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Abstract

A prominent approach to modelling ambiguity about stock return distribution is to

assume that investors have multiple priors about the distribution and these priors are

distributed according to a certain second-order distribution. Realistically, investors

may also have multiple priors about the second-order distribution, thus allowing for

ambiguous ambiguity. Despite a long history of debates about this idea (Reichenbach

[1949], Savage [1954]), there seems to be no formal analysis of investment behavior

in the presence of this feature. We develop a tractable portfolio choice framework

incorporating ambiguous ambiguity, characterize analytically the optimal portfolio,

and examine its properties.

Keywords: ambiguous ambiguity, portfolio choice, smooth ambiguity, third-order

probabilities
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1. Introduction

As a practical matter, if a person cannot express a precise

probability, she may not be able to confidently express a

second-order distribution either.

Camerer and Weber [1992]

In real financial markets, investors do not know precisely the true distribution of

asset returns, hereafter referred to as FOD (first-order distribution). A prominent ap-

proach to modelling this feature is to assume that investors have multiple priors about

FOD that are distributed according to a single second-order distribution (SOD). For

example, this approach is taken in a large finance literature building on the KMM

smooth ambiguity framework (Klibanoff, Marinacci, and Mukerji [2005])1. There is

a long-standing debate, dating back to classical works by Reichenbach [1949] and

Savage [1954], about whether it is justified to disregard the possibility that agents

may have multiple priors about SOD. The crux of the debate is nicely summarized by

Camerer and Weber [1992] in the epigraph above (Atkinson and Peijnenburg [2017]

provide more details).

To make progress in this debate, researchers need to start developing finance mod-

els with multiple priors about SOD. Taking their predictions to the data will allow

us to evaluate the empirical relevance of this mechanism. Hereafter, we refer to mul-

tiple priors about SOD as ambiguous ambiguity or, briefly, A-ambiguity. This note

is, to our knowledge, the first to develop a tractable framework for analyzing invest-

ment behavior under A-ambiguity. We solve analytically for the optimal portfolio

1Examples include Ju and Miao [2012] Chen, Ju, and Miao [2014] Jahan-Parvar and Liu [2014],
Backus, Ferriere, and Zin [2015], Gallant, R Jahan-Parvar, and Liu [2019], and Makarov [2020].
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and examine its properties.

We consider a setting in which an investor trades in a risk-free bond and two risky

stocks. We view stock 1 as representing a local stock index whose return distribution

is known and stock 2 as representing a foreign stock index with an ambiguous (not

perfectly known) return distribution. The investor has multiple priors about stock

2’s expected return that are distributed according to a normal SOD. The key novelty

of this work is that the investor is allowed to have multiple priors about the mean

and variance of SOD.

Our findings are as follows. In a special case in which stock 2’s return distribu-

tion is known (A-ambiguity is absent), we recover the standard two-fund separation

result—all investors, regardless of their preferences, hold the same portfolio of risky

assets (tangency portfolio). Once A-ambiguity is incorporated, however, this is no

longer the case. We present a series of results showing how the composition of risky

stocks in the optimal portfolio changes as we vary the investor’s attitude towards risk,

ambiguity, and A-ambiguity.

Our paper is similar in spirit Taboga [2005], which is one of the first studies to

examine portfolio selection under the KMM smooth ambiguity approach (Klibanoff,

Marinacci, and Mukerji [2005]).2 In Taboga [2005], an investor’s behavior is smoothly

driven by her ambiguity attitude and the amount of ambiguity in the stock market.

The key novelty of our model setting is that, in addition to these features, the in-

vestor’s behavior is affected in a smooth way by her attitude towards A-ambiguity

2In addition to the KMM approach, finance models use a number of other ambiguity specifi-
cations, such as the maxmin framework developed by Gilboa and Schmeidler [1989] (static case)
and Chen and Epstein [2002] (continuous time case). A recent example of a model relying on this
framework is Ruan and Zhang [2020].
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and the amount of A-ambiguity.

2. Model

We consider a setting with a risk-free bond and two stocks 1 and 2. Stock 1 is

purely risky and stock 2 is A-ambiguous. In line with Maccheroni, Marinacci, and

Ruffino [2013] (Section 6.3), we interpret stock 1 as a local stock index whose return

distribution is known by the local investor. Stock 2 denotes a foreign stock index

whose return distribution is not perfectly known by the investor due to her being less

familiar with the foreign economy. In Maccheroni et al., the ambiguity about stock 2

is modeled via a single SOD (distribution over return distributions). Our novelty is

to propose a more general framework by allowing the investor to have multiple priors

about SOD distributed according to a certain TOD (third-order distribution).

Here are the details. The return on the bond is normalized to zero (cash). The

returns on stocks 1 and 2, denoted by R1 and R2, are given by

R1 = µ1 + σ1ε1, R2 = µ2 + σ2ε2, (1)

where ε1 and ε2 have standard normal distribution N(0, 1) with correlation corr(ε1, ε2) =

ρ. As discussed above, stock 1 stands for a local index and so the investor knows its

characteristics µ1 and σ1. Stock 2 stands for a (less familiar) foreign index and so

the investor is ambiguous about its expected return µ2. Stock 2’s volatility σ2 and

the stocks’ correlation ρ are known.3 The investor has multiple priors about µ2 dis-

3The assumption that stock volatility is not ambiguous is common in the literature. It is often
justified by Merton [1980]’s result that “reasonably accurate estimate of the variance rate can be
obtained using daily data while the estimates for expected return taken directly from the sample
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tributed according to a normal SOD:

µ2 ∼ N(µµ, σ
2
µ). (2)

Our contribution is that we allow the investor to have multiple priors about each of

the two moments of SOD, µµ and σµ. In our terminology, her decision-making is

affected by A-ambiguity, the property that she is unsure about a unique right way to

model ambiguity. The priors are given by two independent normal distributions:

µµ ∼ N(µµA , σ2
µA), σ2

µ ∼ N(µσA, σ2
σA), (3)

where “A” in the subscripts means that these variables pertain to A-ambiguity. Notice

that our A-ambiguity specification (3) is more general than ambiguity (2)—the latter

posits that multiple priors apply only to the first moment µ2 but not to the second

moment σ2
2. The reason is that Merton [1980]’s findings, seemingly, cannot be used

to justify the assumption of a single prior about σ2
µ (unlike σ2

2).

We see from eq. (3) that, according to the investor’s belief, σ2
µ can be negative with

some probability, which of course cannot happen. As in other finance works using

normal distribution to model the second moment of a distribution (e.g., Scott [1987],

Stein and Stein [1991]), normality considerably simplifies our analysis and allows us

to obtain explicit solutions. We verify via an extensive numerical analysis that our

predictions remain valid if σ2
µ has a truncated normal distribution with a positive

support.

will be subject to so much error as to be almost useless.”
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The investor’s initial wealth is normalized to unity. Denoting by θi the weight of

stock i in the portfolio, the terminal wealth w is

w = θ1R1 + θ2R2 + (1 − θ1 − θ2). (4)

2.1. Preferences of investor

Our investor treats A-ambiguity, ambiguity, and risk as separate portfolio charac-

teristics, and so may display different attitude towards each of them. In a different

context in which individuals make bets on urns, Epstein and Halevy [2019] also doc-

ument two separate dimensions of ambiguity that can be perceived differently by

an individual. To model this, they propose a specification of preferences obtained

by combining three “utility” functions. The details are in Section A.3 in Epstein

and Halevy. Following their insights, we introduce three “utility” functions, u1() for

risk, u2() for ambiguity, and u3() for A-ambiguity, and combine them to obtain the

objective function u(w):

u(w) =

A-ambiguity
︷ ︸︸ ︷

u−1
3 (Eµσ ,σσ

[u3

KMM
︷ ︸︸ ︷

(u−1
2 (Eµ2

[u2(u
−1
1 ( ER1,R2

[u1(w)]))]))]). (5)

For tractability, we assume that all functions ui() are exponential:

u1(x) = − exp(−γ1x), u2(x) = − exp(−γ2x), u3(x) = − exp(−γ3x). (6)

Parameters γ1, γ2, γ3 > 0 capture the investor’s sensitivity to risk, ambiguity, and

A-ambiguity, respectively.
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Definition 1. The investor’s optimal portfolio (θ1, θ2) is a solution of the maximiza-

tion problem:

max
θ1,θ2

u(θ1R1 + θ2R2 + (1 − θ1 − θ2)), (7)

where u(·) is as defined in eqs. (5) and (6).

3. Optimal portfolio

Proposition 1 characterizes analytically the optimal portfolio.

Proposition 1. The optimal portfolio exists and is unique. The optimal holding of

stock 2 is given by

µµA−
σ1

(
2θ2

(
γ2µσA + γ3σ

2
µA − γ1 (ρ2

− 1) σ2
2

)
+ γ2

2γ3θ
3
2σ

2
σA + 2

)
+ 2 (µ1 − 1) ρσ2

2σ1

= 0,

(8)

The optimal holding of stock 1 is

θ1 =
µ1 − 1 − γ1θ2ρσ1σ2

γ1σ2
1

, (9)

where θ2 is the optimal weight of stock 2. In the special case when stock 2’s return

distribution is known, i.e., when µσA = σσA = σµA = 0, the optimal stock holdings

are given by

θ1 =
σ2(µ1 − 1) − ρσ1 (µµA − 1)

γ1 (1 − ρ2) σ2
1σ2

, θ2 =
σ1 (µµA − 1) − ρσ2(µ1 − 1)

γ1 (1 − ρ2) σ1σ2
2

. (10)
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3.1. Analysis of optimal portfolio

A comprehensive analysis of the optimal portfolio is beyond the scope of this note.

We instead focus on just one property of the portfolio—how the ratio of the two stock

holdings, θ1/θ2, depends on the investor’s preference parameters. Our interest in this

question is motivated by a classical mean-variance result stating that all investors

hold the same portfolio of risky assets, the tangency portfolio, regardless of their

risk aversion. If θ1/θ2 turns out to be sensitive to any of the investor’s preference

parameters in our more general setting with A-ambiguity, then the classical result

does not hold under A-ambiguity.

First, we note that the mean-variance setting is obtained as a special case of our

model in which the distribution of stock 2’s return is known. In this case, the above-

mentioned result holds: we see from eq. (10) that the ratio θ1/θ2 depends only on

stock characteristics but not on risk aversion coefficient γ1 (it cancels when we divide

θ1 by θ2).

Figure 1 depicts the ratio θ1/θ2 for varying levels of risk aversion γ1 (panel (a)),

ambiguity aversion γ2 (panel (b)), and A-ambiguity aversion γ3 (panel (c)). The

first observation from the Figure is that the ratio θ1/θ2 is sensitive to γ1, γ2, and γ3.

Therefore, there does not exist a single portfolio of risky stocks (mutual fund) that is

held by all investors.

Second, recall that a key difference between the stocks is that stock 1’s distribution

is known while unknown for stock 2. At the outset, it is not obvious whether increasing

risk aversion γ1 will make the investor to tilt her portfolio towards (purely risky) stock

1 or (A-ambiguous) stock 2. Panel (a) in Figure 1 reveals that the latter is the case

, as we see that θ1/θ2 decreases in γ1. In other words, an increase in γ1 leads to a
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proportionally higher reduction in the investment in stock 1 relative to stock 2.

Panels (b) and (c) in Figure 1 present natural results the ratio θ1/θ2 increases in

both ambiguity and A-ambiguity aversion parameters, γ2 and γ3. As either of these

parameters increases, the investor finds A-ambiguous stock 2 less attractive and so

reduces her investment in stock 2 leading to a higher θ1/θ2. Interestingly, looking

at stock 1 individually, its weight in the optimal portfolio can increase or decrease

depending on model parameters. For example, Figure 2 shows that as ambiguity or A-

ambiguity aversion goes up, the optimal investment in stock 1, θ1, may be increasing

if the correlation between stocks 1 and 2 is positive but decreasing if the correlation

is negative.

1

1

2

(a) Varying risk aversion

2

1

2

(b) Varying ambiguity aversion

3

1

2

(c) Varying A-ambiguity aver-
sion

Figure 1: Effect of preference parameters on the ratio of the two stock holdings. The parameter values are γ1 = 1,
γ2 = 2, γ3 = 3, σ1 = 0.3, σ2 = 0.3, µ1 = 1.1, ρ = 0.5, µµA = 1.1, σµA = 0.3, µσA = 0.3, σσA = 0.3. In each panel, the
variable on the x-axis varies from 0.5 to 5.
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0.5

0.5
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1

(a) Varying ambiguity aversion

0.5

0.5

3

1

(b) Varying A-ambiguity aversion

Figure 2: Effect of ambiguity and A-ambiguity aversion on investment in (purely risky) stock 1. In each panel, the
solid line corresponds to a positive correlation ρ = 0.5 and the dashed line to a negative correlation ρ = −0.5. Othe
parameter values are as in Figure 1.

4. Conclusion

This paper develops a tractable investment model for analysing portfolio choice

implications of ambiguous ambiguity. We characterize analytically the optimal port-

folio and examine its properties. We show that a classical mean-variance result that

all investors hold the same portfolio of risky assets (tangency portfolio) does no longer

hold once the setting is generalized to incorporate ambiguous ambiguity. We exam-

ine how the composition of the risky stocks in the optimal portfolio depends on the

investor’s preference parameters.

Appendix A. Proofs

Proof of Proposition 1. First, we calculate all the expectations in the objective func-

tion eq. (5). We start from the inner-most expectation and then move outwards one

step at a time. The derivations are presented below. Using the stocks’ distributions
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given in (1), we have

ER1,R2
[u1(w)] = −e

1

2
γ1(θ1(2γ1θ2ρσ1σ2−2µ1+2)+θ2(γ1θ2σ2

2
−2µ2+2)+γ1θ2

1
σ2

1
−2),

u−1
1 (ER1,R2

[u1(w)]) = θ1 (µ1 − γ1θ2ρσ1σ2 − 1) + θ2 (µ2 − 1) −
1

2
γ1θ

2
1σ

2
1 −

1

2
γ1θ

2
2σ

2
2 + 1

(A.1)

Given that µ2 has distribution (2), we have after some algebra

u−1
2

(
Eµ2

[u2(u
−1
1 (ER1,R2

[u1(w)]))
)

= θ1 (−γ1θ2ρσ1σ2 + µ1 − 1)−

−

1

2
θ2

(
γ2θ2σ

2
µ + γ1θ2σ

2
2 − 2µµ + 2

)
−

1

2
γ1θ

2
1σ

2
1 + 1. (A.2)

Finally, using (3) we obtain the investor’s objective function

u(w) = −

1

8
θ2

(
4θ2

(
γ2µσA + γ3σ

2
µA + γ1σ

2
2

)
+ γ2

2γ3θ
3
2σ

2
σA − 8µµA + 8

)

+ θ1 (−γ1θ2ρσ1σ2 + µ1 − 1) −
1

2
γ1θ

2
1σ

2
1 + 1. (A.3)

Treating u(w) in (A.3) as a function of θ1 and θ2 and denoting H its Hessian, we

obtain after straightforward computations

H =






−γ1σ
2
1 −γ1ρσ1σ2

−γ1ρσ1σ2
1
4

(
−3γ2

2γ3θ
2
2σ

2
σA − 4

(
γ2µσA + γ3σ

2
µA + γ1σ

2
2

))
−

3
4
γ2

2γ3θ
2
2σ

2
σA




 .

(A.4)

H is negative definite by Sylvester’s criterion, given that the following two condi-

tions are satisfied. First, the top-left element is negative, −γ1σ
2
1 < 0. Second, the
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determinant of H is positive:

det(H) =
1

2
γ1σ

2
1

(
3γ2

2γ3θ
2
2σ

2
σA + 2γ2µσA + 2γ3σ

2
µA + 2γ1

(
1 − ρ2

)
σ2

2

)
> 0. (A.5)

Therefore, u(w) is strictly concave positive and so its critical point is the global

maximum. To find the critical point, we differentiate (A.3) with respect to θ1 and θ2

to obtain the two first-order conditions:

− γ1σ1 (θ2ρσ2 + θ1σ1) + µ1 − 1 = 0, (A.6)

− γ2θ2µσA − γ3θ2σ
2
µA − γ1σ2 (θ1ρσ1 + θ2σ2) −

1

2
γ2

2γ3θ
3
2σ

2
σA + µµA − 1 = 0. (A.7)

Solving eq. (A.6) for θ1 yields eq. (9). Substituting eq. (9) into eq. (A.7) yields eq. (8).

Note that eq. (8) is a cubic equation, and we can verify that it has a unique solution

by showing that its discriminant D is negative. Computing D and simplifying the

obtained expression, we obtain that it is indeed negative:

D = −2γ2
2γ3σ

2
σA

(
γ2µσA + γ3σ

2
µA + γ1

(
1 − ρ2

)
σ2

2

)
3
−

27γ4
2γ

2
3σ

4
σA (σ1µµA + (µ1 − 1) ρσ2 + σ1)

2

4σ2
1

< 0.

As for a special case in which stock 2’s return distribution is known, we substitute the

corresponding conditions µσA = σσA = σµA = 0 into the optimal portfolio expressions

eqs. (8) and (9). This yields eq. (10).
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