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Abstract

The hawk–dove game admits two types of equilibria: an asymmetric pure equi-

librium in which players in one population play “hawk” and players in the other

population play “dove,” and a symmetric mixed equilibrium. The existing literature

on dynamic evolutionary models shows that populations will converge to playing

one of the asymmetric pure equilibria from any initial state. By contrast, we show

that plausible sampling dynamics, in which agents occasionally revise their actions

by observing either opponents’ behavior or payoffs in a few past interactions, can

induce the opposite result: global convergence to a symmetric mixed equilibrium.

Keywords: Chicken game, learning, evolutionary stability, bounded rational-

ity, payoff sampling dynamics, action sampling dynamics. JEL codes: C72, C73.

1 Introduction

The hawk–dove game is often applied to study situations of conflict between strategic

participants. As a simple motivating example, consider a situation in which a buyer

(Player 1) and a seller (Player 2) have to bargain over the price of an asset (e.g., a

house). Each player has two possible bargaining strategies (actions): insisting on a more
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Table 1: Payoff Matrix of the Standard Hawk–Dove Game (g ∈ (0, 1))

Player 2

h2 d2

Player 1
h1 0, 0 1 + g, 1 − g

d1 1 − g, 1 + g 1, 1

favorable price (referred to as being a “hawk”), or agreeing to a less favorable price in

order to close the deal (being a “dove”). The payoffs of the game are presented in Table

1. Two doves agree on a price that is equally favorable to both sides, and obtain a

relatively high payoff, which is normalized to 1. A hawk obtains a favorable price when

being matched with a dove, which yields her an additional gain of g ∈ (0, 1), at the

expense of her dovish opponent. Finally, two hawks obtain the lowest payoff of 0, due to

a substantial probability of bargaining failure.1

The hawk–dove game (also known as the chicken game; see, e.g., Rapoport and

Chammah, 1966; Aumann, 1987) has been employed in modeling various strategic situa-

tions, such as: provision of public goods (Lipnowski and Maital, 1983), nuclear deterrence

between superpowers (Brams and Kilgour, 1987; Dixit et al., 2019), industrial disputes

(Bornstein et al., 1997), bargaining problems (Brams and Kilgour, 2001), conflicts be-

tween countries over contested territories (Baliga and Sjöström, 2012, 2020), and task

allocation among members of a team (Herold and Kuzmics, 2020).

The hawk–dove game admits three Nash equilibria: two asymmetric pure equilibria,

and one symmetric mixed equilibrium. In the pure equilibria (in which one of the play-

ers plays hawk while the opponent plays dove), all conflicts are avoided at the cost of

inequality, as the payoff of the hawkish player is substantially higher than that of the

dovish opponent. By contrast, in the symmetric mixed equilibrium both players obtain

the same expected payoff, yet this payoff is relatively low due to the positive probability

of a conflict arising between two hawks.

A natural question is to ask which equilibrium is more likely to obtain. Standard game

theory is not helpful in answering this question, as all these Nash equilibria satisfy all the

standard refinements (e.g., perfection). By contrast, the dynamic (evolutionary) approach

1Our one-parameter payoff matrix is equivalent to the commonly used two-parameter matrix
(Maynard-Smith, 1982), according to which a dove obtains V

2
against another dove and 0 against a

hawk, and a hawk obtains V −C
2

against another hawk and V against a dove. Specifically, our one-
parameter matrix is obtained from the two-parameter matrix by the affine transformation of adding the
constant C−V

2
and dividing all payoffs by C

2
, followed by substituting g ≡ V

C
.
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can yield sharp predictions (for textbook expositions, see Weibull, 1997; Sandholm, 2010).

Revision dynamics Consider a setup in which pairs of agents from two infinite pop-

ulations are repeatedly matched at random times (each such match of an agent from

population 1 is against a new opponent from population 2).2 Agents occasionally die

(or, alternatively, agents occasionally receive opportunities to revise their actions). New

agents observe some information about the aggregate behavior and the payoffs, and use

this information to choose the action they will play in all future encounters. We are

interested in characterizing the stable rest points of such revision dynamics, which can

be used as an equilibrium refinement.

Most existing models assume that the revision dynamics are monotone (also known as

sign-preserving) with respect to the payoffs: the frequency of the strategy that yields the

higher payoff (among the two feasible strategies) increases. A key result in evolutionary

game theory is that all monotone (two-population) revision dynamics converge to the

asymmetric pure equilibria from almost any initial state (henceforth, global convergence;

see Maynard-Smith and Parker, 1976, for the classic analysis, Maynard-Smith, 1982, for

the textbook presentation, Sugden, 1989, for the economic implications, and Oprea et al.,

2011, for the general dynamic result, which, for completeness, is presented in Proposition

1 below.) Thus, the existing literature predicts that an efficient convention will emerge in

which trade always occurs and most of the surplus goes to one side of the market. Casual

observation suggests that this prediction might not fit well the behavior in situations such

as the motivating example, in which the surplus of trade is typically divided relatively

equally between the two sides of the market, and in which bargaining frequently fails.

In many applications, precise information about the aggregate behavior in the pop-

ulation may be difficult or costly to obtain. In such situations, new agents have to

infer the aggregate behavior in the population from a small sample of other players. In

what follows, we present two plausible inference procedures, both of which violate mono-

tonicity. The first procedure is the action-sampling dynamics (also known as sampling

best-response dynamics; Sandholm, 2001; Osborne and Rubinstein, 2003). In these dy-

namics, each new agent observes the behavior of k random opponents, and then adopts

2Our paper focuses on two-population dynamics. The predictions of one-population dynamics in
which agents are matched within a single population and they cannot condition their play on their role
in the game are discussed at the end of Section 3.2.
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the action that is a best reply to her sample (with an arbitrary tie-breaking rule).

In some applications, new agents may not be able to observe opponents’ actions,

or they may lack information about the payoff matrix. Plausible revision dynamics in

such situations are the payoff-sampling dynamics (also known as best experienced payoff

dynamics; Osborne and Rubinstein, 1998; Sethi, 2000). In these dynamics, each new agent

observes the payoffs obtained by incumbents of her own population in k interactions in

which these incumbents played hawk, and in k interactions in which these incumbents

played dove. Following these observations, the new agent adopts the action that yielded

the higher mean payoff (with an arbitrary tie-breaking rule).

We analyze both sampling dynamics in the hawk–dove game. In our analysis, we

allow agents to have heterogeneous sample sizes (i.e., each new agent is endowed with a

sample size of k that is randomly chosen from an exogenous distribution). It is simple to

show that these dynamics admit at least three rest points (henceforth, equilibria): two

asymmetric pure equilibria, and a symmetric mixed equilibrium.3,4

Main result and intuition We show that sampling dynamics can yield qualitatively

different results compared to monotone dynamics. Specifically, we show that there is a

large domain of parameter values for which the payoff-sampling dynamics yield global

convergence to the symmetric mixed equilibrium. A similar result holds for the action-

sampling dynamics, albeit, in a somewhat narrower domain. Thus, if buyers and sellers

have limited information about the aggregate behavior, then an egalitarian, yet inefficient,

convention may arise in which bargaining will frequently fail.

We say that an equilibrium is asymptotically stable if a population beginning nearby

would converge to playing this equilibrium. In what follows, we briefly present the intu-

ition why the sampling dynamics may alter the asymptotic stability of the asymmetric

pure equilibria and the symmetric mixed equilibrium.

Consider an asymmetric pure equilibrium in which all buyers play hawk and all sellers

play dove. Assume that a small perturbation changes the behavior of ǫ << 1 of the agents

in each population. Such a small perturbation does not change the best reply of agents

under monotone dynamics. As a result, new buyers (resp., sellers) will play hawk (resp.,

3The symmetric mixed equilibrium (i.e., the rest point of the sampling dynamics) has a different
mixing probability compared to the symmetric mixed Nash equilibrium.

4The dynamics might also admit asymmetric mixed equilibria.
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dove) and the population will converge back to the pure equilibrium. By contrast, when a

new buyer makes a decision based on a sample of k actions, there is a probability of about

kǫ > ǫ that one of these sampled actions is the rare action induced by the perturbation.

In some cases (depending on the value of g), a single occurrence of the rare action in

the sample is sufficient to change the perceived best reply of the agent. In such cases,

the effect of the small perturbation will gradually increase, and the population will move

away from the pure equilibrium.

Next consider the symmetric mixed equilibrium in which p ∈ (0, 1) of the agents in

each population plays hawk. Assume that a perturbation slightly increases the shares of

hawkish buyers and dovish sellers by ǫ. Under monotone dynamics, the new agents (who

were indifferent between the two actions before the perturbation) have a strict best reply:

new buyers (resp., sellers) strictly prefer to play hawk (resp., dove). As a result, the small

perturbation gradually increases until the population converges to the asymmetric pure

equilibrium in which all buyers (resp., sellers) play hawk (resp., dove). By contrast, when

new agents base their choices on small samples, their perceived best reply depends on

the realized sample. It is still true that the share of new buyers (resp., sellers) with a

perceived best reply of playing hawk (resp., dove) increases due to having slightly more

dovish sellers (resp., hawkish buyers), but this increase might be smaller than ǫ (e.g., the

share of new buyers with a perceived best reply of playing hawk might be p + 0.9ǫ). In

this case, the population will gradually converge back to the mixed equilibrium.

Structure and brief summary of results Section 2 presents the related literature.

Section 3 formally presents our model. Specifically, it describes a broad class of hawk–

dove games, and it defines revision dynamics and various notions of stability. Section

4 characterizes the asymptotic stability of pure equilibria for both sampling dynamics

(Theorem 1). The characterization is “complete” in the sense of presenting a simple

“iff” condition for asymptotic stability in all generic cases. Section 5 presents interesting

necessary and sufficient conditions for the symmetric mixed equilibrium being asymp-

totically stable under each of the two sampling dynamics (Theorems 2–4). The analytic

results of the paper are supplemented by a numeric analysis (Section 6) that shows which

parameter values lead to convergence to the symmetric mixed equilibrium, and which

lead to convergence to the asymmetric pure equilibria. We conclude in Section 7.
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2 Related Literature and Contribution

Related theoretical literature The action-sampling dynamics were pioneered by

Sandholm (2001) and Osborne and Rubinstein (2003). Oyama et al. (2015) applied

these dynamics to prove global convergence results in supermodular games. Recently,

Heller and Mohlin (2018) studied the conditions on the expected sample size that implies

global convergence for all payoff functions and all sampling dynamics.

Salant and Cherry (2020) (see also Sawa and Wu, 2021) generalized the action-

sampling dynamics by allowing new agents to use various procedures to infer from their

samples the aggregate behavior of the opponents. Salant and Cherry pay special attention

to unbiased inference procedures in which the agent’s expected belief about the share of

opponents who play hawk coincides with the sample mean. Examples of unbiased proce-

dures are maximum likely estimation, beta estimation with a prior representing complete

ignorance, and a truncated normal posterior around the sample mean. In our setup, the

payoffs are linear in the share of agents who play hawk, which implies that the agent’s

perceived best reply depends only on the expectation of her posterior belief. This im-

plies that our results with respect to the action-sampling dynamics hold for any unbiased

inference procedure.

The present paper, similar to the papers cited above, studies deterministic dynamics

in infinite populations. When there is convergence to a stable equilibrium in such dy-

namics, the convergence is fast, and the population always remains in this equilibrium’s

neighborhood (Oyama et al., 2015). By contrast, stochastic evolutionary models (see,

e.g., the seminal contribution of Young, 1993, and the recent hawk–dove application in

Bilancini et al., 2021), which are also based on revising agents observing a finite sample

of opponents’ actions, focus on the very long-run behavior of stochastic processes when

players’ choice rules include the possibility of rare “mistakes.”

The payoff-sampling dynamics were pioneered by Osborne and Rubinstein (1998) and

Sethi (2000) and later generalized in various respects by Sandholm et al. (2020). It has

been used in a variety of applications, including price competition with boundedly rational

consumers (Spiegler, 2006), common-pool resources (Cárdenas et al., 2015), contributions

to public goods (Mantilla et al., 2018), centipede games (Sandholm et al., 2019), finitely

repeated games (Sethi, 2019) and the prisoner’s dilemma (Arigapudi et al., 2021). The

existing literature assumes that all agents have the same sample size. A methodological
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contribution of the present paper is in extending the setup of payoff-sampling dynamics

to analyze heterogeneous populations in which new agents differ in their sample sizes,

and this heterogeneity leads to new results.

Related experimental literature Selten and Chmura (2008) experimentally tested

the predictive power of various solution concepts in two-action, two-player games with

a unique completely mixed Nash equilibrium. They show that both both the payoff-

sampling equilibrium and the action-sampling equilibrium outperform the predictions of

both the Nash equilibrium and the quantal-response equilibrium.

Recently, Stephenson (2019) tested the predictive validity of various evolutionary

models in coordinated attacker–defender games.5 Stephenson’s experimental design is

very favorable for monotone dynamics because each participant is shown the exact (population-

dependent) payoff that would be obtained by each action at each point in time. Never-

theless, subjects frequently violate monotonicity: 10%–20% of the subjects switch from

higher-performing strategies to lower-performing strategies.

The key prediction of monotone dynamics for hawk–dove games (in which agents

from one population are randomly matched with agents from another population) is

experimentally tested in Oprea et al. (2011) and Benndorf et al. (2016). Both experiments

apply an interface that is favorable to monotonicity (i.e., each participant is shown the

exact population-dependent payoff of each action). Both experiments show that the

prediction of monotone dynamics holds in this setup, and that the populations converge

to an asymmetric pure equilibrium in which one population (say, the buyers) plays hawk

and the other population (say, the sellers) plays dove.

Consider a revised experimental design, where an agent observes only the behavior

of her own opponent, rather than the aggregate behavior of the opposing population.

An interesting testable prediction of our model is that in this experimental design, the

populations are likely to converge to the symmetric mixed equilibrium in the relevant

parameter domain (in particular, when g is not too far from 1; see Figure 6.1).6

5Experiments that directly test the dynamic predictions of evolutionary game theory are quite scarce.
Two notable exceptions are the experiments showing the good fit of the dynamic predictions in the
rock–paper–scissors game (Cason et al., 2014; Hoffman et al., 2015).

6Benndorf et al. (2016, 2021) studied a more general setup in which each participant in each round
is randomly matched with an opponent from the other population with probability κ ∈ (0, 1), and is
randomly matched with an opponent from her own population with the remaining probability 1 − κ.
Our theoretical predictions fit the setup of κ close to one.
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Table 2: Payoff Matrix of a Generalized Hawk–Dove Game gi, li ∈ (0, 1)

Player 2
h2 d2

Player 1
h1 0, 0 1 + g1, 1 − l2
d1 1 − l1, 1 + g2 1, 1

3 Model

3.1 The Hawk–Dove Game

Let G = {A, u} denote a two-player hawk–dove game, where:

1. A = A1 × A2, where Ai = {hi, di} is the set of actions of each player i ∈ {1, 2}, and

2. u = (u1, u2), where ui : A → R is the payoff function of each player i ∈ {1, 2} .

Let i ∈ {1, 2} be an index referring to one of the players, and let j = {1, 2} \ {i} be an

index referring to the opponent. We interpret action hi as the hawkish (more aggressive)

action and di as the dovish action. The payoff matrix u(·, ·) of a generalized hawk–dove

game is given in Table 2. When both agents are dovish, they obtain a relatively high

payoff, which is normalized to 1. When both agents are hawkish, they obtain their lowest

feasible payoff, which is normalized to 0. Finally, when player i is hawkish and player j

is dovish, the hawkish player i gains gi ∈ (0, 1) (relative to the payoff 1 obtained by two

dovish players), while her dovish opponent looses7 lj ∈ (0, 1). Clearly, the set of pure

Nash equilibria of G are (h1, d2) and (d1, h2). The game admits a unique mixed Nash

equilibrium
(

pN
1 , pN

2

)

in which player i plays hi with probability pN
i = gj

lj+gj
, and obtains

a relatively low expected payoff of li+ligi

li+gi
< 1.

We say that the hawk–dove game is symmetric if g1 = g2 and l1 = l2, and in this case

we write the parameters as g and l. An important special case of a symmetric hawk–dove

game is the standard hawk–dove game in which g = l (see Table 1), i.e., the gain of the

hawkish player is equal to the loss of her dovish opponent.

7Herold and Kuzmics (2020) allow a broader parameter domain in which the assumption of gi, li ∈
(0, 1) is replaced with the weaker assumption of gi > 0, li < 1, and li + gj > 0. All of our results hold in
this extended setup; Theorem 2, requires some modifications to cover the additional case of gi > 1.
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3.2 Evolutionary Dynamics

We assume that there are two unit-mass continuums of agents and that agents in pop-

ulation 1 are randomly matched with agents in population 2 to play the hawk–dove

game. Aggregate behavior in the populations at time t ∈ R
+ is described by a state

p (t) = (p1 (t) , p2 (t)) ∈ [0, 1]2, where pi (t) represents the share of agents playing the

hawkish action hi at time t in population i. We extend the payoff function u to states

(which have the same representation as mixed strategy profiles) in the standard linear

way. With slight abuse of notation we use di (resp., hi) to denote the degenerate state

pi = 0 (resp., pi = 1) in which all agents in population i play di (resp., hi). A state

p = (pi, pj) is symmetric if pi = pj, and in this case we write it as (p, p).

Agents occasionally die and are replaced by new agents (equivalently, agents occa-

sionally receive opportunities to revise their actions). Let δi > 0 denote the death rate of

agents in population i, which we assume to be independent of the currently used actions.

In symmetric games we assume δ ≡ δ1 = δ2, and, in this case, δ does not have any effect

on the dynamics except to multiply the speed of convergence by a constant.

The evolutionary process is represented by a continuous function w : [0, 1]2 → [0, 1]2,

which describes the frequency of new agents in each population who adopt action hi

as a function of the current state. That is, wi (p) describes the share of new agents

of population i who adopt action h, given state p. Thus, the dynamics are given by

ṗi = δi · (wi (p) − pi) .

The most widely studied family of dynamics are those that are monotone with re-

spect to the payoffs. A dynamic is monotone in a two-action game (also known as

sign-preserving or payoff positive), if the share of agents playing an action increases iff

the action yields a higher payoff than the alternative action.8,9

Definition 1. The evolutionary dynamic w : [0, 1]2 → [0, 1]2 is monotone if for any player

i, any interior pi ∈ (0, 1), and any pj ∈ [0, 1]: ṗi > 0 ⇔ ui (hi, pj) > ui (di, pj) .

8In games with more than two actions, there are various definitions that capture different aspects of
monotonicity. All these definitions coincide for two-action games. In particular, Definition 1 coincides in
two-action games with Weibull’s (1997, Section 5.5) textbook definitions of payoff monotonicity, payoff
positivity, and weak payoff positivity.

9The best-known example of payoff monotone dynamics is the standard replicator dynamic (Taylor,
1979), which is given by ṗi = wi (pj) − pi = pi (ui (hi, pj) − ui (pi, pj)) .
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Two-Population vs. One-Population Dynamics for Symmetric Games When

the underlying game is symmetric, the dynamics presented above are commonly referred

to as “two-population” dynamics. These dynamics fit situations in which a player can

condition her play on her role in the game (being Player 1 or Player 2). That is, each player

observes a payoff-irrelevant signal, which determines whether she is the row player or the

column player. Common examples of such payoff-irrelevant signals are those indicating

whether the player (1) is a seller or a buyer, as in the motivating example, and (2) has

arrived slightly earlier or slightly later at a contested resource (Maynard-Smith, 1982).

By contrast, in one-population dynamics of symmetric games an agent cannot condi-

tion her play on her role in the game. It is well known that all monotone one-population

dynamics converge to the unique mixed Nash equilibrium in hawk–dove games (see,

e.g., Weibull, 1997, Section 4.3.2). It is relatively straightforward to establish that one-

population sampling dynamics lead to qualitatively similar results (convergence is to a

somewhat different interior point than in the mixed Nash equilibrium, but comparative

statics with respect to the payoff parameters remain similar).

3.3 Dynamic Stability

The following notions of stability are standard (see, e.g., Weibull, 1997, Chapter 5). A

state is a (dynamic) equilibrium if it is a rest point of the dynamics.

Definition 2. State p∗ ∈ [0, 1]2 is an equilibrium if wi (p∗) = p∗
i for each i ∈ {1, 2}.

E (w) denotes the set of equilibria of the dynamics w, i.e., E (w) = {p∗|wi (p∗) = p∗
i }.

Under monotone dynamics (as defined below) an interior state p∗ ∈ (0, 1) is a (dy-

namic) equilibrium iff it is a Nash equilibrium. By contrast, under nonmonotone dynamics

(such as the sampling dynamics analyzed below) the two notions differ.

A state is Lyapunov stable if a population beginning near it remains close, and it is

asymptotically stable if, in addition, it eventually converges to the equilibrium. A state

is unstable if it is not Lyapunov stable. It is well known (see, e.g., Weibull, 1997, Section

6.4) that every Lyapunov stable state must be an equilibrium. Formally:

Definition 3. State p∗ ∈ [0, 1]2 is Lyapunov stable if for every neighborhood U of p∗ there

is a neighborhood V ⊆ U of p∗ such that if the initial state p (0) ∈ V , then p (t) ∈ U for

all t > 0. A state is unstable if it is not Lyapunov stable.
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Definition 4. A Lyapunov stable state p∗ ∈ [0, 1]2 is asymptotically stable if there is

some neighborhood U of p∗ such that all trajectories initially in U converge to p∗, i.e.,

p (0) ∈ U implies limt→∞ p (t) = p∗.

A set of asymptotically stable states P ∗ is globally stable if the populations converge to

one of the states in the set from any initial state, possibly after a small perturbation during

their convergence trajectory. Specifically, we require that (1) all trajectories converge to

equilibria (i.e., there are no cycles), and (2) for any neighborhood around any equilibrium

p′ outside P ∗, there exists a trajectory beginning in this neighborhood that converges to

one of the equilibria in P ∗. Thus, if a trajectory has converged to p′, then an arbitrarily

small perturbation at p′ will take it away from p′ and into one of the states in P ∗.

Definition 5. A set of asymptotically stable states P ∗ is globally stable if (1) limt→∞ p (t)

exists for any p (0) ∈ [0, 1]2, and (2) for any equilibrium p̂ ∈ E (w) \P ∗ and for any

neighborhood U around p̂, there exists p (0) ∈ U , such that limt→∞ p (t) ∈ P ∗.

A state p∗ is globally stable if the singleton set that contains it {p∗} is globally stable.

3.4 Sampling Dynamics

In what follows, we define two plausible nonmonotone dynamics (action-sampling dynam-

ics and payoff-sampling dynamics), in which agents base their choice on inference from

small samples. The action-sampling dynamics fit situations in which agents do not know

the exact distribution of actions being played in the opponent’s population. A new agent

in population i observes the actions of a few randomly sampled opponents from popula-

tion j. The agent views the empirical distribution of actions in her sample as an unbiased

estimate of the distribution of actions in the population, and chooses the optimal action

against this empirical distribution for all future encounters.

The payoff-sampling dynamics fit situations in which agents either do not know the

payoff matrix or do not have feedback about the actions being played in the opponent’s

population. A new agent in population i observes the payoffs obtained by (1) a random

sample of incumbents of population i who have played hawk, and (2) a random sample of

incumbents of population i who have played dove. Following these observations, the new

agent adopts the action that yielded the higher mean payoff. Another interpretation of

the payoff-sampling dynamics is that each new agent tests each of the available actions a

11



few times and then adopts the action that has given her the highest mean payoff during

the testing phase.

Distribution of sample sizes We allow heterogeneity in the sample sizes used by

new agents. Let θi ∈ ∆ (Z+) denote the distribution of sample sizes of new agents of

population i. A share of θi (k) of the new agents of population i have a sample of size k.

Let supp (θi) denote the support of θi, and let max(supp(θi)) denote the maximal sample

size in the support of θi, and let max(supp((θi)) = ∞ if θi’s support is unbounded. Let

θi(≥ k) =
∑

m≥k θi(m) denote the frequency of new agents in either population who have

a sample size of at least k.

If there exists some k, for which θi(k) = 1, then we use k to denote the degenerate

(homogeneous) distribution θi ≡ k. In the case of an asymmetric game, we let θ = (θ1, θ2),

where θi is the distribution of sample sizes of new agents of population i. In the case of

a symmetric game, we assume that both populations have the same distribution of types

and, with a slight abuse of notation, we let θ denote the common distribution of types,

i.e., θ ≡ θ1 = θ2. In symmetric games, a share θ(k) of the new agents in either population

have a sample of size k.

Action-sampling dynamics In the action-sampling dynamics, a new agent with sam-

ple size k (henceforth, a k-agent) samples k randomly drawn agents from the opponent

population and then adopts the action that has yielded the highest mean payoff against

the sample. To simplify the notation below, we assume that in case of a tie, the new

agent adopts the action di. All of our results are independent of the tie-breaking rule.

Let bk (pj) ∼ Bin (k, pj) denote a random variable with binomial distribution with

parameters k (number of trials) and pj (probability of success in each trial). Then the

action-sampling dynamics with a distribution profile of sample sizes θ are given by

wA
θi

(pj) = Pr (hi has a higher mean payoff in the sample)

=
∑

k∈supp(θ)

θi(k) · Pr

(

bk (pj)

k
<

gi

gi + li

)

. (3.1)

Payoff-sampling dynamics In the payoff-sampling dynamics, a new k-agent from

population i observes for each of her feasible actions the payoff obtained by incumbents

of population i who played this action in k interactions (with each play of each action

12



being against a newly drawn opponent from the opponent population j), and then chooses

the action whose mean payoff was highest during the testing phase. As above, we simplify

the notation by assuming that in case of a tie, the new agent adopts the action di (and

all of our results are independent of which tie-breaking rule is used). We refer to the

sample against which action hi (resp., di) is tested as the hi-sample (resp., di-sample). Let

b
h
k (pj) , b

d
k (pj) ∼ Bin (k, pj) denote two iid random variables with a binomial distribution

with parameters k and pj. Let Xhi
(θ) be action hi’s mean payoff against the hi-sample

and Xdi
(θ) be action di’s mean payoff against the di-sample. Then the payoff-sampling

dynamics with a distribution profile of sample sizes θ are given by

wP
θi

(pj) = Pr (Xhi
(θ) > Xdi

(θ))

=
∑

k∈supp(θ)

θi(k) · Pr
(

(1 + gi)
(

k − b
h
k (pj)

)

> k − (1 − li) b
d
k (pj)

)

. (3.2)

3.5 Benchmark: Stability under Monotone Dyanamics

Oprea et al. (2011) showed that under monotone dynamics, from any initial state, the

populations converge to one of the two asymmetric pure equilibria in which one population

plays hi and the other population always plays dj (generalizing the seminal analysis of

Maynard-Smith and Parker, 1976). For completeness, we state and prove an equivalent

result, using the notation of our model.

Proposition 1 (Adaptation of Oprea et al., 2011, Proposition 1). The set {(d1, h2) , (h1, d2)}

is globally stable for any monotone dynamics.

Proof. Observe that ui (hi, pj) > ui (di, pj) iff pj < pN
j = gi

li+gi
. Due to payoff monotonicity

this implies that ṗi > 0 iff pj < pN
j . This implies that one can divide the unit square into

four rectangles (as illustrated in Figure 3.1 below):

1. Upper-left rectangle (p1 < pN
1 , p2 > pN

2 ) in which the dynamics move upward and

to the left (i.e., ṗ1 < 0 < ṗ2) until converging to (0, 1).

2. Upper-right rectangle (p1 > pN
1 , p2 > pN

2 ) in which the dynamics move downward

and to the left (i.e., ṗ1, ṗ2 < 0) until converging to either the upper-left rectangle,

the lower-right rectangle, or the unstable equilibrium
(

pN
1 , pN

2

)

.
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Figure 3.1: Global Stability of {(0, 1) , (1, 0)} for Monotone Dynamics.
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The figure illustrates the four rectangles described in the proof of Proposition 1. A solid (resp.,
hollow) dot represents an asymptotically stable (resp., unstable) equilibrium.

3. Lower-right rectangle (p1 > pN
1 , p2 < pN

2 ) in which the dynamics move downward

and to the right (i.e., ṗ2 < 0 < ṗ1) until converging to (1, 0).

4. Lower-left rectangle (p1 > pN
1 , p2 < pN

2 ) in which the dynamics move upward and

to the right (i.e., ṗ1, ṗ2 > 0) until converging to either the upper-left rectangle, the

lower-right rectangle, or the unstable equilibrium
(

pN
1 , pN

2

)

.

This implies that {(d1, h2) , (h1, d2)} is globally stable.

4 Stability of Pure Equilibria

In this section, we characterize the asymptotic stability of the pure equilibria.

4.1 Auxiliary Definitions and Lemma

In order to be able to state a result that is independent of the specific tie-breaking rule,

we focus on generic games. The genericity condition implies that there cannot be ties in

samples that are relevant to the stability of the pure equilibria (as proven in Lemma 1).

Definition 6. A hawk–dove game G is called generic if none of the following expressions

is an integer: 1+gi

1−li
, 1+gi

gi
, 1+gi−li

1−li
, 1+gi−li

gi
for each i ∈ {1, 2}.

14



Observe that if the values of gi and li are randomly chosen from a continuous (atom-

less) distribution, then the game is generic with probability one.

Next we present a lemma that characterizes when a single appearance of a rare action

in a new agent’s sample can change the agent’s behavior.

Lemma 1. Consider a new agent in population i with a sample size of k.

1. Action-sampling dynamics: (I) Action hi induces a higher payoff against a sample

with a single dj iff10 k ≤
⌊

1+gi−li
1−li

⌋

; and (II) Action di induces a higher payoff

against a sample with a single hj iff k ≤
⌊

1+gi−li
gi

⌋

. Moreover, in both cases, the

mean payoffs of hi and di against the sample cannot be equal if the game is generic.

2. Payoff-sampling dynamics: (I) an hi-sample with a single dj induces a higher mean

payoff than a di-sample with no dj-s iff k ≤
⌊

1+gi

1−li

⌋

; and (II) a di-sample with no

hj-s induces a higher mean payoff than an hi-sample with a single hj iff k ≤
⌊

1+gi

gi

⌋

.

Moreover, in both cases, the two mean payoffs cannot be equal if the game is generic.

Proof.

1. (I) The sum of payoffs of action hi (resp., di) against a sample with a single dj is

1+gi (resp., 1+(k − 1) (1− li)). The mean payoff of hi is greater than (resp., equal

to) the mean payoff of di iff k < 1+gi−li
1−li

(resp., k = 1+gi−li
1−li

and 1+gi−li
1−li

is an integer).

(II) The sum of payoffs of di (resp., hi) against a sample with a single hj is k−1+1−li

(resp., (k − 1) (1 + gi)). The mean payoff of hi is greater than (resp., equal to) the

mean payoff of di iff k < 1+gi−li
gi

(resp., k = 1+gi−li
gi

and 1+gi−li
gi

is an integer).

2. (I) The sum of payoffs of an hi-sample with a single dj is equal to 1 + gi. The sum

of payoffs of a di-sample with no dj is equal to k · li. The former sum is greater

than (resp., equal to) the latter iff k < 1+gi

1−li
(resp., k = 1+gi

1−li
and 1+gi

1−li
is an integer).

(II) The sum of payoffs of a di-sample with no hj-s is equal to k. The sum of

payoffs of an hi-sample with a single hj is equal to (k − 1) (1 + gi). The former sum

is greater than (resp., equal to) the latter iff k < 1+gi

gi
(resp., k = 1+gi

gi
and 1+gi

gi
is

an integer).

Lemma 1 allows us to define the maximal sample sizes in which a single appearance

of a rare action can change the behavior of a new agent.

10⌊x⌋ is the greatest integer less than or equal to x.
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Definition 7. Let mP
hi

=
⌊

1+gi

1−li

⌋

, mP
di

=
⌊

1+gi

gi

⌋

, mA
hi

=
⌊

1+gi−li
1−li

⌋

, mA
di

=
⌊

1+gi−li

gi

⌋

, where:

1. mP
hi

(resp., mA
hi

) is the maximal sample size for which a single appearance of dj (resp.,

di) in the sample, when all other sampled actions are hj (resp., hi), can induce a

new agent to adopt hi under payoff-sampling (resp., action-sampling) dynamics.

2. mP
di

(resp., mA
di

) is the maximal sample size for which a single appearance of hj (resp.,

hi) in the sample, when all other sampled actions are dj (resp., di), can induce a

new agent to adopt di under payoff-sampling (resp., action-sampling) dynamics.

We conclude this subsection by presenting a definition of m-bounded expectation of a

probability distribution with support on the set of positive integers. It is the expected

value of the probability distribution by restricting its support to m. Formally, we have:

Definition 8. The m-bounded expectation E≤m of distribution θ with support on positive

integers is defined as E≤m (θ) =
∑m

k=1 θ (k) · k.

4.2 Characterization Result

Our next result characterizes the asymptotic stability of the pure states. It shows that the

asymptotic stability depends only on whether the product of the bounded expectations

of the distribution of sample sizes in each population is larger or smaller than one, where

the bound of each distribution is the maximal sample size for which a single appearance

of a rare action can change the behavior of a new agent. Formally:

Theorem 1. Assume that the hawk–dove game is generic.

1. Action-sampling dynamics:

(a) E≤mA
hi

(θi) · E≤mA
dj

(θj) < 1 ⇒ (di, hj) is asymptotically stable.

(b) E≤mA
hi

(θi) · E≤mA
dj

(θj) > 1 ⇒ (di, hj) is unstable.

2. Payoff-sampling dynamics:

(a) E≤mP
hi

(θi) · E≤mP
dj

(θj) < 1 ⇒ (di, hj) is asymptotically stable.

(b) E≤mP
hi

(θi) · E≤mP
dj

(θj) > 1 ⇒ (di, hj) is unstable.
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Sketch of Proof. Consider a slightly perturbed state (ǫ, 1 − ǫ) near the pure equilibrium

(0, 1). Observe that almost all agents in population 1 (resp., 2) play d1 (resp., h2). We

refer to the other action (namely, h1 in population 1 and d2 in population 2) as the

rare action. The event of two rare actions appearing in a sample of a new agent has a

negligible probability of O(ǫ2). If a new agent has a sample size of k, then the probability

of a rare action appearing in the sample is approximately k · ǫ. This rare appearance

changes the perceived best reply of a new agent of population 1 iff k is smaller than the

relevant maximal sample size, which is either mA
h1

or mP
h1

, depending on the underlying

dynamics; henceforth we denote it by mh1 ; similarly we let md2 denote the respective

relevant maximal sample size for new agents in population 2.

Thus, the total probability that a new agent of population 1 (resp., 2) adopts a rare

action (due to the appearance of a single rare action in her sample) is equal to E≤mh1
(θ1)

(resp., E≤md2
(θ2)). This implies that the share of new agents of population 1 (resp., 2)

who adopt a rare action is ǫ · E≤mh1
(θ1) (resp., ǫ · E≤md2

(θ2)). Therefore, the product of

new agents adopting a rare action in each population is ǫ2 · E≤mh1
(θ1) · E≤md2

(θ2). This

shows that the share of agents playing rare actions gradually increases (resp., decreases)

if E≤mh1
(θ1) ·E≤md2

(θ2) > 1 (resp., E≤mh1
(θ1) ·E≤md2

(θ2) < 1), which implies instability

(resp., asymptotic stability). See Appendix A.1 for a formal proof.

Observe that the fact that li > 0 immediately implies that mA
hi

< mP
hi

and mA
di

< mP
di

,

which, in turn, implies that instability under the action-sampling dynamics holds in a

strictly smaller set of distributions than under the payoff-sampling dynamics.

Corollary 1. If (di, hj) is unstable under the action-sampling dynamics, then it is also

unstable under the payoff-sampling dynamics.

4.3 Implications of Theorem 1 for Symmetric Games

In this section, we study the implications of Theorem 1 for symmetric games. As each

game is symmetric, we omit the indices i and j from all the parameters.

4.3.1 Asymptotically Stable Interior Equilibrium

If both pure equilibria are unstable, it immediately implies that the curve ṗ1 = 0 is

above (resp., below) the curve ṗ2 = 0 near the state (0, 1) (resp., (1, 0)), as illustrated
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in the right panel of Figure 4.1. This implies that there must be an intersection point

(equilibrium) of the curves ṗ1 = 0 and ṗ2 = 0, where the curve ṗ1 = 0 is above (resp.,

below) the curve ṗ2 = 0 on the right (resp., left) side of this equilibrium point, which

implies that this interior equilibrium is asymptotically stable. Formally:

Corollary 2. Assume that the hawk–dove game is symmetric and generic. There exists

an asymptotically stable interior equilibrium p∗ ∈ (0, 1)2 if:

1. Action-sampling dynamics: E≤mA
h

(θ) · E≤mA
d

(θ) > 1.

2. Payoff-sampling dynamics: E≤mP
hi

(θi) · E≤mP
dj

(θj) > 1.

4.3.2 Global Stability with a Maximal Sample Size of Two

It is relatively simple to show that when the maximal sample size is two, then the dy-

namics admit exactly three equilibria.

Lemma 2. Assume that the hawk–dove game is generic and symmetric and that max(supp(θ))

= 2. Then it admits exactly 3 equilibria (two asymmetric pure equilibria and a symmetric

mixed equilibrium) under both action-sampling dynamics and payoff-sampling dynamics.

Proof. See Appendix A.2.

As illustrated in Figure 4.1, dynamics that admit three equilibria have two possible

classes of phase potrait. If the asymmetric pure equilibria are asymptotically stable (left

panel of Figure 4.1), then they must be globally stable. By contrast, if the asymmet-

ric pure equilibria are unstable (right panel of Figure 4.1), then the symmetric mixed

equilibrium must be globally stable.

Thus, we can apply Theorem 1 and characterize the globally stable set when the

maximal sample size is two. It turns out that the mixed equilibrium is globally stable

under the payoff-sampling dynamics iff the gain of a hawkish player and the loss of a

dovish opponent are sufficiently large (namely, g + 2l > 1). Under the action-sampling

dynamics, the asymmetric pure equilibria are a globally stable set for all parameter values.

Corollary 3. Assume that the hawk–dove game is symmetric and generic, and that

max( supp(θ)) = 2. Then there exists a globally stable symmetric mixed equilibrium under

the payoff-sampling dynamics iff g + 2l > 1. In all other cases (namely, action-sampling

dynamics or g + 2l < 1), the asymmetric pure equilibria are a globally stable set.
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Figure 4.1: Two Classes of Phase Portraits with Three Equilibria (θ ≡ 2)
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The figure illustrates the two feasible classes of phase portraits for dynamics that admit three
equilibria. The left panel shows an example of a phase portrait of dynamics in which the pure
equilibria are asymptotically stable (payoff-sampling dynamics with θ ≡ 2 and g + 2l < 1). The
right panel shows an example of a phase portrait of dynamics in which the pure equilibria are
unstable (payoff-sampling dynamics with θ ≡ 2 and 1 < g + 2l < 1 + l). A solid (resp., hollow)
dot represents an asymptotically stable (resp., unstable) equilibrium.

4.3.3 Standard Hawk–Dove Games

Next we study the implications of Theorem 1 for standard hawk–dove games (in which

g = gi = li describes both the gain of a hawkish player and the loss of her dovish

opponent). Figure 4.2 illustrates the values of mP
h , mP

d , mA
h , mA

d as a function of g:

mP
h =

⌊

1 + g

1 − g

⌋

, mP
d =

⌊

1 + g

g

⌋

, mA
h =

⌊

1

1 − g

⌋

, mA
d =

⌊

1

g

⌋

.

Action-sampling dynamics Theorem 1 and Figure 4.2 imply that the pure equilibria

are unstable under the action-sampling dynamics iff E
≤min( 1

g
, 1

1−g ) · E
≤max( 1

g
, 1

1−g ) = θ(1) ·

E
≤max( 1

g
, 1

1−g ) > 1. Thus the asymmetric pure equilibria are unstable if the following two

conditions are satisfied: (1) sufficiently many agents have a sample size of 1, and (2) g

is not too close to 0.5. Specifically, if θ(1) is too small, such that θ(1) · E (θ) < 1, then

the pure equilibria are asymptotically stable for all values of g. By contrast, if θ(1) is

sufficiently large, such that θ(1) · E (θ) > 1, then there exists a threshold x ∈ (0, 0.5),
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Figure 4.2: Maximal Sample Sizes in Standard Hawk–Dove Games

such that the pure equilibria are asymptotically stable (resp., unstable) if |0.5 − g| < x

(resp., |0.5 − g| > x).

Payoff-sampling dynamics Theorem 1 and Figure 4.2 imply that the stability con-

dition for the pure equilibria under the payoff-sampling dynamics is qualitatively similar

to the action-sampling dynamics when g < 1
3

(with a slightly higher bound for the expec-

tation; i.e., the condition for instability is θ(1) · E
≤( 1+g

g
) (θ) > 1). By contrast, if g > 1

3
,

then a pure equilibrium is unstable iff (θ(1) + 2 · θ(2)) · E
≤max(3,

1+g

1−g ) (θ) > 1.

Thus, the pure equilibria are unstable if there are sufficiently many agents with a

sample size of at most 2 (where intermediate frequencies of agents with a sample size of

at most 2 further require that g be sufficiently close to one). These conditions hold for

many distributions of sample sizes. In particular, the pure equilibria are unstable (1) for

any g > 1
3

if the share of agents with a sample size of 2 is larger than the share of agents

with a sample size of at least 3 (i.e., θ(2) > θ(≥ 3)), (2) for any uniform distribution of

types over {1, . . . , k} for any k, if g is sufficiently close to one (i.e., if the surplus from

trade in the motivating example is sufficiently close to the cost of bargaining failure).

5 Stability of the Symmetric Equilibrium

In this section, we analyze the stability of the symmetric equilibrium of symmetric games.
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5.1 Action-Sampling Dynamics

Our first result shows that any symmetric equilibrium is unstable under the action-

sampling dynamics if all agents have the same sample size.

Theorem 2. Assume that the hawk–dove game is symmetric and generic, and that θ ≡ k.

Then the unique symmetric equilibrium is unstable under the action-sampling dynamics.

Sketch of Proof. Each pair of parameters g, l induces a threshold 0 ≤ m < k, such that

playing hawk is the best reply against a sample of size k iff the sample includes at most

m hawkish actions. This implies that a symmetric state
(

p(m), p(m)
)

is an equilibrium iff

p(m) is a fixed point of the function wk,m(p) ≡ P (Xk(p) ≤ m), where Xk(p) is a binomial

distribution with parameters k (number of trials) and p (probability of success). The fact

wk,m(p) is decreasing in p, wk,m(0) = 1 and wk,m(1) = 0 implies that there exists a unique

symmetric equilibrium.

Consider the perturbed state
(

p(m) − ǫ, p(m) + ǫ
)

in which population 1 (resp., 2) has

slightly more dovish (resp., hawkish) players. The share of new agents of population 1

(resp., 2) who play the hawkish action is approximately equal to p(m) − |w′
k,m(p(m))| · ǫ

(resp., p(m) + |w′
k,m(p(m))| · ǫ). This implies that the perturbation will gradually increase

iff the absolute value of the derivative |w′
k,m(p(m))| is greater than 1. It is easy to verify

that the function |w′
k,m(p)| is unimodal with a peak at m

k−1
. The formal proof shows

that the fixed point p(m) is sufficiently close to the peak, such that |w′
k,m(p(m))| > 1. See

Appendix A.4 for a formal proof. Figure 5.1 illustrates the functions wk,m(p) and their

rest points for k = 7 and for all values of m.

Thus, the dynamic behavior under the action–sampling dynamics is similar to mono-

tone dynamics when all agents have the same sample size: the asymmetric pure equilibria

are stable, while the symmetric mixed equilibrium is unstable. By contrast, our next re-

sult shows that the converse is true if most agents have a small sample size of one, and

the remaining few agents have sufficiently large sample sizes. Specifically, we show that

for any symmetric hawk–dove game, the symmetric equilibrium is asymptotically sta-

ble if the distribution of types θ satisfies the following two conditions: (1) θ(1) < 1 is

sufficiently large, and (2) any 1 6= k ∈ supp(θ) is sufficiently large.

Theorem 3. Fix a symmetric and generic hawk–dove game. Then there exists q̂ ∈ (0, 1)

and k̂ ∈ N, such that the unique symmetric equilibrium is asymptotically stable under the
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Figure 5.1: The Function wk,m(p) for k = 7 and All Values of m
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action-sampling dynamics for any distribution of types θ that satisfies θ(1) ∈ (q̂, 1), and

θ(k) = 0 for each 1 < k < k̂.

Sketch of Proof. In populations in which all agents have a sample size of one, the unique

symmetric equilibrium is p(1) = 0.5. By continuity, this implies that the unique symmetric

equilibrium p(θ) is very close to 0.5 if θ(1) is sufficiently close to one. An analogous

argument to the sketch of proof of Theorem 2 shows that a sufficient condition for the

symmetric equilibrium to be asymptotically stable is |w′
θ(p

(θ))| < 1.

Figure 5.2: The Function |w′
k(p)| for Various Values of k, where g = 1 − l = 0.8
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The function |w′
θ(p)| is a mixture of the functions |w′

k(p)| for the various k-s in the

support of θq (which are illustrated in Figure 5.2). Observe that |w′
1(p) ≡ 1|. The formal
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proof applies the central limit theorem to show that as k increases, |w′
k(p)| converges to

a normal distribution with mean g

g+l
and variance 1

4k
. In generic games, g

g+l
6= 1

2
, which

implies that |w′
k(0.5)| converges to zero. This, in turn, implies that |w′

θq
(0.5)| < 1 if k̂

is sufficiently large. By continuity, |w′
θq

(p(θq))| < 1, which implies that the symmetric

equilibrium is asymptotically stable. See Appendix A.5 for a formal proof.

5.2 Payoff-Sampling Dynamics

For tractability in the analysis of payoff-sampling dynamics, we focus on the cases where

the gain of a hawkish player and the loss of her dovish opponent are large, namely,

l, g > 1
max(supp(θ))

. Our result shows that in this domain, the symmetric equilibrium is

asymptotically stable in the following cases:

1. for any homogeneous distribution of sample sizes θ ≡ k < 20; or

2. for any distribution of sample sizes with a maximal size of at most 5.

The threshold of k = 20 is binding. The symmetric equilibrium becomes unstable if the

sample size k ≥ 20. By contrast, the bound of a maximal size of 5 for heterogeneous

distributions of sample sizes is a constraint of our proof technique. Numeric analysis

suggests that the stability of the mixed equilibrium holds for many distributions of types

with larger maximal sample sizes (in particular, it holds for uniform distributions of types

over {1, . . . , k} for any k ≤ 20).

Theorem 4. Assume that the hawk–dove game is symmetric, l, g ∈
(

1
max(supp(θ))

, 1
)

, and

either (1) θ ≡ k < 20, or (2) max (supp(θ)) ≤ 5. Then, the game admits an asymptotically

stable symmetric equilibrium
(

p(θ), p(θ)
)

under the payoff-sampling dynamics.

Sketch of Proof. When l and g are sufficiently large, the payoff of action hi is slightly

below twice the number of dj-s in the hi-sample, and the payoff of action di is slightly

above the number of dj-s in the di-sample. This implies that action hi has a higher mean

payoff than action di iff the number of dj-s in the hi-sample is strictly greater than half

the number of dj-s in the di-sample.

Thus, we can write wk(p) as follows:

wk(p) = P







k − Xk(p)
︸ ︷︷ ︸

#dj in hi-sample

>
1

2
(k − Yk(p))
︸ ︷︷ ︸

#dj in di-sample







= P (2Xk(p) − Yk(p) < k), (5.1)
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Figure 5.3: The Function wk(p) for Various Values of k
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where Xk(p) and Yk(p) are iid binomial random variables with parameters k and p.

In the formal proof (see Appendix A.6), we show that for any k < 20, wk(p) has a

unique fixed point p(k) such that |w′
k(p(k))| < 1 (see Figure 5.3). This implies, by the

same argument as in the sketch of proof of Theorem 2, that the symmetric equilibrium is

asymptotically stable. (By contrast, one can verify that |w′
k(pk)| > 1 for k ≥ 20, which

implies that the symmetric equilibrium is unstable for large k ≥ 20.)

Next, we verify in the formal proof that for any k ∈ {1, 2, 3, 4, 5} it holds that (I) the

fixed points are all in the interval (0.5, 0.68), and (II) |w′
k(p)| < 1 for any k ∈ {1, ..., 5}

and any p ∈ (0.5, 0.68). Let θ be any distribution with max(supp(θ)) ≤ 5. The fact that

wθ(p) is a weighted average of the various wk(p) implies that (I) the fixed point p(θ) of

wθ(p) is in (0.5, 0.68), and (II) |w′
θ(p

(θ))| < 1 ⇒ (p(θ), p(θ)) is asymptotically stable.

6 Numeric Analysis

We present numeric results that complement the analytic results of the previous sections.

Methodology and Parameter Values The analysis focuses on the standard hawk–

dove games, in which the gain of a hawkish player is equal to the loss of her dovish

opponent, i.e., g = gi = li for each i ∈ {1, 2}. We have tested the following 270 = 10 × 27
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combinations of parameter values for each of the two sampling dynamics:

1. 10 values for the ratio g: 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95.

2. 27 distributions of sample sizes:

(a) 9 degenerate distributions, in which all agents have sample size k, for each

2 ≤ k ≤ 10 (the case of k = 1 is analytically analyzed in Appendix A.3).

(b) 9 uniform distributions over {1, .., k}, for each 2 ≤ k ≤ 10.

(c) 9 1-biased distributions, in which a share q ∈ {10%, 20%, ..., 90%} of the new

agents have sample size one, while the sample sizes of the remaining agents

are distributed uniformly over {1,2,. . . , 10}. That is, the frequency of sample

size 1 is 1−q

10
+ q and the frequency of each k ∈ {2, . . . , 10} is 1−q

10
.

For each set of parameters, we have numerically calculated the phase portrait and the

curves for which ṗ1 = 0 and ṗ2 = 0, and used this to determine the dynamic behavior.

The code is provided in the online supplementary material.11,12

Results The numeric results are summarized in Figure 6.1. The action-sampling dy-

namics typically yield global convergence to the pure equilibria (orange shaded region

in Figure 6.1). The exceptions are consistent with Theorems 1 and 3. Specifically, the

action-sampling dynamics admit (almost) global convergence to the symmetric equilib-

rium (green shaded region) if (1) most agents have sample size 1, and (2) g is sufficiently

far from 0.5.

The payoff-sampling dynamics typically yield global (or almost global) convergence

to either the asymmetric pure equilibria or the symmetric mixed equilibrium, where each

kind of convergence holds, roughly, in half of the parameter combinations. Global con-

vergence to the symmetric mixed equilibrium occurs for all parameter values for which

it occurs under the action-sampling dynamics. In addition, the payoff-sampling dynam-

ics globally converge to the symmetric mixed equilibrium for all distributions of types,

provided that the ratio g is sufficiently close to one.

11We have arbitrarily chosen a tie-breaking rule that favors d in the event of a tie, in order to be
consistent with Eqs. (3.1) and (3.2), but the results remain essentially the same with any tie-breaking
rule.

12Our numeric analysis is based on deterministic dynamics in a continuum population. We have
randomly chosen 10 of these combinations of parameter values, and tested each of them by running it
100 times in the stochastic dynamics induced by a finite population of 1,000 agents, using ABED software
(Izquierdo et al., 2019). The results for finite populations are qualitatively the same.
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The shapes of the phase portraits in the common cases of global convergence to

either the asymmetric pure equilibria or to the symmetric mixed equilibrium have been

illustrated in Figure 4.1. The bottom part of Figure 6.1 illustrates the phase portraits in

two other cases:

1. Left panel: Most initial states (>90%) converge to the symmetric mixed equilib-

rium, while the remaining states converge to asymmetric pure equilibria (olive-green

shaded region).

2. Right panel: Almost all initial states (>95%) converge to equilibria that are neither

asymmetric pure equilibria nor symmetric mixed equilibria (blue shaded region).

7 Conclusion

A key result in evolutionary game theory is the prediction that only the asymmetric

pure equilibria in hawk–dove games are evolutionarily stable. We show that this result

crucially depends on the revision dynamics being monotone. We show that two plausible

classes of dynamics, in which new agents base their chosen actions on sampling the actions

of a few agents in the opponent population (action-sampling dynamics) or on sampling

the payoffs of a few agents in their own population (payoff-sampling dynamics) can lead

to the opposite prediction: convergence to the symmetric mixed equilibrium.

The convergence to the mixed equilibrium occurs under both classes of dynamics

when most new agents have a small sample size of one, and when the gain of a hawkish

player against a dovish opponent (g) is not too close to 0.5. Under the payoff-sampling

dynamics, this convergence also occurs for many distributions of sample sizes if the gain g

is sufficiently large. Our results might help to explain why in bargaining situations, such

as the motivating example, players in both populations tend to play hawkish strategies,

and bargaining frequently fails.

Our model assumes that all players in each population have the same payoff matrix.

Heterogeneity in the payoffs, and private information regarding one’s payoff, are impor-

tant aspects of many real-life bargaining situations. An interesting direction for future

research is to apply the analysis of sampling dynamics in more complicated models that

incorporate heterogeneous payoffs.

26



Figure 6.1: Summary of Results of the Numeric Analysis

Examples of two phase portraits in two of the cases studied in the numeric analysis.
A solid (resp., hollow) dot represents an asymptotically stable (resp., unstable) equilibrium.
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A Technical Proofs

A.1 Proof of Theorem 1

We are interested in deriving conditions for the asymptotic and Lyapunov stability of the

pure action profile (di, hj). In what follows, we compute the Jacobian of the sampling

dynamics at the state (0, 1). For this, we consider a state (ǫi, 1−ǫj) which is infinitesimally

close to the state (0, 1) i.e., 0 < ǫi, ǫj << 1. In words, we consider the state with a “very

small” ǫi share of hawks in population i and a “very small” ǫj share of doves in population

j. By “very small,” we mean that higher-order terms of ǫ are neglected.

1. Action-sampling dynamics:

Consider a new agent of population i with a sample size of ki. Action hi has a higher

mean payoff against a sample size of ki iff (neglecting rare events of having multiple

dj-s in the sample): (1) the sample includes the single action dj of an opponent, and

(2) ki ≤ mA
hi

(due to Lemma 1). The probability of (1) is ki · ǫj + o(ǫj), where o(ǫj)

denotes terms that are sublinear in ǫj, and, thus, it will not affect the Jacobian as

ǫj → 0. This implies that the probability that a new agent of population i (with a

random sample size distributed according to θi) has a higher mean payoff for action

hi against her sample is wA
θi

(1 − ǫj) = ǫj ·
∑mA

hi

ki=1 θi(ki) · ki + o(ǫj). An analogous

argument implies that the probability that a new agent of population j has a higher

mean payoff for action dj against her sample is wA
θj

(ǫi) = ǫi ·
∑mA

dj

kj=1 θj(kj) · kj + o(ǫi).

Therefore, the action-sampling dynamics at (ǫi, 1 − ǫj) can be written as follows

(ignoring the higher-order terms of ǫi and ǫj):

ǫ̇i = ǫj ·

mA
hi∑

ki=1

θi(ki) · ki − ǫi, ǫ̇j = ǫi ·

mA
dj∑

kj=1

θj(kj) · kj − ǫj. (A.1)

Define: aA
θi

=
∑mA

hi

ki=1 θi(ki) · ki and bA
θj

=
∑mA

dj

kj=1 θj(kj) · kj. The Jacobian of the above

system of Equations (A.1) is then given by J =






−1 aA
θi

bA
θj

−1




 . The eigenvalues of

J are −1 −
√

aA
θi

bA
θj

and −1 +
√

aA
θi

bA
θj

. Observe that: (1) if aA
θi

bA
θj

< 1 then both

eigenvalues are negative, which implies that the state (di, hj) is asymptotically

stable, and (2) if aA
θi

bA
θj

> 1 then one of the eigenvalues is positive, which implies
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that the state (di, hj) is unstable (see, e.g., Perko, 2013, Theorems 1 and 2 in Section

2.9).

2. Payoff-sampling dynamics:

The agent’s hi-sample has a higher mean payoff than her di-sample iff (neglecting

rare events of having multiple dj-s in her samples): (1) the hi-sample has a single

dj, (2) her di-sample does not have any dj-s, and (3) ki ≤ mP
hi

(by Lemma 1).

The probability of both independent events (1) and (2) occurring is ki · ǫj + o(ǫj).

This implies that the probability that a new agent of population i (with a random

sample size) has an hi-sample with a higher mean payoff than her di-sample is

wP
θi

(1 − ǫj) = ǫj ·
∑mP

hi

ki=1 θi(ki) · ki + o(ǫj). Similarly, the probability that a new

agent of population j has a di-sample with a higher mean payoff than her hi-

sample is wP
θj

(ǫi) = ǫi ·
∑mP

dj

kj=1 θj(kj) · kj + o(ǫi). Let aP
θi

=
∑mP

hi

ki=1 θi(ki) · ki and

bP
θj

=
∑mP

dj

kj=1 θj(kj) · kj. An analogous argument to the previous paragraph shows

that (1) if aP
θi

bP
θj

< 1 then the state (di, hj) is asymptotically stable, and (2) if

aP
θi

bP
θj

> 1 then (di, hj) is unstable.

A.2 Proof of Lemma 2

Part 1: Proof of the special case in which θ(2) = 1.

Action-sampling dynamics: Consider a new agent of population i with sample size

two when the state is (p1, p2) . Action hi has a higher mean payoff iff: (1) her sample

includes two dj-s (which happens with probability (1 − pj)
2), or (2) her sample includes

a single dj (probability 2pj(1 − pj)) and g + l > 1. Thus, the action-sampling dynamics

are given by

Case 1 (g + l < 1) : ṗi = δ
(

(1 − pj)
2 − pi

)

,

Case 2 (g + l > 1) : ṗi = δ
(

(1 − pj)
2 + 2pj(1 − pj) − pi

)

= δ
((

1 − p2
j

)

− pi

)

.

It is easy to verify that in both cases the curves intersect three points, which are the

equilibria. Two of the equilibria are (1, 0), (0, 1). The third equilibrium is an interior

symmetric state: (0.38, 0.38) in Case 1, and (0.62, 0.62) in Case 2.

Payoff-sampling dynamics: Consider a new agent of population i with sample size 2
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in state (p1, p2). Her hi-sample has a higher mean payoff iff:

1. her hi-sample includes two dovish actions (probability (1 − pj)
2), or

2. her hi-sample includes one dovish action (probability 2pj(1 − pj)), and, in addition:

(a) the di-sample includes two hawkish actions (probability p2
j) and g + 2l > 1, or

(b) the di-sample includes a single hj (probability 2pj(1 − pj)) and g + l > 1.

This implies that the payoff-sampling dynamics are given by

Case 1 (g + 2l < 1) : ṗi = δ
(

(1 − pj)
2 − pi

)

,

Case 2 (g ∈ (1 − 2l, 1 − l)) : ṗi = δ
(

(1 − pj)
2 + 2p3

j(1 − pj) − pi

)

,

Case 3 (g + l > 1) : ṗi = δ
(

(1 − pj)
2 + 2p2

j(1 − pj)(2 − pj) − pi

)

.

It is easy to verify that in all these cases there exist three equilibria. Two of the equilibria

are (1, 0), (0, 1). The third equilibrium is an interior symmetric state: (0.38, 0.38) in Case

1, (0.42, 0.42) in Case 2, and (0.58, 0.58) in Case 3.

Part 2: Extension of the proof of max(supp(θ)) = 2. The sampling dynamics (both

payoff-sampling and action-sampling) for a new agent of population i with sample size

one at state (p1, p2) is ṗi = δ(f1(pj)−pi), where f1(pj) = 1−pj in all cases. The sampling

dynamics for θ(2) = 1 is ṗi = δ(f2(pj) − pi), where the function f2 depends on whether

we are under action-sampling or payoff-sampling dynamics and whether g + 2l < 1 or

1 < g + 2l < 1 + l or g + l > 1 (as calculated above). In all cases, it is straightforward to

verify that f2(0) = 1, f2(1) = 0 and that the function f2(·) is strictly decreasing on [0, 1].

The sampling dynamics for max(supp(θ)) = 2 can be written as follows:

ṗi = δ(θ(1)f1(pj) + θ(2)f2(pj) − pi). (A.2)

For p ∈ [0, 1], consider the function f(p) = θ(1)f1(p) + θ(2)f2(p). Since θ(1), θ(2) ≥ 0

and θ(1) + θ(2) = 1, it follows that f(0) = 1, f(1) = 0 and that the function f(·) is

strictly decreasing. f1(p) = 1 − p implies that f ′′
1 (p) = 0 and thus f ′′(p) = θ(2)f ′′

2 (p). For

θ(2) 6= 0, it follows that f ′′(p) and f ′′
2 (p) have the same sign. These properties show that

the phase portraits of both sampling dynamics for max(supp(θ)) = 2 are qualitatively
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the same as the corresponding phase portraits for the case of θ(2) = 1. In particular,

there are three rest points (namely, (1, 0), (0, 1), and another interior symmetric state) of

the sampling dynamics when max(supp(θ)) = 2.

A.3 Stability Analysis of Sample Size 1

In this appendix we show that if all players have sample size 1, then any state in which

the sum of the shares of hawks in each population is equal to one (i.e., states of the form

(p, 1 − p)) is Lyapunov stable, and that the population converges to this set of states

from any initial state. As demonstrated in Theorems 1, 3, and 4, this result is not robust

to the presence of an arbitrarily small share of agents with higher sample sizes.

Proposition 2. Let θ ≡ 1. Then the set of Lyapunov stable states is

L1 ≡ {(pi, 1 − pi) |pi ∈ [0, 1]} for both action-sampling dynamics and payoff-sampling dy-

namics, and limt→∞ p (t) ∈ L1 for each p (t) ∈ [0, 1]2.

Proof. Consider an arbitrary state (pi, pj). Consider a new agent of population i. Suppose

that this agent has a sample size of 1; then under both action-sampling and payoff-

sampling dynamics, the probability that hi yields a higher payoff is 1−pj. This is because

with a sample size of 1, hi yields a higher payoff iff the sampled action from the opponent

population is dj, which occurs with probability 1 − pj. Both the action-sampling and

payoff-sampling dynamics in this case can be written as ṗi = 1 − pj − pi for i = {1, 2}

and j 6= i. It is now straightforward to verify that the set of Lyapunov stable states is

L1.

A.4 Proof of Theorem 2

Recall that the action-sampling dynamics in state (p1, p2) are given by

ṗ1 = δ(wk(p2) − p1) and ṗ2 = δ(wk(p1) − p2), (A.3)

where, for brevity we omit the superscript A, i.e., we write wk ≡ wA
k .

Observe that a symmetric state (r, r) is an equilibrium of the dynamics iff r is a fixed

point of the function wk(p). Let Xk(p) denote a binomial distribution with parameters

k and p. Let m =
⌊

kg

1+g−l

⌋

. Note that the possible values of m are {0, 1, . . . , k − 1}. To
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make the dependence of the function wk(p) on m explicit, we write as follows:

wk(p) ≡ wk,m(p) = P (Xk(p) ≤ m) = F (m; k, p), (A.4)

where F (· ; k, p) is the cumulative distribution function of a binomial distribution with

parameters k and p. For all m, it follows that wk,m(0) = 1, wk,m(1) = 0, and wk,m(p) is

decreasing in p, which implies that wk,m(p) has a unique interior fixed point p(m).

In order to assess the asymptotic stability, we compute the Jacobian J of Eq. (A.3)

at the symmetric rest point (p(m), p(m)) (ignoring the constant δ, which plays no role in

the dynamics, except multiplying the speed of convergence by a constant):

J =






−1 w′
k,m(p(m))

w′
k,m(p(m)) −1.




 .

The eigenvalues of J are −1 + w′
k,m(p(m)) and −1 − w′

k,m(p(m)). A sufficient condition for

instability at (p(m), p(m)) is that |w′
k,m(p(m))| > 1.

From Eq. (A.4), we now compute as follows:

wk,k−m−1(1 − p) + wk,m(p) = P (Xk(1 − p) ≤ k − m − 1) + P (Xk(p) ≤ m)

= P (Xk(p) ≥ k − (k − m − 1)) + P (Xk(p) ≤ m)

= P (Xk(p) ≥ m + 1) + P (Xk(p) ≤ m) = 1.

The fact that wk,k−m−1(1 − p) = 1 − wk,m(p) implies that p(k−m−1) = 1 − p(m) and

w′
k,k−m−1(p

(k−m−1)) = w′
k,m(p(m)). Without loss of generality, we can therefore focus on

analyzing the cases of m for which m ≤
⌊

k−1
2

⌋

. To ease notation, we fix k ≥ 2 and define

a new function fm : [0, 1] → [0, 1] as fm(p) ≡ wk,m(p) and let rm = p(m) be the fixed

point of the function fm(p), i.e., fm(rm) = rm. Since fm(0) = 0, fm(1) = 1, and fm(·)

is a strictly decreasing function, it follows that the fixed point rm ∈ (0, 1) and that it is

unique. To complete the proof we need to show that |f ′
m(rm)| > 1 for nonnegative integer

values of m such that m ≤ k−1
2

. In what follows, we show this.

It is well known (see, e.g., Green, 1983) that

fm(p) ≡ wk,m(p) =
m∑

i=0

(

k

i

)

pi(1 − p)k−i =

(

k

m

)

(k − m)
∫ 1−p

0
tk−m−1(1 − t)mdt.
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We now compute as follows:

f ′
m(p) = −

(

k

m

)

(k − m)pm(1 − p)k−m−1 = −k

(

k − 1

m

)

pm(1 − p)k−m−1 (A.5)

f ′′
m(p) =

(

k

m

)

(k − m)pm−1(1 − p)k−m−2((k − m − 1)p − m(1 − p)).

Fix an m such that 1 ≤ m ≤
⌊

k−1
2

⌋

. From the above computations, it follows that the

function fm(p) is concave for values of p ≤ p∗ and convex for values of p ≥ p∗ where

p∗ = m
k−1

. This is because f ′′
m(p∗) = 0. Either the concave part or the convex part of

the function fm(p) intersects the 45o line. Suppose that the concave part of the function

fm(p) intersects the 45o line from the origin, i.e., rm ≤ m
k−1

. In this case, fm(p) intersects

the −45o line joining the points (1,0) and (0,1) at q∗, where q∗ < rm. This is because

m ≤
⌊

k−1
2

⌋

implies that rm ≤ 0.5 as fm(0.5) ≤ 0.5 for such values of m. Since the function

fm(p) intersects the −45o line from above, we can conclude that f ′
m(q∗) < −1. The

function fm(p) is concave between q∗ and rm; therefore, we have f ′
m(rm) < f ′

m(q∗) < −1,

i.e., |f ′
m(rm)| > 1. Therefore we are done in cases where rm ≤ m

k−1
.

If the convex part of the function intersects the 45o line from the origin, then rm >

m/(k − 1). By definition, we have

rm = (1 − rm)k +

(

k

1

)

rm(1 − rm)k−1 + · · · +

(

k

m

)

rm
m(1 − rm)k−m (A.6)

For j = 0, 1, 2, . . . , m, let aj denote the jth term of the sum on the RHS of Eq. (A.6).

For j = 1, 2, . . . , m, we compute as follows:

aj

aj−1

=

(
k

j

)

rj
m(1 − rm)k−j

(
k

j−1

)

rj−1
m (1 − rm)k−j+1

=

(

k − j + 1

j

)(
rm

1 − rm

)

aj

aj−1

≥ 1 ⇐⇒ (k − j + 1)rm ≥ j(1 − rm) ⇐⇒ rm ≥
j

k + 1
.

Since m
k−1

> j

k+1
for j = 1, 2, . . . , m, we have rm ≥ j

k+1
and thus aj ≥ aj−1. This implies

that aj ≤ am for j = 1, 2 . . . , m − 1. From Eq.(A.6), we can thus conclude the following:

rm ≤ (m + 1)

(

k

m

)

rm
m(1 − rm)k−m. (A.7)
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From Eqs. (A.5) and (A.7), we have

|f ′
m(rm)| = (k − m)

(

k

m

)

rm
m(1 − rm)k−m−1 ≥

(

k − m

m + 1

)

rm

1 − rm

.

From the above set of equations, a sufficient condition for |f ′
m(rm)| > 1 can be written

as follows:
(

k − m

m + 1

)

rm

1 − rm

> 1 ⇐⇒ rm >
m + 1

k + 1
. (A.8)

We will now establish that |f ′
m

(
m+1
k+1

)

| > 1. From Eq. (A.5), we have

|f ′
m(p)| = k

(

k − 1

m

)

pm(1 − p)k−m−1 = k · Pr(Xk−1(p) = m).

where Xk−1(p) is a binomial distribution with parameters k − 1 and p. It is a known fact

that the binomial distribution’s mode with parameters k − 1 and p is attained at ⌊kp⌋.

For p = m+1
k+1

, we have

m ≤ k ·
(

m + 1

k + 1

)

< m + 1.

The above inequalities imply that
⌊

k ·
(

m+1
k+1

)⌋

= m. The binomial distribution Xk−1(·)

has k possible values and thus the probability of the occurrence of the mode has to be

greater than 1
k
, i.e.,

Pr
(

Xk−1

(
m + 1

k + 1

)

= m
)

>
1

k
=⇒

∣
∣
∣
∣f

′
m

(
m + 1

k + 1

)∣
∣
∣
∣ > 1.

We need to consider the following two possible cases:

Case 1: m
k−1

< rm ≤ m+1
k+1

. For 1 ≤ m ≤ k−1
2

, we know that |f ′
m(·)| attains its

maximum value at m
k−1

and that it is strictly decreasing for p > m
k−1

. For m = 0, |f ′
m(·)|

is strictly decreasing for p > 0. Thus, we have:

|f ′
m(rm)| >

∣
∣
∣
∣f

′
m

(
m + 1

k + 1

)∣
∣
∣
∣ > 1.

Case 2: rm > m+1
k+1

. Here, we are done by the sufficient condition of Eq. (A.8).
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A.5 Proof of Theorem 3

Let a = g

g+l
. Since the hawk–dove game is generic, we have a 6= 1

2
. From Eq. (A.5), we

have

|w′
k,m(p)| ≡ |f ′

m(p)| = k

(

k − 1

m

)

pm(1 − p)k−m−1 ⇒ |w′
k,m(0.5)| = k · Pr (Xk−1 = m) ,

where m = ⌊ka⌋ and Xk−1 ∼ Bin (k − 1, 0.5) . The central limit theorem implies that the

distribution of the binomial random variable Xk−1 converges to a normal distribution:

lim
k→∞

Xk−1

k − 1
= Zk−1 ∼ Normal

(

0.5,
0.25

k − 1

)

.

In what follows we omit the subscript m; i.e., we let wk ≡ wk,m. This is without loss of

generality as we fix the hawk–dove game and hence the value of m. We now compute

lim
k→∞

|w′
k(0.5)| = lim

k→∞
(k · Pr (Xk−1 = ⌊ka⌋)) = lim

k→∞
(k · Pr (ka ≤ Xk−1 < ka + 1))

= lim
k→∞

(

k · Pr

(

ka

k − 1
≤

Xk−1

k − 1
<

ka + 1

k − 1

))

= lim
k→∞

(

k · Pr

(

ka

k − 1
≤ Zk−1 <

ka + 1

k − 1

))

= lim
k→∞

(

k

k − 1
fZk−1

(

ka

k − 1

))

= fZk−1
(a) = 0.

where fZk−1
(·) is the probability density function of the normal distribution Zk−1. The

last equality in the above series of equations is implied by a 6= 1
2
, and by the fact that

limk→∞ E (Zk−1) = 0.5 and limk→∞Var (Zk−1) = 0. This implies that there exists k̂,

such that |w′
k(0.5)| < 0.5 for any k ≥ k̂. By continuity, there exists ǫ > 0, such that

|w′
k(p)| < 1 for any p ∈ [0.5 − ǫ, 0.5 + ǫ] and any k ≥ k̂. This implies that |wθ

′(p)| < 1 for

any p ∈ [0.5 − ǫ, 0.5 + ǫ] and any distribution θ satisfying θ(k) = 0 for each 1 < k < k̂

and θ (1) < 1. The fact that the fixed point of w1(p) is 0.5 implies that there exists q̂ < 1

such that the fixed point of wθ(p) is in the interval [0.5 − ǫ, 0.5 + ǫ] for any distribution

θ satisfying θ (1) > q̂. This, in turn, implies that |w′
k(p)| < 1 at the fixed point, which

implies that the symmetric equilibrium is asymptotically stable.
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A.6 Proof of Theorem 4

Recall that the payoff-sampling dynamics in state (p1, p2) are given by

ṗ1 = δ(wθ(p2) − p1) and ṗ2 = δ(wθ(p1) − p2), (A.9)

where, for brevity we omit the superscript P, i.e., we write wθ ≡ wP
θ .

Observe that a symmetric state (p(θ), p(θ)) is an equilibrium of the dynamics iff p(θ) is

a rest point of wθ, i.e., if wθ(p
(θ)) = p(θ). Such a rest point p(θ) exists because wθ(1) = 0,

wθ(0) = 1, and wθ(·) is continuous on [0, 1].

In order to assess the asymptotic stability, we compute the Jacobian J of Eq. (A.9)

at the symmetric rest point (p(θ), p(θ)) (ignoring the constant δ, which plays no role in

the dynamics, except multiplying the speed of convergence by a constant):

J =






−1 w′
θ(p

(θ))

w′
θ(p

(θ)) −1.




 .

The eigenvalues of J are −1 + w′
θ(p

(θ)) and −1 − w′
θ(p

(θ)). A sufficient condition for the

asymptotic stability at (p(θ), p(θ)) is therefore that |w′
θ(p

(θ))| < 1.

We now establish some properties of the payoff-sampling dynamics and the symmetric

rest points for symmetric distributions of types θ ≡ k. If l, 1−g ∈
(

0, 1
max(supp(θ))

)

, action

hi has a higher mean payoff iff the number of dj-s in the hi-sample is strictly greater than

half the number of dj-s in the di-sample. To express wk(p) concisely in this case, we

define Xk(p) and Yk(p) to be independent and identically distributed binomial random

variables with parameters k and p. We can then write wk(p) as follows:

wk(p) = P
(

k − Xk(p) >
1

2
(k − Yk(p))

)

= P (2Xk(p) − Yk(p) < k). (A.10)

Observe that wk(p) is a polynomial in p of degree at most 2 · k.

We have verified the following facts about these polynomials for k < 20 (for an

illustration see Figure 5.3; the Mathematica code is given in the online supplementary

material, and the explicit values of the rest points and the derivatives are presented in

Table 3):

• For k ∈ {1, 2, . . . , 18, 19} , wk(p) is decreasing in p.
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• For k ∈ {1, 2, . . . , 18, 19} , wk(p) has a unique fixed point p(k).

Moreover, 0.5 < p(k) < 0.68 for any k ∈ {1, 2, 3, 4, 5} .

• |w′
1(p)| ≡ 1, and |w′

k(p)| < 1 for any k ∈ {2, 3, 4, 5} and 0.5 < p < 0.68.

Recall that wθ(p) is a convex combination of the wk(p) for the k-s in its support (i.e.,

wθ(p) =
∑

k θ (k) · wk (p)). From the above facts, it follows that:

1. For θ ≡ k < 20, the function wk(p) has a unique fixed point p(k) such that

|w′
k(p(k))| < 1, which implies that (p(k), p(k)) is asymptotically stable.

2. For max(supp(θ)) ≤ 5, the function wθ(p) has a unique fixed point p(θ) such that

p(θ) ∈ (0.5, 0.68) and |w′
θ(p

(θ))| < 1 if θ(1) 6= 1, which implies that (p(θ), p(θ)) is

asymptotically stable.

Table 3: Fixed Points of the Function wk(p) in the Proof of Theorem 4
k 1 2 3 4 5 6 7 8 9 10

p(k) 0.500 0.579 0.620 0.649 0.672 0.690 0.706 0.720 0.731 0.741

|w′
k(p(k))| 1 0.690 0.618 0.645 0.690 0.730 0.763 0.793 0.818 0.840

k 11 12 13 14 15 16 17 18 19 20

p(k) 0.750 0.758 0.765 0.773 0.778 0.784 0.789 0.794 0.799 0.803

|w′
k(p(k))| 0.861 0.88 0.899 0.916 0.932 0.948 0.963 0.978 0.991 1.001

Table 4: Values of |w′
k(p(j))| for k, j ∈ {1, 2, 3, 4, 5}.

k\p(j)
p(1) p(2) p(3) p(4) p(5)

1 1 1 1 1 1
2 0.5 0.690 0.812 0.905 0.981
3 0.562 0.560 0.618 0.687 0.759
4 0.625 0.616 0.623 0.645 0.679
5 0.605 0.642 0.659 0.673 0.690
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