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Abstract

This paper characterizes lexicographic preferences over alternatives that are identified

by a finite number of attributes. Our characterization is based on two key concepts: a

weaker notion of continuity called ‘mild continuity’ (strict preference order between any

two alternatives that are different with respect to every attribute is preserved around

their small neighborhoods) and an ‘unhappy set’ (any alternative outside such a set is

preferred to all alternatives inside). Three key aspects of our characterization are: (i) use

of continuity arguments, (ii) the stepwise approach of looking at two attributes at a time

and (iii) in contrast with the previous literature, we do not impose noncompensation on

the preference and consider an alternative weaker condition.

Keywords: lexicographic preferences; mild continuity; induced preferences; unhappy set;

inclusion of marginally improved alternatives (IMIA)
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1 Introduction

Consider an individual decision problem over alternatives that have multiple attributes. For

an individual having a lexicographic preference over such alternatives, there is an order

of importance of different attributes. If two alternatives differ with respect to the most

important attribute, the individual prefers the one that is superior in regard to that attribute.

If two alternatives are same with respect to the most important attribute, he prefers the one

that is superior in regard to the second most important attribute and so on. As put succintly

by Bettman et al. (1998, p.190):

“The lexicographic strategy involves limited, attribute-based, noncompensatory

processing that is selective across attributes and consistent across alternatives.”

The decision process under a lexicographic preference has two salient features. First, as

the individual looks at one attribute at a time, the process is stepwise or sequential in

nature. Second, it is noncompensatory in that it does not allow for any tradeoffs between

attributes: superiority in a less important attribute does not compensate for the inferiority

in a more important attribute. While the stepwise nature of the decision process is appealing

particularly for problems with a large number of attributes, the noncompensatory property

imposes a kind of rigidity on decision making that may not be reasonable (see, e.g., Ford

et al. 1989, Keeney and Raiffa 1993, Kurz-Milcke and Gigerenzer 2007). For this reason, a

lexicographic preference is often considered to be more useful as a heuristic rather than an

exact decision rule.1

On closer look, the noncompensatory property is unreasonable mainly because what it

prescribes at the margin. If alternative a is only marginally inferior to alternative b in regard

to the most important attribute but much superior in regard to the second most important

attribute, the lexicographic preference still demands that b is preferred to a. Tversky (1969)

addressed this drawback by proposing the lexicographic semiorder (LS), which prescribes that

b is preferred to a if b is superior to a in regard to the most important attribute by a magnitude

that exceeds a specific threshold ε; but if this magnitude does not exceed ε and a is superior

in regard to the less important attribute, then a is preferred. Using LS for experiments with

gambles where any gamble has two attributes, its probability of winning the prize and its

prize money, Tversky (1969) found evidence of intransitive preference behavior, although

more recent experimental literature does not find conclusive support for intransitivity (see,

e.g., González-Vallejo 2002, Birnbaum and Gutierrez 2007).

1According to Kurz-Milcke and Gigerenzer (2007): “The study of heuristics analyzes how people make
decisions when optimization is out of reach.” Leong and Hensher (2012) point out the evidence from the
psychology literature that suggests “humans rely on the use of quick mental processing rules known as decision
heuristics to manage the vast number of decisions”. See also Goldstein and Gigerenzer (1999), Hogarth and
Karelaia (2006), Yee et al. (2007), Gigerenzer and Gaissmaier (2011) and Katsikopoulos (2011, 2013) for an
overview of models and experiments of lexicographic and other related decision rules such as recognition and
take-the-best heuristics.
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The noncompensatory property in itself is not problematic when differences are not

marginal for an individual decision maker. This is actually the case in certain real life deci-

sion problems where the available alternatives are such that when they differ with respect to

an attribute, the difference is not negligible. If a decision maker does not face comparisons

involving marginal differences, the unreasonable rigidity of the noncompensatory property is

not an issue and there is merit in applying the lexicographic decision rule. It should be noted

in this regard that marginal differences can be subjective; a difference that is considered

marginal by an individual may not be viewed as such by another individual.

A smartphone is a product with multiple attributes. Two models of a smartphone can

be same in regard to some attributes, but if they differ with respect to an attribute, the

difference is usually not marginal for many buyers. For instance, Galaxy A51 and Galaxy

A71 models of Samsung2 in Canada compare as follows in regard to three key attributes:

price, storage capacity and camera quality. Galaxy A51 has price $479.99, internal storage

64GB and main camera resolution 48MP, while the corresponding values for Galaxy A71 are

$599.99, 128GB and 64MP. Choosing between these two models, many buyers do not face a

situation of marginal differences such as one model offering a superior camera quality at a

price that is only slightly higher than the other model.

Similar examples can be found in the banking sector where a product (e.g., a bank account

or an investment plan) has multiple attributes. For instance, State Bank of India, the largest

public sector bank in India, offers different kinds of savings accounts.3 Its regular savings

account is different from its “basic savings bank deposit small account” in a number of

aspects, of which two are: (i) the regular account requires valid KYC (know your customer)

documents, while the KYC requirement is relaxed for the small account, (ii) the balance

is capped at Rupees 50,000 for the small account, while the regular account has no limit

on maximum balance. For a poor customer living in a rural area, the transaction cost of

obtaining KYC documents is likely to be significant, while the cap is unlikely to matter. On

the other hand, for a customer holding a well paying salaried job, obtaining KYC documents

will not be a problem, but the cap on balance can be a major inconvenience. In both cases, in

choosing between two accounts, a customer does not face a situation of marginal differences

with respect to either of the two attributes (transaction cost of KYC and inconvenience of

balance limit).

A cursory look at popular online platforms such as Amazon and Expedia also shows that in

many instances (although not always) a buyer does not face a situation of marginal differences.

A product with a faster delivery time or an air ticket with a shorter duration of journey usually

has a non-negligible difference in prices. As the rigidity of the noncompensatory property

does not pose any problem in these examples, the lexicographic rule can be useful in these

situations.

2For detailed configurations of these two and other models, see https://www.samsung.com/ca/

smartphones/all-smartphones/
3For the description of different savings accounts, see https://www.sbi.co.in/web/personal-banking/

accounts/saving-account
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This paper presents a characterization of lexicographic preferences in an individual deci-

sion making framework. The early literature can be traced back to Fishburn (1975), whose

axiomatization of lexicographic preferences is closely connected with Arrow’s (1951) impossi-

bility theorem. For a lexicographic preference over a finite-dimensional product set, the most

dominant factor is dictatorial in the sense that for two points that differ with respect to that

factor, the preference order is solely determined by that specific factor; if two points are same

with respect to the most dominant factor, the second most dominant factor is dictatorial

and so on. In the words of Fishburn, there is a “hierarchy of dictators” for lexicographic

preferences. Fishburn’s proof begins by establishing the existence of a smallest decisive sub-

set of the set of factors to show that this subset must contain a single element. A recent

alternative proof by Mitra and Sen (2014) reconfirms the Arrow-Fishburn interconnections

by determining an extremely pivotal factor along the same lines Geanakoplos (2005) identifies

an extremely pivotal voter to prove Arrow’s theorem.

More recently, Petri and Voorneveld (2016) propose another characterization of lexico-

graphic preferences. They point out the unsatisfactory domain restriction in Fishburn’s

approach that is needed to apply Arrow’s proof technique. Their characterization is based on

robustness of preference ordering between two alternatives for changes in a few rather than a

large number of coordinates. However, it requires Fishburn’s noncompensation axiom, which

explicitly “prohibits tradeoffs between factors”.

We consider an individual decision problem over alternatives that are identified by a finite

number n of attributes, where the domain of each attribute is the set of all non-negative real

numbers, so that the set of all alternatives is R
n
+. In this framework, we provide a different

characterization of lexicographic preferences. Our analysis offers three key distinctions with

the existing literature. First, in contrast with the previous works, continuity arguments play

a prominent role in our analysis. Second, we follow the stepwise approach of looking at two

attributes at a time, so our analysis mostly imposes structure on the induced preferences that

are defined on R
2
+. Third, unlike Fishburn (1975) and Petri and Voorneveld (2016), we do

not impose noncompensation on the preference; we consider an alternative condition (IMIA)

that is weaker than noncompensation (see Section 5.1).

1.1 Use of continuity

The lexicographic preference is frequently used as a textbook example of a discontinuous

preference. One main theoretical contribution of this paper is to show that by refining

the notion of discontinuity, standard continuity techniques can be applied to understand

lexicographic preferences.

Essentially, discontinuity is an issue for a lexicographic preference when comparisons

involve marginal differences. As discussed before, this is precisely where the noncompensatory

property is problematic. If the available alternatives are such that when two alternatives differ

with respect to an attribute, the difference is not marginal, then discontinuity is not an issue.

4



Referring to the examples given before, if a buyer has chosen Galaxy A51 over Galaxy A71

following the lexicographic rule, she will not alter her choice if the price of Galaxy A71 drops

slightly. Similarly a customer who has chosen the small account over the regular account will

not alter his choice if the maximum balance of the small account is lowered slightly.

Formally, refining the notion of discontinuity amounts to weakening the notion of conti-

nuity to what we call mild continuity. To define mild continuity, call two alternatives totally

different if they are different with respect to every attribute. A preference relation is mildly

continuous if strict preference order between any two totally different alternatives is preserved

around their small neighborhoods (Definition 3).4

Discontinuity poses some problems for studying consumer behavior in discrete choice

experiments (e.g., Gilbride and Allenby 2004, Campbell et al. 2006). In particular, for

experiments on consumer behavior related to health care, such problems are sometimes ad-

dressed by simply deleting those responses in the data set that indicate lexicographic ordering

or discontinuity in preference (e.g., McIntosh and Ryan 2002, Lancsar and Louviere 2006).

Deleting a subset of responses from a data set may not be desirable.5 Our approach can be

useful to better understand the nature of consumer preferences for such deleted subsets (for

instance, by seeing if mild continuity holds for those observations).

Another related issue that arises in these experiments is the ambiguity between a dominant

preference (that is, a preference in which the individual cares exclusively about only one

attribute) and the lexicographic preference (e.g., Scott 2002, Meenakshi et al. 2012). As

strong monotonicity can be used to separate a dominant from a lexicographic preference,6

our results can be useful to clarify this ambiguity. A dominant preference is continuous, so

correctly specifying such a preference directly resolves the issue of discontinuity.

It should be mentioned that the extent to which our results are useful will depend on

the specific context of an experiment. For instance, verifying strong monotonicity in an

experiment seems relatively easy if an attribute is quantitative such as the price of a transport

as in Sælensminder (2002) or the waiting time for a surgery as in McIntosh and Ryan (2002),

but can be difficult if an attribute is qualitative in nature such as the color of maize—white,

yellow or orange—as in the study of Meenakshi et al. (2012). Similarly, running additional

tests on a subset of initially deleted observations maybe feasible sometimes, but too expensive

in other situations.

4For the examples of smartphones and bank accounts, the alternatives differ with respect to each of the
mentioned attributes, but they can be same in regard to some other attributes (e.g., battery life for phones,
interest rate for bank accounts). Our analysis does not require mild continuity for the preference itself, but
for the induced preferences where all but two attributes are fixed across alternatives (see Definition 5, Axiom
2), so it involves totally different alternatives with respect to a subset of attributes, as in the examples. It
should be noted that mild continuity of induced preferences is neither necessary nor sufficient for a preference
to be mildly continuous (see Section 5.3).

5See Bahrampour et al. (2020, p.389) for an overview of this issue for experiments in the context of health
care.

6For instance, on R
3
+, a dominant preference with respect to attribute 1 is represented by utility function

u(x1, x2, x3) = x1 (the individual cares exclusively about attribute 1). As shown in Example 6, a dominant
preference satisfies all of our axioms of lexicographic preference except strong monotonicity.
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1.2 The results

We first consider the decision problem where alternatives have only two attributes. Together

with mild continuity, the other central concept used in our analysis is the notion of an unhappy

set, which an extension of lower contour sets. A set of alternatives is called an unhappy set

if any alternative outside the set is preferred to all alternatives inside (Definition 4).7 We

characterize lexicographic preferences with two attributes by imposing a certain structure on

the unhappy sets. Consider two alternatives a, b in an unhappy set. Suppose b is superior

in regard to attribute 1 and a is superior in regard to attribute 2. We say an unhappy set

satisfies inclusion of marginally improved alternatives (IMIA) if it includes a third alternative

c that is same with a in regard to attribute 2, but marginally improves upon a in regard to

attribute 1 (Definition 6). We show that a complete and transitive preference relation on

R
2
+ is lexicographic if and only if it is strong monotone, mildly continuous and any closed

unhappy set satisfies IMIA (Theorem 1).

Extending to the general case of more than two attributes, the starting point is to compare

alternatives for which all but two attributes have level zero.8 The zero level can be interpreted

as the minimum or basic level of an attribute. Fix any subset of two attributes and consider

all alternatives for which all attributes outside that subset have zero level. The original

preference relation gives an induced preference between alternatives for which all but two

fixed attributes have level zero. Such an induced preference is defined on R
2
+. By applying

the characterization result for R2
+, each of such induced preference is lexicographic if and only

if each of them is strong monotone, mildly continuous and any closed unhappy set satisfies

IMIA (Theorem 2). This gives a characterization of a “pairwise lexicographic” preference (a

preference for which any induced preference with two attributes fixing all other attributes

at the minimum level zero is lexicographic). This result is of independent interest as such

pairwise comparison can give some information about the relative importance of attributes

for the decision maker.

To get a lexicographic preference from the class of pairwise lexicographic preferences, we

require nonreversibility under additional attributes (NRAA). As before consider two alter-

natives for which all but two attributes have zero level. Suppose one of these alternatives is

preferred to the other. Now add positive levels of one or more attributes to each of these

alternatives keeping the levels of additional attributes same across the two. NRAA holds if

the preference order between such new pairs of alternatives stays the same as before (Def-

inition 8). Consider the example of smartphones in which any phone has three attributes:

price, storage capacity and quality of camera. Consider two phones, each of which has zero

level (that is, the minimum level) of storage capacity and suppose the first phone is preferred

to the second. NRAA says that raising the storage capacity by the same amount to each of

7Unhappy sets were introduced in Mitra and Sen (2014).
8This approach is closely related to choice rules based on “elimination by aspects” proposed by Tversky

(1972).
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them without changing their prices or quality of camera does not alter the preference order.9

In the general case of more than two attributes, we show that a complete and transitive

preference relation is lexicographic if and only if (a) any induced preference between alterna-

tives for which all but two same attributes have zero levels satisfies (i) strong monotonicity,

(ii) mild continuity, (iii) IMIA for any closed unhappy set and (b) nonreversibility under

additional attributes holds (Theorem 3).

1.3 Stepwise approach

Bettman et al. (1998, p.189) point out two distinct ways of processing information in a

decision problem involving products with multiple attributes:

“...information may be processed primarily by alternative, in which multiple at-

tributes of a single option are processed before another option is considered, or

by attribute, in which the values of several alternatives on a single attribute are

examined before information on another attribute is considered.”

Our approach, where the decision maker compares alternatives by looking at two attributes at

a time, more closely follows the second method above. This is consistent with the findings that

consumers often screen products on the basis of one or two important attributes (e.g., Gilbride

and Allenby 2004) and more generally, “People...often look up at one or two relevant cues,

avoid searching for conflicting evidence, and use noncompensatory strategies” (Goldstein and

Gigerenzer 1999, p.82). Our characterization of lexicographic preferences proceeds in two

steps, where the first step gives a structure on the induced preferences with two attributes,

resulting in pairwise lexicographic preferences. Nonreversibilty, where additional attributes

of same levels are added, gives lexicographic preference in the second step.

1.4 IMIA and noncompensation

The IMIA requirement (Axiom 3) is a weaker condition than Fishburn’s noncompensation

axiom.10 Specifically, we show that Fishburn’s noncompensation implies noncompensation

of induced preferences on R
2
+, which in turn implies the IMIA condition (Proposition 3).

Table 1 presents a comparison of these conditions for lexicographic and two related prefer-

ences: (i) pairwise lexicographic and (ii) the lexi-max preference, which follows a lexicographic

order on magnitudes of attributes rather than their identities. The IMIA requirement, be-

ing the weakest of these three conditions, hold for all three preferences (see Section 5.1 for

details).

9Although NRAA has some resemblance with the independence axiom of Fishburn (1975), they are not
same. See Section 5.2 for examples that show that Fishburn’s independence axiom is neither necessary nor
sufficient for NRAA.

10Consider any alternatives x, y, w, z. The noncompensation condition says: suppose for every attribute i,

xi > yi if and only if wi > zi and yi > xi if and only if zi > wi; then the individual prefers x to y if and only
if the individual prefers w to z.
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Table 1 Examples of preferences satisfying different conditions

Lexicographic Pairwise lexicographic, Lexi-max

preference but not lexicographic preference

(Example 1) (Example 2)

Fishburn’s X

noncompensation axiom

Noncompensation for X X

induced preferences

on R
2
+ (Axiom 3A)

IMIA requirement X X X

(Axiom 3)

While we theoretically establish that IMIA is a less demanding requirement, it can be

argued that this condition, which involves extensions of lower contour sets, may not be

straightforward to use for applications. We address this issue by proposing an alternative

characterization where the IMIA (Axiom 3) is replaced by noncompensation of induced pref-

erences on R
2
+ (Axiom 3A), which is a stronger requirement, but still less stringent than

Fishburn’s noncompensation axiom. We show that our characterization of pairwise lexico-

graphic and lexicographic preferences go through with Axiom 3A (Corollary 3). Since Axiom

3A is relatively simple to explain and verify, this alternative characterization may be more

suitable to use for applications such as designing experiments.

The paper is organized as follows. We present the analytical framework in Section 2

where the key concepts are introduced. Section 3 looks at lexicographic preferences with

two attributes and presents the characterization result (Theorem 1). Section 4 considers

more than two attributes, where we present the result on pairwise lexicographic preferences

(Theorem 2) and the main result (Theorem 3). In Section 5 we discuss the implications of

the axioms. Most proofs are presented in the Appendix.

2 The analytical framework

Consider an individual who has a preference relation % on a set of alternatives X. Each

alternative is characterized by n attributes. Let N = {1, . . . , n} be the set of attributes.

The domain of any attribute i ∈ N is R+. Therefore an alternative is given by a vector

x = (x1, . . . , xn) ∈ R
n
+ and the set of all alternatives is X = R

n
+.

For any non empty S ⊆ N, denote XS = R
|S|
+ . For any x ∈ X and S ⊆ N, we write

x = (xS , xN\S) where xS ∈ XS and xN\S ∈ XN\S (note that x = xN ). If xi = 0 for all i ∈ S,

we write xS = 0S .

In the special case when S is the singleton set {i}, it will be convenient to use the simpler

notation xS = xi, x
N\S = x−i, XS = Xi and XN\S = X−i. We write x = (xi, x−i) where

xi ∈ Xi and x−i ∈ X−i.

The distance between x, y ∈ X, denoted by d(x, y), is given by the Euclidean metric. For
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xS , yS ∈ XS , d(x
S , yS) is the same metric d restricted to XS . A neighborhood of xS is a set

Bε(x
S) consisting of all yS ∈ S such that d(xS , yS) < ε for some ε > 0.

The individual’s preference on X is defined using the binary relation % where “x % y”

stands for “the individual prefers x to y”. The strict preference “x ≻ y” stands for “the

individual strictly prefers x to y” and is defined as x ≻ y ⇔ [x % y] and [not y % x]. The

indifference relation “x ∼ y” stands for “the individual is indifferent between x and y” and

is defined as x ∼ y ⇔ [x % y] and [y % x].

For any x ∈ X, the lower contour set of x under % is L(x) = {y ∈ X | x % y}. The

strict lower contour set of x is L(x) = {y ∈ X | x ≻ y} and the indifference set of x is

I(x) = {y ∈ X | x ∼ y}.

A preference relation % on X is complete if for any x, y ∈ X, either x % y or y % x. It is

transitive if for any x, y, z ∈ X, whenever x % y and y % z, we have x % z. Throughout we

consider preference relations on X that are complete and transitive.

Let x, y ∈ X. If xi > yi for all i ∈ N , we write x > y. If xi ≥ yi for all i ∈ N, we write

x ≥ y. A preference relation % on X is monotone if for any x, y ∈ X with x > y, we have

x ≻ y. It is strong monotone if for any x, y ∈ X with x ≥ y and x 6= y, we have x ≻ y.

Definition 1 Let N = {1, . . . , n} be the set of attributes. A preference relation % on

X = R
n
+ is lexicographic if x ∼ x for all x ∈ X and the set of attributes can be written

as N = {i1, . . . , in} such that for any x, y ∈ X, x ≻ y if and only if either [xi1 > yi1 ] or

[xi1 = yi1 , xi2 > yi2 ] or . . . or [xi1 = yi1 , . . . , xin−1
= yin−1

, xin > yin ]. For this preference

i1 is the most important attribute, i2 the next most important attribute and so on and the

preference is denoted by i1 ≻
L . . . ≻L in.

2.1 Some useful concepts

To characterize lexicographic preferences, it will be useful to introduce (i) mild continuity of

a preference relation, which is a weaker version of continuity, (ii) unhappy sets, which are

related to lower contour sets and (iii) induced preferences.

2.1.1 Mild continuity

Definition 2 For x, y ∈ X, we say x and y are totally different, denoted by x ˆ6= y, if xi 6= yi

for all i ∈ N.

Note that x ˆ6= y if and only if y ˆ6= x. For xS , yS ∈ XS , we define xS ˆ6= yS similarly. A

preference relation is mildly continuous if strict preference order between any two totally

different points is preserved around their small neighborhoods.

Definition 3 A preference relation % is mildly continuous on X if for any x, y ∈ X with

x ˆ6= y and x ≻ y, there exists ε > 0 such that if x̃ ∈ Bε(x) and ỹ ∈ Bε(y), then x̃ ≻ ỹ.

We recall that a preference relation % is continuous on X if for any x, y ∈ X with x ≻ y,

there exists ε > 0 such that if x̃ ∈ Bε(x) and ỹ ∈ Bε(y), then x̃ ≻ ỹ. Thus for a continuous
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preference, strict preference order between any two points, totally different or otherwise, is

preserved around their small neighborhoods.

2.1.2 Unhappy sets

Definition 4 A set A ⊆ X is an unhappy set for a preference relation % on X if for any

y ∈ X \A, y ≻ x for every x ∈ A.

Observe that lower contour and strict lower contour sets are unhappy sets. So are the

sets X and ∅.

Let A be a subset of a metric space X. A point x ∈ X is a boundary point of A if

every neighborhood of x contains at least one point in A and at least one point in X \ A.

The set of all boundary points of A is called the boundary of A and denoted by ∂A. To

characterize unhappy sets we recall the following result. For the proof, see, e.g., Mendelson

(1990: Theorem 4.23, Chapter 3 and Definition 2.1, Chapter 4).

Result 1 If A is a non empty proper subset of a connected space, then (i) ∂A 6= ∅ and (ii)

the set A cannot be both open and closed.

Since R
n
+ is a connected set, we can use this result for subsets of X = R

n
+.

Proposition 1 Consider a complete and transitive preference relation % on X = R
n
+.

(i) If A,B are unhappy sets, then either A ⊆ B or B ⊆ A.

(ii) Let A be a non empty proper subset of X. If A is an unhappy set and % is mildly

continuous, then for any x ∈ ∂A, the following hold for any y ˆ6= x.

(a) If y ∈ ∂A, then x ∼ y.

(b) If y ∈ A, then x % y.

(c) If x ≻ y, then y ∈ A.

Proof See the Appendix.

For a continuous preference relation, the last part of the proposition also holds for y that

are not totally different from x. In that case unhappy sets can be more precisely characterized.

Corollary 1 Consider a complete, transitive and continuous preference relation % on X =

R
n
+. Let A be an unhappy set which is a non empty proper subset of X. Then the following

hold for any x ∈ ∂A.

(i) x ∼ y for any y ∈ ∂A.

(ii) L(x) ⊆ A ⊆ L(x).

(iii) The set A must be either closed or open, but not both. If A is closed, then A = L(x)

and if A is open, then A = L(x).

10



Proof See the Appendix.

Thus for a continuous preference a set is an unhappy set if and only if it is a lower

contour or a strict lower contour set. A lexicographic preference is not continuous, although

it is mildly continuous. Any lower contour set of a lexicographic preference is neither open

nor closed.

2.1.3 Induced preferences

Fix a subset of attributes and consider all points for which attributes in that subset have zero

level. The original preference relation gives a preference order between alternatives for which

a fixed subset of attributes have level zero. This is formalized by the notion of an induced

preference.

Definition 5 Let S be a non empty subset of N. For a preference relation % on X, the

induced preference %S on XS = R
|S|
+ is defined as follows: for yS , zS ∈ XS , y

S %S zS if and

only if (yS , 0N\S) % (zS , 0N\S).

Thus %S is a preference relation over all alternatives for which the attributes in the set

N \ S have zero level. Note that the induced preference %N coincides with % .

Remark 1 For a lexicographic preference, any induced preference is also lexicographic. If %

is the lexicographic preference 1 ≻L . . . ≻L n and S = {i1, . . . , is} ⊆ N where i1 < . . . < is,

then %S is the lexicographic preference i1 ≻
L . . . ≻L is.

We can define unhappy sets for induced preferences. We say a set A ⊆ XS is an unhappy

set for the induced preference %S if for any b ∈ XS \ A, b ≻S a for every a ∈ A. For x ∈ X

and a preference relation % on X, denote by L(x) the closure of the lower contour set L(x),

that is, L(x) := L(x)∪∂L(x). The next proposition shows that for a complete, transitive and

strong monotone preference, mild continuity of induced preferences ensures that the closure

of a lower contour set is an unhappy set.

Proposition 2 Consider a complete, transitive and strong monotone preference relation %

on X = R
n
+. Suppose for any S ⊆ N, the induced preference %S is mildly continuous on XS .

Then for every x ∈ X, the set L(x) is an unhappy set for % .

Proof See the Appendix.

A strong monotone preference relation on R+ is continuous; so it is mildly continuous.

Suppose % is strong monotone and let S ⊆ N be a singleton set. Then the induced preference

%S , which is defined on R+, is strong monotone and therefore mildly continuous. When

X = R
2
+ in Proposition 2, then any non empty proper subset of X is a singleton set and mild

continuity already holds for the corresponding induced preference. This gives the following

result.

Corollary 2 For a complete, transitive, strong monotone and mildly continuous preference

relation on R
2
+, the closure of any lower contour set is an unhappy set.
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3 Lexicographic preferences with two attributes

We begin by presenting a characterization of lexicographic preferences with two attributes.

This result is of independent interest. Moreover, it will be also useful for characterizing

lexicographic preferences with more than two attributes.

3.1 Inclusion of marginally improved alternatives

Consider the individual decision problem where each alternative has only two attributes. In

this case the set of attributes is N = {1, 2} and the set of alternatives is X = R
2
+.

Definition 6 For a monotone preference relation % on X = R
2
+, an unhappy set A satisfies

inclusion of marginally improved alternatives (IMIA) if the following hold for any x, y ∈ A

with x ˆ6= y:

(i) if y > x, then ∃ y > x̃ > x such that x̃ ∈ A.

(ii) if y2 > x2 and x1 > y1, then ∃ x2 < x̃2 < y2 such that (x1, x̃2) ∈ A.

(iii) if y1 > x1 and x2 > y2, then ∃ x1 < x̃1 < y1 such that (x̃1, x2) ∈ A.

Suppose x, y are in an unhappy set A. Since the preference relation is monotone, if y > x,

then x̃ ∈ A for any y > x̃. This shows Definition 6 does not impose any additional requirement

when y > x.

If y2 > x2 and x1 > y1, then Definition 6 requires there exists x2 < x̃2 < y2 such

that (x1, x̃2) ∈ A (see Figure 1(a)). If such a x̃2 exists, then by the monotonicity of the

preference relation, (x1, z2) ∈ A for all x2 < z2 < x̃2. This means if x, y are in an unhappy

set A where x is superior in regard to the first and inferior in regard to the second attribute,

then alternatives that are marginal improvements over x in regard to the second attribute

(specifically, alternatives (x1, z2) with x2 < z2 < x̃2) are also in A.

Similarly if y1 > x1 and x2 > y2, then Definition 6 requires there exists x1 < x̃1 < y1 such

that (x̃1, x2) ∈ A (see Figure 1(b)). If such a x̃1 exists, then by monotonicity, (z1, x2) ∈ A

for all x1 < z1 < x̃1. This means if x, y are in an unhappy set A where x is superior in regard

to the second and inferior in regard to the first attribute, then alternatives that are marginal

improvements over x in regard to the first attribute are also in A.

Remark 2 If x = (x1, x2) is an interior point of A, then there is a neighborhood Bε(x) ⊂ A.

In this case there always exist x̃1 > x1, x̃2 > x2 such that (x1, x̃2), (x̃1, x2) ∈ Bε(x). Thus

IMIA always holds for open unhappy sets such as strict lower contour sets. IMIA imposes

additional structure on the preference only for unhappy sets that are not open. For example,

for the continuous preference on X = R
2
+ represented by the Cobb-Douglas utility function11

u(x1, x2) = xα1x
1−α
2

(where 0 < α < 1), IMIA does not hold for lower contour sets. For a

lexicographic preference on R
2
+, IMIA does not hold for lower contour sets (which are neither

11A function u : X → R is a utility function representing % if for all x, y ∈ X, x % y if and only if u(x) ≥ u(y).
Debreu’s theorem ensures that any continuous preference relation is represented by some continuous utility
function (see Debreu 1954 and also Lecture 2 of Rubinstein 2012).
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Figure 1(a) [IMIA]: if x,y in A, there 

is x2 <  𝑥 2 < y2 such that (x1, 𝑥 2) is 
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Figure 1(b) [IMIA]: if x,y in A, there 

is x1 <  𝑥 1 < y1 such that (𝑥 1, x2) is 

also in A 

x (𝑥 1, x2) 
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y1 > x1, x2 > y2 

open nor closed). However, any closed unhappy set of a lexicographic preference on R
2
+

satisfies this property.

Lemma 1 For a lexicographic preference on X = R
2
+, any closed unhappy set satisfies IMIA.

Proof See the Appendix.

For a strong monotone and mildly continuous preference % on X = R
2
+, when a closed

unhappy set satisfies IMIA, it has a certain structure as stated in Lemma 2. Let A% be a

13



family of subsets of X defined as follows:

A% := {A|A ⊂ X; ∃z ∈ A with z > (0, 0);A is a closed unhappy set satisfying IMIA} (1)

Lemma 2 Consider a complete, transitive, strong monotone and mildly continuous preference

relation % on X = R
2
+. Let A ∈ A%. Then ∃ a positive number αA and an attribute i∗ ∈ {1, 2}

such that A = {x ∈ X|0 ≤ xi∗ ≤ αA}. Moreover the attribute i∗ is the same for all sets in

A%.

Proof See the Appendix.

Applying Lemma 2 and Corollary 2, we can characterize lexicographic preferences with

two attributes.

Theorem 1 A complete and transitive preference relation % on R
2
+ is lexicographic if and

only if it is strong monotone, mildly continuous and any closed unhappy set of % satisfies

IMIA.

Proof See the Appendix.

4 Lexicographic preference with more than two attributes

Our approach to characterizing lexicographic preferences with more than two attributes is

through conditions on induced preferences %S with |S| = 2 that are defined on R
2
+, where

all but two attributes are held fixed at the minimum level zero. This can be viewed as a

stepwise process where the individual decision maker considers two attributes at a time.

4.1 Pairwise lexicographic preferences

For the decision problem with two attributes, we know by Theorem 1 that strong mono-

tonicity, mild continuity and IMIA for any closed unhappy set ensure the preference is lexi-

cographic. An immediate consequence of this result is if these properties are imposed on the

induced preference %S for every S ⊆ N with |S| = 2, then each of such induced preferences

will be lexicographic, which gives a “pairwise lexicographic” preference, as defined below.

Definition 7 A preference relation % on R
n
+ is pairwise lexicographic if for every S ⊆ N with

|S| = 2, the induced preference %S is a lexicographic preference on R
2
+.

Remark 3 If % is pairwise lexicographic, then for any S ⊆ N with |S| = 2, there are i, j ∈ N

such that S = {i, j} and i is the most important attribute of %S , that is, xS ≻S yS if and

only if either [xi > yi] or [xi = yi, xj > yj ] which means

(xS , 0N/S) ≻ (yS , 0N/S) if and only if either [xi > yi] or [xi = yi, xj > yj ] (2)

If (2) holds for S = {i, j}, we write i ≻∗ j. Note that if % is pairwise lexicographic, then for

any i, j ∈ N, either i ≻∗ j or j ≻∗ i.

14



Axiom 1 For any S ⊆ N with |S| = 2, the induced preference %S is strong monotone.

Axiom 2 For any S ⊆ N with |S| = 2, the induced preference %S is mildly continuous on

XS = R
2
+.

Axiom 3 For any S ⊆ N with |S| = 2, any closed subset of XS = R
2
+ that is an unhappy

set for the preference %S , satisfies IMIA.

Theorem 2 Consider any complete and transitive preference relation % on X = R
n
+ where

n ≥ 3. The following statements are equivalent.

(P1) The preference relation % satisfies Axiom 1, Axiom 2 and Axiom 3.

(P2) The preference relation % is pairwise lexicographic.

Proof Since the preference relation % is complete and transitive, so is the induced preference

%S for any S ⊆ N with |S| = 2. Then the result is immediate from Theorem 1.

Clearly a lexicographic preference is pairwise lexicographic, but the converse is not true

(see Example 1). We need some additional structure to get a lexicographic preference from

the class of pairwise lexicographic preferences.

4.2 Nonreversibility under additional attributes

As before consider two alternatives for which all but two attributes have zero level and suppose

the individual strictly prefers one of these to the other. Now suppose we raise the levels of

one or more attributes that initially had zero levels, still keeping the levels of these attributes

same across the two. Nonreversibility under additional attributes holds if the preference order

between such new pairs of alternatives stays the same as before.

Definition 8 A preference relation % on X satisfies nonreversibility under additional at-

tributes (NRAA) if for any S ⊆ N with |S| = 2, the following hold: if (xS , 0N/S) ≻ (yS , 0N/S),

then (xS , zN/S) ≻ (yS , zN/S) for any zN/S ∈ XN\S .

Axiom 4 The preference relation % satisfies NRAA.

Lemma 3 Consider a complete and transitive preference relation % on X = R
n
+ that is

pairwise lexicographic and satisfies Axiom 4. Then for any i, j ∈ N, either i ≻∗ j or j ≻∗ i

and the following hold.

(i) Let S = {i, j} and i ≻∗ j. If either [xi > yi] or [xi = yi and xj > yj ], then (xS , zN\S) ≻

(yS , zN\S)for any zN\S ∈ XN\S .

(ii) For i, j, k ∈ N, if i ≻∗ j and j ≻∗ k, then i ≻∗ k.

(iii) Based on ≻∗, the attributes of N can be ordered. That is, we can write N = {i1, . . . , in}

such that i1 ≻
∗ . . . ≻∗ in.

Proof Part (i) follows from (2) by applying Axiom 4. See the Appendix for the proofs of

parts (ii)-(iii).
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4.3 The main result

Theorem 3 Consider any complete and transitive preference relation % on X = R
n
+ where

n ≥ 3. The following statements are equivalent.

(L1) The preference relation % satisfies Axiom 1, Axiom 2, Axiom 3 and Axiom 4.

(L2) The preference relation % is lexicographic.

Proof (L2)⇒(L1): Consider a lexicographic preference % on R
n
+ for which without loss

of generality (w.l.o.g.), 1 is the most important attribute, 2 is the second most important

attribute and so on. Consider any S ⊆ N with |S| = 2. If (xS , 0N\S) ≻ (yS , 0N\S), then there

are attributes i < j such that S = {i, j} and either (i) [xi > yi] or (ii) [xi = yi, xj > yj ].

This implies (xS , zN\S) ≻ (yS , zN\S) for any zN\S , so Axiom 4 holds. As a lexicographic

preference is also pairwise lexicographic, by Theorem 2, Axioms 1-3 also hold.

(L1)⇒(L2): Since Axioms 1-3 hold, by Theorem 2, the preference is pairwise lexico-

graphic. As Axiom 4 holds, by Lemma 3(iii) we can write N = {i1, . . . , in} such that

i1 ≻∗ . . . ≻∗ in. W.l.o.g., let i1 = 1, . . . , in = n. We prove that % is the lexicographic prefer-

ence 1 ≻L . . . ≻L n by showing that for any m ∈ {1, . . . , n}, if x, y are such that xi = yi for

all i < m and xm > ym, then x ≻ y.

First let m = n and suppose x, y are such that xi = yi for all i < n and xn > yn. Since

n− 1 ≻∗ n, in this case by Lemma 3(i), we have x ≻ y.

Next consider any m ∈ {1, . . . , n − 1}. Let S = {i ∈ N |i < m} and T = {i ∈ N |i > m}.

Let x, y ∈ X be such that xS = yS and xm > ym. We can find x0m, . . . , xn−m
m ∈ R+ such that

xm = x0m > x1m > . . . > xn−m
m = ym. Construct z[k] = (z[k]1, . . . , z[k]n) ∈ X recursively as

follows: z[0] = x and for k = 1, . . . , n−m, z[k] is such that

z[k]m = xkm, z[k]m+k = ym+k, z[k]
S = z[0]S = xS and z[k]T\{m+k} = z[k − 1]T\{m+k}

Thus

z[1]i = xi for i < m, z[1]m = x1m, z[1]m+1 = ym+1, z[1]i = xi for i > m+ 1

z[2]i = xi for i < m, z[2]m = x2m, z[2]i = yi for i = m+ 1,m+ 2, z[2]i = xi for i > m+ 2

and in general

z[k]i = xi for i < m, z[k]m = xkm, z[k]i = yi for i = m+ 1, . . . ,m+ k, z[k]i = xi for i > m+ k

Observe that z[k] and z[k−1] have same levels for all but two attributes (m and m+k). Since

m ≻∗ m+ k and z[k − 1]m = xk−1
m > z[k]m = xkm, by Lemma 3(i) we have z[k − 1] ≻ z[k].

Noting that z[n − m] = y, we conclude that x = z[0] ≻ z[1] ≻ . . . ≻ z[n − m] = y. Hence

x ≻ y.

Thus for any x, y with xi = yi for all i < m and xm > ym, we have x ≻ y. Applying this

result for m = 1, . . . , n, proves (L2).
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5 Discussion on the axioms

In conclusion, we discuss the implications of our axioms in reference to the axioms of Fishburn

(1975) and also look at their robustness.

5.1 Fishburn’s noncompensatory axiom and IMIA

For a strong montone preference relation % on X = R
n
+, Fishburn’s noncompensatory axiom

(see Axiom 3 of Fishburn 1975) can be stated as: if (xi > yi if and only if zi > wi) and

(yi > xi if and only if wi > zi), then (x ≻ y if and only if z ≻ w) and (y ≻ x if and only if

w ≻ z) for all x, y, z, w ∈ X. For a concise presentation of this condition, for x, y ∈ X, let

M(x, y) := {i ∈ N |xi > yi} and E(x, y) := {i ∈ N |xi = yi} (3)

Note that if M(x, y) = M(z, w) and M(y, x) = M(w, z), then E(x, y) = E(z, w).

Definition 9 A strong monotone preference relation % on X = R
n
+ is noncompensatory if it

satisfies Fishburn’s noncompensatory axiom, that is, for all x, y, z, w ∈ X:

if M(x, y) = M(z, w) and M(y, x) = M(w, z), then (x ≻ y ⇔ z ≻ w) and (y ≻ x ⇔ w ≻ z).

Remark 4 For any non empty S ⊂ N, if x = (xS , 0N/S) and y = (yS , 0N/S), then M(x, y) =

M(xS , yS) and M(y, x) = M(yS , xS). This shows if a preference relation % is noncompen-

satory, then so is the induced preference %S . However, the converse is not true, as shown in

the following example.

Example 1 Consider a preference relation % on X = R
3
+ that is reflexive (x ∼ x for all

x ∈ X) and for which following hold for any xi, yi ∈ R+: (a) (x1, x2, x3) ≻ (y1, y2, y3) if

x1 > y1, (b) (0, x2, x3) ≻ (0, y2, y3) if x2 > y2, (c) (0, x2, x3) ≻ (0, x2, y3) if x3 > y3, (d)

(x1, x2, x3) ≻ (x1, y2, y3) if x1 > 0 and x2 + x3 > y2 + y3 and (e) (x1, x2, x3) ∼ (x1, y2, y3) if

x1 > 0 and x2+x3 = y2+y3. This preference is pairwise lexicographic, but not lexicographic.

For any S ⊆ N with |S| = 2, the induced preference %S is lexicographic, so %S is

noncompensatory. Take x = (0, 6, 1), y = (0, 4, 8), z = (1, 5, 4), w = (1, 4, 7). Note that

M(x, y) = M(z, w) = {2} and M(y, x) = M(w, z) = {3}. We have x ≻ y (by (b)), but w ≻ z

(by (d)), so % is not noncompensatory.

The next proposition shows that Fishburn’s noncompensatory axiom implies Axiom 3.

Proposition 3 Consider the following statements for a complete, transtitive and strong mon-

tone preference relation % on X = R
n
+.

(A) % is noncompensatory.

(B) For any S ⊆ N with |S| = 2, the induced preference %S is noncompensatory.
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(C) Axiom 3 holds, that is, for any S ⊆ N with |S| = 2, any closed subset of XS = R
2
+ that

is an unhappy set for the preference %S , satisfies IMIA.

The statements above are related as: (A)⇒(B)⇒(C).

Proof It is already shown in Remark 4 that (A)⇒(B). To prove (B)⇒(C), consider any

S ⊆ N with |S| = 2 and suppose the induced preference %S is noncompensatory. Without

loss of generality (w.l.o.g.), let S = {1, 2}. Let A be a closed subset of XS = R
2
+ that is an

unhappy set for %S . To show A satisfies IMIA (see Definition 6), let x, y ∈ A with x ˆ6= y. If

y > x, then by the monotoncity of %S (which follows from the monotonicity of %), x̃ ∈ A for

all x < x̃ < y, so (i) of Definition 6 holds.

Next we consider x, y ∈ A such that y2 > x2, x1 > y1 (see Figure 1(a)) and show that (ii)

of Definition 6 holds. Let x2 < x̃2 < y2 and x̃ = (x1, x̃2). Using (3), for any such x̃, we have

M(x, y) = M(x̃, y) = {1} and M(y, x) = M(y, x̃) = {2}. Since %S is noncompensatory, if

y ≻S x we must have y ≻S x̃ and so x̃ ∈ A (since A is an unhappy set and y ∈ A). If y ∼S x

(so that neither y ≻S x nor x ≻S y), then again by the noncompensatory property of %S , we

must have y ∼S x̃, so that x̃ ∈ A.

Finally suppose x ≻S y. Suppose in contrary to (ii) of Definition 6, for every x̃2 with

x2 < x̃2 < y2 and x̃ = (x1, x̃2), we have x̃ /∈ A. In that case, clearly any neighborhood Bε(x̃)

contains a point that is not in A. Also note that Bε(x̃) contains a point z such that z1 < x1

and z2 > x2, so that M(x, y) = M(x, z) = {1} and M(y, x) = M(z, x) = {2}. Since %S in

noncompensatory and x ≻S y, we must have x ≻S z, so z ∈ A (as A is an unhappy set and

x ∈ A). Thus Bε(x̃) contains at least one point in A and at least one point not in A. This

shows x̃ ∈ ∂A. Since A is a closed set, we must have x̃ ∈ A, a contradiction to the initial

assertion that x̃ /∈ A. This shows that (ii) of Definition 6 must hold.

For the case y1 > x1, x2 > y2 (Figure 1(b)), re-labeling 1, 2, we can apply the same

reasoning to show that (iii) of Definition 6 holds. This shows (B)⇒(C).

For the preference of Example 1, (B) holds but (A) does not. By Proposition 3, (C) also

holds for that preference, so it satisfies Axiom 3. For the preference of the following example,

(C) holds, but (B) does not hold (and therefore (A) also does not hold).

Example 2 Consider the lexi-max preference % (see, e.g., Bossert et al. 1994, Chistyakov

and Chumakova 2018). For x = (x1, x2, x3) ∈ R
3
+, denote by x∗i the i-th highest order

statistics of x so that x∗1 ≥ x∗2 ≥ x∗3. For the lexi-max preference, for any xi, yi ∈ R+ we have:

(a) x ≻ y if either [x∗1 > y∗1], or [x∗1 = y∗1, x
∗
2 > y∗2], or [x∗1 = y∗1, x

∗
2 = y∗2, x

∗
3 > y∗3] and (b)

x ∼ y if [x∗1 = y∗1, x
∗
2 = y∗2, x

∗
3 = y∗3].

Note that % is complete, transitive, strong monotone and for any S ⊆ N with |S| = 2, the

induced preference %S is a lexi-max preference on XS = R
2
+. To see %S is not noncompen-

satory, w.l.o.g., let S = {1, 2}. The lower contour sets of the lexi-max preference on R
2
+ are

presented in Figures 2(a)-2(b). Consider x ∈ R
2
+ as in Figure 2(a). For y on the line Ax̂ and z

on the line x̂B, we have x ≻S y and z ≻S x (for instance, take x = (4, 2), x̂ = (2, 4), y = (1, 4),
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Lower contour sets for the lexi-max preference with two attributes  

z = (3, 4)). Using (3), we have M(x, y) = M(x, z) = {1} and M(y, x) = M(z, x) = {2}, so

the lexi-max preference on R
2
+ does not satisfy noncompensation.

However, this preference satisfies Axiom 3. To see this, w.l.o.g., let S = {1, 2} and let A

be any closed unhappy set for %S . To show A satisfies IMIA (Definition 6), let x, y ∈ R
2
+

with x ˆ6= y. The conclusion is immediate for y > x, so let y2 > x2 and x1 > y1 (by re-labeling

1, 2, same reasoning applies when y1 > x1 and x2 > y2). There are two possibilities.

(a) If x is on or above the 45◦ line (i.e., x2 ≥ x1), then for any x2 < x̃2 < y2, we have

max{x1, x̃2} = x̃2 < y2, so y ≻S (x1, x̃2). Since A is an unhappy set and y ∈ A, we must have

(x1, x̃2) ∈ A, so (ii) of Definition 6 holds.
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(b) If x is below the 45◦ line (i.e., x2 < x1) as in Figure 2(a), then any x̃ = (x1, x̃2) with

x2 < x̃2 < min{x1, y2} is on the line Bx and so it is a limit point of L(x). Since A is an

unhappy set and x ∈ A, we have L(x) ⊆ A, so x̃ is also a limit point of A. As A is closed, we

have x̃ ∈ A, which shows (ii) of Definition 6 holds.

Proposition 3, together with Examples 1-2, clearly establishes that Axiom 3 (the IMIA

requirement) is a weaker condition than Fishburn’s noncompensation axiom. We can also

characterize pairwise lexicographic and lexicographic preferences by replacing Axiom 3 by

condition (B) of Proposition 4, which is a stronger requirement than IMIA, but is still weaker

than Fishburn’s noncompensation axiom.

Axiom 3A For any S ⊆ N with |S| = 2, the induced preference %S is noncompensatory.

Corollary 3 Consider any complete and transitive preference relation % on X = R
n
+ where

n ≥ 3.

(i) The preference relation % is pairwise lexicographic if and only if it satisfies Axiom 1,

Axiom 2 and Axiom 3A.

(ii) The preference relation % is lexicographic if and only if it satisfies Axiom 1, Axiom 2,

Axiom 3A and Axiom 4.

Proof We know a pairwise lexicographic preference satisfies Axioms 1-2 and a lexicographic

preference satisfies Axioms 1-2 and Axiom 4. The ‘only if’ part of each of (i),(ii) follows by

noting that both pairwise lexicographic and lexicographic preferences satisfy Axiom 3A.

Noting that if Axiom 3A holds, then Axiom 3 also holds (Proposition 3), the ‘if’ part of

(i) follows by Theorem 2 and the ‘if’ part of (ii) follows by Theorem 3.

5.2 Fishburn’s independence axiom and NRAA

Axiom 4 (NRAA) has some resemblence with Fishburn’s independence axiom (see Axiom 2

of Fishburn 1975), but they are different. The NRAA compares alternatives that are same

in regard to all but two attributes (see Definition 8), whereas the independence axiom fixes

all but one attribute: it requires (xi, z−i) ≻ (yi, z−i) if and only if (xi, z̃−i) ≻ (yi, z̃−i) for all

i, z−i, z̃−i. The following examples with N = {1, 2, 3} show the independence axiom is neither

necessary nor sufficient for NRAA.

Example 3 (NRAA holds, independence axiom does not) Consider a preference re-

lation % on X = R
3
+ that has utility function u(x1, x2, x3) = min{x1, x2} + min{x1, x2}x3.

Observe that if S = {1, 3} or {2, 3}, then u(xS , 0N/S) = u(yS , 0N/S) = 0, so we cannot

have (xS , 0N/S) ≻ (yS , 0N/S). For S = {1, 2}, if (xS , 0N/S) ≻ (yS , 0N/S), then min{x1, x2} >

min{y1, y2}, which implies that u(x1, x2, z3) > u(y1, y2, z3) for all z3 ≥ 0. This shows that

NRAA holds for this preference.
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To see Fishburn’s independence axiom does not hold, take x1 = 4, y1 = 1, (z2, z3) = (2, 2)

and (z̃2, z̃3) = (1/2, 3). Then u(x1, z2, z3) = 6 > u(y1, z2, z3) = 3 so (x1, z2, z3) ≻ (y1, z2, z3).

But u(x1, z̃2, z̃3) = u(y1, z̃2, z̃3) = 2 so (x1, z̃2, z̃3) ∼ (y1, z̃2, z̃3).

Independence axiom holds, NRAA does not Consider the preference relation of Exam-

ple 1. This preference is pairwise lexicographic, but not lexicographic. Note that (0, 6, 4) ≻

(0, 3, 8) (by (b) of Example 1), but (1, 3, 8) ≻ (1, 6, 4) (by (d)), so it violates Axiom 4 (NRAA).

To see whether Fishburn’s independence holds, first take i = 1. Note from (a)-(d) of

Example 1 that (x1, z2, z3) ≻ (y1, z2, z3) if and only if x1 > y1. Then by (a), (x1, z̃2, z̃3) ≻

(y1, z̃2, z̃3). Next take i = 2. Note that (z1, x2, z3) ≻ (z1, y2, z3) if and only if x2 > y2 (by

(b),(d) of Example 1) which implies (z̃1, x2, z̃3) ≻ (z̃1, y2, z̃3). Finally for i = 3, (z1, z2, x3) ≻

(z1, z2, y3) if and only if x3 > y3 (by (c),(d)), which implies (x1, z̃2, z̃3) ≻ (y1, z̃2, z̃3). This

shows Fishburn’s independence axiom holds for this example.

5.3 Mild continuity of induced preferences

Note that Axiom 2 requires that the induced preference %S is mildly continuous for any S that

contains only two attributes. It does not require the preference % to be mildly continuous.

For a lexicographic preference, any such induced preference, as well as the preference itself

are mildly continuous. But in general, mild continuity of an induced preference is neither

necessary nor sufficient for a preference to be mildly continuous. This is demonstrated in the

following examples with N = {1, 2, 3}.

Example 4 (induced preference mildly continous, but not preference) Consider a

preference relation % on X = R
3
+. First note that for x, y ∈ X, either (A) xi = yi = 0 for one

or more i = 1, 2, 3 or (B) at least one of xi, yi is positive for all i = 1, 2, 3. Note that (A),(B)

are mutually exclusive and exhaustive.

(A) If x, y ∈ X are such that xi = yi = 0 for one or more i, the following hold:

(i) (0, x2, x3) ≻ (0, y2, y3) if x2 + x3 > y2 + y3, (0, x2, x3) ∼ (0, y2, y3) if x2 + x3 = y2 + y3;

(ii) (x1, 0, x3) ≻ (y1, 0, y3) if x1 + x3 > y1 + y3, (x1, 0, x3) ∼ (y1, 0, y3) if x1 + x3 = y1 + y3;

(iii) (x1, x2, 0) ≻ (y1, y2, 0) if x1 + x2 > y1 + y2, (x1, x2, 0) ∼ (y1, y2, 0) if x1 + x2 = y1 + y2.

By (i)-(iii), for any S ⊆ N with |S| = 2, the induced preference %S is continuous, so %S is

mildly continuous.

(B) If x, y ∈ X are such that for all i, at least one of xi, yi is positive, the following hold

where x = min{x1, x2, x3}:

(i) if x > y = 0, then x ≻ y and if x = y = 0, then x ∼ y; (ii) if x, y are both positive,

then x ≻ y if x1 + x2 + x3 > y1 + y2 + y3 and x ∼ y if x1 + x2 + x3 = y1 + y2 + y3.

Let x = (2, 1, 1), y = (0, 2, 2). Note that x ˆ6= y, x = 1 > y = 0. By (B)(i), x ≻ y.

Consider any 0 < ε < 4 and let z = (ε/2, 2, 2). Then z ∈ Bε(y). Since z = ε/2 > 0 and

z1 + z2 + z3 = 4 + ε/2 > x1 + x2 + x3 = 4, by (B)(ii), z ≻ x. This shows % is not mildly

continuous (see Definition 3), although for every S ⊆ N with |S| = 2, the induced preference

%S is mildly continuous.
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Example 5 (preference mildly continous, but not induced preference) Consider a

preference relation % on X = R
3
+ that has the following properties, where xS = mini∈S xi for

any non empty S ⊆ N.

(A) If x, y ∈ X are such that xi = yi = 0 for one or more i, the following hold:

for any S ⊆ N with |S| = 2: (i) if xS > yS = 0, then (xS , 0N/S) ≻ (yS , 0N/S) and if

xS = yS = 0, then (xS , 0N/S) ∼ (yS , 0N/S); (ii) if xS , yS are both positive, then (xS , 0N/S) ≻

(yS , 0N/S) if
∑

i∈S xi >
∑

i∈S yi and (xS , 0N/S) ∼ (yS , 0N/S) if
∑

i∈S xi =
∑

i∈S yi.

Note that the induced preference %S is not mildly continuous for any S ⊆ N with |S| = 2.

We show this for S = {1, 2} (similar reasoning applies for other subsets). Let xS = (1, 1),

yS = (0, 2). Note that xS ˆ6= yS , xS = 1 > yS = 0. By (A)(i), xS ≻S yS . Consider any

0 < ε < 4 and let zS = (ε/2, 2). Note that zS ∈ Bε(y
S). Since zS = ε/2 > 0 and z1 + z2 =

2 + ε/2 > x1 + x2 = 2, by (A)(ii), zS ≻ xS . This shows the induced preference %S is not

mildly continuous.

(B) If x, y ∈ X are such that at least one of xi, yi is positive for all i, the following hold:

x ≻ y if x1 + x2 + x3 > y1 + y2 + y3 and x ∼ y if x1 + x2 + x3 = y1 + y2 + y3.

Note that if x ˆ6= y, at least one of xi, yi must be positive for all i. Consider any x ˆ6= y

such that x ≻ y. Then we must have x1 + x2 + x3 > y1 + y2 + y3. We can find sufficiently

small ε > 0 such that for all x̃ ∈ Bε(x), ỹ ∈ Bε(y): x̃ ˆ6= ỹ (implying at least one of x̃i, ỹi is

positive for all i) and x̃1 + x̃2 + x̃3 > ỹ1 + ỹ2 + ỹ3, so by (B), x̃ ≻ ỹ. This shows % is mildly

continuous (see Definition 3), although the induced preference %S is not mildly continuous

for any S ⊆ N with |S| = 2.

5.4 Robustness of the axioms

Finally we give examples of complete and transitive preferences to show that if one of the

four Axioms 1-4 does not hold, we do not get a lexicographic preference.

All axioms except Axiom 4 hold The preference of Example 1 is pairwise lexicographic

but not lexicographic. By Theorem 2, Axioms 1-3 hold for this preference, but we have

already seen Axiom 4 does not hold for this preference.

Example 6 (All axioms except Axiom 1 hold) Consider the preference relation % on

X = R
3
+ that has utility function u(x1, x2, x3) = x1 (this is a dominant preference where

attribute 1 is the dominant attribute). Note that the induced preference %S is not strong

monotone for S = {1, 2}, so Axiom 1 is violated. We show the remaining three axioms hold.

Note that for any S ⊆ N with |S| = 2, %S is continuous, so Axiom 2 holds. As %S is

continuous, any closed unhappy set for %S is a lower contour set (Corollary 1(iii)). To see

Axiom 3 holds, first let S = {1, 2}. Since xS = (x1, x2) ≻S yS = (y1, y2) if and only if x1 > y1,

the lower contour set of xS under %S is L∗(xS) = {yS ∈ R
2
+|0 ≤ y1 ≤ x1}. To see IMIA (see

Definition 6) holds for L∗(xS), consider any y, z ∈ L∗(xS) such that y ˆ6= z. If y > z, then

z1 < y1 ≤ x1, so any z̃ with y > z̃ > z has z̃1 < x1, which shows z̃ ∈ L∗(xS). If y2 > z2

and z1 > y1, then y1 < z1 ≤ x1, so (z1, z̃2) ∈ L∗(xS) for any z2 < z̃2 < y2. If y1 > z1 and
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z2 > y2, then z1 < y1 ≤ x1. So z̃1 < x1 for any z1 < z̃1 < y1, which shows (z̃1, z2) ∈ L∗(xS)

for any such z̃1. This shows IMIA holds for any closed unhappy set for %S when S = {1, 2}.

Similar reasoning applies when S = {1, 3}. Finally for S = {2, 3}, for any xS , yS ∈ XS we

have xS ∼S yS so the only non empty unhappy set for %S if XS = R
2
+ and for it, IMIA

trivially holds.

To see Axiom 4 holds, note that if (x1, x2, 0) ≻ (y1, y2, 0), then x1 > y1 and (x1, x2, z3) ≻

(y1, y2, z3) for any z3. This shows NRAA (see Definition 8) holds when S = {1, 2}. Similar

reasoning applies when S = {1, 3}. Finally when S = {2, 3}, for any xS = (x2, x3), y
S =

(y2, y3) ∈ XS , we have (0, x2, x3) ∼S (0, y2, y3), so NRAA is satisfied vacuously. This shows

both Axiom 3 and Axiom 4 hold.

Example 7 (All axioms except Axiom 3 hold) Consider the preference relation % on

X = R
3
+ with utility function u(x) = x1 + x2 + x3 (perfect substitutes). Since % is strong

monotone, so is %S for any non empty S ⊆ N, so Axiom 1 holds. Since it is continuous,

Axiom 2 also holds. Since the utility function is additively separable, Axiom 4 (NRAA) also

holds.

However, Axiom 3 does not hold. For instance, let S = {1, 2}. Consider the induced

preference %S , which has utility function uS(x
S) = x1 + x2. It is continuous, so by Corollary

1(iii), any closed unhappy set of %S is a lower contour set. Consider the lower contour

set L∗(xS) for xS = (1, 3). Let yS = (3, 1). Then xS , yS ∈ L∗(xS). Also note that xS ˆ6= yS

with y1 > x1 and x2 > y2 (Figure 1(b)). But there is no x̃1 with x1 < x̃1 < y1 such that

(x̃1, x2) ∈ L∗(xS). This is because for any x̃1 > x1, we have x̃1 + x2 > x1 + x2 = uS(x
S), so

such a point will be outside L∗(xS).

All axioms except Axiom 2 hold Consider the lexi-max preference % given in Example

2. Since % is strong monotone, so is %S is strong monotone for any non empty S ⊆ N, so

Axiom 1 holds. We have already shown in Example 2 that Axiom 3 holds.

To verify Axiom 4 (NRAA) holds, consider any S ⊆ N with |S| = 2. Let S = {1, 2} (same

reasoning applies for other subsets). Suppose (x1, x2, 0) ≻ (y1, y2, 0). Then either [x∗1 > y∗1]

or [x∗1 = y∗1, x
∗
2 > y∗2]. Take any x3 ∈ R+. Let a, b ∈ R

3
+ be as follows:

a1 = x1, a2 = x2, a3 = x3 and b1 = y1, b2 = y2, b3 = x3

To prove NRAA holds, we have to show a ≻ b. We have the following possibilities.

(i) x3 ≥ x∗1: Then a∗1 = b∗1 = x3, a
∗
2 = x∗1, b

∗
2 = y∗1, a

∗
3 = x∗2 and b∗3 = y∗2. Since either

[a∗2 > b∗2] or [a
∗
2 = b∗2, a

∗
3 > b∗3], we conclude that a ≻ b.

(ii) x3 < x∗1 and x∗1 > y∗1: Then a∗1 = x∗1 > b∗1 = max{y∗1, x3}, so we have a ≻ b.

(iii) x3 < x∗1, x
∗
1 = y∗1 and x∗2 > y∗2: Then a∗1 = b∗1 = x∗1. If x

∗
2 ≤ x3, then a∗2 = b∗2 = x3 and

a∗3 = x∗2 > b∗3 = y∗2, so we have a ≻ b. If x∗2 > x3, then a∗2 = x∗2 and b∗2 = max{y∗2, x3} < a∗2, so

we have a ≻ b. This shows that Axiom 4 also holds.

To see Axiom 2 does not hold for this preference, let S = {1, 2} and consider the induced

preference %S . Take x ∈ R
2
+ such that x is below the 45◦ line as in Figure 2(a). Take any
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y on the line Ax̂ (for instance, take x = (4, 2), x̂ = (2, 4), y = (1, 4)). Note that x ˆ6= y and

y ∈ L(x), so x ≻S y. However, any neighborhood of y contains points outside L(x), which

shows %S is not mildly continuous.

Remark 5 Finally we note that without both completeness and transitivity, we do not

get lexicographic preference even with all Axioms 1-4. For x, y ∈ X, we say x, y are non-

comparable, denoted by x ⊲⊳ y, if ∃ i, j such that yi > xi and xj > yj . Consider a preference

relation % on X = R
3
+ that is reflexive and strong monotone. If x ∼ y whenever x ⊲⊳ y,

the preference relation is complete but not transitive and satisfies Axioms 1-4. If whenever

x ⊲⊳ y, we have neither x % y nor y % x, the preference relation is transitive but not complete

and satisfies Axioms 1-4.
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Appendix

Proof of Proposition 1 (i) Suppose there are two unhappy sets A,B and x ∈ A, y ∈ B

such that x /∈ B, y /∈ A. By definition of unhappy sets we must have x ≻ y and y ≻ x, a

contradiction.

For (ii), by Result 1 we know there exists x ∈ ∂A.

(ii)(a) If the assertion is not true, then by completeness one of x, y is strictly preferred

to the other. Without loss of generality, let x ≻ y. Then mild continuity implies ∃ ε > 0

such that all points in Bε(x) is strictly preferred to all points in Bε(y). Since x, y ∈ ∂A, ∃

x̃ ∈ Bε(x), ỹ ∈ Bε(y) such that x̃ ∈ A, ỹ /∈ A and we have x̃ ≻ ỹ. A contradiction since A is

an unhappy set.

(ii)(b) If the assertion is not true, then y ≻ x and mild continuity implies ∃ ε > 0 such

that y is strictly preferred to all points in Bε(x). Since x ∈ ∂A, ∃ x̃ ∈ Bε(x) such that x̃ /∈ A

and we have y ≻ x̃, a contradiction since y ∈ A and A is an unhappy set.

(ii)(c) As x ≻ y, mild continuity implies ∃ ε > 0 such that all points in Bε(x) is strictly

preferred to y. Since x ∈ ∂A, ∃ x̃ ∈ Bε(x) such that x̃ ∈ A and we have x̃ ≻ y. Since A is an

unhappy set, we must have y ∈ A.

Proof of Corollary 1 (i)-(ii) As the preference relation is continuous, strict preference

orders are preserved around small neighborhoods of any two points rather than only totally
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different points. Thus for any x ∈ ∂A, conclusions of Proposition 1(ii) hold for any y ∈ X.

Part (i) of the corollary follows by applying Proposition 1(ii)(a) for any y ∈ X. Part (ii)

follows by applying Proposition 1(ii)(b)-(c) for any y ∈ X.

(iii) By Result 1, the set A cannot be both open and closed, so we can have either (a) A

is neither open nor closed, or (b) A is either open or closed, but not both. First we rule out

(a). To see this, suppose there is an unhappy set A that is neither open nor closed. Since

A is not open, ∃ x ∈ A such that every neighborhood of x contains a point outside A, so

we have x ∈ ∂A. Since A is not closed, ∃ y /∈ A which is a limit point of A, that is, every

neighborhood of y contains a point in A, so we have y ∈ ∂A. Since x, y ∈ ∂A, by (i) we

have x ∼ y. However, since x ∈ A, y /∈ A and A is an unhappy set, we must have y ≻ x, a

contradiction. This rules out (a). So the set A is either open or closed, but not both.

Suppose A is open. Let x ∈ ∂A. We must have x /∈ A since every neighborhood of x

contains a point outside A. As A is an unhappy set, if y ∼ x, we must have y /∈ A. This shows

A ∩ I(x) = ∅. Since A ⊆ L(x) = L(x) ∪ I(x) (by (ii)), we must have A ⊆ L(x) and again by

(ii) we have A = L(x).

Suppose A is closed. Let x ∈ ∂A. As A is closed, we have x ∈ A. Since A is an unhappy

set, if y ∼ x, we must have y ∈ A. This shows I(x) ⊆ A. Since L(x) ⊆ A, (by (ii)), we

conclude L(x) = L(x) ∪ I(x) ⊆ A. Again by (ii) it follows that A = L(x).

Proof of Proposition 2 Note by the definition of a lower contour set that any point in

X \ L(x) is strictly preferred to any point in L(x). To prove L(x) is an unhappy set, it

remains to show that if a ∈ X \ L(x) and b ∈ ∂L(x), then a ≻ b.

Since % is complete, if the result does not hold, there are a ∈ X \ L(x), b ∈ ∂L(x) such

that b % a. Denote

E = {i ∈ N |ai = bi = 0} and S = N \ E

so that S ∪ E = N. Since % is strong monotone, 0N ∈ L(x). So a 6= 0N . Thus S 6= ∅ and

there is at least one i ∈ S with ai > 0.

Since a ∈ X \ L(x) and a /∈ ∂L(x), there is a neighborhood Bε(a) ⊆ X \ L(x). We can

construct ã ∈ Bε(a) (so that ã ∈ X \ L(x)) such that (i) if i ∈ E, then ãi = ai = 0; (ii) if

i ∈ S and ai = 0, then ãi = 0; and (iii) if i ∈ S and ai > 0, then 0 < ãi < ai and ãi 6= bi.

Note that ãS ˆ6= bS . By strong monotonicity of %, a ≻ ã and transitivity implies b ≻ ã.

If E = ∅, then N = S. So ã = ãS , b = bS and we have ã ˆ6= b. Since L(x) is an unhappy set,

b ∈ ∂L(x) and b ≻ ã, by Proposition 1(ii)(c) we must have ã ∈ L(x) which is a contradiction

since ã ∈ X \ L(x).

If E 6= ∅, then ã = (ãS , 0E) and b = (bS , 0E). Since b ∈ ∂L(x), every neighborhood Bε(b)

contains a point b̄ ∈ L(x). From such b̄, construct c as c = (b̄S , 0E). By monotonicity of %,

we have b̄ % c. Hence c ∈ L(x). Moreover d(bS , b̄S) = d(b, c) ≤ d(b, b̄) < ε, so b̄S ∈ Bε(b
S).

This shows for every neighborhood Bε(b
S) of bS :

∃ b̄S ∈ Bε(b
S) such that (b̄S , 0E) ∈ L(x) (4)
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Consider the induced preference %S on XS . Note that for yS , zS ∈ XS :

yS %S zS ⇔ (yS , 0E) % (zS , 0E) (5)

It is given %S is mildly continuous on XS . Since b = (bS , 0E) ≻ ã = (ãS , 0E), by (5) we have

bS ≻S ãS . Since bS ˆ6= ãS , by mild continuity of %S , there is a neighborhood Bε(b
S) such that

for every b̃S ∈ Bε(b
S) we have b̃S ≻S ãS , so by (5)

(̃bS , 0E) ≻ (ãS , 0E) = ã for all b̃S ∈ Bε(b
S) (6)

By (4) and (6), it follows that ã ∈ L(x), which is a contradiction since ã ∈ X \ L(x).

Proof of Lemma 1 Suppose the set of attributes is N = {1, 2}. Let % be a lexicographic

preference on X = R
2
+ and suppose 1 is the most important attribute of % .

Let A ⊆ X be a closed unhappy set for % and x, y ∈ A such that x ˆ6= y. If y > x, then

clearly (i) of Definition 6 holds by monotonicity of % . If y1 > x1 and x2 > y2 (Figure 1(b)),

then for any x1 < x̃1 < y1, we have y ≻ (x̃1, x2). As A is an unhappy set and y ∈ A, we have

(x̃1, x2) ∈ A, so (iii) of Definition 6 holds.

Finally let y2 > x2 and x1 > y1 (Figure 1(a)). Consider any x̃2 > x2 and let x̃ = (x1, x̃2).

Any neighborhood of x̃ contains a point z such that z1 < x1. So x ≻ z. As A is an unhappy

set, we have z ∈ A. Thus any neighborhood of x̃ contains a point z 6= x̃ such that z ∈ A, so

x̃ is a limit point of A. As A is closed, x̃ ∈ A. This shows x̃ = (x1, x̃2) ∈ A for any x̃2 > x2,

so (ii) of Definition 6 holds.

Boundedness of unhappy sets under IMIA For X = R
2
+, when an unhappy set satisfies

IMIA (Definition 6), there are some useful implications with respect to boundedness of that

set which are presented in Lemma A1. This result will be used to prove Lemma 2. Let

X1 = R+, X2 = R+, A ⊆ X = R
2
+ and x = (x1, x2) ∈ A. Denote

A(x2) := {y1 ∈ X1|(y1, x2) ∈ A} and A(x1) := {y2 ∈ X2|(x1, y2) ∈ A}

For i, j = 1, 2, i 6= j, we say A(xj) is bounded above if there is a number k such that yi ≤ k

for all yi ∈ A(xj).

Lemma A1 Consider a complete, transitive and strong monotone preference relation % on

X = R
2
+. Let A ⊆ X be a closed unhappy set that satisfies IMIA and let x ∈ A.

(i) For i, j = 1, 2 and i 6= j, if A(xj) is bounded above, then

(a) ∃ α(xj) (the least upper bound of A(xj)) such that A(xj) = [0, α(xj)].

(b) For any z ∈ A, A(zj) is also bounded above with the same least upper bound. That

is, α(xj) = α(zj) = αi and A(xj) = A(zj) = [0, αi]. Moreover (αi, xj), (αi, zj) are

both boundary points of A.
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(ii) If A(xj) is not bounded above, then for any z ∈ A, A(zj) is also not bounded above and

A(xj) = A(zj) = R+.

(iii) If % is mildly continuous, then there can be at most one i = 1, 2 such that the following

hold (where j = 2 if i = 1 and j = 1 if i = 2):

there exists z ∈ A with z > (0, 0) such that A(zj) is bounded above (7)

Proof For (i)-(ii), without loss of generality, let i = 1 and j = 2.

(i)(a) Since x = (x1, x2) ∈ A, we have x1 ∈ A(x2), so A(x2) is a non empty subset of

R. As A(x2) is bounded above, by the least-upper-bound property of R (see Theorem 1.19,

Rudin, 1976) A(x2) has a least upper bound α(x2) ≥ x1.

If α(x2) = 0, then it must be the only point of A(x2) and the result is immediate since

A(x2) = {0} = [0, α(x2)]. So let α(x2) > 0. As A is an unhappy set, strong monotonicity

of the preference implies if y1 ∈ A(x2), then ỹ1 ∈ A(x2) for any ỹ1 < y1. So (y1, x2) ∈ A

whenever 0 ≤ y1 < α(x2) and (y1, x2) /∈ A whenever y1 > α(x2). Finally note that any

neighborhood of (α(x2), x2) contains a point (y1, x2) with y1 < α(x2). So (α(x2), x2) is a

limit point of A. Since A is a closed set, (α(x2), x2) ∈ A. This proves A(x2) = [0, α(x2)].

(i)(b) Since z ∈ A, we have z1 ∈ A(z2), so A(z2) is non empty. First suppose z2 ≥ x2.

Since A is an unhappy set and (α(x2), x2) ∈ A, if (y1, z2) ∈ A with y1 > α(x2), then by strong

monotonicity (x̃1, x2) ∈ A for any α(x2) < x̃1 < y1. This implies x̃1 ∈ A(x2), contradicting

(i)(a). Next suppose z2 < x2. Since A is an unhappy set satisying IMIA and (α(x2), x2) ∈ A,

if (y1, z2) ∈ A with y1 > α(x2), then by Definition 6(iii), ∃ α(x2) < x̃1 < y1 such that

(x̃1, x2) ∈ A, implying x̃1 ∈ A(x2), again contradicting (i)(a). This shows A(z2) must be

bounded above by α(x2) and it has a least upper bound α(z2) ≤ α(x2).

Applying the result of (i)(a) for A(z2), we have A(z2) = [0, α(z2)] and (α(z2), z2) ∈ A.

Switching the roles of x2 and z2 in the last paragraph, it follows that α(x2) ≤ α(z2). This

shows α(z2) = α(x2). Denoting their common value by α1, we have A(x2) = A(z2) = [0, α1].

As (α1, x2) ∈ A and any neighborhood of (α1, x2) contains a point y = (y1, x2) such that

y1 > α1, we have y ∈ X \A. This shows (α1, x2) ∈ ∂A. The same holds for (α1, z2).

(ii) As A(x2) is not bounded above, for any k > 0, there is y1 > k such that y1 ∈ A(x2).

As A is an unhappy set, strong monotonicity of the preference implies all ỹ1 < y1 also belongs

to A(x2). This shows A(x2) = R+.

For z ∈ A, if the set A(z2) is bounded above, it has a least upper bound α(z2) and by (i)(a),

A(z2) = [0, α(z2)]. Then by (i)(b), the set A(x2) is also bounded above and A(x2) = [0, α(z2)],

a contradiction. This shows A(z2) must be also not bounded above and A(z2) = R+.

(iii) We have to show that there can be at most one i such that (7) holds (where j = 2 if

i = 1 and j = 1 if i = 2). Suppose on the contrary, (7) holds for both i = 1, 2. Then there

are y, z ∈ A with y > (0, 0), z > (0, 0) such that A(y2), A(z1) are both bounded above. By

part (i), there are numbers α1 ≥ y1, α2 ≥ z2 such that A(y2) = [0, α1] and A(z1) = [0, α2].
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Since y > (0, 0) and z > (0, 0), we can construct x̃, ỹ such that 0 < ỹi < x̃i < min{yi, zi}

for i = 1, 2. Then y > x̃ > ỹ. As A is an unhappy set and y ∈ A, by strong monotonicity,

x̃, ỹ ∈ A. Then by part (i)(b), A(x̃2) = A(ỹ2) = [0, α1]. Let x = (α1, x̃2), y = (α1, ỹ2). By

(i)(b), x, y ∈ ∂A.

Since z > (0, 0), we can construct z̃ such that 0 < z̃1 < min{z1, α1} and z̃2 = z2. Then

z ≥ z̃. As z ∈ A, by strong monotonicity, z̃ ∈ A and by part (i)(b), A(z̃1) = [0, α2]. Let

z = (z̃1, α2). By part (i)(b), z ∈ ∂A.

Note that (a) y1 = x1 = α1 > z1 and (b) y2 < x2 < z2 ≤ α2 = z2. This shows x ˆ6= z

and y ˆ6= z. As x, y, z are all boundary points of an unhappy set A of a mildly continuous

preference, by Proposition 1(ii)(a): x ∼ z and y ∼ z. Then transitivity implies x ∼ y.

However, since x1 = y1 and x2 > y2, by strong monotonicity of the preference relation we

have x ≻ y, which is a contradiction. This proves that there can be at most one i = 1, 2

where (7) holds.

Proof of Lemma 2 Let A ∈ A%. By (1), we know ∃ z = (z1, z2) ∈ A with z > (0, 0). By

Lemma A1 there can be at most one i = 1, 2 where (7) holds. Suppose (7) fails to hold for

both i = 1, 2. Then A(z2) is unbounded, so (x1, z2) ∈ A for any x1. Also A(z1) is unbounded,

so by Lemma A1(ii) A(x1) is also unbounded, implying (x1, x2) ∈ A for any x2. This shows

any x = (x1, x2) ∈ A, so A = X. This is a contradiction since by (1), A is a proper subset of

X. This shows there is exactly one i = 1, 2 for which (7) holds. Denote this i by i∗.

Without loss of generality, let i∗ = 1. Then for any z ∈ A, A(z2) is bounded above and

A(z1) is unbounded. By Lemma A1(i)-(ii), ∃ αA (which is positive since by (1) there is a

z ∈ A with z1 > 0) such that for any z ∈ A: (a) A(z2) = [0, αA] and (b) A(z1) = R+.

For any z = (z1, z2) ∈ A, by (a), (αA, z2) ∈ A. Then (b) implies (αA, y2) ∈ A for any

y2 ∈ R+. Since A is an unhappy set, strong monotonicity of the preference implies that

(y1, y2) ∈ A for any y1 ∈ [0, αA] and y2 ∈ R+. This shows {y ∈ X|0 ≤ y1 ≤ αA} ⊆ A. Note

from (a) that if y ∈ X has y1 > αA, then y ∈ X \A. This proves A = {y ∈ X|0 ≤ y1 ≤ αA}.

To complete the proof consider another set B ∈ A%. Then there is some k ∈ {1, 2} and

αB > 0 such that B = {x ∈ X|0 ≤ xk ≤ αB}. It only remains to show that k = 1. Suppose

on the contrary, k 6= 1. Then k = 2 and B = {x ∈ X|0 ≤ x2 ≤ αB}.

Recall by Proposition 1 that since A,B are both unhappy sets, either A ⊆ B or B ⊆ A.

By (1), both A,B are non empty. First suppose A ⊆ B. Consider any z = (z1, z2) ∈ A. Since

A(z1) = R+, we have (z1, y2) ∈ A for any y2 > αB, so that (z1, y2) /∈ B, a contradiction.

Next suppose B ⊆ A and consider any z = (z1, z2) ∈ B. Then B(z2) = {y1 ∈ X1|(y1, z2) ∈

B} = R+. Thus (y1, z2) ∈ B for any y1 > αA, so that (y1, z2) /∈ A, a contradiction. So we

must have k = 1.

Proof of Theorem 1 A lexicographic preference on X = R
2
+ is strong monotone and mildly

continuous and by Lemma 1, any closed unhappy set of such a preference satisfies IMIA.

To prove the converse, let % be a complete, transitive, strong monotone and mildly

continuous preference relation on X = R
2
+ for which any closed unhappy set satisfies IMIA.
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Consider any x = (x1, x2) ∈ R
2
+ such that x1, x2 are both positive. Let L(x) be the lower

contour set of x and L(x) = L(x) ∪ ∂L(x) be its closure. By Corollary 2, L(x) is a closed

unhappy set, so it belongs to the family A% given in (1). By Lemma 2 we conclude there is

κ(x) > 0 and a unique i∗ ∈ {1, 2} such that L(x) = {y ∈ R
2
+|0 ≤ yi∗ ≤ κ(x)}. Without loss

of generality, let i∗ = 1. Then for any x where x1, x2 are both positive we have L(x) = {y ∈

R
2
+|0 ≤ y1 ≤ κ(x)}.

In what follows we show κ(x) = x1. Note that if κ(x) < x1, then x will be outside L(x),

so we must have κ(x) ≥ x1. If κ(x) > x1, we can construct x̃ ∈ R
2
+ such that x̃1 = κ(x) > x1

and x̃2 > x2. Observe that x̃ ∈ L(x) and any neighborhood of x̃ contains a point y such that

y1 > κ(x), so that y /∈ L(x). This shows x̃ ∈ ∂L(x).

Noting that x̃ > x, by monotonicity we have x̃ ≻ x. Since % is mildly continuous and

x̃ ˆ6= x, there exists a neighborhood Bε(x̃) such that all points there is strictly preferred to x.

So we have x̃ /∈ ∂L(x). But we know x̃ ∈ ∂L(x). This is a contradiction since ∂L(x) ⊆ ∂L(x)

(for any set A, the boundary of its closure is a subset of ∂A, see Chapter 3 of Mendelson

1990). This shows we must have κ(x) = x1. So for any x where x1, x2 are both positive:

L(x) = {y ∈ R
2
+|0 ≤ y1 ≤ x1} (8)

To show that % is lexicographic, consider any y, z ∈ R
2
+ such that y 6= z. If z1 > y1, then ∃

x with x1, x2 both positive such that z1 > x1 > y1. Then by (8) it follows that y ∈ L(x) and

z /∈ L(x). Since L(x) is an unhappy set, we must have z ≻ y. This shows whenever z1 > y1,

we must have z ≻ y. Finally let y 6= z such that z1 = y1. Then by strong monotonicity, z ≻ y

if z2 > y2 and y ≻ z if y2 > z2. This shows that % is the lexicographic preference 1 ≻L 2.

Proof of parts (ii)-(iii) of Lemma 3 Part (ii): Suppose i ≻∗ j and j ≻∗ k. Let S = {i, k}.

Since% is pairwise lexicographic, by Theorem 2 it satisfies Axiom 1, so%S is strong monotone.

Consider any xS = (xi, xk), y
S = (yi, yk). To prove the ‘if’ part of (2), we have to show

that if either (a) [xi > yi] or (b) [xi = yi, xk > yk] holds, then (xS , 0N\S) ≻ (yS , 0N\S). If (b)

holds, then xS ≥ yS and the result is immediate by the strong monotonicity of %S .

So suppose xi > yi and let T = {i, j, k}. Take any x̃j > 0 and let

xT = (xi, 0, xk), x̃
T = (yi, x̃j , xk), y

T = (yi, 0, yk) and

x = (xT , 0N\T ), x̃ = (x̃T , 0N\T ), y = (yT , 0N\T )

Note that x = (xS , 0N\S) and y = (yS , 0N\S). Next observe that xi > x̃i = yi and xℓ = x̃ℓ for

all ℓ 6= i, j. Since i ≻∗ j, by part (i) of Lemma 3, we have x ≻ x̃. Also note that x̃j > yj = 0

and x̃ℓ = yℓ for all ℓ 6= j, k. Since j ≻∗ k, again by part (i) of Lemma 3, we have x̃ ≻ y. Thus

x ≻ x̃ ≻ y. By transitivity of %, we have x = (xS , 0N\S) ≻ y = (yS , 0N\S), which proves the

‘if’ part of (2).

To prove the ‘only if’ part of (2), suppose (xS , 0N\S) ≻ (yS , 0N\S). Then we cannot have

[xi = yi, xk = yk]. So, if neither (a) [xi > yi], nor (b) [xi = yi, xk > yk] holds, then we must
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have either [yi > xi] or [yi = xi, yk > xk], but in that case by the same reasoning as in the

proof of the ‘if’ part we shall have (yS , 0N\S) ≻ (xS , 0N\S), a contradiction. This shows that

the ‘only if’ part of (2) also holds and therefore i ≻∗ k.

Part (iii): Since for any i, j ∈ N, either i ≻∗ j or j ≻∗ i, the result follows from part (ii)

by applying Observation 1.

Observation 1 Consider a finite set A that has n ≥ 2 objects. Let R be a relation on

A such that (i) for any two different x, y ∈ A, either xRy or yRx but not both and (ii)

for any x, y, z ∈ A, if xRy and yRz, then xRz. Then the objects of A can be ordered as

a1Ra2R . . . an−1Ran and we can write A = {a1, . . . , an}.

Proof We prove the observation by induction on n. The result clearly holds for n = 2. For

n ≥ 3, suppose the result is true for any finite set that has m ≤ n − 1 objects. Consider a

set A that has n objects and fix a specific object x ∈ A. Let S = {a ∈ A|aRx} and T =

{a ∈ A|xRa}. By property (i) of R, it follows that S, T are disjoint and S ∪ T = A \ {x}. Let

|S| = s, |T | = t. Then 0 ≤ s, t ≤ n−1. Since properties (i), (ii) hold for both S, T, by induction

hypothesis, we have S = {a1, . . . , as} such that a1R . . . Ras and T = {b1, . . . , bt} such that

b1R . . . Rbt. Since asRx and xRb1, by property (ii) of R, we have a1R . . . RasRxRb1R . . . Rbt.
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