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Abstract

For an outside innovator with a finite number of buyers of the innovation, this
paper compares two licensing schemes: (i) fixed fee, in which a licensee pays
a fee to the innovator and (ii) ad valorem profit royalty, in which a licensee
leaves a fraction of its profit with the innovator. We show these two schemes
are equivalent in that for any number of licenses the innovator puts for sale,
these two schemes give the same licensing revenue. We obtain this equivalence
result in a general model with minimal structure. It is then applied in a Cournot
oligopoly for an outside innovator. Finally, in a Cournot duopoly it is shown
that when the innovator is one of the incumbent firms rather than an outsider,
the equivalence result does not hold.
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while per unit royalty is superior for large n (page 14) and (ii) gives correct
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❸Università Cattolica del Sacro Cuore.

❹China University of Political Science and Law.

➜Ryerson University.

➯IDC Herzliya & Stony Brook University.

1



1 Introduction

Licensing of innovations is a common practice in industries. It is a key factor in
disseminating new technologies. A large literature has extensively studied the impact
of various licensing schemes such as upfront fees and per unit royalties on market
structure, incentives to innovate and welfare (e.g., Arrow, 1962; Katz and Shapiro,
1986; Kamien and Tauman, 1986). More recently, ad valorem profit royalty licensing,
sometimes also called profit-sharing, has received attention due to its widespread use.
Under an ad valorem profit royalty policy, a licensee pays a specified proportion of
its profit to the innovator. Real world examples of profit-sharing include agreements
between Motorola and Universal Display Corporation in 2000, CSIRO and PolyNovo
in 2005 and Microsoft and Skinkers in 2006 (see Vishwasrao, 2007; San Mart́ın and
Saracho, 2010; Niu, 2017; Hsu et al., 2019).

The theoretical literature of ad valorem profit royalty licensing has mostly looked at
the situation in which the innovator is one of the incumbent firms who compete with
the potential licensees. In a Cournot duopoly with cost asymmetry between firms,
Mukhopadhyay et al. (1999) show that transfer of the least-cost technology through
ad valorem profit royalty is beneficial fo both firms. Extending this result to general
demand, Niu (2017) shows the optimal ad valorem royalty rate is the one in which
the licensee obtains its reservation payoff, which is its profit without a license. San
Mart́ın and Saracho (2010) show that ad valorem is superior to per unit royalty for
an incumbent innovator in a Cournot duopoly with linear demand; as per unit royalty
is superior to fixed fee in this set-up (Wang, 1998), ad valorem royalty is superior to
fixed fee as well. Hsu et el. (2019) extend this comparison to general demand. An
ad valorem profit royalty contract between competing firms effectively gives passive
partial ownership of a firm to its rival; imposing a bound on the rate of ad valorem
royalty is considered a desirable policy intervention for consumer welfare (on this, see
Proposition 3).

Apart from licensing, the literature has also looked at alternative policies such as
selling the patent rights. Tauman and Weng (2012) show that if an external patentee
is allowed to sell its patent rights, it is optimal to sell the rights to a single firm in
an oligoply and this policy also gives a higher incentive for innovation to an external
innovator compared to an incumbent firm. In a Cournot duopoly with an incumbent
patentee in which the patentee has a higher initial cost than its rival, Niu (2019) shows
that it may be profitable to use this policy together with “reverse licensing” (that
is, the innovator sells its patent rights to its rival and the rival firm licenses back the
innovation instead of using it exclusively). Compared to standard licensing, the welfare
implications of these policies generally depend on factors such as the extent of initial
cost asymmetry.

Going beyond the homogenous good Cournot duopoly, the ranking between per unit
and ad valorem royalties is rather ambiguous and is subject to the specification of the
model (Colombo and Filippini, 2015). For instance, in a duopoly with differentiated
products, Niu (2013) shows that for an incumbent innovator who can combine fixed
fees with either ad valorem or per unit royalty, the two kinds of royalty policies are
equivalent.
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As the real world examples of licensing agreements demonstrate, it can be often
the case where the innovator is not in direct competition with the licensees. Such
situations are better captured by modeling the innovator as an external entity who
is an outsider to the industry. Although the literature has looked at fixed fees, per
unit royalties as well as their combinations for both outside and incumbent innovators
(e.g., Kamien et al., 1992; Sen, 2005; Sen and Tauman, 2007; 2018), the analysis of ad
valorem profit royalty licensing has been mostly limited to the case where the innovator
is an incumbent firm. Seeking to fill this gap, this paper presents an analysis of ad
valorem profit royalty licensing with an outside innovator in a general setting.

Specifically, we consider an outside patent holder of an innovation who interacts
with a finite number of potential buyers. The innovator can license its innovation to
some or all of these buyers. We consider two licensing schemes: (i) licensing by means
of a fixed fee, in which a licensee pays a fee to the innovator and (ii) ad valorem profit
royalty, in which a licensee leaves a fraction of its profit to the innovator. It is shown
these two schemes are equivalent for the innovator: for any number of licenses the
innovator puts for sale, it obtains the same licensing revenue from these two schemes.
This result is obtained in a general model with minimal structure. The intuitive ex-
planation of this equivalence result is that for each of these schemes, given any number
of licenses, a licensee can be left with no more than its opportunity cost for a license.
Either a suitable fixed fee or a suitable fraction of profit can achieve this outcome.

We look at two alternative methods through which a fixed fee or an ad valorem
royalty can be determined: (i) an auction, in which the bids of potential buyers deter-
mine the fees or the ad valorem royalties they pay (Section 2.2) and (ii) posted price,
in which the innovator sets a fixed fee or an ad valorem royalty at which any buyer
can have a license (Section 2.3). The equivalence result holds in both cases.1 Other
than the assumption that a licensee always has a higher profit than a non-licensee,
the auction method requires no additional assumption (Theorem 1). The posted price
method requires an additional assumption of second order monotonicity and typically
yields the innovator a lower licensing revenue (Theorem 2).

If the number of licenses offered is lower than the total number of firms, auction is
superior to posted price, but if licenses are offered to all firms, an auction together with
a minimum bid coincides with the posted price method. In the latter case, to ensure
that all firms become licensees in the unique equilibrium, second order monotonicity
conditions are required. These conditions are different for fixed fee and ad valorem
royalty. For fixed fee, this condition involves the difference of the profits of a licensee
and a non-licensee, while for ad valorem royalty it involves the relative difference: the
ratio between the difference in profits and the profit of a licensee (see (3) and Lemma
1). In specific applications such as licensing in a Cournot oligopoly with linear demand,
when more firms have licenses, the difference falls, but the ratio goes up (see Remark
7). This shows that although the equivalence result may seem intuitively obvious, the
way it precisely works does depend on the nature of the relevant strategic interaction.

1Katz and Shapiro (1986) also looked at these two alternative methods of selling licenses and had
similar assumptions. Our paper is distinct from this early work in two respects: first, we look at ad
valorem profit royalties in addition to fixed fees that were considered in their work and second, we
establish the equivalence of these two schemes.
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The paper is organized as follows. Presenting the model, we obtain the equivalence
result in Section 2. In Section 3.1, we apply the result in a Cournot oligopoly to
compare fixed fee, per unit royalty and ad valorem royalty for an outside innovator
(Proposition 1). Finally in Section 3.2, using a Cournot duopoly it is demonstrated
that the equivalence result does not hold for an incumbent innovator (Propositions
2,3). This is because at the Cournot stage (when firms choose quantities), the payoff
of an incumbent innovator under ad valorem royalty is the sum of its own operating
profit and a fraction of the operating profit of the licensee, while fixed fee, being a
lump-sum transfer, results in payoff which is simply its own operating profit.

2 The model

Consider an innovator I who has a patent on an innovation. There are n ≥ 2 firms
who are potential buyers of the innovation. The innovator can license its patented
innovation to some or all of these n buyers. The innovator is an outsider and not one
of the firms. The objective of the innovator is to maximize its revenue from licensing.

Assumption 1 (anonymity): The operating profit of any firm is completely deter-
mined by (i) whether it has a license or not and (ii) the number licensees.

Under Assumption 1, any two licensees obtain the same profit. Similarly any two
non-licensees also obtain the same profit. Denote by π1(k) the profit of a licensee and
π0(k) the profit of a non-licensee when there are k licensees.

Remark 1 An example in which Assumption 1 holds is a Cournot oligopoly where
firms are symmetric in all aspects. Assumption 1 does not hold if firms are asymmetric
in some respects such as their initial costs. In that case, the profit of a firm not only
depends on whether it has a license or not, but also on the identities of the licensees.
Another example in which Assumption 1 does not hold is a Stackelberg oligopoly where
some firms are leaders and others followers. There the profit of a firm not only depends
on whether it has a license or not, but also on whether it is a leader or a follower.

Assumption 2 π1(k) > π0(k) ≥ 0 for k = 1, . . . , n− 1.

Assumption 3 π1(k) > π0(k − 1) ≥ 0 for k = 1, . . . , n.

Assumption 2 states a licensee always obtains higher profit than a non-licensee and
all profits are non-negative. Note that beginning from any number of licensees, if any
one licensee switches to being a non-licensee, the number of licensees will drop by one.
Assumption 3 says such a switch is never beneficial for a licensee. This assumption
was also used by Katz and Shapiro (1986, p.572).

Remark 2 This analysis also applies to the special case where one or both of π1(k),
π0(k) are constants that do not depend on k. For instance, suppose π1(k) is positive
and increasing in k and π0(k) = 0 for all k. This can correspond to a situation where
the innovation is a new product that has positive network externality. Any user that
does not have the new product obtains zero and due to positive network externality,
the benefit that a user gets from the product goes up if more people have the product.
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2.1 Licensing schemes

We consider two licensing schemes: (i) fixed fee and (ii) ad valorem profit royalty.
Under fixed fee, a licensee pays a fee f ≥ 0 to the innovator. Thus, when there are k
licensees, the net profit of each licensee is π1(k)− f. Under ad valorem profit royalty,
a licensee leaves a fraction v (0 ≤ v ≤ 1) of its profit to the innovator and retains the
remaining fraction 1 − v. The fraction v is the ad valorem royalty. When there are k
licensees, a licensee obtains net profit (1− v)π1(k).

Under each licensing scheme, the licensing revenue of the innovator is the sum of the
payments it receives from all licensees. The objective of the innovator is to maximize
this licensing revenue.

For each of the two schemes, there are two ways the fee or the ad valorem royalty
can be determined: (i) I announces to sell a certain number of licenses through an
auction and bids of firms determine their payments and (ii) I posts a fixed fee f or an
ad valorem profit royalty v and firms choose whether to pay that posted price to have
a license.2 We in turn consider each of these two alternatives.

2.2 Licensing payments determined through auction

Fixed fee through auction When I sells licenses using fixed fee through an auction,
the game GF is played. In this game, I chooses the number k of licenses to offer
and then announces to sell at most k licenses by fixed fee through an auction. Firms
simultaneously place non-negative bids. Any firm that wins a license pays its bid as
fixed fee.

If m ≤ k firms place bids, each of the bidding firms wins a license. If m > k
firms place bids, bids are arranged in ascending order as f1 ≥ . . . ≥ fk ≥ . . . ≥ fm.
If fk > fk+1, firms with k highest bids win licenses. If fk = fk+1, then (a) firms with
bids strictly higher than fk win licenses and (b) a random tie breaking process is run
among the firms who place bid fk to determine who get the remaining licenses. When
m firms are granted licenses, the payoff of I is its licensing revenue

∑m

i=1
fi. A firm

that wins a license with bid fi obtains π
1(m) − fi and any firm that does not win a

license obtains π0(m).

Ad valorem profit royalty through auction When I sells licenses using ad
valorem profit royalty through an auction, the game GV is played. In this game, I
chooses the number k of licenses to offer and then announces to sell at most k licenses
by ad valorem royalty through an auction. Firms simultaneously place bids that are
non-negative fractions. A firm that wins a license with bid v leaves fraction v of its
profit with I and retains the remaining fraction 1− v.

As before, if at most k firms place bids, each of the bidding firms win a license. If
more than k firms place bids, the same process as in the case of fixed fee is followed to
determine which firms win licenses. When m firms are granted licenses, the payoff of
I is its licensing revenue

∑m

i=1
viπ

1(m). A firm that wins a license with bid vi obtains
(1− vi)π

1(m) and any firm that does not win a license obtains π0(m).

2Katz and Shapiro (1986) call the first method “quantity sales strategy” and the second method
“price strategy”.
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Remark 3 Note that when k = n, a firm is guaranteed to win a license by placing any
bid, so it will be optimal for each firm to place a zero bid. To ensure positive licensing
revenue, I needs to specify a minimum bid for k = n. In that case, it is not optimal
for any firm to place a bid more than the specified minimum bid, so the minimum
bid effectively becomes a posted price of a license (see Observation 1). As licensing
through a posted price is studied in Section 2.3, to avoid repetation the choice of k for
I is restricted to k = 1, . . . , n− 1 for both GF , GV .

For k = 1, . . . , n−1, denote by GF (k) the subgame of GF that follows the announce-
ment of I to sell at most k licenses using fixed fee. Let GV (k) be the corresponding
subgame for GV . The players of each of these games are the n firms. Let a be strategy
of a firm that corresponds to “not place any bid”. For GF (k), any firm can either
place no bid or place any non-negative bid, so the strategy set of each firm is {a}∪R+.
Similarly, for GV (k), any firm can either place no bid or can place any bid that is a
non-negative fraction, so the strategy set of each firm is {a} ∪ [0, 1]. The payoffs of
firms in GF (k), GV (k) are determined by the rules described before. Denote

∆(k) := π1(k)− π0(k) and φ(k) := 1− π0(k)/π1(k) (1)

By Assumption 2, ∆(k) > 0 and 0 < φ(k) ≤ 1 for k = 1, . . . , n− 1. Also observe that

φ(k)π1(k) = ∆(k) and π1(k)−∆(k) = [1− φ(k)]π1(k) = π0(k) (2)

The next result establishes the payoff equivalence between GF and GV .

Theorem 1 (payoff equivalence between GF and GV )

(I) For any k = 1, . . . , n − 1, each of the games GF (k), GV (k) has a unique equi-

librium outcome. The properties of the equilibrium outcome for each game is as

follows.

(a) The highest bid is ∆(k) in GF (k) and φ(k) in GV (k).

(b) For both games, at least k + 1 firms place the highest bid and k of them are

chosen at random to be licensees.

(c) For both games, the innovator obtains the same licensing revenue k∆(k) and
any firm (regardless of whether it has a license or not) obtains π0(k).

(II) Let M = maxk∈{1,...,n−1}k∆(k). For both GF , GV , in any subgame-perfect equi-

librium, the number of licensees must be in argmaxk∈{1,...,n−1}k∆(k) and the

innovator obtains M.

Proof See the Appendix for the proof of parts (I)(a)-(b).
For part (I)(c), note by (a)-(b) that in GF (k), the licensing revenue of the innovator

is k∆(k) and in GV (k), it is kφ(k)π
1(k) which equals k∆(k) (by (2)). In both games,

any firm that does not have a license obtains π0(k). Any firm that has a license obtains
π1(k)−∆(k) = π0(k) in GF (k) and [1− φ(k)]π1(k) = π0(k) in GV (k).

Finally, part (II) is immediate from part (I).
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2.3 Licensing payments determined through posted price

Let us now look at the alternative procedure in which for each of the two policies, the
licensing payments are determined through a posted price by the innovator rather than
through an auction. Denote by ĜF the game in which I chooses a fixed fee f ≥ 0 and
posts the fee f ; any firm can buy a license by paying the fee f to I. If k firms buy
licenses, any firm that has a license obtains π1(k) − f, any firm that does not have a
license obtains π0(k) and I obtains licensing revenue kf.

Denote by ĜV the game in which I chooses an ad valorem profit royalty v ∈ [0, 1]
and posts the ad valorem royalty v; any firm can buy a license by agreeing to leave the
fraction v of its profit to I. If k firms buy licenses, any firm that has a license obtains
(1−v)π1(k), any firm that does not have a license obtains π0(k) and I obtains licensing
revenue kvπ1(k).

For any f ≥ 0, let ĜF (f) be the subgame of ĜF that follows the posted fee f. For

any v ∈ [0, 1], let ĜV (v) be the corresponding subgame of ĜV . The players of each of
these subgames are the n firms. In each of these games, any firm has two strategies:
(i) buy a license and (ii) not buy. The payoffs of the firms depend on the number of
firms buying licenses, as described before. Denote

∆̂(k) := π1(k)− π0(k − 1) and φ̂(k) := 1− π0(k − 1)/π1(k) (3)

By Assumption 3, ∆̂(k) > 0 and 0 < φ̂(k) ≤ 1 for k = 1, . . . , n. Observe that

φ̂(k)π1(k) = ∆̂(k) and π1(k)− ∆̂(k) = [1− φ̂(k)]π1(k) = π0(k − 1) (4)

It will be shown that if both ∆̂(k) and φ̂(k) are decreasing, then payoff equivalence

between ĜF and ĜV holds. To see this, we begin with the following lemma which looks
at the implications of monotonicity of these functions.

Lemma 1 (implications of monotonicity of ∆̂(k), φ̂(k))

(I) Suppose ∆̂(k) is increasing, that is, ∆̂(1) < . . . < ∆̂(n).

(a) If f < ∆̂(1), then ĜF (f) has a unique equilibrium: all n firms buy licenses.

(b) If f > ∆̂(n), then ĜF (f) has a unique equilibrium: no firm buys a license.

(c) If ∆̂(1) ≤ f ≤ ∆̂(n), then ĜF (f) has two equilibria: one in which all n firms

buy licenses and one in which no firm does.

(II) Suppose φ̂(k) is increasing, that is, φ̂(1) < . . . < φ̂(n).

(a) If v < φ̂(1), then ĜV (v) has a unique equilibrium: all n firms buy licenses.

(b) If v > φ̂(n), then ĜV (v) has a unique equilibrium: no firm buys a license.

(c) If φ̂(1) ≤ v ≤ φ̂(n), then ĜV (v) has two equilibria: one in which all n firms

buy licenses and one in which no firm does.
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(III) Suppose ∆̂(k) is decreasing, that is, ∆̂(1) > . . . > ∆̂(n).

(a) If f < ∆̂(n), then ĜF (f) has a unique equilibrium: all n firms buy licenses.

(b) If f > ∆̂(1), then ĜF (f) has a unique equilibrium: no firm buys a license.

(c) For k = 1, . . . , n − 1, if ∆̂(k + 1) < f < ∆̂(k), then ĜF (f) has a unique

equilibrium: k firms buy a license and the remaining n−k firms do not buy.

(d) For k = 1, . . . , n, if f = ∆̂(k), then ĜF (f) has two equilibria: one in which

k firms buy licenses and the remaining n − k firms do not buy; another in

which k− 1 firms buy licenses and the remaining n−k+1 firms do not buy.

(e) The maximum revenue I can obtain with k licensees is k∆̂(k). By setting f

lower than but sufficiently close to ∆̂(k), I can ensure the unique equilibrium

of ĜF (f) has k licensees and obtain a revenue arbitrarily close to k∆̂(k).

(IV) Suppose φ̂(k) is decreasing, that is, φ̂(1) > . . . > φ̂(n).

(a) If v < φ̂(n), then ĜV (v) has a unique equilibrium: all n firms buy licenses.

(b) If v > φ̂(1), then ĜV (v) has a unique equilibrium: no firm buys a license.

(c) For k = 1, . . . , n − 1, if φ̂(k + 1) < v < φ̂(k), then ĜV (v) has a unique

equilibrium: k firms buy a license and the remaining n−k firms do not buy.

(d) For k = 1, . . . , n, if v = φ̂(k), then ĜV (v) has two equilibria: one in which

k firms buy licenses and the remaining n − k firms do not buy; another in

which k− 1 firms buy licenses and the remaining n−k+1 firms do not buy.

(e) The maximum revenue I can obtain with k licensees is kφ̂(k)π1(k) = k∆̂(k).

By setting v lower than but sufficiently close to φ̂(k), I can ensure the unique

equilibrium of ĜV (v) has k licensees and obtain a revenue arbitrarily close

to k∆̂(k).

Proof See the Appendix.
Recall from Remark 3 that if I wants to sell n licenses using an auction, to ensure

positive licensing revenue it has to specify a minimum bid. In that case, any firm
willing to have a license will pay exactly the specified minimum bid, so the minimum
bid effectively becomes a posted price. The next observation then follows from parts
(III)(d)-(e), (IV)(d)-(e) of Lemma 1.

Observation 1 (auction with minimum bid for k = n)

(i) Suppose ∆̂(k) is decreasing. If I offers n licenses by fixed fee through an auction

with minimum bid f = ∆̂(n), the ensuing game has two equilibria: one in which

all n firms buy licenses; another in which n − 1 firms buy licenses and one firm

does not buy. The maximum revenue I can obtain with n licensees is n∆̂(n); by

setting a minimum bid lower than but sufficiently close to ∆̂(n), I can ensure

there are n licensees to obtain a revenue arbitrarily close to n∆̂(n).
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(ii) Suppose φ̂(k) is decreasing. The same conclusion as (i) holds if I offers n licenses

by ad valorem royalty through an auction and minimum bid v = φ̂(n).

Using Lemma 1, the next result shows if ∆̂(k), φ̂(k) are both decreasing, then fixed
fee and ad valorem royalty policies are equivalent for the innovator also under licensing
by posted price. Moreover, if the operating profit a non-licensee is weakly decreasing
in the number of licensees (this happens in a Cournot oligopoly, see Section 3.1), then
for both policies, auction is superior to posted price for the innovator.

Theorem 2 (payoff equivalence between ĜF and ĜV ) Suppose ∆̂(k), φ̂(k) are

both decreasing.

(I) Let M̂ = maxk∈{1,...,n}k∆̂(k). For both ĜF , ĜV , in any subgame-perfect equilib-

rium, the number of licensees must be in argmaxk∈{1,...,n}k∆̂(k) and the innova-

tor obtains M̂.

(II) Suppose π0(k) is weakly decreasing, that is, π0(k) ≤ π0(k − 1) for all k =
1, . . . , n− 1. Then for both fixed fee and ad valorem royalty policies, licensing by

auction (where for k = n, the auction specifies minimum bid f = ∆̂(n) for fixed

fee and v = φ̂(n) for ad valorem royalty) is superior to licensing by posted price

for the innovator.

Proof (I) By Lemma 1 ((III)(d)-(e), (IV)(d)-(e)), for both ĜF , ĜV , in any subgame-

perfect equilibrium the maximum revenue I can obtain is M̂. Take any k such that
k∆̂(k) = M̂. For ĜF , if I sets fixed fee f = ∆̂(k), then in any equilibrium of ĜF (f)
either k − 1 or k firms buy licenses (Lemma 1(III)(d)). In any subgame-perfect equi-

librium of ĜF , the number of firms buying licenses must be k; otherwise, by Lemma
1(III)(e), I can improve its payoff by deviating to a slightly lower f. This proves the re-

sult for ĜF . The result for ĜV follows by similar reasoning by applying parts (IV)(d)-(e)
of Lemma 1.

(II) First let k = 1, . . . , n−1. For both fixed fee and ad valorem royalty policies, with

k licensees, I can obtain k∆(k) under licensing by auction (Theorem 1(I)(c)) and k∆̂(k)
under licensing by posted price (Lemma 1(III)(d)-(e), (IV)(d)-(e)). If π0(k) ≥ π0(k−1),

then by (1) and (3), k∆(k) ≥ k∆̂(k), so auction gives higher revenue to I when it wants
to sell less than n licenses.

If I wants to sell n licensees, then by Observation 1, for both fixed fee and ad valorem
royalty policies, using auction with suitable minimum bids I can obtain n∆(n) which
is the same revenue it can obtain by using posted price.

This shows for both fixed fee and ad valorem royalty policies, by using auction
(with suitable minimum bids for k = n), I obtains M0 = max{M,n∆̂(n)} where

M = maxk∈{1,...,n−1} k∆(k). By part (I), I obtains M̂ = maxk∈{1,...,n} k∆̂(k) by using

posted price. As M0 ≥ M̂, it follows that auction is superior to posted price.

Remark 4 When both ∆̂(k), φ̂(k) are not decreasing, the equivalence result of Theo-
rem 2 may not hold. To see this, consider the example of Remark 2: π1(k) is positive
and increasing and π0(k) = 0 for all k.
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In this case φ̂(k) = 1 − π0(k − 1)/π1(k) = 1 for all k. If I sets v = 1, then ĜV (v)
has n + 1 equilibrium outcomes: k firms buying and n − k firms not buying is an
equilibrium for all k = 0, 1, . . . , n. However, by setting v slightly lower than 1, I can
ensure the unique equilibrium of ĜV (v) has all users buying and I can obtain a revenue
arbitrarily close to the maximum revenue nπ1(n).

Observe that ∆̂(k) = π1(k)− π0(k− 1) = π1(k). As π1(k) is increasing, so is ∆̂(k).

By Lemma 1(I), I can ensure the unique equilibrium of ĜF (f) has all firms buying only
by setting a low enough fee f < π1(1). If it sets a higher fee where π1(1) ≤ f ≤ π1(n),
there are two equilibria: one in which I gets zero revenue and another in which I gets
positive revenue. The equivalence result does not hold for this example.

3 Application: licensing in a Cournot oligopoly

We apply the results to a specific problem that has been been extensively studied in
the literature: licensing of a cost reducing innovation in a Cournot oligopoly. We show
that Assumptions 1-3 hold for a Cournot oligopoly. In the case of an outside innovator,
the equivalence result holds with some qualifications (Proposition 1). Finally we show
when the innovator is one of the incumbent firms in a Cournot duopoly, the equivalence
result does not hold (Propositions 2,3).

3.1 Cournot oligopoly with an outside innovator

Consider a Cournot oligopoly with n ≥ 2 firms where the set of firms is N = {1, . . . , n}.
For i ∈ N, let qi be the quantity produced by firm i and Q =

∑
i∈N qi. Initially all

firms produce with the identical constant marginal cost c, where 0 < c < a. An outsider
innovator I has a patent for a cost reducing innovation of magnitude ε that lowers the
cost from c to c− ε, where 0 < ε < c. The innovator can license the innovation to some
or all firms of the industry.

Assumptions

A1 The price function or the inverse demand function p(Q): R++ → R+ is non-
increasing and ∃ Q > 0 such that p(Q) is decreasing and twice continuously differen-
tiable for Q ∈ (0, Q).

A2 p ≡ limQ↑0 p(Q) > c and ∃ 0 < Qc < Qc−ε < Q such that p(Qc) = c > p(Qc−ε) =
c− ε > p(Q).

A3 p(Q) is log-concave for Q ∈ (0, Q).

Assumptions A1-A3 imply A4.

A4 For p ∈ (0, p), the price elasticity η(p) := −pQ′(p)/Q(p) is non-decreasing.

We also assume A5, which ensures a certain comparative-statics results.

A5 The revenue function γ(Q) := p(Q)Q is strictly concave for Q ∈ (0, Q).

The existence and uniqueness of (Cournot-Nash) equilibrium is ensured by Assump-
tions [A1-A3] (Badia et al., 2014), or alternatively by assumptions [A1-A2, A4-A5]
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(Kamien et al., 1992). We assume either [A1-A3, A5] or [A1-A2, A4-A5] holds.3

Examples In addition to linear demand, an example of demand functions covered
in this analysis include the constant elasticity inverse demand function p(Q) = s/Qt

(where s > 0 and 0 < t < 1) which satisfy [A1-A2, A4-A5]. Another example is
p(Q) = max{(a−Q)t, 0} (where a, t > 0 and c < at), which satisfies [A1-A3, A5].

We compare three licensing policies: (i) fixed fee, (ii) ad valorem profit royalty
and (iii) per unit royalty. For any policy, consider the Cournot stage where firms
simultaneously choose quantities. For any i ∈ N, let q−i = (qj)j 6=i. The profit function
of firm i when it has marginal cost ci is denoted by ψi, that is,

ψi(qi, q−i; ci) = [p(Q)− ci]qi (5)

If any firm i does not have a license, its marginal cost is c and its payoff is simply its
profit, which is

[p(Q)− c]qi = ψi(qi, q−i; c) (6)

If any firm i has a license under fixed fee f ≥ 0, its marginal cost is c− ε. Its payoff is
its profit net of fee f, which is

[p(Q)− (c− ε)]qi − f = ψi(qi, q−i; c− ε)− f (7)

If firm i has a license under ad valorem royalty v ∈ [0, 1], its marginal cost is c− ε, it
leaves fraction v of its profit to I and retains the remaing fraction 1− v. So its payoff
is

(1− v)[p(Q)− (c− ε)]qi = (1− v)ψi(qi, q−i; c− ε) (8)

Note that for any f ≥ 0 and 0 ≤ v < 1, the choice of quantities are not affected by the
fee or the ad valorem royalty.4 This shows that when there are k licensees under either
fixed fee or ad valorem profit royalty, we have an n-firm Cournot oligopoly in which k
firms (licensees) have marginal cost c− ε and the remaining n−k firms (non-licensees)
have marginal cost c. If either [A1-A3, A5] or [A1-A2, A4-A5] holds, this oligopoly has
a unique equilibrium; the operating profit of any firm is simply its Cournot profit in
this oligopoly which is completely determined by (i) whether the firm has a license or
not and (ii) the number of licensees. This shows for both fixed fee and ad valorem
profit royalty, Assumption 1 holds.

In this case π1(k) and π0(k) are Cournot profits of a licensee and a non-licensee
when there are are k licensees. A licensee obtains π1(k) − f under fixed fee f and
(1− v)π1(k) under ad valorem royalty v. Using assumption A5, along the lines of the
comparative statics analsysis of Dixit (1986), it can be shown that

π0(k − 1) ≥ π0(k) and π1(k) > π0(k − 1) for k = 1, . . . , n (9)

3The assumption A5 is needed to show that the equilibrium profit of a non-licensee is decreasing
in the number of licensees.

4For v = 1, the payoff function in (8) is always zero, but this can be resolved by setting v slightly
lower than 1.
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This implies Assumptions 2,3 also hold.

Remark 5 Using the first inequality of (9) in (1) and (3), ∆(k) ≥ ∆̂(k) and φ(k) ≥

φ̂(k) for k = 1, . . . , n − 1. This shows when it is optimal to sell less than n licenses
under fixed fee or ad valorem profit royalty, auction is superior to posted price for I
and by Theorem 1, equivalence between these two policies hold. When I intends to
sell n licenses, it can use an auction with minimum bid ∆̂(n) for fixed fee and φ̂(n)
for ad valorem royalty, which will be the same as using posted prices. Such an auction
always has an equilibrium in which all n firms buy licenses; however, it may not be
the unique equilibrium, so the equivalence between these two policies will need some
qualification. See Remark 7 for a further clarification of this point in the case of linear
demand.

Regarding per unit royalty, note that if any firm i has a license with unit royalty
r ≥ 0, it has to pay r for each unit it produces. So its payoff is

[p(Q)− (c− ε)]qi − rqi = [p(Q)q − (c− ε+ r)]qi = ψi(qi, q−i; c− ε+ r) (10)

Under per unit royalty r, the effective marginal cost of a licensee is c − ε + r, so
the operating profit of a licensee (and also a non-licensee) not only depends on the
number of licenses, but also on the royalty r. Assuming no firm will accept a policy
that raises its marginal cost from c, the domain of r is [0, ε]. For any k ≤ n, when there
are k licensees under per unit royalty r, the resulting Cournot oligopoly has a unique
equilibrium under our assumptions.

To compare the licensing policies, the notion of drastic innovations will be useful. A
cost reducing innovation is drastic (Arrow, 1962) if it is significant enough to create a
monopoly with the reduced cost. Otherwise it is non drastic. For a drastic innovation,
if only one firm has the innovation, it becomes a monopolist and all other firms drop
out of the market. Let θ ≡ c/η(c) (recall η(p) = −pQ′(p)/Q(p) is the price elasticity).
A cost reducing innovation of magnitude ε is drastic if ε ≥ θ and non drastic if ε < θ.

Consider a monopolist who produces with unit cost c − ε. The profit of this mo-
nopolist at price p is

Ω(p) := [p− (c− ε)]Q(p) (11)

The unique maximum of Ω(p) is attained at the monopoly price p = pM(ε) and
Ω(pM(ε)) equals πM(ε) (the monopoly profit under cost c − ε). Also note that Ω(p)
is increasing for p < pM(ε) and decreasing for p > pM(ε). Observe that pM(ε) ≤ c
for drastic and pM(ε) > c for non drastic innovations. If a licensing policy results in
Cournot price p, the payoff of I under that policy is bounded above by Ω(p), so the
maximum payoff that I can obtain is πM(ε).

Proposition 1 Consider a Cournot oligopoly with n ≥ 3 firms where an outside in-

novator I has a cost reducing innovation of magnitude ε. For generic magnitudes of ε,
the following results hold.

(I) For a drastic innovation (ε ≥ θ), by offering only one license through an auction

using either fixed fee or ad valorem profit royalty, I obtains πM
ε . Under per unit
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royalty policy, I obtains less than πM
ε , so for I, both fixed fee and ad valorem

profit royalty policies are superior to per unit royalty policy.

(II) For a non drastic innovation (ε < θ), if the innovation is relatively significant

(ε ≥ θ/(n−1)), fixed fee and ad valorem profit royalty policies are equivalent for

I. Moreover for relatively large n, per unit royalty policy is superior to both fixed

fee and ad valorem profit royalty policies for I.

(III) For both (I) and (II), fixed fee and ad valorem profit royalty policies result in the

same Cournot price, give same payoffs to all firms as well as the innovator and

are welfare-equivalent.

Proof (I) For a drastic innovation, π1(1) = πM
ε , π

0(1) = 0, so by (1), ∆(1) = πM
ε and

φ(1) = 1. Using these, the first statement is immediate by taking k = 1 in Theorem 1.
To prove the last statement, suppose there are k licensees with per unit royalty r.

Let pn(k, r) be the resulting Cournot price and Qn(k, r) the industry quantity. Note
that the licensing revenue of I can be at most rQn(k, r). There are two possibilities.

If pn(k, r) > c, thenQn(k, r) < Q(c). Since r ≤ ε, we have rQn(k, r) < εQ(c) = Ω(c)
(where Ω(p) is given in (11)). Since Ω(c) ≤ Ω(pM(ε)) = πM

ε , the licensing revenue is
lower than πM

ε .
If pn(k, r) ≤ c, all non-licensees drop out of the market (that is, they produce

zero) and there is a k-firm oligopoly with k licensees. Since each of the k licensess has
marginal cost c− ε+ r, the industry profit is [pn(k, r)− (c− ε+ r)]Qn(k, r) > 0. The
licensing revenue of I is rQn(k, r). The sum of industry profit and licensing revenue is
Ω(pn(k, r)) ≤ πM

ε , so again the licensing revenue is lower than πM
ε .

(II) Suppose ε ≥ θ/(n− 1). In this case, if n− 1 firms have licenses, the sole non-
licensee drops out of the market (so π0(n − 1) = 0) and an (n − 1)-firm oligopoly is
created with the licensees (see Lemma 1(iii), p.40, Sen and Tauman, 2018). Denoting
by p(n− 1) the price of this oligopoly, the industry profit is Ω(p(n− 1)) (where Ω(p) is

given in (11)). As π0(n− 1) = 0, by (1) and (3), ∆(n− 1) = π1(n− 1), ∆̂(n) = π1(n)

and φ(n − 1) = φ̂(n) = 1. By Theorem 1(I), selling n − 1 licenses through auction by
either ad valorem royalty or fixed fee, I obtains (n − 1)∆(n − 1) = (n − 1)π1(n − 1),
which is the industry profit Ω(p(n− 1)).

By selling n licenses, I can obtain at most n∆̂(n) = nπ1(n) (Observation 2), which
is the industry profit when all n firms have a license. Denoting by p(n) the price of
this n-firm oligopoly, the industry profit is Ω(p(n)). Since p(n) < p(n−1) < pM(ε) (see
Observation 1 and Lemma 1(iii), p.40, Sen and Tauman, 2018) and Ω(p) is increasing
for p < pM(ε), we have Ω(p(n)) < Ω(p(n − 1)), so it is optimal for I to sell n − 1 or
less licenses. For any k ≤ n − 1, for either fixed fee or ad valorem royalty, I obtains
k∆(k) using auction (Theorem 1(I)) while it obtains at most k∆̂(k) using posted price

(Observation 2). As π0(k) ≤ π0(k − 1), by (1) and (3), k∆(k) ≥ k∆̂(k). This shows
auction is better than posted price for I and by Theorem 1, equivalence between fixed
fee and ad valorem royalty holds.

The last part of (II) is immediate from the result of Sen and Tauman (2018) (see
Proposition 3(II), p.42) that with generic magnitudes of the innovation, for any non
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drastic innovation licensing by per unit royalty is superior to licensing by fixed fee
through auction.

Part (III) is immediate from parts (I)-(II).

Remark 6 Proposition 1 shows that if θ/(n − 1) ≤ ε < θ, for both fixed fee and
ad valorem royalty, it is optimal for I to sell at most n − 1 licenses and equivalence
between these two policies hold by Theorem 1. If ε < θ/(n− 1), it may be optimal to
sell licenses to all n firms. In particular, with linear demand it is shown in Sen and
Tauman (2007) (see Table A.5, p.183) that for n ≥ 3, there is an increasing function
t(n) > n− 1 such that whenever ε < θ/t(n), among general licensing policies that are
combinations of both fixed fee and per unit royalty, it is optimal for the innovator to
sell licenses to all n firms using only a fixed fee (through an auction with minimum

bid ∆̂(n)). This is clearly the optimal fixed fee policy and it is also superior to per
unit royalty. As t(n) is increasing, ε < θ/t(n) holds for relatively small values of n.
Together with the conclusion of Proposition 1(II), it follows that for linear demand
fixed fee is superior for small n while per unit royalty is superior for large
n.

Remark 7 Regarding equivalence between fixed fee and ad valorem royalty in this
case (ε < θ/t(n)), we note that under linear demand, ∆̂(k) is decreasing but φ̂(k) is

increasing (so in particular, φ̂(1) < φ̂(n)). By Observation 1(i), by offering n licenses

through fixed fee using a minimum bid marginally lower than ∆̂(n), I can ensure that
the unique equilibrium outcome has all n firms buying licensees. However, by Lemma
1(II)(c), if I offers n licenses by ad valorem profit royalty with minimum bid φ̂(n) (or

marginally lower than φ̂(n)), then there is an equibrium where all n firms buy licensees,
but there is also another equilibrium in which no one buys.

3.2 Cournot duopoly with an incumbent innovator

Consider a Cournot duopoly with two firms 1, 2 where the demand curve satisfies the
assumptions of the last section. Initially both firms produce with the identical constant
marginal cost c, where 0 < c < a. Firm 1 has a patent for a cost reducing innovation
of magnitude ε that lowers the cost from c to c− ε, where 0 < ε < c. If the innovation
is drastic, firm 1 becomes a monopolist with the reduced cost, so it has no incentive to
license its innovation to firm 2. So assume the innovation is non drastic, that is, ε < θ
(recall θ = c/η(c)).

Given the assumptions of the last section, the Cournot duopoly has a unique equi-
librium under any policy. Since the innovation is non drastic, firm 2 obtains a positive
Cournot profit without a license. Denote this profit by π. As before, denote by ψi the
(operating) profit function of firm i at the Cournot stage when it has marginal cost ci,
that is,

ψi(q1, q2; ci) = [p(Q)− ci]qi. (12)

Since firm 1 always uses the innovation, its operating profit is ψ1(q1, q2; c− ε).
The equivalence between fixed fee and ad valorem royalty does not hold in this

case. We have seen in Section 3.1 that for an outside innovator the problems of firms
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at the Cournot stage do not depend on the fixed fee or the ad valorem royalty, so
Assumptions 1-3 hold. This is not the case when the innovator is one of the incumbent
firms. At the Cournot stage, the payoff of an incumbent innovator under ad valorem
royalty is the sum of its own operating profit and a fraction of the operating profit of
the licensee, so the innovator’s problem does depend on the rate of ad valorem royalty.

For any fixed fee f, the marginal cost of each firm is c − ε. Denote the Cournot
quantities under fixed fee by qF1 , q

F
2 and the Cournot price by pF . It is optimal for firm

1 to set fee f = ψ2(q
F
1 , q

F
2 ; c− ε)− π, making firm 2 just indifferent between accepting

and rejecting a license. Using the optimal f and the function Ω(p) from (11), the payoff
of firm 1 under fixed fee policy is

ψ1(q
F
1 , q

F
2 ; c− ε) + f = Ω(pF )− π (13)

Regarding ad valorem policy, note that since firm 2 obtains a positive profit π without
a license, a policy is acceptable to firm 2 only if it gives a payoff of at least π. In
particular, firm 2 will not accept an ad valorem royalty policy with v = 1. Under any
ad valorem royalty v ∈ [0, 1), firm 2 keeps fraction 1− v of its profit, so its payoff is

(1− v)[p(Q)− (c− ε)]q2 = (1− v)ψ2(q1, q2; c− ε) (14)

The payoff of firm 1 is the sum of its operating profit and the licensing revenue. As
firm 1 receives fraction v of the profit of firm 2 as licensing revenue, its payoff is

ψ1(q1, q2; c− ε) + vψ2(q1, q2; c− ε) (15)

For any v ∈ [0, 1), the resulting Cournot duopoly with payoffs (19)-(21) has a unique
equilibrium (see Lemma 2 in the Appendix). There always exist acceptable ad valorem
policies that are superior to fixed fee for firm 1.

Proposition 2 Consider a Cournot duopoly with two firms 1, 2 where firm 1 has a

non drastic cost reducing innovation that it can license to firm 2 using an ad valorem

royalty v ∈ [0, 1). There exist ad valorem royalty policies that are acceptable to firm 2
and superior to the fixed fee policy for firm 1.

Proof Without a license firm 2 obtains positive profit π, so it will not accept any
policy where it obtains lower than π. Under ad valorem royalty v, firm 2 obtains
(1− v)Ω(pv)/(2− v) (see Lemma 2), where pv is the resulting Cournot price and Ω(p)
is given in (11). When v = 0, this payoff is Ω(pF )/2 (the Cournot profit of firm 2 under
a fixed fee policy). Note that Ω(pF )/2 > π (see Lemma A.2, p.44, Sen and Tauman,
2018). As limv↑1(1 − v)Ω(pv)/(2 − v) = 0 < π, it follows that there is one or more
v ∈ (0, 1) such that (1− v)Ω(pv)/(2− v) = π. Any such v is acceptable to firm 2 and
under such an ad valorem policy, firm 1 obtains

Ω(pv)/(2− v) = Ω(pv)− (1− v)Ω(pv)/(2− v) = Ω(pv)− π (16)

Since Ω(p) is increasing for p < pM(ε) and pF = p0 < pv < pM(ε) (see Lemma 2), we
have Ω(pv) > Ω(pF ). Then the result follows by (13) and (16).
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In the case of linear demand, we can identify (the unique) optimal ad valorem
royalty profit royalty policy and show that it is superior to both fixed fee and per
unit royalty for an incumbent innovator in a Cournor duopoly. Different papers have
compared per unit royalties with fixed fees and ad valorem with per unit royalties (e.g.,
Wang, 1998; San Mart́ın and Saracho, 2010; Niu, 2017; Hsu et al. 2019). Here we give
a self contained explanation of the superiority of ad valorem royalty using the function
Ω(p) of (11) which gives a clear ranking of the Cournot prices under different policies.

Proposition 3 Consider a Cournot duopoly with firms 1, 2 with linear demand where

firm 1 has a patent on a non drastic cost reducing innovation. Denote by pV , pR, pF

the respective Cournot prices under the (unique) optimal ad valorem, per unit royalty

and fixed fee policies.

(i) Firm 1 obtains Ω(pV )−π under the optimal ad valorem royalty policy, Ω(pR)−π
under the optimal per unit royalty policy and Ω(pF ) − π under the optimal fixed

fee policy.

(ii) pF < pR < pV < pM(ε). Consequently Ω(pV ) > Ω(pR) > Ω(pF ) and ad valorem

royalty is superior to both per unit royalty and fixed fee for firm 1.

Proof See the Appendix.
Proposition 3 shows that while the ad valorem royalty is the most preferred for

an incumbent innovator, it also results in the highest Cournot price out of the three
policies, so it is the worst preferred for consumers. As ad valorem profit royalty can be
viewed as partial passive ownership of firm 2 by firm 1 (see, e.g., Niu, 2017; Hsu et al.
2019), imposing a bound on the ownership share (which is represented by ad valorem
royalty v in our model) may be a desirable policy intervention.

Appendix

Proof of parts (I)-(II) of Theorem 1 Observe that for each of GF (k), GV (k), the
following outcome is an equilibrium for any m ≥ k+1: m firms place bids, the highest
bid is ∆(k) for GF (k) and φ(k) for GV (k) and at least k + 1 firms place the highest
bid. In this case the number of licensees is k. A firm that wins a license obtains
π1(k) − ∆(k) = π0(k) in GF (k) and [1 − φ(k)]π1(k) = π0(k) in GV (k), so each firm,
regardless of whether it wins a license or not, obtains π0(k). Any unilateral deviation
by a firm does not alter the number of licensees and the deviating firm cannot obtain
more than π0(k). In what follows, we show that this is the unique equilibrium outcome.

Note that for each of GF (k), GV (k), there is no equilibrium in which k or less
firms place bids. If there is an equilibrium in which m ≤ k firms place bids, each of the
bidding firms wins a license with certainty, so each of these bids must be zero (otherwise
a bidding firm can improve its payoff by a slightly lower bid). As m ≤ k < n, there is
at least one firm who does not place a bid. Such a firm obtains π0(m). If m < k, let
this firm unilaterally deviate by placing zero bid to obtain π1(m+ 1). By Assumption
3, this deviation is gainful, so there is no equilibrium where m < k.
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If m = k, any non-bidding firm obtains π0(k). Let such a firm unilaterally deviate
by placing a sufficiently small positive bid. Then it will win a license with certainty
(since all other bids are zero), the number of licensees will be still k and the deviating
firm will obtain a payoff which is only slightly lower than π1(k). By Assumption 2,
π1(k) > π0(k), so the deviation is gainful. This shows there is no equilibrium where
m = k.

Therefore for each of GF (k), GV (k), in any equilibrium the number of firms placing
bid must be m ≥ k+1, so there are k licensees. Arrange the bids in ascending order as
b1 ≥ . . . ≥ bm. If bi > bi+1 for some i = 1, . . . , k, then the firm that places bid bi wins
a license with certainty and it can improve its payoff by placing a slightly lower bid.
So in any equilibrium, it must be the case that bi = bi+1 for all i = 1, . . . , k, that is,
b1 = . . . = bk+1. This shows that in any equilibrium the highest bid must be placed by
at least k+1 firms. Let this highest bid be f for GF (k) and v for GV (k). Let λ ∈ (0, 1)
be the probability of winning a license for a firm that places the highest bid. Then in
GF (k) such a firm obtains

λ[π1(k)− f ] + (1− λ)π0(k) = π0(k) + λ[∆(k)− f ] (17)

and in GV (k) such a firm obtains

λ(1− v)π1(k) + (1− λ)π0(k) = π0(k) + λ[φ(k)− v]π1(k) (18)

where ∆(k), φ(k) are defined in (1). By not placing any bid a firm obtains π0(k). If
f > ∆(k), then by (17), for GF (k), any firm who places the bid f is better off by
unilaterally deviating to not placing any bid. Similarly if v > φ(k), then by (18), for
GV (k), any firm who places bid v is better off by unilaterally deviating to not placing
any bid. So we must have

f ≤ ∆(k) and v ≤ φ(k).

If f < ∆(k), then any firm that places bid f can unilaterally deviate to a slightly
higher bid f with f < f < ∆(k). Then it wins a license with certainty to obtain
π1(k)− f = π0(k)+∆(k)− f, which is more than the payoff in (17) for f close enough
to f.

Similarly if v < φ(k), then any firm that places bid v can unilaterally deviate to a
slightly higher bid v with v < v < φ(k). Then it wins a license with certainty to obtain
(1−v)π1(k) = π0(k)+ [φ(k)−v]π1(k), which is more than the payoff in (18) for v close
enough to v.

This shows for each of GF (k), GV (k), in any equilibrium at least k + 1 firms place
the highest bid, the highest bid is ∆(k) for GF (k) and φ(k) for GV (k). Taking f = ∆(k)
in (17) and v = φ(k) in (18), any licensee obtains π0(k), which is the same payoff that
any non-licensee obtains. This completes the proof.

The following result will be useful to prove Lemma 1.

Observation 2

The following hold for the games ĜF (f), ĜV (v).

(i) For ĜF (f):
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(a) No firms buying a license is an equilibrium if and only if f ≥ ∆̂(1).

(b) All n firms buying licenses is an equilibrium if and only if f ≤ ∆̂(n).

(c) For k = 1, . . . , n − 1, k firms buying licenses and the remaining n − k firms

not buying is an equilibrium if and only if ∆̂(k + 1) ≤ f ≤ ∆̂(k).

(d) For k = 1, . . . , n, with k licensees, the maximum revenue I can obtain is

k∆̂(k).

(ii) For ĜV (v):

(a) No firms buying a license is an equilibrium if and only if v ≥ φ̂(1).

(b) All n firms buying licenses is an equilibrium if and only if v ≤ φ̂(n).

(c) For k = 1, . . . , n − 1, k firms buying licenses and the remaining n − k firms

not buying is an equilibrium if and only if φ̂(k + 1) ≤ v ≤ φ̂(k).

(d) For k = 1, . . . , n, with k licensees, the maximum revenue I can obtain is

kφ̂(k)π1(k) = k∆̂(k).

Proof (i) Consider ĜF (f).
(a) When no firm buys a license, all firms obtain π0(0). Any firm that unilaterally

deviates to buy a license obtains π1(1)−f. So no firm buying a license is an equilibrium

if and only if π0(0) ≥ π1(1)− f, that is, f ≥ ∆̂(1).
(b) When all n firms buy licenses, all firms obtain π1(n)− f. Any firm that unilat-

erally deviates to not buy a license obtains π0(n− 1). So all firms buying licenses is an

equilibrium if and only if π1(n)− f ≥ π0(n− 1), that is, f ≤ ∆̂(n).
(c) Let k = 1, . . . , n−1.When k firms buy licenses and n−k firms do not, any firm

that buys a license obtains π1(k)− f and any firm that does not buy obtains π0(k). A
firm buying a license has no uniltarel incentive to deviate to not buying if and only if
π1(k)− f ≥ π0(k − 1), that is, f ≤ ∆̂(k). A firm not buying a license has no uniltarel

incentive to deviate to buying if and only if π0(k) ≥ π1(k+1)−f, that is, f ≥ ∆̂(k+1).
So k firms buying licenses and n− k firms not buying is an equilibrium if and only if
∆̂(k + 1) ≤ f ≤ ∆̂(k).

(d) Follows from parts (a) and (c).

(ii) Now consider ĜV (v).
(a) When no firm buys a license, all firms obtain π0(0). Any firm that unilater-

ally deviates to buy a license obtains (1 − v)π1(1). So no firm buying a license is an

equilibrium if and only if π0(0) ≥ (1− v)π1(1), that is, v ≥ φ̂(1).
(b) When all n firms buy licenses, all firms obtain (1 − v)π1(n). Any firm that

unilaterally deviates to not buy a license obtains π0(n−1). So all firms buying licenses

is an equilibrium if and only if (1− v)π1(n) ≥ π0(n− 1), that is, v ≤ φ̂(n).
(c) Let k = 1, . . . , n − 1. When k firms buy licenses and n − k firms do not, any

firm that buys a license obtains (1 − v)π1(k) and any firm that does not buy obtains
π0(k). A firm buying a license has no uniltarel incentive to deviate to not buying if and

only if (1− v)π1(k) ≥ π0(k − 1), that is, v ≤ φ̂(k). A firm not buying a license has no
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uniltarel incentive to deviate to buying if and only if π0(k) ≥ (1− v)π1(k+1), that is,

v ≥ φ̂(k + 1). So k firms buying licenses and n− k firms not buying is an equilibrium

if and only if φ̂(k + 1) ≤ v ≤ φ̂(k).
(d) Follows from parts (a) and (c) by using (4).

Proof of Lemma 1 (I) Since ∆̂(k) is increasing, by Observation 2(i)(c), there is no

equilibrium of ĜF (f) in which k firms buy licenses and n − k firms do not, where
k = 1, . . . , n− 1. Then the result is immediate by Observation 2(i)(a)-(b).

(II) Since φ̂(k) is increasing, by Observation 2(ii)(c), there is no equilibrium of

ĜV (v) in which k firms buy licenses and n − k firms do not, where k = 1, . . . , n − 1.
Then the result is immediate by Observation 2(ii)(a)-(b).

(III) Since ∆̂(k) is increasing, parts (a)-(d) follow by Observation 2(i). Part (e)
follows from parts (c) and (d).

(IV) Since ∆̂(k) is increasing, parts (a)-(d) follow by Observation 2(ii). Part (e)
follows from parts (c) and (d).

Lemma 2 Consider a Cournot duopoly with two firms 1, 2 where firm 1 has a non

drastic innovation that it licenses to firm 2 using an ad valorem royalty v ∈ [0, 1). The
duopoly has a unique equilibrium. Denote the equilibrium quantities by q1(v), q2(v), let
Q(v) = q1(v) + q2(v) and pv be the Cournot price. The equilibrium has the following

properties.

(i) q1(v) = (1− v)q2(v), Q(v) = (2− v)q2(v).

(ii) The Cournot price pv is increasing in v, with p0 = pF (the Cournot price at any

fixed fee policy) and limv↑1p
v = pM(ε) (the monopoly price).

(iii) Firm 1 obtains payoff Ω(pv)/(2− v), which is increasing in v and firm 2 obtains

payoff (1− v)Ω(pv)/(2− v), where Ω(p) is given in (11).

Proof (i) First note that since the innovation is non drastic, firm 2 obtains a positive
profit π without a license, so it will not accept an ad valorem royalty policy with v = 1.
Under any ad valorem royalty v ∈ [0, 1), firm 2 keeps fraction 1 − v of its profit, so
using the function ψi from (12), its payoff is

(1− v)[p(Q)− (c− ε)]q2 = (1− v)ψ2(q1, q2; c− ε) (19)

For any v ∈ [0, 1), firm 2 effectively solves the problem of a firm that has profit function

u2(q1, q2) = ψ2(q1, q2; c− ε) = [p(Q)− (c− ε)]q2 (20)

The payoff of firm 1 is the sum of its operating profit and the licensing revenue. As
firm 1 receives fraction v of the profit of firm 2 as licensing revenue, by (21), its payoff
is

u1(q1, q2) = [p(Q)− (c− ε)]q1 + v[p(Q)− (c− ε)]q2 (21)

Note that

∂u1
∂q1

= p′(Q)(q1 + vq2) + p(Q)− (c− ε) and
∂u2
∂q2

= p′(Q)q2 + p(Q)− (c− ε) (22)
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So (∂u1/∂q1)[q1 = 0] = (∂u2/∂q2)[q1 = 0] − (1 − v)q2p
′(q2) and (∂u2/∂q2)[q2 =

0] = (∂u1/∂q1)[q2 = 0] − q1p
′(q1). Thus, for i 6= j, if (∂uj/∂qj)[qi = 0] = 0, then

(∂ui/∂qi)[qi = 0] > 0 for any qj > 0. If there is an equilibrium with qi = 0 and qj > 0,
we must have (∂uj/∂qj)[qi = 0] = 0 and (∂ui/∂qi)[qi = 0] ≤ 0, so there cannot be any
such equilibrium. Clearly q1 = q2 = 0 is also not an equilibrium.

So any equilibrium must have (q1 > 0, q2 > 0) and the (unique) equilibrium is
determined by the first order conditions ∂ui/∂qi = 0 for i = 1, 2. By (22), the Cournot
quantities qi(v) satisfy the first order conditions:

p′(Q(v))(q1(v)+vq2(v))+p(Q(v))−(c−ε) = 0, p′(Q(v))q2(v)+p(Q(v))−(c−ε) = 0 (23)

which shows q1(v) = (1− v)q2(v), so Q(v) = (2− v)q2(v).
(ii) Recall the price elasticity η(p) = −pQ′(p)/Q(p) is non decreasing by Assumption

A4. Let
H(p, v) := p[1− 1/(2− v)η(p)] (24)

(When v = 0, this function coincides with H2(p) defined in (5), p.40, Sen and Tauman,
2018). Also note that if H(p, v) is positive, then H(p, v) < H(p̃, v) for p < p̃ and
H(p, v) > H(p̃, v) for p > p̃.

Adding the equations of (23) and noting that Q(v) = (2 − v)q2(v), it follows that
Cournot price pv satisfies

H(pv, v) = c− ε (25)

Since H(p, v) is decreasing in v for any positive p, if v′ > v, by (25): H(pv
′

, v) >
H(pv

′

, v′) = c − ε = H(pv, v). Thus, H(pv
′

, v) > H(pv, v) = c − ε > 0. Using the
property of H(p, v) above, it follows that pv

′

> pv. This shows that pv is
increasing in v. Note that when v = 0, the equations in (23) coincide with the first
order conditions under a fixed fee policy, so we have H(pF , 0) = c − ε (where pF is
the Cournot price under fixed fee). This shows that p0 = pF . Next observe that the
monopoly quantity QM(ε) satisfies p′(QM(ε))QM(ε)+pM(ε)−(c−ε) = 0.When v = 1,
we note that q1 = 0, q2 = QM(ε) is the unique solution of (23) (also note from (24)
that H(pM(ε), 1) = c− ε). This shows that limv↑1 p

v = pM(ε).
(iii) Using q1(v) = (1− v)q2(v) and Q(v) = (2− v)q2(v) in (21), under ad valorem

royalty v, the equilibrium payoff of firm 1 is

[p(Q(v))− (c− ε)](1− v)q2(v) + v[p(Q(v))− (c− ε)]q2(v) = ψ2(q1(v), q2(v); c− ε)

= [pv − (c− ε)]Q(v)/(2− v) = Ω(pv)/(2− v) (26)

where Ω(p) is given by (11). By (20), the equilibrium payoff of firm 2 is

(1− v)ψ2(q1(v), q2(v); c− ε) = (1− v)Ω(pv)/(2− v) (27)

Note from (11) that Ω(p) is increasing for p < pM(ε). Since pv is increasing in v and
pv < pM(ε) for all v ∈ [0, 1) (by (ii)), Ω(pv) is increasing in v. As 1/(2− v) is positive
and increasing for v ∈ [0, 1), it follows that Ω(pv)/(2− v) is increasing in v.

Proof of Proposition 3 Note that ψi (given in (12)) is the operating profit function
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of firm i at the Cournot stage when it has marginal cost ci.
Per unit royalty: The optimal per unit royalty policy for firm 1 is r = ε. Then the

effective marginal cost of firm 2 is c− ε+ r = c. Denote the Cournot quantities under
this policy by qR1 , q

R
2 and let pR be the Cournot price. Using (12), the Cournot profit

of firm 2 is ψ2(q
R
1 , q

R
2 ; c) = π and the Cournot profit of firm 1 is ψ1(q

R
1 , q

R
2 ; c− ε). The

payoff of firm 1 is the sum of its Cournot profit and royalty revenue, which is

ψ1(q
R
1 , q

R
2 ; c− ε) + εqR2 = ψ1(q

R
1 , q

R
2 ; c− ε) + εqR2 + ψ2(q

R
1 , q

R
2 ; c)− ψ2(q

R
1 , q

R
2 ; c)

= [pR − (c− ε)]qR1 + εqR2 + (pR − c)qR2 − π = Ω(pR)− π.

Fixed fee: By (13), the payoff of firm 1 under the optimal fixed fee is Ω(pF ) − π.
Note that pF < pR and both pR, pF are less than the monopoly price pM(ε). As Ω(p) is
increasing for p < pM(ε), we have Ω(pR) > Ω(pF ), showing the superiority of per unit
royalty over fixed fee. In what follows we show that ad valorem royalty is superior to
per unit royalty.

Ad valorem royalty: As firm 2 obtains positive payoff π without a license, it will
not accept an ad valorem royalty policy with v = 1. Under any ad valorem royalty
v ∈ [0, 1), the payoffs of firms 1, 2 are given in (19) and (21). Let q1(v), q2(v) be
the (unique) equilibrium quantities and Q(v) = q1(v) + q2(v) under linear demand
p(Q) = max{a − Q, 0} (where a > c and ε < a − c ensuring the innovation is non
drastic). Denoting θ(v) ≡ (a− c+ ε)/(3− v), we note that

q2(v) = θ(v), q1(v) = (1− v)θ(v) and Q(v) = (2− v)θ(v) (28)

Also note that ψ2(q1(v), q2(v); c−ε) = [θ(v)]2 and ψ1(q1(v), q2(v); c−ε) = (1−v)[θ(v)]2.
By (19) and (21), under ad valorem royalty the equilibrium payoffs of firms 1, 2 are

π1(v) = [θ(v)]2 and π2(v) = (1− v)[θ(v)]2 (29)

Firm 2 will not accept any policy where it obtains less than π = (a − c − ε)2/9. As
π2(v) is decreasing, π2(0) = (a − c + ε)2/9 > π and π2(1) = 0 < π, ∃ v∗ ∈ (0, 1) such

that π2(v) T π ⇔ v S v∗. Noting that π1(v) is increasing, it follows the unique optimal

ad valorem royalty for firm 1 is to set v = v∗, in which case firm 2 gets π2(v
∗) = π. By

(19), noting that Q(v) = (2− v)q2(v) and denoting pV = p(Q(v∗)), we have

π2(v
∗) = (1− v∗)ψ2(q1(v

∗), q2(v
∗); c− ε) = (1− v∗)Ω(pV )/(2− v∗) = π

Using this in (26), the payoff of firm 1 is

Ω(pV )/(2− v∗) = Ω(pV )− (1− v∗)Ω(pV )/(2− v∗) = Ω(pV )− π

Comparing ad valorem and per unit royalty policies: Note that the industry quan-
tity under the optimal royalty policy is QR = [2(a−c)+ε]/3. By (28), Q(v) is decreasing

and Q(0) > QR > Q(1), so ∃ vR ∈ (0, 1) such that Q(v) T QR ⇔ v S vR. Solving

Q(v) = QR, we have vR = 3ε/(a− c+ 2ε). By (29), the payoff of firm 2 at ad valorem
royalty vR is π2(v

R) = (a− c− ε)(a− c+2ε)/9 > (a− c− ε)2/9 = π. Since π2(v
∗) = π
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and π2(v) is decreasing, we have v
∗ > vR, so that Q(v∗) < QR, implying that pV > pR.

Since pV , pR are both less than pM(ε), we have Ω(pV ) > Ω(pR), showing that the payoff
of firm 1 under ad valorem royalty is higher than its payoff under per unit royalty.
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