditure. Ignoring household environmental risk factors may over- or underestimate the actual effects. 
Thus, we have extended the studies of Von der Goltz and Barnwal (2019) and Akpalu and Normanyo 
(2017) by controlling household environmental risk factors, in addition to the commonly used socio-
economic characteristics, to provide more robust estimates of effects and costs.  
This study contributes to addressing this policy relevance of actual health outcomes due to mining 
operations. The results highlight the importance of introducing stricter environmental policies and 
regulations to control pollution from mining activities; as well as the importance of enforcing local 
content industrial policy to ensure higher local multipliers, which eventually translates into better health. 
 
1.5 Organisation of the paper 
The rest of the paper is structured as follows: Section 2 presents an overview of the mining pollution and 
health nexus. Section 3 is an overview of stunting and mining proximity. Section 4 demonstrates the 
empirical methodology adopted in the study, which includes the source of the data, the variables used, 
how they were measured, and the data analysis process. Section 5 provides the empirical results, and a 
discussion of the findings. Section 6 concludes the paper, discussing the main findings and 
recommendations of this study and outlining future research opportunities.  
 
2.1 Mining pollution and health overview 
Gold mines, in addition to emitting PPM and gases, are known to produce hazardous pollutants and 
heavy metals such as arsenic, cadmium, zinc, lead, copper, manganese and cyanide. (In low 
concentrations, these pollutants are dispersed and absorbed by the environment. In large concentrations, 
however, they can deposit on the ground in the form of acid rain, and are mostly dispersed through 
surface water, resulting in long-term cumulative effects.) They are also a source of noise, mainly from 
blasting explosives. Studies have shown that gold extraction and processing can significantly degrade 
natural environments (including reducing the quality of soil and sediments, water, and air), and thus 
human health and livelihoods (Akpalu and Normanyo, 2017; Hilson, 2000; Akpalu and Parks, 2007; 
Obiri, 2007; Leder et al., 2012; Saldarriaga-Isaza et al., 2013; Ako et al., 2014; Ansa-Asare et al., 2015). 
Pollution mainly occurs during gold extraction and processing, which includes carbon-in-leach, heap 
leaching with cyanide, and biological oxidation and roasting (Hilson, 2002; Leder et al., 2012).  
Several studies in developing countries have examined the presence of pollutants and heavy metals near 
gold mines; they found mining to be a major cause of high concentrations of hazardous substance in 
several African countries (Ahoulé et al., 2015). Different approaches were used to establish toxicological 
profiles, including examining samples of soil, drinking water, air and food, as well as satellite images. 
Developing countries have been the setting for evaluation studies on soil samples (Mora et al., 2019: 
Kamunda et al., 2016; Palapa and Maramis, 2015; Rashed, 2010; Ogola, Mitullah and Omulo, 2002); 
drinking water samples (Gomezulu, Mwakaje and Katima, 2018; O’Sullivan, Mwalwiba, Purcell, Turner 
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and Mtalo, 2016; Bortey-Sam et al., 2015; Almås and Manoko, 2012), air samples (Shenoy, 2018; Bi et al., 
2018) and food samples (Bortey-Sam et al., 2015; Thompson and Darwish, 2019). More recently, using 
satellite images to evaluate the concentration of different pollutants has been a popular approach; such 
studies include Von der Goltz and Barnwal (2019) and Akpalu and Normanyo (2017). These studies 
concluded that the concentrations of pollutants and toxic metals near gold mines were significantly higher 
than the limits deemed acceptable by the WHO.  
Empirical studies in Tanzania include Gomezulu, Mwakaje and Katima (2018), in villages surrounding 
Buzwagi gold mine; O’Sullivan, Mwalwiba, Purcell, Turner and Mtalo (2016) and Almås and Manoko 
(2012), conducted at Geita gold mines and North Mara gold mines; and Nkuli (2012), at Bulyanhulu gold 
mine. Like other studies in developing countries, they found higher concentrations than normal of heavy 
metals and cyanide in soil samples and in the water in mining vicinities. In addition to the empirical 
findings, there have been several fatal incidents reported in Tanzania: for instance, in May 2009 an 
environmental incident occurred at the North Mara mine, when toxic chemicals leaked from a mine rock 
storage facility into the Tigithe River. Thirty people and 300 cows died from the pollution7. The same 
mine was ordered to close a pit refuse facility at North Mara in 2009, due to toxic leaks that contaminated 
local water sources8. Similar have been reported at other mines, such as Geita9 and Bulyanhulu10.  
Such reports highlight the fact that in developing countries, often the existing laws fail to regulate the 
gold mining industry effectively, leading to excessive environmental degradation (Hilson, 2000). These 
lapses in regulatory oversight and enforcement have led to high levels of pollution, as gold mines 
routinely discharge toxic chemicals such as mercury (typically used by small-scale miners), cyanide and 
arsenic and their harmful compounds into water bodies, exposing workers and residents to a range of 
health risks (Akpalu and Normanyo, 2017). For a detailed analysis of heavy metals and their associated 
health risks, see Fashola, Ngole-Jeme and Babalola (2016). 
 
2.2 Theoretical literature review 
The relationship between exposure to pollution and health risks has been widely explored in toxicological 
and epidemiological studies. Toxicology studies explore pollution exposure to better understand the 
underlying mechanisms that affect health outcomes (Oberdörster, Oberdörster and Oberdörster, 2005; 
Stone et al., 2017). Indeed, pollutants can enter the human body via several routes, e.g., inhalation, 
absorption from the digestive tract, and injection for nanomedical applications (three exposure pathways 
include ingestion, inhalation and dermal contact). Regarding potential adverse impacts on the brain, 
uptake and retrograde axonal transport of pollutants via the olfactory nerve has been demonstrated in 
rodent inhalation studies (Oberdorster et al., 2004; Elder et al., 2006). Epidemiological studies are based 
on the dose-response theory (or exposure-response relationship). The dose-response function shows that 
the more a person (or other organism) is exposed to pollutants, drugs, foods and other substances beyond 
a particular threshold, the greater the chance of adverse health effects including death (WHO, 2016). 
Epidemiological studies have reported numerous detrimental health consequences associated with mining 
pollutants, notably pathological respiratory and cardiovascular conditions (Brunekreef and Burdorf, 2018; 
Schultz, Litonjua and Melén, 2017; Barnes, Mathee, Thomas and Bruce, 2009; Dherani, Pope, 
Mascarenhas, Smith, Weber and Bruce, 2008). Pollution may increase the risk of premature mortality and 
morbidity, as per the global burden of disease report; for instance, it’s estimated that worldwide in 2016, 
exposure to PM2.5 contributed to 4.1 million deaths from heart disease and stroke, lung cancer, chronic 
lung disease, and respiratory infections (Shupler at el., 2018; Heft-Nealet al., 2018) There is a growing 
number of empirical works on the effects of pollution on stunting rate, specifically regarding the presence 
of heavy metals (that potentially hinder growth) in mining vicinities (Von der Goltz and Barnwal, 2019; 
Vilcins, Sly and Jagals, 2018; Goyal and Canning, 2018; Machisa et al., 2013; Fenske et al., 2013; Mishra 
and Retherford, 2007). 
Apart from the health effects of pollution (some of which are irreversible) evaluated in public health 
studies, in the economic literature pollution is considered to generate costs for third parties if not 
properly internalised. Pollution costs are quantified in the literature of non-market valuation of 
externality. Traditional frameworks for evaluating pollution abatement policy provide guidance on how to 

 

7 See http://protestbarrick.net/downloads/Beyond_barrick.pdf  
8 See http://protestbarrick.net/article.php@id=852.html  
9 See http://www.ipsnews.net/2001/05/environment-tanzania-farmers-link-deaths-to-gold-mine-pollution/  
10 See https://www.cyanidecode.org/sites/default/files/pdf/AcaciaBulyanhuluSAR2019.pdf  

http://protestbarrick.net/downloads/Beyond_barrick.pdf
http://protestbarrick.net/article.php@id=852.html
http://www.ipsnews.net/2001/05/environment-tanzania-farmers-link-deaths-to-gold-mine-pollution/
https://www.cyanidecode.org/sites/default/files/pdf/AcaciaBulyanhuluSAR2019.pdf
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achieve the public objective of protecting the health of those of the population most at risk from 
polluting industries such as mining. The economic concept of marginal cost versus marginal benefit 
establishes a link between health outcomes, environmental regulations and pollution emission (Kolstad, 
2011). 
Therefore, the framework presents the underlying assumption that high levels of pollution are associated 
with high health expenditure. Thus, in our analysis it is acceptable to assume that people in a highly 
polluted area are more likely to have higher medical expenditure.  
 
2.3 Empirical literature review 
The empirical studies use several strategies to evaluate pollution costs, based on a willingness-to-pay 
approach. The two most used are: (1) defensive expenditures are used to proxy the costs; health 
expenditure is used most often, the argument being that it is highly likely that the risk of pollution-related 
sicknesses will necessitate increasingly high healthcare expenditure in affected communities. Empirical 
studies in this area include Zhang and Mu, 2018; Akpalu and Normanyo, 2017; and Deschenes, Shapiro 
and Greenstone, 2012. (2) willingness to pay for housing to avoid pollution is used. Empirical studies 
taking this approach include He and Collins, 2020; Chen and Jin, 2019; Currie et al., 2015; Chay and 
Greenstone, 2005; Smith and Huang, 1993. However, in developing countries such studies are implicitly 
limited; poor infrastructure and inflexible housing markets commonly make it impracticable to account 
for pollution. In addition to these two traditional approaches to measuring pollution costs, a few studies 
(Leitão, 2018; Aragón and Rud, 2016) have used agriculture productivity, while Lichter, Pestel and 
Sommer (2017), Chang, Graff Zivin, Gross and Neidell (2016) and Graff Zivin and Neidell (2012) all use 
labour productivity loss as a proxy for pollution cost11.  
The empirical literature shows pollution can affect human health as well as welfare, with issues ranging 
from health outcomes to health expenditure, housing prices and productivity losses. However, such 
damages are rarely internalised by the mines. Given the failure to internalise pollution cost by the mining 
and mineral processing industry (they are large polluters), it has been argued that the benefits of mining, 
in terms of revenue, foreign exchange and employment as a source of government revenue, has weakened 
such governments, dissuading them from passing and enforcing stringent mining-related environmental 
regulations (Akpalu and Normanyo, 2017; Greenstone and Hanna, 2014; McMahon, 2011). Therefore, 
mining pollution continues to cause damage to health, welfare and ecosystems. 
Several studies have been undertaken on the health impacts of gold extraction (see e.g., Von der Goltz 
and Barnwal, 2019; Akpalu and Normanyo, 2017; Currie et al., 2014; Graff Zivin and Neidell, 2013). This 
study is similar to Von der Goltz and Barnwal (2019) in that we follow the same set-up of the treatment 
and control groups (we use distance to the nearest mine as a proxy for exposure to environmental 
pollution. The choice of a distance cut-off to define the treated group is therefore crucial12.) However, 
Von der Goltz and Barnwal (2019) used information from different studies to establish the threshold at 
which the mining impacts are considered significant and to assign the treatment and control groups. In 
this study we estimate the threshold from the stunting data and use this threshold to establish our 
treatment and control groups. Moreover, Von der Goltz and Barnwal (2019) assumed that the health 
effects (on stunting) are entirely due to mining pollution; but in the literature there are several 
environmental risk factors. Vilcins, Sly and Jagals (2018) included sanitation, hygiene, access to and quality 

 

11 Recent studies on pollution explored the wealth and health trade-off associated with exposure to mining pollution 
(Von der Goltz and Barnwal, 2019: Aragón and Rud, 2013), while others evaluated pollution regulations and 
improved health outcomes (Cheung, He and Pan, 2020; Burns, Boogaard, Polus, Pfadenhauer, Rohwer, Van Erp 
and Rehfuess, 2020; Gehrsitz, 2017). 
12

 Different studies have used different thresholds: Goltz and Barnwal (2018) used the distribution of lead around 
smelters to define the high-exposure level, which was at 5km (5-20km control) – this choice was in line with the 
definition of high exposure used by Geen et al., (2012). Wilson (2012) used a cut-off of 10km, while Aragón and 
Rud (2015, 2013) and Kotsadam and Tolonen (2016) used a baseline cut-off of 20km to 200km (based on the 
transport cost assumption). Shenoy et al (2018) used a cut-off of 10km when assessing the respirable dust 
concentration of mine tailings. Basu et al., (2010) used a cut-off of 7km, based on soil sample results, with sensitivity 
analysis for other choices. With perfect data, we might define closeness even more restrictively. However, in the 
context of available data, a tighter cut-off would risk introducing excessive noise, because we work with (imperfectly 
recorded) mine point locations as provided by USGS and business intelligence sources, while mining operations can 
measure several kilometres across. 
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of safe drinking water, solid waste disposal, housing, environmental enteropathy, intestinal parasites and 
air quality (regarding type of cooking fuel)13.  
In addition, health capital is determined genetically. Health can also be affected by investment in inputs 
ranging from medical care to personal behaviours such as consumption habits (smoking, drinking) and 
exercise (Wilson, 2002); our study focuses only on stunting rate, since children’s health is less subject to 
personal behaviours.  
Among the studies that have analysed the impact of exposure to pollution on stunting are Mishra and 
Retherford (2007); Machisa et al., (2013); Fenske et al., (2013); Goyal and Canning (2018); and Von der 
Goltz and Barnwal (2019). This channel associates the presence of heavy metals and pollutants with gold 
mines, showing how they affect the health outcomes of the people living nearby.  
Historically, research into stunting has focused on dietary intake; yet a growing body of evidence has 
shown an important role for the natural and physical environment in child health (Vilcins, Sly and Jagals, 
2018). We hypothesise that some environmental agents work independently of nutrition to negatively 
affect child growth. Therefore, in our analysis we control for other household environmental risk factors 
to ascertain the impact of mining pollution on health outcomes. We argue that the channel most plausible 
in explaining the different health outcomes between the treated and control groups when controlling for 
environmental risk factors (housing material, latrine type, drinking water source, cooking fuel type, solid 
waste disposal and hygiene) is through the presence of gold-mining-related pollution. The nutrition aspect 
(dietary intake) is proxied by the income and education of the household head; assuming that the higher 
the disposable income, the higher the consumption (consumption function), and the higher the 
education, the greater the concern over nutrition. 
Moreover, there is little research quantifying the costs of mining externalities, especially in Africa. To help 
fill that gap, and similarly to the study by Akpalu and Normanyo (2017), we present a simple hedonic-type 
model that links private healthcare costs (both preventive and curative) to exposure to gold mining-
related pollution. However, our analysis uses the coarsen exactly matching (CEM) approach to control for 
environmental risk factors and ensure similar comparisons between individuals in the same strata 
(exposed vs non-exposed) to establish the pollution Sample Average Treatment effect on the Treated 
(SATT), following the hypothesis that healthcare expenditure is higher the closer a household is to a 
mine.  
 
3.1 Overview of stunting and mining proximity 
There are 5 large gold mines in Tanzania, namely, Geita gold mine (GGM), Bulyanhulu gold mine, North 
Mara gold mine (NMGM), Buzwagi gold mine (BGM) and New Luika gold mine (NLGM), in respective 
of the year of starting operation. Table 1 shows the attribute of the mines.  
  

Table 1: Gold mine production attributes14. 
Serial No. Name Type Started production Production 2017/18 

1 Geita Gold Mine Opencast 2000 539 000 ounces 
2 Bulyanhulu Gold Mine Underground 2001 175 491 ounces 
3 North Mara Gold Mine Underground 2002 323 607 ounces 
4 Buzwagi Gold Mine Opencast 2009 268 785 ounces 
5 New Luika Gold Mine Underground 2012 87 713 ounces 

 
Table 1 above shows the attributes of the mines, in terms of type of mining operation: GGM and BGM 
are opencast mines, while the rest are underground mines. All are in close proximity to local communities, 
as they are all recently established. The communities surrounding are engaged in artisanal mining and 
agriculture activities. Moreover, they depend on groundwater from boreholes as the only source of water 

 

13
 The environmental risk factors studied to find an association with stunting were reviewed by Vilcins, Sly and 

Jagals (2018), including sanitation (measured by latrine ownership and type); hygiene (appropriate handwashing, and 
presence of soap and water near latrine); safe drinking water access (piped and non-piped) and quality (presence of 
arsenic); solid waste disposal (presence of adequate waste removal); housing (poorer-quality housing materials, 
specifically dirt floors); environmental enteropathy (children who consume soil); intestinal parasites (parasite 
infections); air quality (type of cooking fuel); and electromagnetic fields (children living within 50m of high-voltage 
power lines). 
14 The dataset was compiled from respective mining annual performance report 2017/2018 
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for domestic use; being close to the mine, borehole water is vulnerable to pollution from mining 
activities, especially heavy metals and cyanide. These pollutants, together with others found in polluted 
air, pose serious health risks to the people (especially the children, the most vulnerable group) 
surrounding the mines.  
To conceptualize the relationship between health outcomes and proximity to mining, a hotspot analysis 
was conducted, showing the spatial distribution of stunting in the country over the period of study. A 
hotspot is an area or region that requires special attention, compared to others. Hotspot analysis is also 
known as Getis-Ord Gi* (G-I-star) and uses vectors to identify locations (hotspots and coldspots) from 
the dataset that are statistically significant. The analysis groups feature with similar high (hot) or low 
(cold) values into a cluster, by aggregating points of occurrence into polygons or converging points 
considered in proximity to one another based on a calculated distance (Parker and Asencio, 2009). The 
results of the hotspot analysis are presented in Error! Reference source not found. below. 
  



8 

 

 
Figure 1: Hotspot analysis for Stunting 

 
Error! Reference source not found. above shows the hotspot and coldspot areas for stunting based on 
the 2009 national panel survey (NPS). The coldspots are our major concern, as they represent the areas 
with significant low negative height for age Z-score (HAZ06), implying stunting (if less than -2) or severe 
stunting (if less than -3). The study used the global Moran’s Index to test for the spatial cluster in the data; 
these results are presented in Figure 2 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Global Moran’s Index results 
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The global Moran's Index figures in Figure 2 show that there is a cluster with high levels of stunting in 
the proximity of the mines The p-value of 0.000 for a Z-core of 55.1 indicates that the results are 
statistically significant at the 1% level of significance; that is, we can reject the null hypothesis that the 
there is no high-cluster in the sample with a 99% confidence level. This implies that there is a less than 
1% likelihood that this high-clustered pattern could be the result of random chance. Therefore, there is 
strong reason to assume a causal relationship between the stunting patterns we observe in locations in 
close proximity to mines, and mining activity. 
Moreover, like similar studies, this study specifies a cut-off point for the control group. In our case, the 
control group could not exceed 100km distance from a mine, as beyond this threshold the mines intersect 
(see the map in Figure 3 below); this avoids the possibility that a person in the treatment group for one 
mine could be in the control group for the other mine. To avoid such a possibility, and to ensure 
homogeneity between the control and the treated groups, we maintained a cut-off distance of 50km. 
To evaluate health outcomes from mining pollution exposure, the study specified the treated and control 
groups based on the findings of the stunting rate analysis. The results suggested that the mining zone 
(household located within 10km from a nearby mine) which in this study is categories based on the 
distance from the nearby large gold mine whereby the heath outcome was significant. The study design is 
presented in Figure 4 below. 
 

 
Figure 4: the study design 

 

 above shows the study design. People near a mine – i.e., within 10km – were categorised as being in the 
treated group (on the assumption that the closer an individual is to a mine, the more exposed he or she is 
to mining pollution). People further away (between 10km and 50km) were treated as the control (or 
untreated) group. The vertical axis indicates stunting status. 
 
4.0 METHODOLOGY  
4.1 Model specification  
Building on the theoretical conceptualisation described above, we followed the avoidance 
expenditure model. The avoidance expenditure model derives its conceptualisation from revealed 
preference methods for evaluating environmental quality; it measures expenditure on market 
goods that compensate for lower levels of environmental quality (Moretti and Neidell, 2011; 
Neidell, 2009).  
The study assumes a typical person with a utility function. Three variables enter the individual’s 
utility function: health (H), air/soil/water pollution (A), and market goods (X). The individual 
produces health by combining medical care in the current period with pollution. Health is also 
influenced by the individual’s predisposition to sickness and pollution exposure (living near 
mining). We can now say defensive expenditure on medical care (M) will depend on health (H), 
pollution and individual health records and experience (R).  
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 M = f (H, A, R) (1) 
 
We followed Chang and Trivedi’s (2003) model specification, which was extended and applied 
by Akpalu and Normanyo (2017); it assumes that health status depends on investment in health 
(M), which is a derived demand. Because of a number of exogenous environmental factors, the 
returns on such an investment are partly deterministic and partly stochastic. The stochastic 
component is assumed to have a one-sided distribution. Several factors could account for the 
uncertain health outcome, including misdiagnosis and reinfection resulting from repeated 
exposure to the emission of dangerous gases from the mines, or leakage of heavy metals into 
water that is later used domestically. As noted earlier, enormous amounts of inorganic mercury 
and high concentrations of arsenic are present in areas close to gold mines (see e.g., Smedley, 
1996; Telmer and Veiga, 2009). We can then specify the general form of healthcare investment 
equation as: 
 
 M = f (h0, B, z;A ) (2) 
 
Thus, the stochastic component of the health outcome depends on exposure to mining 
externalities, such as cyanide spillage; as well as a vector of individual characteristics (A), where z 
is a vector of mining externalities (for example, nearness to the mining site, which is a proxy for 
exposure to pollution, or noise pollution from blasting, etc.). It is hypothesized that increased 
pollution decreases the expected returns to health expenditure. B is the budget in real terms. h0 is 
the initial or ‘endowed’ health status (long-term health). 
Equation (2) is a hedonic-type equation, in which the economic cost of healthcare (both 
preventive and curative) depends on the level of environmental hazard to which an individual is 
exposed (z), after controlling for other social, economic and biophysical characteristics.  
We used the hedonic pricing theory to establish how much households are willing to accept as 
compensation for improvements in environmental quality in the vicinity of a mine and use this 
as a guide to developing policy regarding pollution control in mining zones. The basic idea 
behind this method is that we could choose houses in neighbourhoods that currently experience 
different levels of environmental quality and compare their prices. The premium on prices in the 
high-air-quality neighbourhood should give us an indication of willingness to pay (WTP) (Currie 
et al., 2015).  
But in developing countries, the housing market is less developed; thus, housing prices are used 
less often in empirical studies, and even then, usually as a substate. More often, empirical 
strategies have used other proxies such as agriculture productivity loss, defensive expenditure, 
and medical expenses (see Akpalu and Normanyo, 2017; Deschenes, Shapiro and Greenstone, 2012) 
to establish willingness to pay (for improved environmental quality) or willingness to accept 
(WTA) as compensation for the individual to accept lower environmental quality. In line with 
defensive-expenditure empirical studies we employ the hedonic type of equation – similar to 
what was done in Akpalu and Normanyo (2017) to establish the WTA. In our analysis we 
compared the health expenditure of households close to a mine (exposed to mining pollution) 
with similar households away from the mine, controlling for social, economic, and 
environmental characteristics. 
However, instead of writing an expression that gives defensive expenditure as a function of H, A 
and R), we can write a health production function as: 
 
 HAZO6 = f (P, A, H) (3) 
 Stunting = f (P, A, H) (4) 
 



11 

 

where HAZO6-height for age Z-score (Health indicator) is a function of environmental 
amenities (A), parental awareness avoidance behaviour (P), and baseline child health (H). P, A 
and H can be viewed as functions of parents' income and/or education. (A similar approach was 
adopted in Nilsson, 2009; Currie, 2008; and Jans, Johansson and Nilsson, 2018.) This is simply 
another way of writing defensive expenditure. 
 
4.2 Model estimation 
Selection bias: in most cases, we do not observe the same individual in both situations/scenarios; that is, 
we observe Y1i for individuals exposed to the mining pollution, and Y0i for individuals observed in the 
non-mining zone. We seek the average (Y1i -Y0i), an average causal effect involving everyone’s Y1i and 
everyone’s Y0i (Angrist and Pischke, 2014). If we assume that living in the polluted area reduces 
everyone’s health by a constant amount k. the constant effect assumption allows us to write: 
 
 Y1i -Y0i=k or Y1i =Y0i +k (5) 

If we substitute the constant effect assumption for the average means difference (avgn[Y1i -Y0i]),: 
 avgn[Y1i|Di=1]- avgn[Y0i|Di=0] = {k + avgn[Y0i|Di=1]}- avgn[Y0i|Di=0] 

                                                  = k + {avgn[Y0i|Di=1]- avgn[Y0i|Di=0]} 
 

(6) 
 

Difference in group means = average causal effect + selection bias, 
 

whereby selection bias is defined as the difference in average Y0i between groups compared, average 
causal effects in the treatment effects context are the average treatment effect (ATE), E [Y1i − Y0i], and 
the average treatment effect on the treated (ATET), E [Y1i − Y0i| Di = 1]. Note that the ATET can be 
rewritten as 
 
 E [Y1i − Y0i| Di = 1] = E[Y1i|Di=1]- E[Y0i|Di=1]     (7) 
 
This expression highlights the counter-factual nature of a causal effect. The first term is the average 
health outcome/health expenditure in the treated (exposed to pollution) population, a potentially 
observable quantity. The second term is the average health outcome/health expenditure had they not 
been treated. This cannot be observed, though we may have a control group or econometric modelling 
strategy that provides a consistent estimate. Thus, simply comparing those who are and are not treated 
may provide a misleading estimate of a treatment effect. Since the omitted-variables problem is unrelated 
to sampling variance or statistical inference, but rather is concerned with population quantities, it too can 
be efficiently described by using mathematical expectation notation to denote population averages. 
Since in most cases we observe only E[Y0i|Di=0] and not E[Y0i|Di=1], most social experiments are 
subject to the selection bias problem. The selection bias is resolved by introducing random assignment, 
which ensures that the potential average health outcome (or health expenditure, had the subject not been 
treated) – an unobservable quantity – is well-represented by the randomly selected control group. Because 
randomly assigned treatment and control groups come from the same underlying population, they are the 
same in every way, including their expected Y0i; that is, E[Y0i|Di=1] = E[Y0i|Di=0]. When Di is 
randomly assigned, the selection bias is eliminated, and the difference in expectations by treatment status 
captures the causal effect of treatment as follows: 
 E[Y1i|Di=1]- E[Y0i|Di=0] = E[Y1i|Di=1]}- E[Y0i|Di=0] 

                                          = E [Y0i +k|Di=1]}- E[Y0i|Di=0] 

                                          = k + E[Y0i|Di=1]}- E[Y0i|Di=0] 

                                          Since E[Y0i|Di=1] = E[Y0i|Di=0],  

                                                       = k 
 

 
 

(8) 

The solution is easily achieved with a randomised trial, where the experiments are set to estimate 
treatment effect. However, most of the research in economics uses observational data, prone to omitted 
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variable bias or selection bias. In the absence of experiments, several statistical strategies or techniques 
have been put in place, including regression, matching, instrumental variables, and recently, a 
combination of matching with other methods such as regression. 
In regression analysis, the omitted variable or selection bias is assumed to originate from a vector of 
observed covariates Xi, which correlates with the treatment dummy Di. However, sample regression 
(through a linear model) coefficients provide consistent population coefficients depending on their 
adherence to the law of large numbers. 
The matching approach makes the same assumption as the regression, that the source of selection bias is 
the vector of covariate Xi, that may correlate with Di. Unlike regression, however, the construction of the 
treatment effect differs: in the regression analysis, the treatment effect is constructed by running a linear 
model, while in matching it is constructed by matching individuals with the same covariates (Rosenbaum 
and Rubin, 1983). 
Matching is a nonparametric method for pre-processing data by pruning observations from the data to 
reduce the imbalance between the treated and control groups, making the covariate’s (Xi) empirical 
distributions between groups more similar, and thus controlling for some or all of the confounding 
influence of pre-treatment control variables in observational data (Iacus et al., 2012; 2019). After pre-
processing (matching), further analysis can be carried out, estimating causal effect by applying methods 
that would have been used without matching. In cases where the matching exactly balances the data, a 
simple difference in mean technique can be used, as there is no need to control further for X (because it 
is unrelated to the treatment variable). In cases where matching could not balance exactly but only 
approximately, other statistical tools are required to control for X (e.g., a parametric model must be used 
to control for the differences in the covariates across the treated and control groups. This may be a linear 
regression, a maximum likelihood estimator, or some other estimator). Applying data after matching to 
the model reduces statistical bias and model dependence; therefore, the only inferences are those 
relatively close to the data (Ho et al., 2007; Iacus et al., 2012; 2019). Further complications in the analysis 
of matched data occur when there is a mismatch between the number of treated and control units within 
strata. To overcome this problem, Lucas, King and Porro (2008) suggest the use of estimators, which 
weight observations based on their strata size. 
There are several matching methods. The most common involve finding, for each treated unit, at least 
one control unit that is ‘similar’ on the covariates. What distinguishes the methods is how this similarity is 
defined. For example, propensity-score matching (PSM) imputes the missing potential outcome for each 
subject by using an average of the outcomes of similar subjects that receive the other treatment level 
(which is simply the probability of being treated, conditional on the covariates). Similarity between 
subjects is based on estimated treatment probabilities, known as propensity scores. The average treatment 
effect (ATE) is computed by taking the average of the difference between the observed and potential 
outcomes for each subject (Abadie and Imbens, 2006; 2008; 2011; 2012). Coarsened exact matching 
(CEM) simply matches a treated unit to all the control units with the same covariate values. It works by 
first sorting all the observations into strata, each of which has identical values for all the coarsened pre-
treatment covariates, and then discarding all observations within any stratum that does not have at least 
one observation for each unique value of the treatment variable (Blackwell et al., 2009). 
 
The application of matching estimators is backed up in statistical inference theories by the axiom of 
simple random sampling, whereby everyone in the population has an equal chance of being treated 
(Abadie and Imbens, 2006). This property is appropriate when we have exactly matching conditions, 
meaning empirical distributions between groups are the same or have the same propensity score. 
However, applied researchers most often work with continuous variables (that are featured by natural 
meaningful breakpoints well known to data analysts) and finite data; in such situations, the exactly 
matching condition is most unlikely to be attained (the application of ‘exactly matching’ would drop most 
of if not all the available observations). 
In practice, empirical analyses face the approximate matching (not exactly matching) situation; and 
accordingly, various statistical strategies are put in place as approximate matching estimators (e.g., nearest 
neighbour matching, radius matching, kernel matching, etc.). Unfortunately, such approaches regularly 
violate the ‘exactly matching’ requirement, as they operate a simple random sampling by stratifying the 
sample ex-post on the initial covariate space or based on the propensity score or on the distance metric 
space (Iacus et al., 2019). In practice, these methodologies approximate matching within each stratum as 
if it were an exact matching. The Mahalanobis distance and propensity-score matching methods are 
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subject to the same trap: they require the user to set the size of the matching solution ex ante, and then 
check for balance ex post. Thus, analysts must check for balance after the algorithm is finished and then 
respecify a matching model and recheck balance, etc. This process repeats until the user obtains an 
acceptable amount of balance. 
To overcome this problem Iacus et al., (2012; 2019) proposed a theory which allowed the replacement of 
simple with stratified sampling, ensuring the matching methodologies are coherent with the theoretical 
axiom suggested by the theories of inference statistics. They included ex-ante stratification of the data 
assumption, which formulates an alternative axiom on the data-generating process, based on a stratified 
sampling framework. Their proposition allowed all strata to be defined ex ante and working with the 
original variables, instead of doing this ex-post on more complicated variables which are retrieved from 
the matching procedure.  
Recently, increasingly the CEM approach has been applied as a new method for improving the estimation 
of causal effects by reducing the imbalance in covariates between treated and control groups, since it 
adheres to the proposed theory of Iacus et al., (2012; 2019; 2020), which is based on ex-ante stratification 
of the data assumption. CEM bounds the degree of model dependence and causal effect estimation error 
by ex-ante user choice, is monotonic imbalance-bounding (so that reducing the maximum imbalance on 
one variable has no effect on others), does not require a separate procedure to restrict data to common 
support, meets the congruence principle, is approximately invariant to measurement error, balances all 
nonlinearities and interactions in sample (i.e., not merely in expectation), and works with multiply-
imputed datasets. It is faster, easier to use and understand, requires fewer assumptions, and is more easily 
automated. Unfortunately, because of the richness of the covariates in many settings, this method often 
produces very few matches. A whole host of approximate-matching methods specify a metric to find 
control units that are close to the treated unit. 
 
In short, our empirical analysis is based on the use of CEM to assess the causal effect of mining pollution 
on health outcomes and health expenditure. Unlike other matching approaches, CEM has properties that 
are consistent and coherent with theoretical axioms on stratified sampling suggested by theories of 
inference statistics, as proven by Iacus et al., (2019). Thus, the use of CEM gives further reliability and 
credibility to our empirical analysis. 
 
The CEM matching health outcome equation: 
 
 CEM Xi, treatment(treated) (9) 

where Xi is the matching covariates, including marital status, matching variables marital status, drinking 
water, waste disposal, cooking fuel, latrine type, household floor, total household expenditure per capita, 
education of household head15, while ‘treated’ (dummy variable 0=untreated or distance ≤q km, 
1=treated or distance>q km) captured the treatment threshold (q), ranging from 5km (treat5) to 20km 
(treat20). The different threshold (q) estimations are saved as a sensitivity analysis of the threshold as well. 
To estimate the model for health outcomes, we followed the approach for sample splitting and threshold 
estimation suggested by Hansen (2000), and estimated treatment effects equation (10) using two 
approaches: logit and OLS regression. 
 
 𝑌𝑖 = 𝛽1𝑖𝑡𝑟𝑒𝑎𝑡 + 𝜀𝑖,[weight =  cem_weights ] (10) 

Equation (10) was estimated as the logit regression when the independent variable was stunting (taking a 
value of 0 for not stunted and 1 for stunted). While the robust check was done by re-estimating the 
equation using a linear regression model (absorbing specific-mine fixed effect; this was done to ensure we 
compared people from the same mine) in which health was measured by height for age Z-score 
(continuous variable). In both cases the CEM weights were used as specified in equation (9). Several 
options for distance from mine (ranging from 5-20km) were used one at a time; the threshold was chosen 
as the point (distance) at which treatment effects were no longer significant. 
When we analysed health expenditure, the data had to be resampled, as in the same localities there could 
be households which could not be considered under health outcomes (e.g., if there was no child or 

 

15 Age and gender of child could not be used, as they were incorporated in the calculation of HAZ06. 
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children under the age of 59 months). Moreover, the covaries had to be re-matched (CEM), as it was a 
new sample. Hence, the matching for health expenditure equation: 
 
 Cem Xi, treatment(treat10) (11) 

where Xi is the matching covariates, including marital status, gender of the household head, drinking 
water, waste disposal, cooking fuel, latrine type, household floor, total household expenditure per capita, 
and education of household head, while treat10 (dummy variable, 0=untreated or distance≤10km, 
1=treated or distance>10km) captured the treatment threshold at 10km (as established based on health 
outcome estimations). 
 
To estimate the model for health expenditure effects, the treatment effects model is presented in equation 
(12): 
 
 𝑌𝑖 = 𝛽1𝑖𝑡𝑟𝑒𝑎𝑡 + 𝜀𝑖, [weight =  cem_weights ] (12) 

The dependent variable is health expenditure per capita, and 𝛽1𝑖 is the estimated coefficient which 
captures the treatment effect. The weights in this model were obtained for CEM equation (11). The 
model was estimated using OLS regression, while absorbing the nearest-mine fixed effect.  
 
We further use the hedonic pricing theory intuition to establish how much the households in the mining 
neighbourhood are willing to accept as compensation for the health effects of mining pollution. 
 
4.3 Data  
This study used a secondary dataset, the National Panel Survey (NPS), collected by the National Bureau 
of Statistics (NBS) of Tanzania. NPS is a series of nationally representative household panel surveys that 
collect information on a wide range of topics including agricultural production, non-farm income-
generating activities, consumption expenditure and wealth, among other socioeconomic characteristics. 
As an integrated survey covering several different socioeconomic factors, it complements other more 
narrowly focused survey efforts, such as the Demographic and Health Survey (DHS) on health, the 
Integrated Labour Force Survey (ILFS) on labour markets, the Household Budget Survey (HBS) on 
expenditure, and the National Sample Census of Agriculture (NSCA). In NPS, the same households are 
revisited over time (the first wave was done in 2008 and repeated every two years after that). We had all 
four waves available so far: Wave 1 – NPS 2008-2009; Wave 2 – NPS 2010-2011; Wave 3 – NPS 2012-
2013; and Wave 4 – NPS 2014-2015.  
 
4.4 Variable measurement 
1) HAZ06 and stunting: the standard anthropometric measures are many, and they have different 

applications, implications and interpretations. The most used include height for age (H/A), weight 
for age (W/A), body mass index (BMI) and height for weight (W/H). Among others, Height for age 
(H/A) reflects cumulative linear growth. H/A deficits indicate past inadequate nutrition, and/or 
chronic/frequent illness. It does not measure short-term changes. Low scores for H/A imply 
‘shortness’; extremely low (<-2) implies ‘stunting’; and <-3 implies extreme stunting. This variable has 
been widely used in empirical pollution studies, such as Goltz and Barnwal (2018), Akombi et al., 
(2017) and Charade et al. (2015). Mainly, this indicator is used as a population indicator, not for 
individual monitoring. H/A is appropriate for this study, since the percentage of children with low 
height for age (stunting) reflects the cumulative effects of undernutrition and infections since and 
even before birth. This measure can therefore be interpreted as an indication of poor environmental 
conditions or long-term restriction of a child's growth potential (WHO, 2010). Moreover, measuring 
health outcomes for children controls for other confounding factors that could influence health 
outcomes, ‘lifestyle’ among others. 
The z-scores could be generated using the 2000 US Centres for Disease Control and Prevention 
Growth Reference (US standard) and the 1990 British Growth Reference (UK standard). See the 
empirical application in STATA of the UK and US standards (Vidmarm, Carlin, Hesketh and Cole, 
2004; Vidmar, Cole and Pan, 2013). Moreover, despite the country-specific standards, we used the 
general standards developed by the WHO in 1995 and revised in 2006 that are applicable worldwide. 
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The 2006 WHO new growth standards for 0-5 years, based on the Multi-Centre Growth Reference 
Study (see De Onis, Onyango, Borghi, Garza and Yang, 2006; Garza and De Onis, 2004) are used in 
this study, as they are the generally accepted standard worldwide. The anthropometric measures that 
were used to calculate Ha06 scores (range: -6 to 6) are height measured in centimetres, age measured 
in months, and gender a dummy 1 for males and 0 for females. Stunting rate is a dummy variable, 
value 1 for stunted and 0 for non-stunted, while HAZ06 is the continuous variable (range: -6 to 6). 

2) Treatment (treat) is the threshold distance of the individual household from the nearby gold mine, 
measured in kilometres, used to categorise both the treated group and the control group. Various 
studies have used it in the same manner (Branson and Byker, 2018; Hanna and Oliva, 2015; 
Dinkelman, 2011; Oreopoulos, 2006; Finkelstein et al., 2012; Abadie, Angrist and Imbens, 2002). The 
assumption is that the closer an individual is to the mine, the more exposed to pollution he or she is. 
In this study we used the health outcome (stunting rate) to establish the threshold distance. The 
distance up to which the stunting rate was significant (10km) was considered treated, and that where 
stunting was insignificant was considered the control area. However, the control group had a cut-off 
point at 50km, to ensure the homogeneity of the group (similarity in terms of the food they access, 
the medical treatments, the culture, the market they access, and geographical, climatic and other 
physical features). Thus, treatment is a dummy variable, with 1=treated sample (distance≤10km) and 
0=control group (10km> distance ≤50km). 

3) Distance (distancekm) is the distance of the individual household from the nearby gold mine, 
measured in kilometres. ArcGIS 10.6 software was used to calculate the distances, using the GPS 
locations of the households and the mines. 

4) Health expenditure (Health_exp) is the continuous variable that captures the total household out-
of-pocket (OOP) health expenditure (no health insurance); this amount of money is measured in 
Tanzanian shillings (TZS). OOP costs are the direct costs a person pays for healthcare, which affects 
households differently depending on the source, whether from savings or consumption – a reduction 
in consumption to finance health expenditures can lead households further into poverty 
(Ssewanyana and Kasirye, 2020). On average, OOP costs make up 36% of health expenditure in 
sub-Saharan Africa (World Health Organisation, 2017). Tanzania allocates 7.3% of its GDP (a 
relatively large share of its resources) to healthcare expenditure, compared to an average of 5.3% in 
other low-income countries (Health Financing Profile: Tanzania – health policy project 2018 
report,by Haazen, 2012). OOP accounted for an estimated 23% of total health expenditure in 2018. 
The low OOP in Tanzania was due to policy initiatives: in 1994, the public health facilities introduced 
user fees, with exemptions for some illnesses and demographic groups (children aged under five years 
and adults over 60 years). In 2001 the country started a National Health Insurance Fund (NHIF), 
funded by mandatory contributions from formal-sector employees and voluntary contributions from 
informal-sector workers. At least 9% of adults in Tanzania are covered by health insurance, mainly 
community-based mutual insurance (Ssewanyana and Kasirye, 2020). 

5) Health expenditure per capita (Health_exp_l) is a continuous variable that captures annual 
OOP health expenditure per person in a household. It is calculated as household health expenditure 
divided by number of people in the household (household size) and is measured in TZS.  

6) Total household expenditure (totalexpend) is a continuous variable that captures annual total 
household expenditure, measured in TZS; it is a proxy for disposable income. We hypothesised that 
all things being equal, higher income-earning households spend more on healthcare. Moreover, 
empirical studies in Africa, such as Murthy and Okunade (2009) and Ssewanyana and Kasirye (2020), 
confirmed the positive relationship between healthcare spending and real income. 

7) Total household expenditure per capita (totalexpend_l) is a continuous variable that captures the 
annual total household expenditure per person in the household, measured in TZS. It is calculated by 
dividing total household expenditure by number of people in the household (household size). 

8) Household size (house_size) is a continuous variable – the total number of people in a household. 
9) Household floor (floor) is a discrete variable to capture the material used to make the floor of the 

main dwelling. It takes a value of 1 for earth, and 2 for concrete, cement, tiles or timber. 
10) Drinking water (drinking) is a discrete variable that captures a household's main source of drinking 

water. It takes a value of 1 for piped water, 2 for water from boreholes and wells, 3 for bottled water, 
4 for surface water (river, dam, lake, pond), and 5 for other sources. 
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11) Waste disposal (waste) is a discrete variable that captures how the household disposes of its 
garbage. It takes a value of 1 for collected by firm or government, 2 for a government bin, 3 for 
disposal within compound, 4 for none or unauthorised heap, and 5 for other. 

12) Latrine type (latrine) is a discrete variable to capture the main toilet facilities used in the household. 
It takes a value of 1 for no toilet, 2 for open pit without slab, 3 for open pit with slab, 4 for pour 
flush, 5 for flush toilet, 6 for VIP toilet, and 7 for other. 

13) Cooking fuel (cooking) is a discrete variable that captures the fuel used most for cooking in the 
household. It takes a value of 1 for firewood, 2 for animal residual, 3 for paraffin, 4 for charcoal, 5 
for gas, 6 for electricity and 7 for other. 

14) Gender of the household (gender) is a dummy variable, taking a value of 1 for male and 0 for 
female. 

15) Marital status is a discrete variable taking the value 1 for single, 2 for married and 3 for divorced.  
16) Education of the household (education) is a discrete variable, taking a value of 1 for no school, 2 

for primary school, 3 for secondary school, and 4 for tertiary education. 
 
4.4 Data Analysis 
The data analysis was done using two software packages, namely Stata 15 and ArcGIS 10.6; the data from 
the survey were merged to their household identification (hhi) and the individual in the household (id), 
then merged further to their corresponding GPS location (latitude and longitude). The HAZ06 scores 
were calculated using zscore06 in Stata. The data were input to ArcGIS to visualise and calculate the 
hotspot and spatial correlation. ArcGIS was also used to calculate the distances from nearby gold mines. 
The data were then imported into Stata for treatment effect estimations. 
  
The estimations were done in two ways; first was the estimation of the health effects, in which the 
dependent variable was stunting/HAZ06; this estimation was used to establish the threshold distance at 
which the treatment (mining pollution) had significant impacts on health, thus defining the treated and 
control groups. Second was the analysis of the impacts of mining pollution on health expenditure, based 
on the threshold established in the health outcome estimations. To achieve the two estimations, the 
sample was taken in two ways; for the health outcome the same treatment and control group threshold 
were considered, but the analysis was based only on households with a child or children less than or equal 
to 59 months old. The the estimations for health expenditure included all available household in both the 
treated and the control groups. 
 
In both cases the treatment effect model was specified and estimated using the matching weights from 
the CEM to get the robust treatment effects results. The estimations for the threshold were performed 
using the two estimation models (regression and logit) as a validation strategy. In addition, the 
specification for distance was changed (ranging from 5km to 20km) for sensitivity analysis.  
 
5.0 EMPIRICAL FINDINGS  
We start our analysis by presenting the descriptive statistics for stunting rate in Table 2 below. The 
variables of interest are described: total observations of all variables are 402, the age of the children 
observed is between 1 and 59 months, 54% of the children are female and 46% are male. The children 
that are observed live between 2.6km and 50km from their nearest gold mines. The sample in the treated 
group consists of 67 children; in the control group there are 335 children. Their height-for-age score 
(HAZ06) ranges between -5.92 and 5.63, which is within the WHO prescribed limit16. The overall average 
stunting rate of the children is 29% (43% in the treated group; the control group is 26% – see ‘stunting by 
treatment’, Appendix Table 1). Most (68%) households use concrete, cement, tiles and timber for the 
floor of the main dwelling, while 32% have the earth floor. The average of 3.164 for waste disposal 
suggests that most people dispose of their garbage in their compounds or use an unauthorised heap (or 
none at all). The latrine type average of 2.74 suggests that most households have toilets, ranging from  
open pit without a slab to VIP toilets. The main sources of cooking fuel, as suggested by the average of 
1.68, are firewood and charcoal. The main source of drinking water is water from boreholes and wells.    
  

 

16 The children with HAZO6 scores above 6 or below -6 were eliminated from the sample, as they are either 
abnormal (which may be biologically impossible) or there were measurement errors.  
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Table 2:Descriptive Statistics for stunting 
 All samples Treat(0) Treat(1) Treat(0) Treat(1)  

Variable Obs Mean Min  Max Obs. Obs. Mean Mean   Dif 
 age_month 402 26.933 0 58 335 67 27.511 24.045 3.466 
 gender 402 1.535 0 1 335 67 1.484 1.791 -0.307*** 
 Haz06 402 -0.741 -5.92 5.62 335 67 -0.6 -1.45 0.851*** 
 stunting 402 0.289 0 1 335 67 0.26 0.433 -0.173*** 
 house_size 402 4.699 2 13 335 67 7.213 10.017 -2.804*** 
 totalexpen 402 5580000 407000 1.39e+07 335 67 3430000 4290000 -859000** 
 totalexpenl 402 509000 85466.23 2630000 335 67 514000 486000 27950.57 
 floor 402 1.314 1 2 335 67 1.224 1.164 0.059 
 wastedispo 402 3.164 1 5 335 67 4.122 4.373 -0.251*** 
 latrine 402 2.749 1 7 335 67 2.869 2.15 0.72*** 
 cooking 402 1.677 1 7 335 67 1.752 1.298 0.454** 
 drinking 402 2.833 1 5 335 67 2.546 4.268 -1.722*** 
distancekm 402 26.267 2.618 49.308 335 67 30.932 2.942 27.99*** 

Dif represents the t-test of equality of means (Covariate balance test at treatment=10km) 
*** p<0.01, ** p<0.05, * p<0.1. 
 
As in most evaluation studies, we proceed by presenting the simple mean difference of the 
output variable (here, the health outcomes) between the treated and untreated groups (the 
treatment threshold distance of 10km was used to establish the table). The results from the t-test 
which allows the unequal variance between the group is presented in Table 2 above. 
Table 2 above shows the average outcome for children in the households that are far away from 
the mining zone (not exposed to mining pollution) in column (8); and the average outcome for 
children in households that are exposed to mining pollution in column (9). Column (10) presents 
the difference between these quantities. These sample quantities estimate two parameters: 
(column 8) the average health outcome, had all households in the study group been exposed to 
mining pollution; (column 9) the average health outcome had none of the households in the 
study group been exposed to mining pollution; and (column 10) the difference between column 
(8) and column (9), that is, the average causal effect, which provides the simple comparison of 
sample means consistently estimates that causal effect of pollution exposure on health outcome. 
Galiani and Schargrosky (2004) refer to intention-to-treat analysis: children are compared based 
on whether they are exposed to mining pollution or not, not according to whether the household 
opted to be exposed to mining pollution or not.  
 
This simple analysis shows evidence of pollution exposure on health outcomes, with a difference 
in means of the Haz06 Z-scores of 0.851 between households that were exposed to pollution 
and those that were not. Which implies that on average, the children in the treated area (exposed 
to mining pollution) have lower Haz06 (-1.45) than those in the control group (-0.6) with similar 
social, economic and environmental attributes. The difference is statistically significant, at a 5% 
level of significance. Moreover, the difference of -0.173 in stunting rate points in the same 
direction.  
Furthermore, the balance test shows that the average household size in the treated group is 
greater than in the control group. On average, the people in the treated area (near mines) spend 
more than people in the control group. The household floor materials are much better in the 
treated than in the control group. Similarly, the treated group has good access to drinking water, 
proper toilet facilities, waste disposal facilities, and good (green) cooking fuels.  
This simple comparison (as motivated and justified by the Neyman model) provides some 
evidence of the causal effect of exposure to pollution, and a simple and transparent way to 
estimate average causal effects in strong experiments (Dunning, 2012). However, it is prone to 
selection bias [see equation (6)] and does not include the confounders: the variables associated 
with assignment to the treatment of the control group that are also related to the potential 
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outcome. This is not the actual causal effect that we are interested in. Thus, simply comparing 
the mean value of y for the treated and untreated groups badly over- or underestimates the effect 
of treatment. 
To address the selection bias problem, we employ CEM [see equation (9) above]. The results for 
threshold at 10km are presented in Table 3 below, while the quality of matching to other 
distance thresholds is presented in Appendix Table 2. 
 
Table 3: CEM for stunting at 10km 

 Untreated Treated Total 
All 335 67 402 
Matched 57 25 82 
Unmatched 278 42 327 
Share matched 16.1% 31.3% 18.7% 
Multivariate ℒ1 distance 0.21470343 

 
Table 3 above shows the number of observations matched and thus retained, as well as those 
that were pruned because they were not comparable between the treated and control groups. 
The overall imbalance is given by the ℒ1 statistic, introduced in Iacus, King, and Porro (2008) as 
a comprehensive measure of global imbalance which is interpreted as perfect global balance (up 
to coarsening) when ℒ1=0, while larger values indicate a larger imbalance between the groups, 
with a maximum of ℒ1=1, indicating complete separation. Thus, the ℒ1 statistic of 0.21 in our 
case implies a good matching solution. Moreover, the number of matched strata in the treated 
(25) and control groupa (57) is not the same; we don’t have an exactly matching scenario, where 
simple mean difference could work perfectly. Thus, we employ a regression analysis to control 
for X, as suggested by Lucas, King and Porro (2008), using estimators which weight observations 
based on their strata size in such situations [equation (10)]. The results for the health outcome 
(stunting rate) treatment effects at different threshold distance are presented in Table 4 below. 
 
Table 4: Threshold estimation using logit regression of health outcome (stunting rate) 
 (1)  (2)  (3)  (4)  
VARIABLES 5km MFX 7km MFX  10km MFX 11km MFX 
         
treat5 1.728***     0.282**       
 (0.641)     0.113       
treat10   1.728***     0.282**     
   (0.641)     0.113     
treat11     1.492**     0.226**   
     (0.610)     0.094   
treat12       0.357 0.069 
       (0.442) 0.086 
         
Constant -2.213***  -2.213***  -2.234***  -1.226***  
 (0.457)  (0.457)  (0.474)  (0.294)  
         
Observations 75  75  82  110  

MFX stands for marginal fixed effect after logit regression. 
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
 
The results in Table 4 show the health effects (stunting rate) where statistically significant (at 5% 
level of significance) to a distance up to 10km from the nearby gold mine. At 10km, the marginal 
fixed effects (MFX) show that the probability of a child being stunted in the treated area (near 
the mine) is 0.226 greater than in the control group, when social, economic and environmental 
characteristics are controlled. Moreover, the treatments were statistically insignificant at a 
threshold of 11km and above; thus, the results suggest that the health outcomes from exposure 
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to mining pollution are significant only to distances 10km or less from the mine. Therefore, it is 
logical to place our threshold at 10km for distinguishing between the treated and untreated 
groups. The study used the OLS regression of health outcomes (HAZ06), running equation (10) 
for validation of threshold distance. The results are presented in Table 5 below. 
 
Table 5: Threshold estimation using OLS of HAZ06 
 (1) (2) (3) (4) (5) 
VARIABLES 5km 7km 10km 11km 12km 
      
treat5 -1.042**     
 (0.396)     
Treat7  -1.042**    
  (0.396)    
treat10   -0.827**   
   (0.412)   
treat11    -0.447  
    (0.440)  
treat12     -0.447 
     (0.440) 
Constant -0.706*** -0.706*** -0.762*** -1.253*** -1.253*** 
 (0.203) (0.203) (0.234) (0.245) (0.245) 
      
Observations 75 75 82 110 110 
R-squared 0.374 0.374 0.301 0.056 0.056 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
 
The regression results presented in Table 5 above show that the HAZ06 scores are statistically significant 
at a 5% level of significance for distances of up to 10km from the mine. The findings further reveal that 
as the distance from the mine increases, HAZ06 improves (from -1.042 to -0.447), which implies that 
health outcomes improve as pollution decreases. The study also tested the sensitivity of the results to 
change in threshold level, up to a threshold distance of 20km from the nearby gold mine (the results 
above 10km were all statistically insignificant). We assumed that being close to the mine would increase 
the treatment effect and being further away from the mine would reduce the effect. Guided by this 
assumption, the study used the regression of HAZ06 on distance, absorbing nearest mine fixed effects. 
The results are presented in Table 6 below.  
 
Table 6: regression of HAZ06 on distance 
 (1) 
VARIABLES HAZ06 
  
distancekm 0.0212** 
 (0.008) 
Constant -1.299*** 
 (0.24) 
  
Observations 402 
Mineid  5 
R-squared 0.0622 
Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0 

 
The results in Table 6 above support our hypothesis that distance to nearest major mining site, a 
proxy for exposure to pollution, is positively related to health outcomes; the coefficient of 
0.0212 implies that as one moves away from the nearest gold mine, for each kilometre further, 
HAZ06 (the health outcome indicator) increases significantly by 0.0212. In other words, the less 
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a person is exposed to mining pollution (i.e., the greater the distance from the mining site), the 
better the health outcomes. 
 
5.2 Estimating the health costs of pollution. 
To analyse the health expenditure associated with mining operations, the study resampled the data based 
on the threshold determined by the health outcome results; thus, the available data for all households near 
mines were included (unlike the health outcomes analysis, where only households with children under five 
years old were considered). The descriptive statistics are presented in Table 7 below.  
 
Table 7: Descriptive Statistics (health care expenditure) 
 All sample Treat(0) Treat Treat(0) Treat(1)  
Variable Obs Mean Min  Max Obs. Obs. Mean Mean   Dif 
 age_year 1301 39.671 20 97 1062 239 39.731 37.718 2.014 
 gender 1301 1.294 0 1 1062 239 1.293 1.333 -0.04 
 marital 1301 2.806 1 3 1062 239 2.813 2.588 0.225 
 education 1301 2.394 1 4 1062 239 2.402 2.118 0.284 
 house_size 1301 5.78 1 14 1062 239 5.723 7.516 -1.792** 
 floor 1301 1.285 1 2 1062 239 1.283 1.359 -0.076 
 wastedispo 1301 4.136 1 5 1062 239 3.126 3.462 -0.336*** 
 latrine 1301 3.38 1 7 1062 239 3.376 3.513 -0.137 
 cooking 1301 1.882 1 7 1062 239 1.865 2.436 -0.572** 
 drinking 1301 3.253 1 5 1062 239 3.255 3.205 0.049 
 totalexpend 1301 5210000 119000 3.24e+07 1062 239 4160000 5710000 -1550000** 
 totalexpen~l 1301 685000 29725 1.08e+07 1062 239 683000 740000 -57600 
 health_exp 1301 324000 0 4280000 1062 239 217000 448000 -231000*** 
 health_exp_l 1301 24812.3 0 1070000 1062 239 23445.83 66908.3 -43500** 
 distancekm 1301 61.4 2.618 49.394 1062 239 63.185 3.631 59.553*** 
Dif represents the t-test of equality of means (Covariate balance test at treatment=10km) 
*** p<0.01, ** p<0.05, * p<0.1. 
 

In Table 7 above, the new sample has a total observation count of 1 301, the age of the household head 
ranges between 20 and 97 years, 70% are male and 30% are female. The mean marital status of 2.8 implies 
that most (62.9%) household heads are either married or divorced. More than 40% of the household 
heads have secondary or higher education. The average household size is six people, and 71% of the 
households have earth floors while 29% have used concrete, cement, tiles, and/or timber. The average of 
4.136 for waste disposal suggests that most people dispose of their garbage within their compounds 
(77.6%) or use no or unauthorised heaps (14.8%). The latrine-type average of 3.38 suggests that most 
households (84.7%) have toilets, ranging from open pit without slab to VIP toilets. The main source of 
cooking fuel, as suggested by the average of 1.882, is firewood (77.8%). The other mainly used source is 
charcoal (20.7%). The main source of drinking water is water from boreholes and wells (42.7%); surface 
water (rivers, dams, lakes, ponds) account for 31.7%. (For more details on variable frequencies and 
percentages for cooking fuel, household floors, waste disposal, latrine type and drinking water source, see 
Appendix Tables 3 through 7 respectively).  
The study showed that on average, the households in the mining area spend an average of TZS 5 210 000 
annually (equivalent to USD 2 265 in 2018). This amount is similar to the one presented in the 2017-18 
Household Budget Survey (HBS) report published by the National Bureau of Statistics (NBS, 2018), 
which revealed that the average consumption per household per month was TZS 416 927 (TZS 5 003 124 
annually). According to the 2017-18 household budget survey key indicator report, average monthly 
household consumption expenditure was higher in the urban areas (TZS 534 619) than in the rural areas 
(TZS 361 956) (NBS, 2018). 
Average annual household out-of-pocket health expenditure was TZS 324 000 (equivalent to a 6.2% share 
of household income spent on health). Minimum health expenditure was zero; this could be attributed to 
the potential risk of impoverishment, which may lead to changes in health-seeking behaviour: due to 
unaffordable services, some vulnerable groups may avoid seeking the required health services (Russell, 
2004; Ssewanyana and Kasirye, 2020).  
The balanced test results further reveal that the treated group (near the mine) are younger (mean age of 
37) than the control group (mean age 39). The treated group has more male and fewer educated people 
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than its control counterpart, which could be because mining work is labour- and strength-intensive. 
Households in the treated group have higher incomes (proxied by total expenditure) and can afford more 
household members. They have better environments, in terms of better floors, better latrines, greener 
cooking fuels, and waste disposal away from their compounds. However, there is no significant difference 
between the treated and untreated groups in terms of source of drinking water. Moreover, the findings 
reveal that on average, a household in the treated group spends TZS 43 500 per capita more on health 
annually than a household in the control group.  
These findings imply environmental quality plays an important role in health expenditure. Families 
located near mines stand to earn higher incomes; but contrary to the popular understanding – that high 
income implies the family can afford better food, housing and medication (Fichera and Savage, 2015) – 
high incomes in mining settings are achieved with poor environmental quality, which eventually 
compromises health outcomes. Or rather, the income effect is not sufficiently significant to compensate 
for the health damage from pollution. 
This heterogeneity simply means there is no unique causal effect of pollution exposure, and that for some 
households the effect may deviate from those extensively documented. Individuals differ not only in 
background characteristics, but also in how they respond to treatment, intervention, or stimulation (Zhou 
and Xie, 2020). Responses to mining pollution exposure (and thus the treatment effects) probably differ 
from individual to individual. For example, high-immunity individuals are likely to have fewer health 
impacts than immune individuals and may therefore enjoy larger returns from mining pollution exposure. 
Children from disadvantaged backgrounds may lose more from exposure to mining pollution than 
children from advantaged backgrounds. Even though treatment effects are likely to be heterogeneous, 
previous empirical work on health outcomes has not paid much attention to heterogeneous treatment 
effects (see Von der Golt and Barnwal, 2019). 
There are several realistic reasons to assume treatment effect heterogeneity. First, individuals can be 
heterogeneous in their untreated outcomes (𝑌0𝑖), reflecting differences in their health before mining 
operations, such as the quality of their immunity, family background, etc. The introduction of mining 
activities brings more differences in health, after which 𝑌1𝑖 would be more heterogeneous than 𝑌0𝑖 and 
individuals with higher outcomes in the untreated state would have fewer treatment effects. Alternatively, 
it could be that some individuals are more able to benefit from staying in the mining zone (perhaps 
because of the higher income they generate, or better-quality medical care); so, they would have a higher 𝑌1𝑖 even if 𝑌0𝑖 was similar to that of other individuals. A higher 𝑌1𝑖 for a given 𝑌0𝑖 could also result from 
variation in quality of treatment (the intensity of pollution exposure). 
To control for background characteristics (heterogeneity) we use CEM on the covariates, as explained in 
equation (11); the results are presented in Table 8 below. 
 
Table 8: CEM for health expenditure 

 Untreated Treated Total 
All 1 062 239 1 301 
Matched 59 21 80 
Unmatched 1 003 218 1 221 
Share matched 5.6% 8.8% 6.14% 
Multivariate ℒ1 distance 7.633e-17 

 
Table 8 above shows the results from the CEM matching, based on the covariates specified in equation 
(11). The number of matched observations was 80, while the observations that did not match were 1 221. 
Even though most observations were pruned, the ℒ1 statistic of 7.633e-17 implies the quality of matching 
is very high. There is no exact match, as the number of strata in the treated group is 21, against 59 in the 
control group. Thus, a further model is required to control for covariates, as suggested by Lucas, King 
and Porro (2008); we used the OLS regression, absorbing the specific mine fixed effects, as expressed in 
equation (12). The results are presented in Table 9 below. 
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Table 9: Treatment effect on per capita health expenditure 
 (1) (2) (3) (4) (5) (6) 

VARIABLES 7km 10km 11km 13km 15km 20km 
       
treat7 65,098      
 (51,815)      
treat10  55,202**     
  (26,847)     
treat11   46,957**    
   (20,367)    
treat13    33,018**   
    (14,221)   
Treat15     30,900**  
     (13,210)  
Treat20      27028* 
      (11380) 
Constant 9,586 16,734* 13,538 11,473 11853* 11211* 
 (27,891) (9,386) (8,782) (7,157) (6660) (5811) 
       
Observations 35 80 82 89 96 118 
R-squared 0.221 0.134 0.148 0.116 0.1116 0.1093 
Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0. 
 
Table 9 above shows health expenditure on per capita treatment effects at 7Km (in column 1), 10km (in 
column 2), 11km (in column 3), 13km (in column 4), 15km (column 5) and 20km (column 6). The results 
show that households located near mines (exposed to pollution) are spending more on health per capita 
than households far from mines. Households within 10km of a mine spend TZS 55 202 more on health 
per capita than those further than 10km away from the mine. This supports the hypothesis that distance 
to nearest major mining site – a proxy for exposure to pollution – is negatively related to healthcare 
expenditure. The linear regression of health expenditure per capita on distance absorbing mine fixed 
effects further verifies the hypothesis; the results are presented in Table 10  below. 
  
Table 10: Regression of health expenditure per capita on distance 
 (1) 
VARIABLES Health expenditure per capita 
  
distancekm -712.46** 
 (409.17) 
Constant 50762.52*** 
 (12656.78) 
  
Observations 1301 
Mineid  5 
R-squared 0.0490 
Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0 

 
The distance coefficient (-712.46) in Table 10 above is statistically significant at a 5% level of 
significance. This implies that healthcare expenditure per capita decreases by TZS 712 for every 1km 
increase in average distance from residence to mining site. Equally, the marginal willingness to accept 
compensation for healthcare expenditure per capita because of exposure to pollution from mining 
activities, all else being equal, is higher for households that are closer to mining sites. 
 
5.2 Willingness to Accept (WTA) Compensation for Mining Pollution 

As noted in Table 9 above, and drawing from the intuitions of hedonic theory, households 
staying 10km or less from a mine (victims of mining pollution) are willing to accept (WTA) 
minimum compensation of an average per capita health expenditure of TZS 55 202 per annum. 
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The minimum WTA increases the closer one gets to the mine site, e.g., at 7km the average WTA 
was TZS 65 098. On average, households far (20km) from the mining zone are willing to accept 
a minimum of TZS 27 028 per capita household health expenditure per annum. The average 
minimum WTA per capita health expenditure for victims of mining pollution, at TZS 55 202, is 
equivalent to USD 24.75 – higher than the national average per capita out-of-pocket healthcare 
expenditure of USD 8.83 in 2018. The trade-off between minimum WTA and distance from the 
nearest mine is presented in  

 below. 
 

 
Figure 5: Willingness to accept compensation: the proximity-health expenditure trade-off. 
 
Figure 5 above shows that the minimum compensation households closer to the mine are willing to 
accept is higher than for households far from the nearest mine. The slope at the nearer distance (less than 
10km) is flatter, which implies the marginal willingness to accept is small (the difference in the WTA 
amount between persons living a kilometre from each other is small). After 10km the slope is steeper, 
indicating the marginal WTA is larger, and implying the WTA amount changes by a greater proportion 
between two people living a kilometre apart. 
 
Conclusion 
This article examines an important externality that a polluting industry may impose on the health of 
people living in close proximity to the industry. Most African countries, especially the mineral-rich 
countries (including Tanzania), have weak institutions and limited capacity to regulate the mining sector. 
Laxity in environmental policy, regulation and enforcement has resulted in the discharge of large 
quantities (beyond the WHO’s suggested thresholds) of pollutants, toxic chemicals, and heavy metals into 
the environment, which exposes residents and workers to a range of health conditions. There is a limited 
number of empirical studies from developing countries that quantify this health damage and evaluate the 
effects of exposure to mining pollution on healthcare expenditure among residents of mining 
communities. To the best of our knowledge no study has controlled environmental risk factors in its 
analysis; however, empirical studies have shown that environmental risk factors work independently of 
other social and economic factors to affect health outcomes and hence health expenditure.  
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Thus, in order to ascertain the actual health outcomes and expenditure associated with mining pollution, 
this study used the CEM approach, which matches the social, economic and environmental risk factors 
and characteristics of households in the treated and control groups. Unlike other studies, we used data on 
stunting rate to establish the threshold distance for which health impacts are statistically significant, and 
used the threshold obtained to define the treated (victims of mining pollution) and control groups.  
The results of both the logit model and OLS regression using the CEM weights for the threshold 
estimation showed that at distances up to 10km away from the nearest mine (after carrying out threshold 
sensitivity analysis), health effects are statistically significant at a 5% level of significance. At distances of 
more than 10km the health effects are statistically insignificant at a 5% level of significance; thus, the 
threshold distance of 10km was used to define the treated and control groups.  
 
The result from the logit marginal fixed effects at 10km shows that the probability of a child 
from the treated group being stunted is 0.226 greater than for a child in the control group with 
similar social, economic and environmental risk factors. The OLS regression suggests a similar 
result: children in the treated group had HAZ06 0.827 less than similar children in the control 
group. Further regression of HAZ06 on distance from the mine provided robust evidence that 
statistically, health scores (HAZ06) among children increased by 0.0212 HAZ06 for every 
kilometre further away from the mining site. These findings suggest that the less a person is 
exposed to mining pollution (i.e., the further away from the mine they live), the smaller the 
health impact is. 

 
Furthermore, the results from the OLS regression of per capita health expenditure on treatment showed 
that households within 10km of a mine spend TZS 55 202 more per capita on health than people who 
stay 10km or more from the mine. The regression of per capita health expenditure on distance provides 
more evidence: healthcare expenditure per capita decreases by TZS 712 for every 1km increase in average 
distance from the mining site. Drawing on the intuitions of the hedonic theory, the results were further 
interpreted in terms of willingness to accept (WTA); it was found that the households staying 10km 
from a mine (victims of mining pollution) are willing to accept minimum compensation per 
capita health expenditure of TZS 55 202 per annum on average, equivalent to USD 24.75. The 
minimum WTA increases as one get closer to the mine site: at 7km, average WTA was TZS 
65 098, while households far (20km) from the mining zone are willing to accept a minimum of 
TZS 27 028 per capita household health expenditure per annum on average.  
The balance test found that households in the treated group have higher income (proxied by total 
expenditure), could afford a larger number of household members, have a better environment in terms of 
better floors, better latrine types, greener cooking fuels, and waste disposal done outside of their 
compounds. Moreover, on average a household in the treated group spends TZS 1 550 000 more per 
annum than a household in the control group. These findings imply that environmental quality plays an 
important role in health expenditure. Households located near mines stand to gain higher income; but 
contrary to the popular understanding that high income implies the household can afford better food, 
housing and medication (Fichera and Savage, 2015, Kuehnle, 2014), high income in mining settings is 
achieved with poor environmental quality (high pollution levels), which eventually compromises health 
outcomes. Or rather, the income effects are not sufficient to compensate for health damage from 
pollution. 
These findings have an important implication for environmental and industrial policies. They suggest 
environmental regulations should be tightened, to ensure that the pollution emitted by mines is below the 
identified required health thresholds. Moreover, proximity to a mine should be assessed and people 
evacuated from highly polluted zones. Regular environmental assessment should consider the impact of 
polluting industries on the actual health outcomes of surrounding communities. 
Mining industries affect local economic conditions through many channels, which could create local 
demand (given an effective local-content policy), affect the provision of public goods, and change the 
scope of re-distributive policies. Similarly, mining can also generate negative local effects, such as 
increases in rent-seeking behaviour, conflict and political corruption. The household total-expenditure 
differences between the treated and control groups imply that the compensation policies and positive 
spill-overs from mines, if any, are insufficient to offset their negative health effects on surrounding 
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communities. Thus, there is a need for a thorough review of industrial policies (especially concerning local 
content) to ensure that compensation policies and local multiplier effects are adequate to offset any 
negative effects. 
The evaluation of health outcomes, especially for children, has significant social and economic 
implications: childhood health can generate significant effects on subsequent health, educational 
attainment, and labour market outcomes, through dynamic complementarities and cross-productivity with 
the development of cognitive and non-cognitive skills. Moreover, there is strong evidence in the literature 
for a link between parents' socioeconomic status and child health; a link that suggests that parts of the 
intergenerational persistence in inequality are due to differences in childhood health conditions. Thus, 
addressing children's health issues has potential economic benefits, ranging from labour market 
improvements to income inequality reduction. 
The study was limited in two ways. We could not clearly establish the relative significance of each 
mechanism through which pollution could plausibly affect health outcomes, such as water pollution, air 
pollution and soil pollution, which all affect the food chain. Similarly, we could not examine the types of 
pollutants that significantly affect health outcomes.  
The study also faced the same data challenge as most similar studies, in using the demographic health 
surveys (DHS), which are taken annually. However, most of the DHS for most of the previous years did 
not capture the GPS coordinates of the respondents; even those that did distorted the codes for 
individual households to approximate a radius of between 2km and 10km difference to the actual codes, 
for confidentiality’s sake. The actual/precise-to-within-15m codes available are at cluster level, which is 
not appropriate for this study (Perez-Heydrich, Warren, Burgert and Emch, 2013; Burgert, Colston, Roy 
and Zachary, 2013). Thus, we could not use the DHS, as we required actual locations. 
In addition, our dataset has the advantage of being a panel; however, we could not take advantage of 
panel regression. Instead, we used the repeated cross-sectional, because the HAZ06 measures growth rate 
to the age of 59 months. Since our data waves are collected at two-year intervals, the maximum tracing 
for a single individual would be for only two waves. While beyond the scope of this study, examination of 
these issues warrants further research.  
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Appendix 
 
Appendix Table 1: Stunting rate by treatment  

 

Stunting in the untreated area is (87/335=0.26) 26%, while in the treated area it is (29/67=0.43) 43%.  
 
Appendix Table 2: Matching summary (stunting) 
 5km  10km  11km 
 Untreated treated  untreated treated  untreated treated 
All 335 67  335 67  312 90 
Matched 54 21  54 21  51 31 
Unmatched 281 46  281 46  261 59 
Share matched 16.1% 31.3%  16.1% 31.3%  16.3% 34.4% 
Multivariate ℒ1 distance 0.21470343  0.21470343  0.19354839 
 
Appendix Table 3: Cooking fuel 
S/No. Fuel source Frequencies Percentage  

1 Animal residual 1 0.08 
2 Firewood 1,014 77.8 
3 Paraffin 5 0.3 
4 Charcoal 267 20.7 
5 Gas  6 0.5 
6 Electricity 1 0.08 
7 Others 7 0.54 
 total 1301  
 
Appendix Table 4: Household floor 
S/No. The floor material Frequencies Percentage 
1 Earth 932 71.5 
2 Concrete, cement, tiles, timber 369 28.5  

Total 1301 
 

 
Appendix Table 5: Waste disposal 
S/No Dispose of its garbage Frequencies Percentage 
1 Collected by government or private firm 35 2.7 
2 Government bin 18 1.4 
3 Disposal within compound 1,010 77.6 
4 None or unauthorised heap 193 14.8 
5 Other (specify) 45 3.5 
 Total 1301  
 
 
 
 
 
 
 
 
 
 

  Treatment (10km) 

 Stunting  statistics 0 1 
0 Frequency 248 38 
 Mean gender 1.472 1.684 
 Mean age (months) 25.927 23.289 
 Mean expenditure per capita  523000 585000 
1 Frequency 87 29 
 Mean gender 1.517 1.931 
 Mean age (months) 32.023 25.034 
 Mean expenditure per capita  487000 362000 
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Appendix Table 6: Latrine type 
S/No Main toilet facilities Frequencies Percentage 
1 No toilet 199 15.3 
2 Open pit without slab 376 28.9 
3 Open pit with slab 344 26.4 
4 Pour flush 230 17.7 
5 Flush toilet 111 8.5 
6 VIP 40 3.1 
7 Other (specify) 1 0.08  

Total 1301 
 

 
Appendix Table 7: Drinking water 
S/No  Main source of drinking water Frequencies Percentage 

1 Piped water  101 7.8 
2 borehole and wells 556 42.7 
3 Bottled water 110 8.5 
4 Surface water (river, dam, lake, pond, 412 31.7 
5 Other, specify 122 9.3 
 Total   
 


