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Abstract

We consider an extension of ARCH(∞) models to account for conditional asym-

metry in the presence of high persistence. After stating existence and stationarity

conditions, this paper develops the statistical inference of such models and proves

the consistency and asymptotic distribution of a Quasi Maximum Likelihood esti-

mator. Some particular specifications are studied and we introduce a Portmanteau

test of goodness-of-fit. In addition, test procedures for asymmetry and GARCH

validity are derived. Finally, we present an application on a set of equity indices to

reexamine the preeminence of GARCH(1,1) specifications. We find strong evidence

that the short memory feature of such models is not suitable for peripheral assets.
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Introduction

Despite their tremendous success in the financial and econometric literature, standard

GARCH models are inappropriate for capturing strong volatility persistence. In practice,

autocorrelations of squared returns often decay slowly, a property hardly compatible with

the exponential decrease of squared GARCH processes. This motivated the introduction

of ARCH(∞) by Robinson[36], providing series with longer memory than the classical

GARCH specifications. In these models, financial returns (εt) and volatilities write as







εt = σtηt, (ηt) iid (0, 1)

σ2
t = ω +

∞
∑

i=1
αiε

2
t−i

(1)

with ω > 0, and αi, i = 1, ..., a sequence of nonnegative constants. The existence of a

strictly stationary and nonanticipative solution has been proved by Giraitis, Kokoszka

and Leipus[21], Kazakevičius and Leipus[31], and Douc, Roueff and Soulier[14] under

the condition

Asµ2s < 1 (2)

for some s ∈ (0, 1], where As =
∞
∑

i=1
αs
i and µ2s = E|ηt|2s. Condition (2) entails summa-

bility of the autocovariances of ε2t and thus is not compatible with the usual concept of

long memory (see Giraitis, Kokoszka and Leipus[21] and Zaffaroni[38]). However, this

condition is compatible with a slow decay of the autocorrelation function of the squares

and is sometimes referred to as moderate memory models1.

Another well-documented empirical fact concerning stock returns is the leverage effect,

namely the higher impact on the current volatility of past price decreases rather than in-

creases of the same magnitude. To the best of our knowledge, attempts to capture both

the asymmetry and the memory properties of financial time series have been scarce. A

noticeable exception is the fractionally integrated EGARCH model introduced by Boller-

slev and Mikkelsen[9]. The estimation of such models has been particularly studied by

Zaffaroni[39].

Although long or moderate memory models are suitable candidates to model financial

time series, their use amongst practitioners has been regrettably limited. The aim of

this paper is to buttress the use of ARCH(∞) models. Our work is organized as follows.

In Section 1, we introduce a new specification for ARCH(∞) models aiming at capturing

1The question of existence of a stationary solution with a finite fourth order moment for the FI-
GARCH model has given rise to a long academic discussion, until the paper by Giraitis, Surgailis and
Škarnulis[23] in which the existence of such solution was established.
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the possible asymmetry and memory effect in financial returns. We establish a condition

for the existence of a stationary solution. In Section 2, we focus on statistical inference.

We prove the strong consistency of the quasi maximum likelihood estimator (QMLE)

and derive its asymptotic distribution, allowing the parameter to belong to the frontier

of the parameter space. In Section 3, we focus on hypothesis testing. We establish the

asymptotic distribution of a Portmanteau statistic to test for the goodness-of-fit of our

model. In addition, we design procedures to test for asymmetry and the adequacy of

GARCH(1,1)-type specifications. Monte Carlo experiments are conducted in Section

4. Section 5 presents an application on a wide set of equity indices to reexamine the

preeminence of GARCH(1,1)-type models. Finally, Section 6 concludes. Proofs and

technical results are relegated to an appendix. Additional simulations and applications

are available in a supplementary file.

1 Asymmetric Power ARCH(∞) model

Modeling asymmetry has led to the introduction of numerous specifications of the condi-

tional volatility process. Among them, a popular and very general class of models is the

Asymmetric Power GARCH (APARCH(p, q)) of Ding, Granger and Engle[13], defined

by










εt = σtηt

σδ
t = ω +

q
∑

i=1
α+
i |εt−i|δ1εt−i≥0 + α−

i |εt−i|δ1εt−i<0 +
p
∑

j=1
βjσ

δ
t−j

where ω > 0, the coefficients are nonnegative constants, and δ is a positive constant.

We propose an ARCH(∞) extension of this model defined as follows.

Definition 1. Let (ηt) be an iid sequence of random variables such that Eη0 = 0 and

Eη20 = 1. Then, (εt) is called an APARCH(∞) process if it satisfies an equation of the

form






εt = σtηt

σδ
t = ω +

∞
∑

i=1
α+
i |εt−i|δ1εt−i≥0 + α−

i |εt−i|δ1εt−i<0
(3)

with ω > 0, δ > 0, and where α+
i and α−

i , i = 1, ..., are sequences of nonnegative

constants.

Note that this specification is very general and includes standard ARCH(∞) as well as

the Threshold-ARCH(∞) model which corresponds to δ = 2. TARCH(∞) models were

first considered by Bardet and Wintenberger[2] as a particular example of a more general

causal process.
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The following theorem gives a condition for the existence of a strictly stationary and

nonanticipative solution to an APARCH(∞) model defined by (3). For any s > 0, let

A+
s =

∞
∑

i=1

(

α+
i

)s , A−
s =

∞
∑

i=1

(

α−
i

)s and µ+
δs = E|1ηt≥0 ηt|δs , µ−

δs = E|1ηt<0 ηt|δs.

Theorem 1. If there exists s ∈ (0, 1] such that

A+
s µ

+
δs +A−

s µ
−
δs < 1, (4)

there exists a unique, strictly stationary, ergodic, and nonanticipative solution of (3)

such that E|εt|δs < ∞. This solution is given by











εt = σtηt

σδ
t = ω + ω

∞
∑

k=1

∑

i1,...,ik≥1
ai1,t−i1 ...aik,t−i1−...−ik |ηt−i1 |δ...|ηt−i1−...−ik |δ

(5)

with ai,t−j = α+
i 1ηt−j≥0 + α−

i 1ηt−j<0.

Remarks 1.1. 1.1

– In the ARCH(∞) case, where δ = 2 and A+
s = A−

s = As, Assumption (4) reduces to

(2) since µ+
2s + µ−

2s = µ2s. For the TARCH(∞), Bardet and Wintenberger[2] establish

the sufficient second order stationarity condition
∑∞

i=1max(α+
i , α

−
i ) < 1 which is

stronger than (4) since A+
1 µ

+
2 +A−

1 µ
−
2 ≤∑∞

i=1max(α+
i , α

−
i )µ2.

It is worth noticing that the process introduced in (3) nests some widely used models

in the financial industry. For example, the ARCH(∞) representation of the classical

GARCH(1,1) process

εt = σtηt, σ2
t =

ω

1− β
+

∞
∑

i=1

α βi−1ε2t−i, (6)

where α and β, are positive constants, β < 1, and ω > 0 is obviously a particular

(symmetrical) specification of (3) with δ = 2. Of course, this specification has short

memory as the ARCH(∞) coefficients decay exponentially to zero. A more persistent

specification of (3) based on the GARCH(1,1) model (6) is

εt = σtηt, σ2
t =

ω

1− β
+

∞
∑

i=1

(

α βi−1 + γi−d−1
)

ε2t−i (7)
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with γ > 0 and d > 0, where the coefficients have an hyperbolic decay. Figure 1 presents

the effect of a shock on the conditional variance of a GARCH(1,1) and on an ARCH(∞)

process specified as (7) for the same simulation of the iid process. It is seen that the

shock at t = 500 is less persistent for a GARCH(1,1) process than for the ARCH(∞)

one. Even if the β used in this illustration is fairly high (0.85), the effect of the shock

has almost entirely disappeared after a hundred lags in the GARCH(1,1) case, while it

remains clearly observable on the ARCH(∞) process.

Figure 1: Effect of a shock on ηt at t = 500 on the conditional variance of a GARCH(1,1)
process and an ARCH(∞) process with αi = αβi−1+γi−(d+1), where ω = 0.01, α = 0.1,
β = 0.85, γ = 0.15, and d = 1, and with ηt ∼ N (0, 1).

Some well known asymmetric extensions to the GARCH(1,1) are also particular speci-
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fications of model (3). Consider the following APARCH(∞) specification

εt = σtηt, σδ
t =

ω

1− β
+

∞
∑

i=1

βi−1(α+
1εt−i≥0 + α−

1εt−i<0)|εt−i|δ

which is the rewriting of an APARCH(1,1) as an APARCH(∞). The GJR-GARCH(1,1)

model introduced by Glosten, Jagannathan and Runkle[24] is obtained when δ = 2, and

the Threshold GARCH (TGARCH) model of Zakoïan[40] is obtained when δ = 1. In

the spirit of (7), an extension to the APARCH(1,1) model to allow for higher persistence

is then






εt = σtηt

σδ
t =

ω

1− β
+

∞
∑

i=1
βi−1(α+

1εt−i≥0 + α−
1εt−i<0)|εt−i|δ + γi−d−1|εt−i|δ.

(8)

The models introduced in (7) and (8) are particularly interesting as they allow to nest

GARCH-type specifications in highly persistent volatility models. They will be used

throughout the paper to illustrate the assumptions required to establish asymptotic

results.

2 Statistical inference of an APARCH(∞) process

Direct estimation of the models defined in (1) and (3) is not feasible without constraining

the infinite sequence of coefficients and requires considering a parametrization. Building

upon Robinson and Zaffaroni[37], we introduce the parametric form of Model (3)







εt = σt(θ0)ηt

σδ
t (θ0) = ω0 +

∞
∑

i=1
α+
i (φ0)|εt−i|δ1εt−i≥0 + α−

i (φ0)|εt−i|δ1εt−i<0
(9)

where α+
i (.), α

−
i (.) : Φ → [0,∞] are known functions, φ0 is a r × 1 unknown vector

of parameters, ω0 is an unknown positive constant, and δ > 0 is a known parameter.

We wish to estimate θ0 = (ω0,φ
′
0)

′ over a parameter space Θ, on the basis of n ob-

servations ε1, ... , εn. For example, the parametric form of Model (8) would then be

α
+(−)
i (φ0) = α

+(−)
0 β0 + γ0i

−d0−1 with φ0 = (α+
0 , α

−
0 , β0, γ0, d0).

Following the works of Berkes, Horváth and Kokoszka[4], and Francq and Zakoïan[16]

for the GARCH(p,q) process, asymptotic properties of the QMLE for APARCH(p, q)

models have been established by Hamadeh and Zakoïan[28], and extended by Francq

and Thieu[15]. In [28], the authors show that the empirical estimation of the power

parameter δ, although theoretically possible, is difficult to achieve. Following Francq
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and Thieu[15], we therefore consider that the parameter δ is fixed and known. In gen-

eral, this parameter is fixed to 1 (TGARCH) or 2 (GJR-GARCH) by practitioners. A

comment on how to choose this parameter is however provided at the end of this section.

Estimation of the parameters of ARCH(∞) models has been first studied by Giraitis and

Robinson[22] who proposed a Whittle estimation of θ0. However, this method presents

some drawbacks as discussed by the authors2. Linton and Mammen[34] studied semi-

parametric estimation of a ARCH(∞) model without parametric specification of the

effect of past returns on the conditional variance, but their method requires the exis-

tence of a fourth moment for εt. Robinson and Zaffaroni[37] proposed to estimate the

parameter θ0 by QML under milder assumptions on the observed process. For different

assumptions, see also Hafner and Preminger[27]. Finally, Bardet and Wintenberger[2]

studied the QMLE for ARCH(∞) and TARCH(∞) processes under mild assumptions

but at the cost of imposing higher moments on εt. In the spirit of [37], we study the

QMLE in the case of an APARCH(∞) process.

Let us rewrite the volatility in (9) as

σδ
t (θ0) = ω0 +

∞
∑

i=1

ai,t−i(φ0)|εt−i|δ (10)

where ai,t−i(φ) = α+
i (φ)1εt−i≥0 + α−

i (φ)1εt−i<0 and note that for all i, any t, and any

φ in Φ, ai,t−i(φ) ≤ max(α+
i (φ), α

−
i (φ)). We define the QMLE as

θ̃n = Argmin
θ∈Θ

Q̃n(θ), Q̃n(θ) =
1

n

n
∑

t=1

l̃t(θ), l̃t(θ) = log σ̃2
t (θ) +

ε2t
σ̃2
t (θ)

where, for any admissible value θ of θ0, σ̃δ
t is defined as ω for t = 1 and for t > 1

σ̃δ
t (θ) = ω +

t−1
∑

i=1
α+
i (φ)|εt−i|δ1εt−i≥0 + α−

i (φ)|εt−i|δ1εt−i<0 = ω +
t−1
∑

i=1
ai,t−i(φ)|εt−i|δ.

(11)

To show strong consistency, the following assumptions are used, and we denote from

now on by K a generic positive constant.

[A1] The parameter space is of the form Θ = [ωL, ωU ] ×Φ where 0 < ωL < ωU < ∞,

and Φ ⊂ R
r is a compact space.

[A2] The ηt are iid with Eη0 = 0, Eη20 = 1 and the distribution of the positive (resp.

2For example, the existence of a fourth-moment of εt is required for consistency and an eighth-
moment for asymptotic normality.
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negative) part of (ηt) is non-degenerate.

[A3] (i) For any φ and φ∗ ∈ Φ such that φ 6= φ∗, there exists k ≥ 1 such that

α+
k (φ) 6= α+

k (φ
∗) and α−

k (φ) 6= α−
k (φ

∗).

(ii) For all i ≥ 1, sup
φ∈Φ

max(α+
i (φ), α

−
i (φ)) ≤ K i−d−1 for some d > 0 .

[A4] There exists a solution (εt) of equation (9) such that E|εt|(2∧δ)ρ < ∞ for ρ > 1
d+1 .

[A5] Eθ0 sup
θ∈Θ

σ2
t (θ0)

σ2
t (θ)

< ∞.

Remarks 2.1. 2.1

– The compactness assumption A1 is standard for QML estimation. Assumptions A2

and A3(i) are needed for identifiability. The former is slightly stronger than needed

in the ARCH(∞) case where only the distribution of (η2t ) needs to be non-degenerate.

Assumption A3(ii) along with Assumption A4 entail the existence of σδ
t (θ) for any θ.

Note that the d in assumptions A3(ii) and A4 is the same and that these assumptions

may be stronger than (4). Nevertheless, Assumption A4 is quite mild as, for a large

value of d, it would only imply the existence of a small moment. For example, it is

the case for the GARCH(1,1) model where the αi are exponentially decaying. Note

that a sufficient condition for Assumption A5 is of course Eε2t < ∞. Proposition 2

in the appendix gives a different sufficient condition for A5 to hold without additional

moment condition for εt.

– In the classical ARCH(∞) case where δ = 2 and α+
i and α−

i are equal, though our

assumptions are mostly in line with the ones proposed by Robinson and Zaffaroni[37],

they are noticeably milder concerning the distribution of ηt. Indeed, as opposed to

[37], we do not specify that the density of ηt is well-behaved near 0. Furthermore, our

assumptions on αi are also milder as we allow our coefficients to be equal to 0 and

do not impose αi(φ0) ≤ Kαj(φ0) for i ≥ j ≥ 1. Note that Robinson and Zaffaroni

considered a slightly more general model yt = µ + εt allowing for a drift. Our model

could similarly be extended to take into account this parameter but for the sake of

clarity we assume that this drift parameter is known and equal to 0.

Notice that Model (8) where α
+(−)
i (φ0) = α

+(−)
0 βi−1

0 + γ0i
−(d0+1) and Φ ⊂ (0,∞)5 sat-

isfies the proposed assumptions. In particular, Assumption A3(i) is satisfied if α+(−)
0 ,

β0, and γ0 are positive, which ensures Assumption A5 using Proposition 2.

The following result states the strong consistency of θ̃n.
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Theorem 2. Under assumptions A1-A5, almost surely

θ̃n → θ0, as n → ∞.

To show the asymptotic normality, the following additional assumptions are considered.

[A6] θ0 belongs to the interior of Θ.

[A7] κη = Eη40 < ∞.

[A8] For all i ≥ 1, max(α+
i (φ0), α

−
i (φ0)) ≤ K i−d∗−1 for some d∗ >

1

2
.

[A9] E|εt|(2∧δ)ρ < ∞ for some ρ > 4
2d∗+3 .

[A10] (i) For all j, αj has continuous kth derivative on Φ, k ≤ 3, such that, denoting

φi the ith element of φ,

∣

∣

∣

∣

∣

∂kα+
j (φ)

∂φi1 ...∂φik

∣

∣

∣

∣

∣

≤ K(α+
j )

1−ξ(φ) and

∣

∣

∣

∣

∣

∂kα−
j (φ)

∂φi1 ...∂φik

∣

∣

∣

∣

∣

≤ K(α−
j )

1−ξ(φ)

for all ξ > 0 and all ih = 1, ..., r, h = 1, ..., k .

(ii) There exists i+h = i+h (φ0) and i−h = i−h (φ0), h = 1, ..., r, such that 1 ≤ i
+(−)
1 <

... < i
+(−)
r < ∞ and

rank





∂α+

i+1
(φ0)

∂φ
...
∂α+

i+r
(φ0)

∂φ



 = rank





∂α−

i−1
(φ0)

∂φ
...
∂α−

i−r
(φ0)

∂φ



 = r.

[A11] For all k>0, there exists a neighborhood V (θ0) of θ0 such that,

Eθ0 sup
θ∈V (θ0)

[

σδ
t (θ0)

σδ
t (θ)

]k

< ∞.

Remarks 2.2. 2.2

– Assumption A6 is required for asymptotic normality. Assumption A7 is necessary

for the existence of the variance of the score vector ∂lt(θ0)/∂θ. Assumptions A8

and A9 are stronger than Assumptions A3(ii) and A4 and impose a higher rate of

convergence for α
+(−)
i . Assumption A10(i) is similar to Assumption A3(ii) and

allows the summability of the derivatives of the α
+(−)
i functions, while Assumption

A10(ii) ensures non singularity of the matrix J . The particular rates of convergence

of the α
+(−)
i functions and their derivatives imposed in Assumptions A3(ii), A8 and

A10(i) are crucial to show the asymptotic irrelevance of the initial values and the
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integrability of the derivatives in a neighborhood of θ0. Proposition 3 in the appendix

gives an example of a sufficient condition for A11.

Note again that Model (8) satisfies the set of additional assumptions if d0 > 0.5. In

particular, Assumption A10 is satisfied and Assumption A11 holds from Proposition 3.

Theorem 3. Under assumptions A1-A11,

√
n(θ̃n − θ0)

L→ N (0, (κη − 1)J−1) (12)

where

J =
4

δ2
Eθ0

[

1

σ2δ
t (θ0)

∂σδ
t (θ0)

∂θ

∂σδ
t (θ0)

∂θ′

]

is a positive definite matrix.

Next, we consider an extension allowing the true parameter value to lie on the boundary

of Θ, relaxing Assumption A6. Let Φ = [φ1, φ1] × · · · × [φr, φr], define ∂Φ = {φ0 ∈
Φ : φ0,i = φi for some i > 0} and let φ0(ε) the vector obtained by replacing φ0,i by

φi + ε for all i such that φ0,i = φi. Similarly to Francq and Zakoïan[17] for the case of

GARCH(p, q) models, we make the following assumption to prevent φ0 from reaching

the upper bound of Φ.

[A6’] There exists ε > 0 such that θ0(ε) = [ω0,φ0(ε)
′]′ belongs to the interior of Θ.

The following theorem establishes the asymptotic distribution of θ̃n when θ0 may be on

the boundary.

Theorem 4. Under the assumptions of Theorem 3 where A6 is replaced by A6’,

√
n(θ̃n − θ0)

L→ λΛ := arg inf
λ∈Λ

[λ−Z]′J [λ−Z] (13)

with Z ∼ N (0, (κη − 1)J−1), Λ = Λ(θ0) = Λ1 × · · · × Λr+1, where Λ1 = R and for

i = 2, . . . , r + 1, Λi = R if φ0,i 6= φi and Λi = [φi,∞) otherwise.

Remarks 2.3. 2.3

– We emphasize that the asymptotic distribution of the QMLE is obtained without any

additional assumption on the moments of εt. Similarly, Francq and Zakoïan[17] es-

tablish the asymptotic distribution of the QMLE without assuming additional moment

assumption by ensuring that assumptions A5 and A11 are satisfied.

– The asymptotic distribution in (13) is the orthogonal projection of a normal vector

distribution onto a convex cone, see [17] for a practical derivation of this limiting

distribution.

10



Asymptotic results for θ̃n have been obtained under the assumption that δ was known.

Although the choice of the power parameter may have little influence on the fitted volatil-

ity (see Francq and Thieu[15] and references therein), a practitioner might be unsure

of which model to select. As the number of unknown parameters in θ̃n is the same

for different choices of δ, it seems natural to select the model with the highest quasi

likelihood. The following proposition justifies this approach.

Let us denote by δ0 the true value of the power parameter and replace σδ
t (θ0) in (9) and

σ̃δ
t (θ0) in (11) by σδ0

δ0,t
(θ0) and σ̃δ

δ0,t
(θ0) to underline that they actually depend on the

value of δ0. Consider a set D of k candidates for δ0 (e.g. δ0 = 1 for the APARCH(∞)

extension of the TGARCH, or δ0 = 2 for a TARCH(∞)) such as

δ0 ∈ D = {δ1, . . . , δk}, δi > 0, i = 1, . . . , k (14)

and let

(δ̃n, θ̃n) = Argmin
δ∈D,θ∈Θ

Q̃δ,n(θ), Q̃δ,n(θ) =
1

n

n
∑

t=1

l̃δ,t(θ), l̃δ,t(θ) = log σ̃2
δ,t(θ) +

ε2t
σ̃2
δ,t(θ)

. (15)

We need to slightly strengthen the assumption on the distribution of ηt.

[A2’] The ηt are iid with Eη0 = 0, Eη20 = 1 and the positive (resp. negative) part of (ηt)

takes more than 3 values.

Theorem 5. Under the assumptions of Theorem 2, Assumption A2’, and (14), almost

surely θ̃n → θ0 as n → ∞ and δ̃n = δ0 for n large enough. Moreover, under the

corresponding additional assumptions, the asymptotic distribution of θ̃n is still given by

Theorem 3 or Theorem 4.

Note that in Model (8), Assumption A3(i) do not allow for the parameters β0 or γ0

to be equal to zeros for identification reasons. A particular discussion on how to test

γ0 = 0 is proposed in Section 3.3.

3 Specification tests

The presence of asymmetry and memory in financial time series has been well doc-

umented. However, in order to select the most parsimonious model, it is critical to

test their statistical significance and the adequacy of the chosen model. This sec-

tion introduces simple test procedures for goodness-of-fit, asymmetry and strong (non-

exponentially decaying) memory.
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3.1 Portmanteau goodness-of-fit test for APARCH(∞) models

Since their introduction by Box and Pierce[10] tests based on residuals autocorrelations,

the so-called Portmanteau tests, have become widely used in econometrics. To test the

adequacy of conditional volatility models, Li and Mak[33] proposed to use Portmanteau

tests based on squared residuals autocorrelations. Asymptotic properties of these tests

have been established by Berkes, Horváth and Kokoszka[3] for standard GARCH(p, q)

models and by Carbon and Francq[11] in the APARCH(p, q) case. To our best knowl-

edge, these results having not yet been extended to the ARCH(∞) literature, this section

aims at filling that gap. One should note that other kinds of goodness-of-fit tests ex-

ist. In particular, Hidalgo and Zaffaroni[30] propose a goodness-of-fit test based on the

estimated spectral distribution function. However, contrary to Portmanteau tests, their

statistic has a nonstandard asymptotic distribution and requires bootstrap procedures

to compute critical values.

Let us consider the null hypothesis HGoF
0 that the process (εt) satisfies model (3). We

define the autocovariances of the squared residuals by

r̂h = n−1
n
∑

t=h+1

(η̂2t − 1)(η̂2t−h − 1) , with η̂2t = ε2t /σ̃
2
t (θ̃n),

and let r̂m = (r̂1, . . . , r̂m) for any 1 ≤ m ≤ n, and Ĉm the m × (r + 1) matrix whose

elements (h, k) are given by

Ĉm(h, k) = − 2

δn

n
∑

t=h+1

(η̂2t−h − 1)
1

σ̃δ
t (θ̃n)

∂σ̃δ
t (θ̃n)

∂θk
.

In addition, let

Ĵn =
4

δ2
1

n

n
∑

t=1

1

σ̃2δ
t (θ̃n)

∂σ̃δ
t (θ̃n)

∂θ

∂σ̃δ
t (θ̃n)

∂θ′
and κ̂η =

1

n

n
∑

t=1

ε4t

σ̃4
t (θ̃n)

be consistent estimators of J and κη respectively (from arguments in the proofs of The-

orem 3, Lemma 1, and the ergodic theorem).

The following theorem establishes the asymptotic distribution of the Portmanteau test

statistic.

Theorem 6. Under HGoF
0 , under the assumptions of Theorem 3 and assumption A2’,

nr̂′mD̂−1r̂m
L→ χ2

m,
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with D̂ = (κ̂η − 1)2Im − (κ̂η − 1)ĈmĴ−1
n Ĉ ′

m.

The adequacy of the APARCH(∞) model (3) is then rejected at the asymptotic level

ν when nr̂′mD̂−1r̂m > χ2
m(1 − ν) where χ2

m(1 − ν) is the (1 − ν)-quantile of the χ2

distribution with m degrees of freedom.

3.2 Testing for linear constraints on the parameters

We are now interested in testing for a general hypothesis of the form

H0 : R θ0 = k, H1 : R θ0 6= k (16)

where R is the constraints matrix and k is a constant vector. Let c be the rank of

the matrix R. The triptych of the Wald, Rao-score, and Quasi Likelihood Ratio (LR)

statistics to test (16) is given by

Wn = (R θ̃n − k)′
(

R

(

(κ̂η − 1)

n
Ĵ−1
n

)

R′

)−1

(R θ̃n − k)

Rn =
n

κ̂η|H0
− 1

∂Q̃n(θ̃n|H0
)

∂θ′
Ĵ−1
n|H0

∂Q̃n(θ̃n|H0
)

∂θ

Ln =
2n

κ̂η|H0
− 1

[

Q̃n(θ̃n|H0
)− Q̃n(θ̃n)

]

(17)

where θ̃n|H0
is the QMLE restricted by H0 and

Ĵn|H0
=

4

δ2
1

n

n
∑

t=1

1

σ̃2δ
t (θ̃n|H0

)

∂σ̃δ
t (θ̃n|H0

)

∂θ

∂σ̃δ
t (θ̃n|H0

)

∂θ′
, and κ̂η|H0

=
1

n

n
∑

t=1

ε4t

σ̃4
t (θ̃n|H0

)

are consistent estimators of J and κη respectively, under H0.

Proposition 1. Under H0 : R θ0 = k,

(i) under the assumptions of Theorem 3,

Wn
L→ χ2

c , Rn
L→ χ2

c , and Ln
L→ χ2

c ,

(ii) under the assumptions of Theorem 4,

Wn
L→ λΛ′

R′[(κη − 1)RJ−1R′]−1λΛ′

R, Rn
L→ χ2

c , and

Ln
L→ −1

2
(λΛ −Z)′J(λΛ −Z) +

1

2
Z ′R′[RJ−1R′]−1RZ.

Note that in Model (9), the symmetry hypothesis is generally a particular constrained

representation. Testing for the significance of asymmetry can thus be achieved by test-

ing an implied restriction on θ0. For example, if we consider the parametric version
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of specification (8) obtained by setting φ0 = (α+
0 , α

−
0 , β0, γ0, d0) and α

+(−)
i (φ0) =

βi−1
0 α

+(−)
0 + γ0i

−(d0+1), the symmetry hypothesis is given by

Hsym
0 : α+

0 = α−
0 , Hasym

1 : α+
0 6= α−

0

which is a particular form of (16). Testing for a constrained representation is highly

common when testing for asymmetry in parametric models, see for example Nelson [35].

3.3 Testing for GARCH(1,1) specifications

Despite the development of multiple extensions, the GARCH(1,1) model remains preem-

inent in the financial industry and literature. Although this model admits an ARCH(∞)

representation, it imposes an exponential decay on its coefficients. We propose to study

the validity of a GARCH(1,1) representation by allowing these coefficients to decay in a

slower manner. In order to do so, consider the following ARCH(∞) parametrization







εt = σt(θ0)ηt

σ2
t (θ0) =

ω0

1− β0
+

∞
∑

i=1
(α0β

i−1
0 + γ0i

−(d0+1))ε2t−i

(18)

with α0 > 0, β0 > 0, γ0 ≥ 0, and d0 > 0. Testing the validity of a GARCH(1,1)

representation can then be achieved by testing

HGARCH
0 : γ0 = 0, H

ARCH(∞)
1 : γ0 > 0, (19)

which can be rewritten as HGARCH
0 : R θ0 = 0, and H

ARCH(∞)
1 : R θ0 > 0 with

R = (0, 0, 0, 1, 0). While this test may seem standard, it poses a major difficulty. In-

deed, the parameter d0 is not identified under the null hypothesis, thus we cannot directly

use Proposition 1(ii) to obtain the asymptotic distribution of the test statistics when the

parameter is on the boundary. A simple solution could be to assume that the parameter

d0 is known and fixed at a value d > 0.5. Under this assumption, the Wald statistic

distribution is a mixture of a χ2
1 and a Dirac measure at 0, both with weight 1/2 (see

Proposition 5 in the supplementary file). In addition, Francq and Zakoïan[18] show

that, when testing the nullity of only one coefficient, the Wald test is locally asymp-

totically more powerful than the standard score test. Although setting the unidentified

under the null parameter at an arbitrary value facilitates the derivation of the asymp-

totic distribution, choosing a value d that is far from d0 may lead to spurious results3.

Asymptotic results, when the presence of a coefficient on the boundary of the parameter

space involves the non identification of a second parameter, have been established by

Andrews[1]. However, the limiting distributions in such case are highly non-standard.
3See the supplementary file for a study of the empirical power of the test when d is misspecified.
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Instead, we propose to use a residual-based bootstrap procedure to approximate the

statistic asymptotic distribution. Using the terminology of Beutner, Heinemann and

Smeekes[6], we propose the following recursive design bootstrap procedure for testing

(19) on a sample of n observations ε1, . . . , εn. Let us denote by θ̃c
n = (ω̃c, α̃c, β̃c)′ the

QMLE of a GARCH(1,1) model and let σ̃c
t (θ̃

c
n) the estimated volatility process.

1. On the observations, compute θ̃c
n and the standardized residuals η̃ct = η̂ct/s

c
n where

η̂ct = εt/σ̃
c
t (θ̃

c
n) and (scn)

2 = n−1
∑n

t=1(η̂
c
t )

2. Denote by F ∗
n the empirical distribu-

tion of η̃ct .

2. Simulate a trajectory of length n of a GARCH(1,1) with parameter θ̃c
n and where

the innovations η∗t
iid∼ F ∗

n . On this simulation, compute the unconstrained estimator

θ̃∗
n of an ARCH(∞) and compute the statistic WGARCH∗

n .

3. On the observations, compute the unconstrained estimator θ̃n of an ARCH(∞)

and compute the statistic Wn.

4. Repeat B times Step 2 and denote by W
GARCH∗1
n . . .W

GARCH∗B
n the obtained boot-

strap test statistics. Approximate the p-value of the test HGARCH
0 against HARCH(∞)

1

by B−1
∑B

b=1 1W
GARCH

∗b
n ≥WGARCH

n
.

This test can easily be extended to an asymmetric volatility model with a different δ0.

Consider, the APARCH(∞) specification presented in (8). Testing for the adequacy of

the GJR-GARCH model (δ0 = 2) or the TGARCH (δ0 = 1) can then be achieved by test-

ing for H0 : γ0 = 0 against H
APARCH(∞)
1 : γ0 > 0. By changing the constrained model,

in steps 1 and 2, and the unconstrained model in step 3, we obtain the corresponding

test procedures. In the case of ARCH(∞) models, the validity of this approach has been

established by Hidalgo and Zaffaroni[30]. Note that the proposed bootstrap might be

invalid when other parameters than γ0 are on the boundary. However, the procedure

can be modified to account for such problems using the recent technique introduced by

Cavaliere et al[12].

4 Simulations

In order to assess the finite sample properties of the QMLE in the different settings

studied in this paper and to study the empirical behavior of the test statistics defined

in Section 3, we carry out some Monte Carlo experiments. In the following simulations,

we use Gaussian innovations (ηt ∼ N (0, 1)).

We focus on specifications (7) and (8) that nest several favored volatility models. We

want to estimate θ0 = (ω0, α
+
0 , α

−
0 , β0, γ0, d0). We start by simulating a thousand sam-

ple of size n = 5000 of different specifications including symmetric models (i.e. with
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α+
0 = α−

0 ) either for δ0 = 1 or δ0 = 2. Empirical mean and RMSE of the obtained

QMLE are reported in Table 1 as well as the empirical mean of δ̃n obtained from Propo-

sition 1 when the candidates for δ0 range from 0.5 to 3 with a 0.25 step. In order to

assess the finite sample properties of the asymptotic variance estimator, given by (12),

we can compare V
1/2
n = diag[(κ̂η − 1)Ĵ−1

n ]1/2/
√
n to the RMSE. On that matter, the

results in Table 1 are quite satisfactory. Note that d0 = 1 allows to easily derive suf-

ficient stationary conditions for model (8) as the Riemann sum
∑∞

i=1 i
−2 = π2/6 and

thus, for δ = 2, Theorem 1 entails the existence of a second order stationary solution if

max(α+
0 , α

−
0 )/(1− β0) + γ0π

2/6 < 1, which is verified for the θ0 reported in Table 1.

δ0 = 2 δ0 = 1

θ0 θ̃n Bias RMSE V
1

2
n θ̃n Bias RMSE V

1

2
n

ω 0.20 0.209 0.009 0.053 0.029 0.206 0.006 0.046 0.024
α+ 0.05 0.057 0.007 0.038 0.021 0.055 0.005 0.038 0.017
α− 0.15 0.158 0.008 0.045 0.026 0.155 0.005 0.043 0.019
β 0.70 0.688 -0.012 0.067 0.035 0.691 -0.009 0.060 0.029
γ 0.15 0.140 -0.010 0.049 0.029 0.142 -0.008 0.048 0.022
d 1.0 0.983 -0.017 0.383 0.157 0.980 -0.020 0.388 0.115

δ̃n = 2.001 δ̃n = 0.988

ω 0.20 0.211 0.011 0.057 0.029 0.213 0.013 0.064 0.019
α+ 0.10 0.108 0.008 0.038 0.021 0.108 0.008 0.040 0.013
α− 0.10 0.108 0.008 0.037 0.021 0.109 0.009 0.039 0.013
β 0.75 0.739 -0.011 0.053 0.027 0.736 -0.014 0.064 0.017
γ 0.20 0.189 -0.011 0.049 0.029 0.189 -0.011 0.050 0.019
d 1.0 0.989 -0.011 0.372 0.129 0.973 -0.027 0.398 0.090

δ̃n = 2.005 δ̃n = 0.997

Table 1: Estimation results for 1000 simulations of size 5000 of an APARCH(∞) process
defined as (8) with different specifications and for δ0 = 1 and 2.

We then turn to the asymptotic properties of the tests statistics introduced in Section

3. Note that in model (8), the null hypothesis Hsym
0 : α+

0 = α−
0 , is a linear constraint

on θ0 with R = (0, 1,−1, 0, 0, 0). We denote by W sym
n , Rsym

n and Lsym
n the Wald, Rao,

and Quasi-Likelihood Ratio test statistics derived from (17). Figure 2(a) presents ker-

nel density estimators of the three test statistics for n = 5000 under Hsym
0 obtained

with 5000 replications for θ0 = (0.2, 0.1, 0.1, 0.75, 0.2, 1). All kernel estimators are close

to the asymptotic distribution χ2
1. In addition, the relative rejection frequency of the

Wald, Rao-score, and LR test statistics, at the asymptotic level 5%, are respectively

5.38%, 5.70% and 5.78%, while when using 5000 independent replications, the empirical

level should belong to the confidence interval [4.40%, 5.60%], hence the Wald statistic

seems to better control the error of first kind. To study the empirical behavior of these

statistics under Hasym
1 , we also performed the tests on each realization of a TARCH(∞)

simulations sample when θ0 = (0.2, α+
0 , 0.15, 0.5, 0.25, 1) and α+

0 ranges from 0.05 to
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0.25. Figure 2(b) compares the observed powers of the three tests, that is, the relative

frequency of rejection of the null hypothesis of symmetry on the 1000 independent real-

izations of length n = 2500 and n = 5000, as a function of α+
0 . On these simulations,

we see that the three test statistics seem powerful but may require a large number of

observations to capture a weak asymmetry.

(a) Comparison between kernel density estimators
and the χ2

1 density on [0.5,∞) (red solid line) on
5000 simulations of a symmetric ARCH(∞) pro-
cess for sample size n = 5000.

(b) Observed powers as a function of α+
0 when

α−

0 = 0.15, on 1000 simulations with n = 2500

(dashed line) and n = 5000 (solid line).

Figure 2: Empirical behavior of the Wald (dark blue square), the Rao-score (light blue
dot), and the LR (blue cross) test statistics.

Figure 3(a) presents kernel estimators for the Wald test statistics defined in Section 3.2

when testing for a GARCH(1,1), a GJR-GARCH(1,1) and a TGARCH(1,1) against an

APARCH(∞) model of form (8) with δ0 = 2 and 1 respectively under H0. The statis-

tics have been obtained by adapting the "Warp-Speed" bootstrap techniques introduced

by Giacomini, Politis and White [20] to reduce the computational burden of the boot-

strap procedure. The parameters used for the simulations are θ0 = (0.2, 0.15, 0.75) for

the GARCH model and θ0 = (0.2, 0.05, 0.2, 0.75) for both the GJR-GARCH and the

TGARCH. All kernels estimators are obtained from 1000 replications. We clearly see

that the estimated distributions are different from the theoretical asymptotic distribu-

tions when there is no identification issue. The relative rejection frequency of the test

statistics, at the asymptotic levels 5%, are respectively 3.70%, 4.60% and 5.50%. We

then repeat the experience under H1 with θ0 similar to the top part of Table 1. The

obtained empirical power of the three test statistics, at the asymptotic levels 5%, are

respectively 95.5%, 71.4% and 69.3%. It thus appears that on these realizations, the

GARCH(1-1) test has a better power but seems to have a lower control of the error of

first kind.
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Finally, Figure 3(b) presents the empirical kernels of the Portmanteau statistic for the

goodness-of-fit test presented in Section 3.1. The kernels are obtained from 1000 simu-

lations of an APARCH(∞) with δ = 1 and θ0 = (0.2, 0.05, 0.15, 0.7, 0.15, 1.0), for m =5,

10 and 20 lags. All are close to the theoretical asymptotic distributions. The relative

rejection frequency of the test statistics, at the asymptotic levels 5%, are 5.0%, 5.8%,

3.2% and 5.9% for 5, 10, 20 and 50 lags respectively.

(a) χ2
1/2 density (red solid line) and kernel den-

sity estimators when testing for a GARCH (dark
blue square), a GJR-GARCH (blue cross) and
a TGARCH(light blue dot) on 1000 simulations
with n = 5000.

(b) Kernel density estimators (dots) and asymp-
totic distributions (solid line) of the Portmanteau
test statistic for m = 5 (light blue), m = 10 (dark
blue) and m = 20 (red) on 1000 simulations of
size n = 5000.

Figure 3: Kernel density estimators for the GARCH-type test statistics and for the
goodness-of-fit test under their respective null hypothesis.

Additional simulations results are presented in the supplementary file.

5 Application: Are GARCH(1,1)-type models suitable for

peripheral markets?

Despite the development of numerous extensions, short memory models, and in par-

ticular GARCH(1,1) specifications, remain the preferred choice for most academics and

practitioners when studying volatility. However, the weak persistence they impose might

be too restrictive to accurately model some financial time series. We propose to test the

GARCH(1,1), TGARCH(1,1), and GJR-GARCH(1,1) specifications on a broad set of

equity indices to verify whether their preeminence is justified.
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Our dataset contains daily returns from January 1995 to December 20204 of 30 indices

in their local currency, from five regions with the following breakdown: 4 in North

America (S&P500, Nasdaq, TSX, Mexico IPC), 11 in Europe (FTSE, DAX, CAC, SMI,

AEX, FTSE MIB, IBEX, MOEX, WIG, BUX, TA-125), 10 in Asia (Nikkei, KOSPI,

Hang Seng, TAIEX, MSCI Singapore, BSET, PSEi, IDX, KLCI, NIFTY), 2 in Ocea-

nia (ASX AO, MSCI New Zealand), and 3 in South America (Merval, Bovespa, IGBVL).

Table 2 presents the p-values of the statistics for the symmetry test, and the GARCH-

type tests presented in Section 3. The vast majority of indices reject the symmetry

assumption, which is a classical result in the financial literature. However, almost half

of the thirty indices reject the hypothesis of a GARCH(1,1) specification, and eight re-

ject the GJR-GARCH(1,1) or the TGARCH(1,1) model at the 5% level. Interestingly,

all the indices that reject the hypothesis of short memory are from emerging markets.

This suggests that the level of development of a financial market has implications on

the persistence patterns exhibited by its assets. A possible explanation stems from the

difficulty to invest in peripheral markets with fewer investors and with less liquid instru-

ments, which leads to a slower integration of shocks and ultimately higher persistence.

In addition, we propose to study the ability of our model to forecast tail risk measures.

We study six competing models, corresponding to the last columns of Table 2. The

first column is the standard GARCH(1,1) process, the second is an ARCH(∞) model

that nests the GARCH(1,1) similarly to equation (7), the third column corresponds

to the GJR-GARCH(1,1), the fourth to the TARCH(∞) model (8) with δ = 2, the

fifth column corresponds to the TGARCH(1,1) and finally the last column corresponds

to the APARCH(∞) model (8) with δ = 1. For each specification, we fit the model

on the sample from 1995 to 2017, and compute daily one-day ahead forecasts for the

95%-Value-at-Risk using the residuals obtained from each models

VaR95% = σ̂δ
t+1F

−1
η̂t

(0.05) with η̂t = εt/σ̂t

where Fη̂t is a non parametric estimator of the distribution of the residuals. We thus

obtain approximately 750 forecasts for each index ranging from January 2018 to De-

cember 2020. The last six columns of Table 2 give the frequency of violation of the

VaR forecasts in each model for every index. Aside from the Bovespa index, all the

competing models have a frequency of violations that is not statistically different from

5% using Kupiec’s test[32] at the 95% confidence level. From this perspective, it thus

seems difficult to choose between the studied specifications. We therefore propose to use

the Model Confidence Set (MCS) procedure of Hansen, Lunde, and Nason[29] to select
4Data for the FTSE MIB and the MOEX start respectively in September 1997 and January 1998.
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the best predictive models amongst our competitors. The idea of the MCS procedure is

to sequentially eliminate competitors until the set of remaining models does not reject

the hypothesis of equal predictive ability. To perform this series of tests, we used the

R package developed by Bernardi and Catania[5] and used the asymmetric VaR loss

function of González-Rivera, Lee, and Mishra[25] to compute the losses associated with

the VaR forecasts. The results of the MCS procedures are also presented in Table 2.

For each index, the models included in the Superior Set of Models (SSM) at the 80%-

confidence level are marked with a star. A notable result is that for more than a third

of the studied indices, the GARCH(1,1) and ARCH(∞) models are excluded from the

SSM. This is a clear argument for the use of asymmetric models, even if the impact of

asymmetry is less obvious on tail measures than on volatility. Surprisingly, however,

asymmetric short memory models are often included in the SSM even if the hypothesis

of nullity of γ0 is rejected for some indices. Finally, the APARCH(∞) model with δ = 1

is always included in the SSM, which seems to validate the pertinence of our model.

6 Concluding remarks

Although econometric models allowing for a strong persistence of the volatility of fi-

nancial returns have been introduced in the academic literature for a long time, short

memory models are still preferred by most practitioners. In this paper, we proposed

an extension of the ARCH(∞) model of Robinson[36] to account for high persistence

in power-transformed returns and conditional asymmetry. We proved the existence of a

stationary solution and derived statistical inference results. In particular, we proved the

consistency and asymptotic normality of QMLE. We showed that the APARCH(∞) rep-

resentation nests some of the most used models in the financial industry and introduced

a Portmanteau type goodness-of-fit test to verify the adequacy of such models. We de-

rived test procedures for conditional asymmetry and to verify that GARCH(1,1)-type

memory patterns are sufficient to model financial returns. In this regard, the results

of the application on real data provide a remarkable argument for the use of moderate

memory models when studying peripheral assets. We showed that in our database, most

of the emerging markets equity indices exhibit a stronger persistence than the standard

APARCH(1,1) allows for. The study of conditional Value-at-Risk measures seems to

validate the pertinence of the proposed extensions. Although it would be of interest to

derive asymptotic results for such quantities under stronger persistence, we leave this

problem for future research.
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Symmetry tests GARCH-type tests Frequency of rejections of the VaR95% (in %)

Index

C
ountry

W
s
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m

n
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s
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m

n

L
s
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m

n
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G

A
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H

n
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n
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H
n

G
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C

H
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(
∞

)

G
JR

T
A

R
C

H
(
∞

)

T
G

A
R

C
H

A
P
A

R
C

H
(
∞

)
S&P 500 USA 0.000 0.000 0.000 0.958 0.991 0.996 5.04 5.04 4.24* 4.38 5.17* 5.17*

Nasdaq 100 USA 0.000 0.000 0.000 0.858 0.996 0.993 5.17* 5.17* 4.77* 4.77* 5.44* 5.44*
S&P/TSX Canada 0.000 0.000 0.000 0.392 0.614 0.955 5.59* 5.59* 4.79* 4.79* 4.92* 4.92*

Mexico IPC Mexico 0.000 0.000 0.000 0.000 0.156 0.066 5.60* 4.93* 5.20* 5.20* 4.93* 4.93*
FTSE 100 UK 0.000 0.000 0.000 0.204 0.875 0.890 5.15* 5.15* 5.15* 5.15* 4.88* 4.88*
DAX 30 Germany 0.000 0.000 0.000 0.966 0.995 0.999 5.56 5.56 4.90* 4.90* 5.30* 5.30*
CAC 40 France 0.000 0.000 0.000 0.943 1.000 0.997 5.75 5.88 4.71* 4.71* 5.36* 5.36*

SMI Switzerland 0.000 0.000 0.000 0.930 0.993 0.991 4.67 4.67 5.07* 5.07* 5.34* 5.34*
AEX Netherlands 0.000 0.000 0.000 0.960 0.995 0.998 5.75 5.75 5.10* 5.10* 5.36* 5.36*

FTSE MIB Italy 0.000 0.000 0.000 0.947 0.993 0.996 5.80 5.80 5.01* 5.01 5.54* 5.54*
IBEX 35 Spain 0.000 0.000 0.000 0.953 0.992 0.998 5.49 5.49 4.71* 4.71* 4.84* 4.84*
MOEX Russia 0.003 0.000 0.000 0.068 0.066 0.146 3.72* 3.72* 3.72* 3.59 3.86* 3.86*
WIG Poland 0.000 0.000 0.000 0.034 0.160 0.158 5.50 5.63* 5.36* 5.23* 5.50* 5.50*
BUX Hungary 0.000 0.000 0.000 0.000 0.000 0.000 3.92* 4.59* 4.19* 4.05* 4.05* 4.59*

TA125 Israel 0.000 0.000 0.000 0.031 0.942 0.972 5.31 5.18 5.31 5.31 5.18* 5.18*
Nikkei 225 Japan 0.000 0.000 0.000 0.625 0.978 0.987 4.81 4.81 4.54 4.54 4.95* 4.95*

KOSPI South Korea 0.000 0.000 0.000 0.402 0.937 0.957 5.03* 5.03* 5.30 5.30 5.16* 5.16*
Hang Seng Hong Kong 0.000 0.000 0.000 0.967 0.995 0.998 6.23* 6.23* 5.28* 5.28* 5.42* 5.42*

TAIEX Taiwan 0.000 0.000 0.000 0.530 0.986 0.997 4.52 4.52 4.52 4.52 4.79* 4.79*
MSCI Singapore Singapore 0.000 0.000 0.000 0.035 0.199 0.259 4.66* 5.06* 4.93* 5.06* 4.93* 4.93*

BSET Thailand 0.000 0.000 0.000 0.003 0.049 0.110 6.02 6.29* 5.61* 5.75* 5.20* 5.20*
PSEi Philippines 0.001 0.000 0.000 0.112 0.004 0.021 5.36* 5.36* 5.50* 5.36* 4.81* 4.95*
IDX Indonesia 0.001 0.000 0.000 0.000 0.000 0.000 5.81* 5.67* 4.84* 4.98* 4.98 4.98*

FTSE KLCI Malaysia 0.000 0.000 0.000 0.000 0.002 0.000 6.55* 6.28* 6.14* 6.28* 5.87* 6.14*
NIFTY 50 India 0.000 0.000 0.000 0.020 0.440 0.656 5.02* 5.02* 4.75* 4.75* 4.61* 4.75*
ASX AO Australia 0.000 0.000 0.000 0.019 0.643 0.778 5.93* 5.53* 5.93* 6.06* 6.32* 6.32*
MSCI NZ New Zealand 0.032 0.054 0.047 0.000 0.000 0.000 5.05* 5.45* 4.92* 5.32* 5.19* 5.85*
Merval Argentina 0.005 0.000 0.000 0.000 0.000 0.002 6.74 6.88 6.74* 6.74* 7.02* 6.74*
Bovespa Brazil 0.000 0.000 0.000 0.187 0.994 0.989 3.64* 3.64* 3.64* 3.64* 3.78* 3.78*

S&P/BVL Peru 0.002 0.000 0.000 0.000 0.000 0.000 4.51* 5.17* 4.77* 4.77* 4.91* 5.31*

Table 2: Symmetry tests, GARCH-memory tests, and validation of VaR forecasts on different equity indices

21



References

[1] D. W. Andrews. Testing when a parameter is on the boundary of the maintained

hypothesis. Econometrica, 69(3):683–734, 2001.

[2] J.-M. Bardet and O. Wintenberger. Asymptotic normality of the quasi-maximum

likelihood estimator for multidimensional causal processes. The Annals of Statistics,

37(5B):2730–2759, 2009.

[3] I. Berkes, L. Horváth, and P. Kokoszka. Asymptotics for GARCH squared residual

correlations. Econometric Theory, pages 515–540, 2003.

[4] I. Berkes, L. Horváth, and P. Kokoszka. GARCH processes: Structure and estima-

tion. Bernoulli, 9(2):201–227, 2003.

[5] M. Bernardi and L. Catania. The model confidence set package for R. International

Journal of Computational Economics and Econometrics, 8(2):144–158, 2018.

[6] E. Beutner, A. Heinemann, and S. Smeekes. A residual bootstrap for conditional

value-at-risk. arXiv preprint arXiv:1808.09125, 2018.

[7] P. Billingsley. The Lindeberg-Lévy theorem for martingales. Proceedings of the

American Mathematical Society, 12(5):788–792, 1961.

[8] P. Billingsley. Probability and measure. John Wiley & Sons, 3rd edition, 1995.

[9] T. Bollerslev and H. Ole Mikkelsen. Modeling and pricing long memory in stock

market volatility. Journal of Econometrics, 73(1):151–184, 1996.

[10] G. E. Box and D. A. Pierce. Distribution of residual autocorrelations in

autoregressive-integrated moving average time series models. Journal of the Amer-

ican Statistical Association, 65(332):1509–1526, 1970.

[11] M. Carbon and C. Francq. Portmanteau goodness-of-fit test for asymmetric power

GARCH models. Austrian Journal of Statistics, 40(1&2):55–64, 2011.

[12] G. Cavaliere, H. B. Nielsen, R. S. Pedersen, and A. Rahbek. Bootstrap inference

on the boundary of the parameter space, with application to conditional volatility

models. Journal of Econometrics, 2020.

[13] Z. Ding, C. W. Granger, and R. F. Engle. A long memory property of stock market

returns and a new model. Journal of Empirical Finance, 1(1):83–106, 1993.

[14] R. Douc, F. Roueff, and P. Soulier. On the existence of some ARCH(∞) processes.

Stochastic Processes and their Applications, 118(5):755–761, 2008.

22



[15] C. Francq and L. Q. Thieu. QML inference for volatility models with covariates.

Econometric Theory, 35(1):37–72, 2019.

[16] C. Francq and J.-M. Zakoïan. Maximum likelihood estimation of pure GARCH and

ARMA-GARCH processes. Bernoulli, 10(4):605–637, 2004.

[17] C. Francq and J.-M. Zakoïan. Quasi-maximum likelihood estimation in garch pro-

cesses when some coefficients are equal to zero. Stochastic Processes and their

Applications, 117(9):1265–1284, 2007.

[18] C. Francq and J.-M. Zakoïan. Testing the nullity of GARCH coefficients: correction

of the standard tests and relative efficiency comparisons. Journal of the American

Statistical Association, 104(485):313–324, 2009.

[19] C. Francq and J.-M. Zakoïan. GARCH models: structure, statistical inference and

financial applications. John Wiley & Sons, 2nd edition, 2019.

[20] R. Giacomini, D. N. Politis, and H. White. A warp-speed method for conduct-

ing monte carlo experiments involving bootstrap estimators. Econometric Theory,

29(3):567–589, 2013.

[21] L. Giraitis, P. Kokoszka, and R. Leipus. Stationary ARCH models: Dependence

structure and central limit theorem. Econometric Theory, 16(1):3–22, 2000.

[22] L. Giraitis and P. M. Robinson. Whittle estimation of ARCH models. Econometric

Theory, 17(3):608–631, 2001.

[23] L. Giraitis, D. Surgailis, and A. Škarnulis. Stationary integrated ARCH(∞) and

AR(∞) processes with finite variance. Econometric Theory, 34(6):1159–1179, 2018.

[24] L. R. Glosten, R. Jagannathan, and D. E. Runkle. On the relation between the

expected value and the volatility of the nominal excess return on stocks. The Journal

of Finance, 48(5):1779–1801, 1993.

[25] G. González-Rivera, T.-H. Lee, and S. Mishra. Forecasting volatility: A reality

check based on option pricing, utility function, value-at-risk, and predictive likeli-

hood. International Journal of forecasting, 20(4):629–645, 2004.

[26] C. Gouriéroux and A. Monfort. Statistics and Econometric Models, volume 2 of

Themes in Modern Econometrics. Cambridge University Press, 1995.

[27] C. M. Hafner and A. Preminger. On asymptotic theory for ARCH (∞) models.

Journal of Time Series Analysis, 38(6):865–879, 2017.

23



[28] T. Hamadeh and J.-M. Zakoïan. Asymptotic properties of LS and QML estimators

for a class of nonlinear GARCH processes. Journal of Statistical Planning and

Inference, 141(1):488–507, 2011.

[29] P. R. Hansen, A. Lunde, and J. M. Nason. The model confidence set. Econometrica,

79(2):453–497, 2011.

[30] J. Hidalgo and P. Zaffaroni. A goodness-of-fit test for ARCH(∞) models. Journal

of Econometrics, 141(2):973–1013, 2007.

[31] V. Kazakevičius and R. Leipus. On stationarity in the ARCH(∞) model. Econo-

metric Theory, 18(1):1–16, 2002.

[32] P. Kupiec. Techniques for verifying the accuracy of risk measurement models. The

Journal of Derivatives, 3(2), 1995.

[33] W. K. Li and T. Mak. On the squared residual autocorrelations in non-linear

time series with conditional heteroskedasticity. Journal of Time Series Analysis,

15(6):627–636, 1994.

[34] O. Linton and E. Mammen. Estimating semiparametric ARCH(∞) models by kernel

smoothing methods. Econometrica, 73(3):771–836, 2005.

[35] D. B. Nelson. Conditional heteroskedasticity in asset returns: A new approach.

Econometrica, 59(2):347–370, 1991.

[36] P. M. Robinson. Testing for strong serial correlation and dynamic conditional het-

eroskedasticity in multiple regression. Journal of Econometrics, 47(1):67–84, 1991.

[37] P. M. Robinson and P. Zaffaroni. Pseudo-maximum likelihood estimation of

ARCH(∞) models. The Annals of Statistics, 34(3):1049–1074, 2006.

[38] P. Zaffaroni. Stationarity and memory of ARCH(∞) models. Econometric Theory,

pages 147–160, 2004.

[39] P. Zaffaroni. Whittle estimation of EGARCH and other exponential volatility mod-

els. Journal of Econometrics, 151(2):190–200, 2009.

[40] J.-M. Zakoïan. Threshold heteroskedastic models. Journal of Economic Dynamics

and Control, 18(5):931–955, 1994.

24



Appendix A Proofs and technical results

This appendix provides the proofs and technical results in a condensed manner. A more

detailed version is available in a supplement to this paper.

A.1 Existence of a stationary APARCH(∞) solution

We develop in this section the proof of Theorem 1. The proof is based on a Volterra

expansion and, in this sense, follows the work of Giraitis, Kokoszka and Leipus[21],

Kazakevičius and Leipus[31], and Douc, Roueff and Soulier[14].

Proof of Theorem 1. First, let us remark that σt > 0 which implies for any t, 1εt≥0 =

1ηt≥0, and consider the random variable

St = ω + ω
∞
∑

k=1

∑

i1,...,ik≥1
ai1,t−i1 ...aik,t−i1−...−ik |ηt−i1 |δ...|ηt−i1−...−ik |δ

defined in [0,+∞]. From the independence of (ηt) and since s ∈ (0, 1], we have

ESs
t ≤ ωs + ωs

∞
∑

k=1

∑

i1,...,ik≥1
E

([

(α+
i1
)s 1ηt−i1

≥0 + (α−
i1
)s 1ηt−i1

<0

]

|ηt−i1 |δs
)

...

E

([

(α+
ik
)s 1ηt−i1−...−ik

≥0 + (α−
ik
)s 1ηt−i1−...−ik

<0

]

|ηt−i1−...−ik |δs
)

,

and thus

ESs
t ≤ ωs

[

1 +

∞
∑

k=1

(A+
s µ

+
δs +A−

s µ
−
δs)

k

]

≤ ωs

1− (A+
s µ

+
δs +A−

s µ
−
δs)

< ∞,

whence St is finite almost surely. In addition, we have

∞
∑

i=1

ai,t−iSt−i|ηt−i|δ = ω
∞
∑

k=0

∑

i0,...,ik≥1

ai0,t−i0 ...aik,t−i0−...−ik |ηt−i0 |δ...|ηt−i0−...−ik |δ

and thus we obtain the recursive equation St = ω +
∞
∑

i=1
ai,t−iSt−i|ηt−i|δ. By setting

εt = S
1/δ
t ηt, we obtain a strictly stationary and nonanticipative solution of (3) and

E|εt|δs ≤ µδsω
s/(1 − (A+

s µ
+
δs + A−

s µ
−
δs)). In addition, Theorem 36.4 in Billingsley[8]

entails the ergodicity of the stationary solution.

Now denote by (ε∗t ) any strictly stationary and nonanticipative solution of (3) such that
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E|ε∗t |δs < ∞. For all q ≥ 1, by q recursive substitutions of the ε∗δt−i, we obtain

σδ
t = ω +

∞
∑

i=1
ai,t−i|εt−i|∗δ

=

{

ω + ω
q
∑

k=1

∑

i1,...,ik≥1
ai1,t−i1 ...aik,t−i1−...−ik |ηt−i1 |δ...|ηt−i1−...−ik |δ

}

+
∑

i1,...,iq+1≥1
ai1,t−i1 ...aiq+1,t−i1−...−iq+1

|ηt−i1 |δ...|ηt−i1−...−iq |δ|εt−i1−...−iq+1
|∗δ

:= {St,q}+Rt,q.

Since (ε∗t ) is nonanticipative, it is independent of ηt′ for any t′ > t. Hence, since s ∈ (0, 1],

ERs
t,q ≤ (A+

s µ
+
δs +A−

s µ
−
δs)

q
(

A+
s E|1ηt≥0ε

∗
t |δs +A−

s E|1ηt<0ε
∗
t |δs
)

Since A+
s µ

+
δs+A−

s µ
−
δs < 1, we have

∑

q≥1
ERs

t,q < ∞, whence Rt,q tends to 0 almost surely

as q → ∞. Furthermore, St,q tends to St almost surely as q → ∞, which implies σδ
t = St

almost surely and yields ε∗t = εt almost surely, hence concluding the proof.

A.2 Statistical inference of an APARCH(∞) process

We develop in this section the proofs of the main results of Section 2 on consistency and

asymptotic normality of the QMLE in our model. Note that in the following proofs, it

will not be restrictive to assume ρ < 1.

Let us define the theoretical criterion

Qn(θ) =
1

n

n
∑

t=1

lt(θ), lt(θ) = log σ2
t (θ) +

ε2t
σ2
t (θ)

, θ̂n = Argmin
θ∈Θ

Qn(θ).

The theoretical QMLE θ̂n is infeasible, and we will thus study the feasible estimator θ̃n,

which is conditional to initial values. We will show that the choice of the initial values

is unimportant for the asymptotic properties of the QMLE.

In the following, we denote I+(φ) (respectively I−(φ)) the sets {i such that α
+(−)
i (φ) 6=

0}, and we define I+
t (respectively I−

t ) as I+(−)
t = {i such that εt−i ≥ 0 (resp. < 0)},

yielding the following rewriting of (9) as

σδ
t (θ0) = ω0 +

∑

i∈I+
t

α+
i (φ0)|εt−i|δ +

∑

j∈I−

t

α−
j (φ0)|εt−j |δ. (20)

We first state and prove the property mentioned in the remark about assumption A5.
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Proposition 2. Under assumptions A1-A4, if there exists 0 < τ < ρ − (d + 1)−1 such

that

sup
i∈I+(φ0)

sup
φ∈Φ

α+
i (φ0)

(α+
i )

1−τ (φ)
≤ K and sup

i∈I−(φ0)

sup
φ∈Φ

α−
i (φ0)

(α−
i )

1−τ (φ)
≤ K, (21)

then

Eθ0 sup
θ∈Θ

σ2
t (θ0)

σ2
t (θ)

< ∞.

Condition (21) limits the set of eligible functions α
+(−)
i that allows the integrability

of ε2t /σ
2
t (θ) without additional moment assumptions on εt. In particular, functions

such that inf
φ∈Φ

α
+(−)
i (φ) = 0 when α

+(−)
i (φ0) 6= 0 are excluded. Note however that

the latter case does not exclude every α
+(−)
i that can be equal to 0. For example,

αi(φ) = [(1 + sin(iπ/4))/2]γi−(d+1) where φ = (γ, d) and Φ ⊂ (0,∞)2 is periodically

equal to 0 and still verifies (21). The requirement for higher moment for εt is also

required for the estimation of ARCH(q) models or GARCH models when coefficients are

equal to 0 (see for example Francq and Zakoïan[17] or Cavaliere et al[12]).

Proof of Proposition 2. Let us first note that if c > 0 and for all i in a set I, ai ≥ 0

and bi ≥ 0 then
∑

i∈I ai

c+
∑

j∈I bj
≤ ∑

i∈I

ai
c+ bi

. Since ωL > 0 and for all θ ∈ Θ we have

α
+(−)
i (θ) ≥ 0, using the previous elementary inequality and the fact that for any s>0,

we have x/(1 + x) ≤ xs, equation (20) gives

sup
θ∈Θ

σδ
t (θ0)

σδ
t (θ)

≤ ω0

ω
+ sup

θ∈Θ

∑

i∈I+
t ∩I+(φ0)

α+
i (φ0)|εt−i|δ

ω + α+
i (φ)|εt−i|δ

+ sup
θ∈Θ

∑

i∈I−

t ∩I−(φ0)

α−
i (φ0)|εt−i|δ

ω + α−
i (φ)|εt−i|δ

≤ K +Ksup
θ∈Θ

∑

i∈I+
t ∩I+(φ0)

(α+
i )

s−τ (φ)|εt−i|δs +Ksup
θ∈Θ

∑

i∈I−

t ∩I−(φ0)

(α−
i )

s−τ (φ)|εt−i|δs

≤ K +K
∞
∑

i=1
i−(d+1)(s−τ)|εt−i|δs

using assumptions A3(ii) and (21). This yields

Eθ0sup
θ∈Θ

σδ
t (θ0)

σδ
t (θ)

≤ K + ω−sK ′
∞
∑

i=1
i−(d+1)(s−τ)

Eθ0 |εt−i|δs.

By taking s = ρ we have that (d+ 1)(s− τ) > 1 by assumption A4, we thus obtain

Eθ0sup
θ∈Θ

σδ
t (θ0)

σδ
t (θ)

< ∞.
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If δ < 2, using Minkowski inequality and assumption A4, we obtain

[

Eθ0sup
θ∈Θ

(

σδ
t (θ0)

σδ
t (θ)

)2/δ
]δ/2

≤ K +K
∞
∑

i=1
i−(d+1)(ρ−τ)

[

Eθ0 |εt−i|2ρ
]δ/2

< ∞

from assumption A3(ii), and if δ ≥ 2, Jensen inequality yields Eθ0sup
θ∈Θ

σ2
t (θ0)

σ2
t (θ)

< ∞,

which concludes the proof.

The following lemma shows the asymptotic irrelevance of the initial values on Qn.

Lemma 1. Under assumptions A1-A5, lim
n→∞

sup
θ∈Θ

|Qn(θ)− Q̃n(θ)| = 0.

Proof of Lemma 1. Consider

Qn(θ)− Q̃n(θ) =
1

n

n
∑

t=1

log
σ2
t (θ)

σ̃2
t (θ)

+
1

n

n
∑

t=1

ε2t

(

1

σ2
t (θ)

− 1

σ̃2
t (θ)

)

:= An(θ) +Bn(θ).

and remark that σ2
t (θ) ≥ σ̃2

t (θ), since we have σδ
t (θ) = σ̃δ

t (θ) +
∞
∑

i=t
ai,t−i(φ)|εt−i|δ. We

denote χt = sup
θ∈Θ

|σδ
t (θ)− σ̃δ

t (θ)|, and we have from assumption A3(ii)

χt = sup
θ∈Θ

∞
∑

i=t

ai,t−i(φ)|εt−i|δ ≤ K

∞
∑

i=0

(i+ t)−(d+1)|ε−i|δ,

whence Eχρ
t ≤ K

∞
∑

i=0
(i + t)−(d+1)ρ

E|ε−i|δρ. Since from assumption A4, E |εt|δρ < ∞,

with ρ(d + 1) > 1, and since for any k > 1 we have
∫∞
t x−kdx = (k − 1)−1t−k+1, we

obtain Eχρ
t ≤ Kt−(d+1)ρ+1. This shows that χt has a finite moment of order ρ and thus

is finite almost surely. Furthermore, since ρ(d + 1) > 1, the dominated convergence

theorem entails lim
t→∞

χt = 0 almost surely. Then, we have

|An(θ)| =
2

δn

n
∑

t=1

log

[

1 +
σδ
t (θ)− σ̃δ

t (θ)

σ̃2
t (θ)

]

≤ K

n

n
∑

t=1

σδ
t (θ)− σ̃δ

t (θ)

since log(1 + x) ≤ x for x ≥ 0 and, for all t, σ̃2
t (θ) ≥ ω. Therefore, we obtain

sup
θ∈Θ

|An(θ)| ≤ Kn−1
n
∑

t=1
χt and from Cesaro mean convergence theorem, we obtain

lim
n→∞

sup
θ∈Θ

|An(θ)| = 0 almost surely.
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Consider now

|Bn(θ)| ≤
K

n

n
∑

t=1

η2t
σ2
t (θ0)

σ2
t (θ)

max[σ2−δ
t (θ), σ̃2−δ

t (θ)]

σ̃2
t (θ)

[

σδ
t (θ)− σ̃δ

t (θ)
]

whence

sup
θ∈Θ

|Bn(θ)| ≤ K

n

n
∑

t=1
η2t sup

θ∈Θ

σ2
t (θ0)

σ2
t (θ)

max[σ2−δ
t (θ), σ̃2−δ

t (θ)]

σ̃2
t (θ)

χt.

If δ ≥ 2, σ2−δ
t (θ) ≤ σ̃2−δ

t (θ) and since σ̃−δ
t (θ) ≤ ω−δ < ∞ from A1, we have

sup
θ∈Θ

|Bn(θ)| ≤ K

n

n
∑

t=1
η2t sup

θ∈Θ

σ2
t (θ0)

σ2
t (θ)

[σ̃2
t (θ)]

−δχt ≤
K

n

n
∑

t=1
η2t sup

θ∈Θ

σ2
t (θ0)

σ2
t (θ)

χt.

If δ < 2, σ2−δ
t (θ) ≥ σ̃2−δ

t (θ) and we have

sup
θ∈Θ

|Bn(θ)| ≤
K

n

n
∑

t=1
η2t sup

θ∈Θ

σ2
t (θ0)

σ2
t (θ)

σ2
t (θ)

σ̃2
t (θ)

χt.

From assumptions A3(ii) and A4, we have

sup
θ∈Θ

η2t
σ2
t (θ0)

σ2
t (θ)

σ2
t (θ)

σ̃2
t (θ)

= sup
θ∈Θ

η2t
σ2
t (θ0)

σ2
t (θ)

[

σδ
t (θ)

σ̃δ
t (θ)

]2/δ

≤ Ksup
θ∈Θ

η2t
σ2
t (θ0)

σ2
t (θ)

[

1 +
∞
∑

i=0
i−d−1|ε−i|δ

]2/δ

≤ Ksup
θ∈Θ

η2t
σ2
t (θ0)

σ2
t (θ)

(22)

where K is finite almost surely and does not depend on t since
∞
∑

i=0
i−(d+1)|ε−i|δ admits

a moment of order ρ and thus is finite almost surely.

Thus, we have

sup
θ∈Θ

|Bn(θ)| ≤
K

n

n
∑

t=1

η2t sup
θ∈Θ

σ2
t (θ0)

σ2
t (θ)

χt.

By ergodicity and independance of η2t with σ2
t , we have that

1

n

n
∑

t=1
η2t sup

θ∈Θ

σ2
t (θ0)

σ2
t (θ)

tends

to Eη2t E sup
θ∈Θ

σ2
t (θ0)

σ2
t (θ)

almost surely as n tends to infinity. Since χt → 0 almost surely

and Eη2t E sup
θ∈Θ

σ2
t (θ0)

σ2
t (θ)

< ∞ by assumptions A2 and A5, from Toeplitz lemma we

obtain lim
n→∞

sup
θ∈Θ

|Bn(θ)| = 0 almost surely, which concludes the proof.

Proof of Theorem 2. The proof of the strong consistency of the QMLE is achieved
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by proving the four following intermediate results and using a compactness argument:

(a) lim
n→∞

sup
θ∈Θ

|Qn(θ)− Q̃n(θ)| = 0

(b) (∃t ∈ Z such that σδ
t (θ) = σδ

t (θ0) a.s.) ⇒ θ = θ0

(c) Eθ0 |lt(θ0)| < ∞, and if θ 6= θ0, Eθ0 lt(θ) > Eθ0 lt(θ0)

(d) For any θ 6= θ0, there exists a neighborhood V (θ) such that

lim inf
n→∞

inf
θ∗∈V (θ)

Q̃n(θ
∗) > Eθ0 l1(θ0) a.s.

(a) is directly obtained from Lemma 1.

Now let θ ∈ Θ, such that, for some t ∈ Z, we have σδ
t (θ) = σδ

t (θ0) almost surely.

Assume θ 6= θ0, and suppose that

α+
1 (φ0)1εt−1≥0 + α−

1 (φ0)1εt−1<0 6= α+
1 (φ)1εt−1≥0 + α−

1 (φ)1εt−1<0. (23)

Then
([

α+
1 (φ0)− α+

1 (φ)
]

1ηt−1≥0 +
[

α−
1 (φ0)− α−

1 (φ)
]

1ηt−1<0

)

|ηt−1|δ belongs to the σ-

field Ft−2 generated by {ηs : s ≤ t − 2} and thus, by independence, is almost surely

constant. Since, from A2, η1 takes at least two positive (respectively negative) values,

this implies almost surely α+
1 (φ0) = α+

1 (φ) and α−
1 (φ0) = α−

1 (φ), which contradicts

(23). Recursively, we obtain that σ2
t (θ) = σ2

t (θ0) implies that, for all i, α+
i (φ0) = α+

i (φ)

and α−
i (φ0) = α−

i (φ) and thus, from assumption A3(i), φ+ = φ
+
0 and φ− = φ

−

0 a.s.,

whence ω = ω0 a.s., and thus θ = θ0 almost surely, which proves (b).

We now turn to (c). First, notice that, even if the limit criterion may not be integrable

at some point of Θ, it is well defined in R ∪ {+∞}. Indeed

Eθ0

[

l−t (θ)
]

= Eθ0 max[0;−lt(θ)] ≤ Eθ0 max
[

0;− log σ2
t (θ)

]

< ∞.

Furthermore, we can show that it is integrable at θ0. Using Jensen inequality and

assumption A3(ii), we obtain

Eθ0 [lt(θ0)] = 1 + Eθ0 log σ
2
t (θ0) ≤ 1 +

2

δρ
log

(

ωρ +K

∞
∑

i=1

i−(d+1)ρ
Eθ0 |εt−i|δρ

)

< ∞

since, from assumption A4, E |εt|δρ < ∞ and ρ(d + 1) > 1. Thus, Eθ0 |lt(θ0)| is well
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defined in R. In addition, we have

Eθ0 [lt(θ)]− Eθ0 [lt(θ0)] = Eθ0

[

log
σ2
t (θ)

σ2
t (θ0)

]

+ Eθ0

[

σ2
t (θ0)η

2
t

σ2
t (θ)

− η2t

]

≥ − log

[

Eθ0

σ2
t (θ0)

σ2
t (θ)

]

+ Eθ0

[

σ2
t (θ0)

σ2
t (θ)

]

− 1 ≥ 0

since, for any x > 0, log x ≤ x − 1. We can conclude by noticing that Eθ0 [lt(θ)] =

Eθ0 [lt(θ0)] if and only if
σ2
t (θ0)

σ2
t (θ)

= 1 almost surely, and thus, by identifiability of the

parameter, if and only if θ = θ0.

Finally, the proof of (d) is similar to the one presented in Francq and Zakoïan[19] and

is left out of this paper the sake of brevity.

The conclusion of the proof follows from the previous four intermediate results and a

compactness argument similar to [19].

We now state and prove the property mentioned in the remark about assumption A11.

Proposition 3. Under assumptions A1-A4, if for all τ > 0, there exists a neighborhood

V (θ0) of θ0 such that

sup
i∈I+(φ0)

sup
φ∈V (φ0)

α+
i (φ0)

(α+
i )

1−τ (φ)
≤ K and sup

i∈I−(φ0)

sup
φ∈V (φ0)

α−
i (φ0)

(α−
i )

1−τ (φ)
≤ K. (24)

then, for all k>0, there exists some neighborhood V (θ0) of θ0 such that

Eθ0 sup
θ∈V (θ0)

[

σ2
t (θ0)

σ2
t (θ)

]k

< ∞.

Proof of Proposition 3. For all s ∈ (0, 1] and k > s, (10) and Hölder inequality yield

σδ
t (θ0) = ω0ω

s
k
−1ω1− s

k +
∞
∑

i=1
ai,t−i(φ0)a

s
k
−1

i,t−i(φ)a
1− s

k
i,t−i(φ)|εt−i|δ

s
k |εt−i|δ−δ s

k

≤
(

∞
∑

i=0
x

k
s
i

) s
k
(

∞
∑

i=0
y

1
1−s/k

i

)1− s
k

≤ K

[

ω
k
s
0 ω

1− k
s +

∞
∑

i=1
a

k
s
i,t−i(φ0)a

1− k
s

i,t−i(φ)|εt−i|δ
] s

k
[

σδ
t (θ)

]1− s
k .

with x0 = ω0ω
s
k
−1, xi = ai,t−i(φ0)a

s
k
−1

i,t−i(φ)|εt−i|δ
s
k , y0 = ω1− s

k , yi = a
1− s

k
i,t−i(φ)|εt−i|δ−δ s

k .

Since
[

σδ
t (θ)

]− s
k ≤ K, we obtain

[

σδ
t (θ0)/σ

δ
t (θ)

]k ≤

K



1 +
∑

I+
t ∩I+(φ0)

(α+
i )

k(φ0)

(α+
i )

k(φ)
(α+

i )
s(φ)|εt−i|δs +

∑

I−

t ∩I−(φ0)

(α−
i )

k(φ0)

(α−
i )

k(φ)
(α−

i )
s(φ)|εt−i|δs



 ,
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whence, from (24) and assumptions A3(ii) and A4, by taking s = ρ, there exists a

neighborhood such that

Eθ0 sup
θ∈V (θ0)

[

σδ
t (θ0)

σδ
t (θ)

]k

≤ K

[

1 +
∞
∑

i=1
i−(d+1)(ρ−kτ)

Eθ0 |εt−i|δρ
]

< ∞.

Indeed, from the arbitrariness of τ , we can find a τ such that (d+ 1)(ρ− kτ) > 1.

Before developing the proofs of Theorems 3 and 4, it is useful to state the following

lemmas. Note that the function lt(θ) may be non-defined in a neighborhood of θ0 when

θ0 ∈ ∂Θ since the volatility process σδ
t (θ) can take negative values. For ease of notation,

we denote by ∂σδ
t (θ0)/∂θ the vector of partial derivatives (∂σδ

t (θ0)/∂θi)i=1,...,r+1 where

the j-th derivatives is replaced by the right derivative when φ0,j = φj . The same

convention is applied to the derivatives of lt, Qt, σ̃δ
t , l̃t, and Q̃t.

Lemma 2. Under assumptions A1-A10, for all ih = 1, ..., r+1, h = 1, ..., k, k ≤ 3, and

for all p > 0, we have

Eθ0 sup
θ∈Θ

∣

∣

∣

∣

1

σδ
t (θ)

∂kσδ
t (θ)

∂θi1 ...∂θik

∣

∣

∣

∣

p

< ∞.

Proof of Lemma 2. From (20) and assumption A10(i), we have, for all j1 ∈ {1, ..., r},

∂σδ
t

∂θ1
=

∂σδ
t

∂ω
= 1 and

∂σδ
t

∂θ1+j1

=
∂σδ

t

∂φj1

=
∑

i∈I+
t

∂α+
i

∂φj1

|εt−i|δ +
∑

i∈I−

t

∂α−
i

∂φj1

|εt−i|δ. (25)

It is thus sufficient to show that for all jh ∈ {1, ..., r}, h = 1, ..., k, k ≤ 3, we have

Eθ0 sup
θ∈Θ

∣

∣

∣

∣

1

σδ
t (θ)

∂kσδ
t (θ)

∂φj1 ...∂φjk

∣

∣

∣

∣

p

< ∞

From (25), and assumptions A3(ii) and A10(i) we have

sup
θ∈Θ

∣

∣

∣

∣

∂kσδ
t (θ)

∂φj1 ...∂φjk

∣

∣

∣

∣

≤ sup
θ∈Θ

∑

i∈I+
t

∣

∣

∣

∣

∂kα+
i (φ)

∂φj1 ...∂φjk

∣

∣

∣

∣

|εt−i|δ + sup
θ∈Θ

∑

i∈I−

t

∣

∣

∣

∣

∂kα−
i (φ)

∂φj1 ...∂φjk

∣

∣

∣

∣

|εt−i|δ

≤ K
∑

i∈I+
t

sup
θ∈Θ

(α+
i )

(1−ξ)(θ)|εt−i|δ +K
∑

i∈I−

t

sup
θ∈Θ

(α−
i )

(1−ξ)(θ)|εt−i|δ

≤ K
∞
∑

i=1
i−(d+1)(1−ξ)|εt−i|δ
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and from the Hölder inequality we obtain, for all p > ρ

sup
θ∈Θ

∣

∣

∣

∣

∂kσδ
t (θ)

∂φj1 ...∂φjk

∣

∣

∣

∣

≤ K

[

∞
∑

i=1

[

i−(d+1)(1−ξ)
]

p
ρ a

1− p
ρ

i,t−i(φ)|εt−i|δ
]

ρ
p
[

∞
∑

i=1
ai,t−i(φ)|εt−i|δ

]1− ρ
p

≤ K

[

∞
∑

i=1

[

i−(d+1)(1−ξ)
]

p
ρ a

1− p
ρ

i,t−i(φ)|εt−i|δ
]

ρ
p
[

σδ
t (θ)

]1− ρ
p ,

whence, from assumptions A3(ii) and A10(i),

Eθ0sup
θ∈Θ

∣

∣

∣

∣

∣

1

σ2
t (θ)

∂kσ2
t (θ)

∂φ+
j1,1

...∂φ+
j1,k

∣

∣

∣

∣

∣

p

≤ K
∞
∑

i=1

i−(d+1)(ρ−pξ)
Eθ0 |εt−i|δρ

for all ξ > 0. Since ρ >
1

d+ 1
, we may choose ξ such that (d+ 1)(ρ− pξ) > 1 and thus

we have Eθ0 sup
θ∈Θ

∣

∣

∣

∣

1

σδ
t (θ)

∂kσδ
t (θ)

∂θi1 ...∂θik

∣

∣

∣

∣

p

< ∞.

The following lemma shows the integrability of the criterion derivatives at θ0.

Lemma 3. Under the assumptions of Theorem 3 or Theorem 4,

Eθ0

∥

∥

∥

∥

∂lt(θ0)

∂θ

∂lt(θ0)

∂θ′

∥

∥

∥

∥

< ∞ and Eθ0

∥

∥

∥

∥

∂2lt(θ0)

∂θ∂θ′

∥

∥

∥

∥

< ∞

Proof. We have lt(θ) = log σ2
t (θ) +

ε2t
σ2
t (θ)

, thus we obtain

∂lt(θ)

∂θ
=

2

δ

[

1− ε2t
σ2
t

] [

1

σδ
t

∂σδ
t

∂θ

]

∂2lt(θ)

∂θ∂θ′
=

2

δ

[

1− ε2t
σ2
t

] [

1

σδ
t

∂2σδ
t

∂θ∂θ′

]

+
2

δ

[

δ + 2

δ

ε2t
σ2
t

− 1

] [

1

σδ
t

∂σδ
t

∂θ

] [

1

σδ
t

∂σδ
t

∂θ′

]

.

(26)

Note that at θ0,
ε2t

σ2
t (θ0)

= η2t is independent of σ2
t and its derivatives. It thus suffices

to show

Eθ0

∥

∥

∥

∥

1

σδ
t

∂σδ
t

∂θ
(θ0)

∥

∥

∥

∥

< ∞, Eθ0

∥

∥

∥

∥

1

σδ
t

∂2σδ
t

∂θ∂θ′
(θ0)

∥

∥

∥

∥

< ∞ and Eθ0

∥

∥

∥

∥

1

σ2δ
t

∂σδ
t

∂θ

∂σδ
t

∂θ′
(θ0)

∥

∥

∥

∥

< ∞.

The first two inequalities directly follow from Lemma 2. Since for all j, σ−δ
t ∂σδ

t /∂θj is

bounded at θ0, we obtain the last inequality, which concludes the proof.

The following lemma shows the non-singularity of J and how it connects with the vari-
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ance of the criterion derivatives.

Lemma 4. Under the assumptions of Theorem 3 or Theorem 4,

J is invertible and Vθ0

[

∂lt(θ0)

∂θ

]

= (κη − 1)J

Proof. Since at θ0, ε2t /σ
2
t (θ0) = η2t is independent of σ2

t and its derivatives, we have

Eθ0

[

∂lt
∂θ

(θ0)

]

=
2

δ
Eθ0 [1− η2t ]Eθ0

[

1

σδ
t

∂σδ
t

∂θ
(θ0)

]

= 0

from A2. Moreover, in view of integrability of the derivatives of the criterion at θ0,

J = Eθ0

[

∂2lt(θ0)

∂θ∂θ′

]

exists, and from assumption A7 we can write

Vθ0

[

∂lt
∂θ

(θ0)

]

=
4

δ2
Eθ0 [(1− η2t )

2]Eθ0

[

1

σδ
t

∂σδ
t

∂θ

1

σδ
t

∂σδ
t

∂θ′
(θ0)

]

= (κη − 1)J .

Assume now that J is singular, then there exists a non-zero vector Λ = [λ0,λ
′]′, with

λ ∈ R
r, such that almost surely Λ′JΛ = 0, which is equivalent to

λ0 +

∞
∑

i=1





r
∑

j=1

λj
∂α+

i (φ0)

∂φj
1εt−i≥0 +

r
∑

k=1

λk
∂α−

i (φ0)

∂φk
1εt−i<0



 |εt−i|δ = 0.

Now, assume
r
∑

j=1
λj

∂α+
1 (φ0)

∂φj
1εt−1≥0 +

r
∑

k=1

λk
∂α−

1 (φ0)

∂φk
1εt−1<0 6= 0, then it follows

[

r
∑

j=1
λj

∂α+
1 (φ0)

∂φj
1ηt−1≥0 +

r
∑

k=1

λk
∂α−

1 (φ0)

∂φk
1ηt−1<0

]

|ηt−1|δσδ
t−1(θ0)

= −λ0 −
∞
∑

i=2

[

r
∑

j=1
λj

∂α+
i (φ0)

∂φj
1ηt−i≥0 +

r
∑

k=1

λk
∂α−

i (φ0)

∂φk
1ηt−i<0

]

|ηt−i|δσδ
t−i(θ0)

whence ηδt−1 ∈ F
(

ηδt−2, ...
)

and thus, by independence,
r
∑

j=1
λj

∂α+
1 (φ0)

∂φj
1ηt−1≥0|ηt−1|δ is

constant almost surely and thus λ
′ ∂α+

1 (φ0)

∂φ
= 0 almost surely since, from assumption

A2, η1 takes at least two positive values. Iterating this argument for α
+(−)
i , we obtain

that for all i+(−)
h = i

+(−)
h (φ0), i

+(−)
h = 1, ..., r, we have λ

′
∂α

+(−)
ih

(φ0)

∂φ
= 0 and thus

from assumption A10(ii) we must have λ = 0. This implies λ0 = 0 and contradicts the

singularity of J .

The following lemma shows the uniform integrability of the second and third order of
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the criterion derivatives.

Lemma 5. Under the assumptions of Theorem 3 or Theorem 4, for any ε > 0, there

exists a neighborhood V(θ0) of θ0 such that for all k1, k2, k3 ∈ {1, . . . , r + 1},

Eθ0 sup
θ∈V (θ0)

∣

∣

∣

∣

∂2lt(θ0)

∂θk1∂θk2

∣

∣

∣

∣

< ∞ and Eθ0 sup
θ∈V (θ0)

∣

∣

∣

∣

∂3lt(θ0)

∂θk1∂θk2∂θk3

∣

∣

∣

∣

< ∞ a.s.

Proof. We have

∂3lt(θ)

∂θi1∂θi2∂θi3
=

2

δ

{[

1− ε2t
σ2
t

] [

1

σδ
t

∂3σδ
t

∂θi1∂θi2∂θi3

]

+

[

δ + 2

2

ε2t
σ2
t

− 1

] [

1

σδ
t

∂σδ
t

∂θi1

] [

1

σδ
t

∂2σδ
t

∂θi2∂θi3

]

+

[

δ + 2

2

ε2t
σ2
t

− 1

] [

1

σδ
t

∂σδ
t

∂θi2

] [

1

σδ
t

∂2σδ
t

∂θi1∂θi3

]

+

[

δ + 2

2

ε2t
σ2
t

− 1

] [

1

σδ
t

∂σδ
t

∂θi3

] [

1

σδ
t

∂2σδ
t

∂θi1∂θi2

]

+2

[

1− δ2 + 3δ + 2

δ2
ε2t
σ2
t

] [

1

σδ
t

∂σδ
t

∂θi1

] [

1

σδ
t

∂σδ
t

∂θi2

] [

1

σδ
t

∂σδ
t

∂θi3

]}

(θ).

From assumptions A7 and A11, and the triangular inequality, there exists a neighbor-

hood V (θ0) of θ0 such that,

∥

∥

∥

∥

∥

sup
θ∈V (θ0)

ε2t
σ2
t (θ)

∥

∥

∥

∥

∥

2

=
√
κη

∥

∥

∥

∥

∥

sup
θ∈V (θ0)

σ2
t (θ0)

σ2
t (θ)

∥

∥

∥

∥

∥

2

< ∞.

Using Lemma 2, the Cauchy-Schwartz inequality and the Hölder inequality, we have for

all i1, i2, i3 ∈ {1, ..., r + 1}

Eθ0 sup
θ∈Vτ (θ0)

∣

∣

∣

∣

[

1− ε2t
σ2
t (θ)

] [

1

σδ
t (θ)

∂3σδ
t (θ)

∂θi1∂θi2∂θi3

]∣

∣

∣

∣

< ∞,

Eθ0 sup
θ∈Vτ (θ0)

∣

∣

∣

∣

[

δ + 2

2

ε2t
σ2
t (θ)

− 1

] [

1

σδ
t (θ)

∂σδ
t (θ)

∂θi1

] [

1

σδ
t (θ)

∂2σδ
t (θ)

∂θi2∂θi3

]∣

∣

∣

∣

≤
∥

∥

∥

∥

∥

sup
θ∈Vτ (θ0)

∣

∣

∣

∣

δ + 2

2

ε2t
σ2
t (θ)

− 1

∣

∣

∣

∣

∥

∥

∥

∥

∥

2

∥

∥

∥

∥

sup
θ∈Θ

∣

∣

∣

∣

1

σδ
t (θ)

∂σδ
t (θ)

∂θi1

∣

∣

∣

∣

∥

∥

∥

∥

4

∥

∥

∥

∥

sup
θ∈Θ

∣

∣

∣

∣

1

σδ
t (θ)

∂2σδ
t (θ)

∂θi2∂θi3

∣

∣

∣

∣

∥

∥

∥

∥

4

< ∞,

and

Eθ0 sup
θ∈Vτ (θ0)

∣

∣

∣

∣

[

1− δ2 + 3δ + 2

δ2
ε2t

σ2
t (θ)

] [

1

σδ
t (θ)

∂σδ
t (θ)

∂θi1

] [

1

σδ
t (θ)

∂σδ
t (θ)

∂θi2

] [

1

σδ
t (θ)

∂σδ
t (θ)

∂θi3

]∣

∣

∣

∣

≤
∥

∥

∥

∥

∥

sup
θ∈Vτ (θ0)

∣

∣

∣

∣

1− δ2 + 3δ + 2

δ2
ε2t

σ2
t (θ)

∣

∣

∣

∣

∥

∥

∥

∥

∥

2

max
h

∥

∥

∥

∥

sup
θ∈Θ

∣

∣

∣

∣

1

σδ
t (θ)

∂σδ
t (θ)

∂θih

∣

∣

∣

∣

∥

∥

∥

∥

3

6

< ∞,
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which concludes the proof.

The following lemma shows the asymptotic irrelevance of the initial values on the deriva-

tives of the criterion.

Lemma 6. Under the assumptions of Theorem 3 or Theorem 4,

∥

∥

∥

∥

∥

1√
n

n
∑

t=1

(

∂lt(θ0)

∂θ
− ∂l̃t(θ0)

∂θ

)∥

∥

∥

∥

∥

P→ 0 and sup
θ∈V (θ0)

∥

∥

∥

∥

∥

1

n

n
∑

t=1

(

∂2lt(θ)

∂θ∂θ′
− ∂2 l̃t(θ)

∂θ∂θ′

)∥

∥

∥

∥

∥

P→ 0

Proof. First, remark that, from assumption A3(ii) and A11, on a neighborhood V (θ0)

of θ0, we have similarly to (22)

sup
θ∈V (θ0)

ε2t
σ̃2
t (θ)

= sup
θ∈V (θ0)

η2t
σ2
t (θ0)

σ2
t (θ)

[

σδ
t (θ)

σ̃δ
t (θ)

]2/δ

≤ K sup
θ∈V (θ0)

η2t
σ2
t (θ0)

σ2
t (θ)

(27)

where K is finite almost surely and does not depend on t since
∞
∑

i=0
i−(d+1)ε2−i admits a

moment of order ρ and thus is finite almost surely.

We have

∂l̃t(θ)

∂θ
=

2

δ

[

1− ε2t
σ̃2
t

] [

1

σ̃δ
t

∂σ̃δ
t

∂θ

]

(θ) =
2

δ

[

1− η2t
σ2
t

σ̃2
t

] [

1

σ̃2
t

∂σ̃2
t

∂θ

]

(θ),

therefore we can write
∣

∣

∣

∣

∣

∂lt(θ0)

∂θk
− ∂l̃t(θ0)

∂θk

∣

∣

∣

∣

∣

=
2

δ

∣

∣

∣

∣

[

ε2t
σ̃2
t

− ε2t
σ2
t

] [

1

σδ
t

∂σδ
t

∂θk

]

+

[

1− ε2t
σ̃2
t

] [

1

σ̃δ
t

− 1

σδ
t

] [

∂σδ
t

∂θk

]

+

[

1− ε2t
σ̃2
t

] [

1

σ̃δ
t

] [

∂σδ
t

∂θk
− ∂σ̃δ

t

∂θk

]∣

∣

∣

∣

(θ0)

=
2

δ
|At +Bt + Ct| (θ0)

From the Markov inequality we have

P

[∣

∣

∣

∣

∣

1√
n

n
∑

t=1

[

∂lt(θ0)

∂θk
− ∂l̃t(θ0)

∂θk

]∣

∣

∣

∣

∣

> ε

]

≤ 1

ε
Eθ0

∣

∣

∣

∣

∣

1√
n

n
∑

t=1

[

∂lt(θ0)

∂θk
− ∂l̃t(θ0)

∂θk

]∣

∣

∣

∣

∣

≤ 1

ε

2

δ

[

Eθ0

∣

∣

∣

∣

1√
n

n
∑

t=1
At(θ0)

∣

∣

∣

∣

+ Eθ0

∣

∣

∣

∣

1√
n

n
∑

t=1
Bt(θ0)

∣

∣

∣

∣

+ Eθ0

∣

∣

∣

∣

1√
n

n
∑

t=1
Ct(θ0)

∣

∣

∣

∣

]

(28)
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From (27), we have

|At(θ0)| =
∣

∣

∣

∣

[

ε2t
σ̃2
t

− ε2t
σ2
t

] [

1

σδ
t

∂σδ
t

∂θk

]∣

∣

∣

∣

(θ0) ≤ Kη2t

[

∞
∑

i=t

ai,t−i(φ0)|εt−i|δ
]

∣

∣

∣

∣

1

σδ
t (θ0)

∂σδ
t

∂θk
(θ0)

∣

∣

∣

∣

.

Using the independence of η2t with σδ
t and its derivatives at θ0, A2, A8 and A9, Hölder

inequality, and Lemma 2,

Eθ0 |At(θ0)|ρ ≤ K

(

Eθ0

[

∞
∑

i=t
i−(d∗+1)|εt−i|δ

]ρ(1+ξ)
) 1

1+ξ



Eθ0

∣

∣

∣

∣

1

σδ
t

∂σδ
t

∂θk
(θ0)

∣

∣

∣

∣

ρ ξ+1

ξ





ξ
1+ξ

≤ K
∞
∑

i=0
(t+ i)−(d∗+1)ρ

(

Eθ0 |ε−i|δρ(1+ξ)
) 1

1+ξ

≤ Kt−(d∗+1)ρ+1,

(29)

for some ξ > 0 such that ρ(1 + ξ) ≤ 1 and thus

Eθ0

∣

∣

∣

∣

∣

1√
n

n
∑

t=1

At(θ0)

∣

∣

∣

∣

∣

ρ

≤ Kn−(d∗+ 3
2
)ρ+2 →

n→∞
0

since from assumption A9 we have (d∗ + 3
2)ρ − 2 > 0. Using Markov inequality,

we can conclude
1√
n

n
∑

t=1
|At(θ0)| tends to 0 in probability. Similar arguments yield

1√
n

n
∑

t=1
|Bt(θ0)| tends to 0 in probability. In addition, from (25), and from assumptions

A10(i) and A3(ii), we have for all ξ > 0,

|Ct(θ0)| =
∣

∣

∣

∣

[

1− ε2t
σ̃2
t

] [

1

σ̃δ
t

] [

∂σδ
t

∂θk
− ∂σ̃δ

t

∂θk

]∣

∣

∣

∣

(θ0) ≤ Kη2t

∞
∑

i=0

(t+ i)−(d+1)(1−ξ)|ε−i|δ,

and thus

Eθ0

∣

∣

∣

∣

∣

1√
n

n
∑

t=1

Ct(θ0)

∣

∣

∣

∣

∣

ρ

≤ n− 1
2
ρ

n
∑

t=1

Eθ0 |Ct(θ0)|ρ ≤ Kn−(d∗+1)ρ(1−ξ)+2 →
n→∞

0

since, from assumption A8 and A9, there exists a ξ such that (d∗ + 1)ρ(1− ξ)− 2 > 0.

Using Markov inequality, we can conclude
1√
n

n
∑

t=1
|Ct(θ0)| tends to 0 in probability.

Hence (28) yields P

[∣

∣

∣

∣

∣

1√
n

n
∑

t=1

[

∂lt(θ0)

∂θk
− ∂l̃t(θ0)

∂θk

]∣

∣

∣

∣

∣

> ε

]

→ 0 for all ε > 0 which con-

cludes the proof of the first inequality.

Now consider the asymptotic impact of the initial values on the second-order derivatives
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of the criterion in a neighborhood of θ0. Let us denote

χt := sup
θ∈V (θ0)

|σδ
t (θ)− σ̃δ

t (θ)| = sup
θ∈V (θ0)

∞
∑

i=t

ai,t−i(φ)|εt−i|δ ≤ K

∞
∑

i=0

(i+ t)−(d+1)|ε−i|δ

(30)

from assumption A3(ii) , whence Eχρ
t ≤ Kt−(d+1)ρ+1 from A4. This shows that χt

has a finite moment of order ρ and thus is finite almost surely. Furthermore, since

ρ(d+ 1) > 1, the dominated convergence theorem entails lim
t→∞

χt = 0 almost surely. Let

us now denote

χ
(i1)
t = sup

θ∈V (θ0)

∣

∣

∣

∣

∂σδ
t (θ)

∂θi1
− ∂σ̃δ

t (θ)

∂θi1

∣

∣

∣

∣

and χ
(i1,i2)
t = sup

θ∈V (θ0)

∣

∣

∣

∣

∂2σδ
t (θ)

∂θi1∂θi2
− ∂2σ̃δ

t (θ)

∂θi1∂θi2

∣

∣

∣

∣

(31)

where V (θ0) is a neighborhood of θ0 and i1, i2 ∈ {1, . . . , r}. From assumptions A10(i)

and A3(ii), we have for all ξ > 0,

χ
(1+i1)
t ≤

∞
∑

i=t

sup
φ∈V (φ0)

max

(∣

∣

∣

∣

∂α+
i (φ)

∂φi1

∣

∣

∣

∣

,

∣

∣

∣

∣

∂α−
i (φ)

∂φi1

∣

∣

∣

∣

)

|εt−i|δ ≤ K
∞
∑

i=0

(i+t)−(d+1)(1−ξ)|ε−i|δ,

whence E

(

χ
(i1)
t

)ρ
≤ Kt−(d+1)ρ(1−ξ)+1 from A4. This shows that for any i1, χ

(i1)
t has a

finite moment of order ρ and thus is finite almost surely. Furthermore, since ρ(d+1) > 1,

we can find a ξ > 0 such that ρ(d+ 1)(1− ξ) > 1, and thus the dominated convergence

theorem entails lim
t→∞

χ
(i1)
t = 0 almost surely. The same arguments yield lim

t→∞
χ
(i1,i2)
t = 0

almost surely for any i1, i2.

Consider now

sup
θ∈V(θ0)

∣

∣

∣

∣

∣

1

n

n
∑

t=1

[

∂2lt(θ)

∂θi1∂θi2
− ∂2 l̃t(θ)

∂θi1∂θi2

]∣

∣

∣

∣

∣

≤ 1

n

n
∑

t=1

2

δ
sup

θ∈V(θ0)

∣

∣

∣

∣

[

ε2t
σ̃2
t

− ε2t
σ2
t

] [

1

σδ
t

∂2σδ
t

∂θi1∂θi2

]

+

[

1− ε2t
σ̃2
t

] [(

1

σδ
t

− 1

σ̃δ
t

)

∂2σδ
t

∂θi1∂θi2
+

1

σ̃δ
t

(

∂2σδ
t

∂θi1∂θi2
− ∂2σ̃δ

t

∂θi1∂θi2

)]

+

[

2 + δ

δ

ε2t
σ2
t

− 2 + δ

δ

ε2t
σ̃2
t

] [

1

σδ
t

∂σδ
t

∂θi1

] [

1

σδ
t

∂σδ
t

∂θi2

]

+

[

2 + δ

δ

ε2t
σ̃2
t

− 1

] [(

1

σδ
t

− 1

σ̃δ
t

)

∂σδ
t

∂θi1
+

1

σ̃δ
t

(

∂σδ
t

∂θi1
− ∂σ̃δ

t

∂θi1

)][

1

σδ
t

∂σδ
t

∂θi2

]

+

[

2 + δ

δ

ε2t
σ̃2
t

− 1

] [(

1

σδ
t

− 1

σ̃δ
t

)

∂σδ
t

∂θi2
+

1

σ̃δ
t

(

∂σδ
t

∂θi2
− ∂σ̃δ

t

∂θi2

)][

1

σ̃δ
t

∂σ̃δ
t

∂θi1

]∣

∣

∣

∣

(θ),
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which yields

sup
θ∈V(θ0)

∣

∣

∣

∣

∣

1

n

n
∑

t=1

[

∂2lt(θ)

∂θi1∂θi2
− ∂2 l̃t(θ)

∂θi1∂θi2

]∣

∣

∣

∣

∣

≤ K

n

n
∑

t=1
η2t sup

θ∈V(θ0)

∣

∣

∣

∣

[

σ2
t (θ0)

σ2
t (θ)

1

σδ
t (θ)

∂2σδ
t (θ)

∂θi1∂θi2

]∣

∣

∣

∣

χt

+
K

n

n
∑

t=1
η2t sup

θ∈V(θ0)

∣

∣

∣

∣

σ2
t (θ0)

σ2
t (θ)

[

1

σδ
t (θ)

∂σδ
t (θ)

∂θi1

] [

1

σδ
t (θ)

∂σδ
t (θ)

∂θi2

]∣

∣

∣

∣

χt

+
K

n

n
∑

t=1
η2t sup

θ∈V(θ0)

∣

∣

∣

∣

σ2
t (θ0)

σ2
t (θ)

[

1

σ̃δ
t (θ)

∂σ̃δ
t (θ)

∂θi1

] [

1

σδ
t (θ)

∂σδ
t (θ)

∂θi2

]∣

∣

∣

∣

χt

+
K

n

n
∑

t=1
η2t sup

θ∈V(θ0)

∣

∣

∣

∣

σ2
t (θ0)

σ2
t (θ)

[

1

σ̃δ
t (θ)

∂σ̃δ
t (θ)

∂θi1

]∣

∣

∣

∣

χ
(i2)
t

+
K

n

n
∑

t=1
η2t sup

θ∈V(θ0)

∣

∣

∣

∣

σ2
t (θ0)

σ2
t (θ)

[

1

σδ
t (θ)

∂σδ
t (θ)

∂θi1

]∣

∣

∣

∣

χ
(i1)
t

+
K

n

n
∑

t=1
η2t sup

θ∈V(θ0)

∣

∣

∣

∣

σ2
t (θ0)

σ2
t (θ)

∣

∣

∣

∣

χ
(i1,i2)
t .

We can first notice that, from the same arguments used to show Lemma 2, for all p > 0,

i1, i2 = 1, ..., r + 1,

Eθ0sup
θ∈Θ

∣

∣

∣

∣

1

σ̃δ
t (θ)

∂σ̃δ
t (θ)

∂θi1

∣

∣

∣

∣

p

< ∞

Eθ0sup
θ∈Θ

∣

∣

∣

∣

1

σ̃δ
t (θ)

∂2σ̃δ
t (θ)

∂θi1∂θi2

∣

∣

∣

∣

p

< ∞.

(32)

Then, from independence of η2t with σδ
t and its derivatives, assumption A11, Lemma 2,

(27), and (32) we have, using Hölder inequality, for all i1, i2,

E

[

η2t sup
θ∈V(θ0)

∣

∣

∣

∣

[

σ2
t (θ0)

σ2
t (θ)

1

σδ
t (θ)

∂2σδ
t (θ)

∂θi1∂θi2

]∣

∣

∣

∣

]

< ∞

E

[

η2t sup
θ∈V(θ0)

∣

∣

∣

∣

σ2
t (θ0)

σ2
t (θ)

[

1

σδ
t (θ)

∂σδ
t (θ)

∂θi1

] [

1

σδ
t (θ)

∂σδ
t (θ)

∂θi2

]∣

∣

∣

∣

]

< ∞

E

[

η2t sup
θ∈V(θ0)

∣

∣

∣

∣

σ2
t (θ0)

σ2
t (θ)

[

1

σ̃δ
t (θ)

∂σ̃δ
t (θ)

∂θi1

] [

1

σδ
t (θ)

∂σδ
t (θ)

∂θi2

]∣

∣

∣

∣

]

< ∞

E

[

η2t sup
θ∈V(θ0)

∣

∣

∣

∣

σ2
t (θ0)

σ2
t (θ)

[

1

σδ
t (θ)

∂σδ
t (θ)

∂θi1

]∣

∣

∣

∣

]

< ∞

E

[

η2t sup
θ∈V(θ0)

∣

∣

∣

∣

σ2
t (θ0)

σ2
t (θ)

[

1

σ̃δ
t (θ)

∂σ̃δ
t (θ)

∂θi1

]∣

∣

∣

∣

]

< ∞.

(33)

Since χt, χ
(i1)
t , and χ

(i1,i2)
t tend to 0 almost surely as t tends to infinity, and (33), Toeplitz
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lemma combined with Markov inequality entail

sup
θ∈V(θ0)

∣

∣

∣

∣

∣

1

n

n
∑

t=1

[

∂2lt(θ)

∂θi1∂θi2
− ∂2 l̃t(θ)

∂θi1∂θi2

]∣

∣

∣

∣

∣

→
n→∞

0

in probability, which concludes the proof.

Finally, the following lemma shows the asymptotic normality of the normalized score.

Lemma 7. Under the assumptions of Theorem 3 or Theorem 4,

Zn = −J−1
n

√
n
∂Qn(θ0)

∂θ

L→ Z , with Z ∼ N (0, (κη − 1)J)

where J−1
n =

∂2Qn(θ0)

∂θθ′
is an almost surely positive definite matrix for n sufficiently

large.

Proof. Using the fact that σδ
t (θ0) and its derivatives belong to the σ-field generated by

{εt−i, i ≥ 0}, and the fact that Eθ0

[

ε2t |εu, u < t
]

= σ2
t (θ0), we have

Eθ0

[

∂lt(θ0)

∂θ
|εu, u < t

]

=
1

σδ
t (θ0)

[

∂σδ
t

∂θ
(θ0)

]

Eθ0

[

σ2
t (θ0)− ε2t |εu, u < t

]

= 0

and we have from Lemma 4 that Vθ0

[

∂lt
∂θ

(θ0)

]

is finite. In view of the invertibility

of J and the assumptions on the distribution of ηt (which entails 0 < κη − 1 < ∞),

this covariance matrix is non-degenerate. It follows that, for all λ ∈ R
r+1, the sequence

{

λ′ ∂lt(θ0)

∂θ
, εt

}

t

is a square integrable ergodic stationary martingale difference. The

Cramer-Wold theorem and the central limit theorem for square-integrable martingale

difference of Billingsley[7] entail
1√
n

n
∑

t=1

∂lt
∂θ

(θ0)
L→ N (0, (κη−1)J). The ergodic theorem

entails Jn → J as n → ∞ almost surely and thus the conclusion follows from Slutsky

lemma.

W can now develop the proof of Theorem 3.

Proof of Theorem 3. From Theorem 2, we have that θ̃n converges to θ0 which, from

assumption A6, belongs to the interior of Θ, whence the derivative of the criterion is

equal to zero at θ̃n. It follows that, by a standard Taylor expansion at θ0, we have

0 =
∂Q̃n

∂θ
(θ̃n) =

1√
n

n
∑

t=1

∂l̃t
∂θ

(θ0) +

[

1

n

n
∑

t=1

∂2 l̃t
∂θi∂θj

(θ∗

ij)

]

√
n(θ̃n − θ0)
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where the θ∗

ij are between θ̃n and θ0. We will show the result by proving that

1√
n

n
∑

t=1

∂l̃t
∂θ

(θ0)
L→ N (0, (κη − 1)J)and

1

n

n
∑

t=1

∂2 l̃t
∂θi∂θj

(θ∗

ij) → J(i, j) in probability. (34)

Using lemmas 3, 4, 6, and 7 along with Slutsky lemma directly yields the first part of (34).

Consider now a second Taylor expansion of the criterion at θ0. We have for all i and j,

1

n

n
∑

t=1

∂2lt
∂θi∂θj

(θ∗

ij) =
1

n

n
∑

t=1

∂2lt
∂θi∂θj

(θ0) +
1

n

n
∑

t=1

∂lt
∂θ′

[

∂2lt
∂θi∂θj

(θ̃ij)

]

(θ∗

ij − θ0)

where θ̃ij is between θ∗

ij and θ0. The almost sure convergence of θ̃ij to θ0, the ergodic

theorem and the uniform integrability of the third-order derivatives of the criterion (from

Lemma 5) imply that almost surely

lim sup
n→∞

∥

∥

∥

∥

1

n

n
∑

t=1

∂lt
∂θ′

[

∂2lt
∂θi∂θj

(θ̃ij)

]∥

∥

∥

∥

≤ lim sup
n→∞

1

n

n
∑

t=1
sup

θ∈V(θ0)

∥

∥

∥

∥

∂lt
∂θ′

[

∂2lt
∂θi∂θj

(θ)

]∥

∥

∥

∥

≤ Eθ0 sup
θ∈V(θ0)

∥

∥

∥

∥

∂lt
∂θ′

[

∂2lt
∂θi∂θj

(θ)

]∥

∥

∥

∥

< ∞

Since ‖θ∗

ij − θ0‖ → 0 almost surely, we have for all ε > 0,

P

[∣

∣

∣

∣

1

n

n
∑

t=1

∂lt
∂θ′

[

∂2lt
∂θi∂θj

(θ̃ij)

]

(θ∗

ij − θ0)

∣

∣

∣

∣

≤ ε

]

= 1

and by the ergodic theorem,

1

n

n
∑

t=1

∂2lt
∂θi∂θj

(θ0)
P→ J(i, j).

Using Slutsky lemma along with the previous lemmas allows us to obtain the last part

of (34) which ends the proof.

The proof of Theorem 4 is exactly similar to the one developed by Francq and Zakoïan[17]

using the previously established lemmas and is left out of this paper for the sake of

brevity. The detailed proof is available in the supplementary file.

Proof of Theorem 5. It suffices to show that δ̃n = δ0 for n large enough, the other
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results being easily obtained from the proofs of Theorems 2, 3 and 4. We first show that

σδ,t(θ)

σδ0,t(θ0)
= 1 almost surely ⇒ δ = δ0. (35)

We have, denoting η
+(−)
t = ηt1ηt≥(<)0,

σδ
δ,t(θ) = ω +

∞
∑

i=1
α+
i (φ)σ

δ
δ0,t−i(θ0)|η+t−i|δ + α−

i (φ)σ
δ
δ0,t−i(θ0)|η−t−i|δ

= ωδ,t−2(θ) + α+
1 (φ)σ

δ
δ0,t−1(θ0)|η+t−1|δ + α−

1 (φ)σ
δ
δ0,t−1(θ0)|η−t−1|δ

where ωδ,t−2(θ) = ω+
∞
∑

i=2
α+
i (φ)σ

δ
δ0,t−i(θ0)|η+t−i|δ+α−

i (φ)σ
δ
δ0,t−i(θ0)|η−t−i|δ is measurable

with respect to Ft−2. Let Ψ = (a, b, r, c, d) ∈ (0,∞)3 × [0,∞)2 and let the function

gΨ : [0,∞) → (0;∞) defined by gΨ(x) = (a + bx)−1(c + dxr)1/r. We have g′Ψ(x) = 0 if

and only if adxr−1 = bc, whence gΨ(x) = 1 cannot have more than two solutions, except

if i) r = 1, a = c, b = d, or ii) b = d = 0 and c = ar. Conditionally on Ft−1 we have

[

σδ,t(θ)

σδ0,t(θ0)

]δ0

= gΨ+(|ηt−1|δ0)1ηt−1≥0 + gΨ−(|ηt−1|δ0)1ηt−1<0 (36)

where Ψ+(−) = (ωδ0,t−2(θ0), ωδ,t−2(θ), δ/δ0, α
+(−)
1 (φ0)σ

δ0
δ0,t−1(θ0), α

+(−)
1 (φ)σδ

δ0,t−1(θ0)).

Thus σδ,t(θ) = σδ0,t(θ0) implies i) δ = δ0 or ii) α+
1 (φ) = α+

1 (φ0) = 0 and α−
1 (φ) =

α−
1 (φ0) = 0. In the latter case, (36) holds by replacing ηt−1 by ηt−2. Iterating the

arguments, under A2’, the first equality in (35) entails either i) δ = δ0 or ii) α+
i (φ) =

α+
i (φ0) = 0 and α−

i (φ) = α−
i (φ0) = 0 for all i ≥ 1. The latter is precluded by

Assumption A3(i), thus we have shown (35), which concludes the proof using Theorem

2 and arguments of its proof.

A.3 Specification tests

We develop in this section the proofs of the results of Section 3.

Proof of Theorem 6. Let us define for 0 < h < n

rh = n−1
n
∑

t=h+1

stst−h , with st = η2t − 1,

and let rm = (r1, . . . , rm)′ for any 1 ≤ m ≤ n. Let st(θ) (respectively s̃t(θ)) be the

random variable obtained by replacing ηt by ηt(θ) = εt/σt(θ) (respectively η̃t(θ) =

εt/σ̃t(θ)). Let rh(θ) and r̃h(θ) be defined with the same convention.
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We first prove the asymptotic irrelevance of the initial values on rm

√
n‖rm(θ0)− r̃m(θ0)‖ = oP (1) and sup

θ∈V(θ0)

∥

∥

∥

∥

∂rm(θ)

∂θ
− ∂r̃m(θ)

∂θ

∥

∥

∥

∥

= oP (1). (37)

We have

st(θ)st−h(θ)− s̃t(θ)s̃t−h(θ) = (st(θ)− s̃t(θ))st−h(θ) + (st−h(θ)− s̃t−h(θ))s̃t(θ)

:= At(θ) +Bt(θ)

Similarly to (29), we have

Eθ0 |At(θ0)|ρ ≤ KEθ0

∣

∣

∣

∣

σ2
t (θ0)− σ̃2

t (θ0)

σ̃2
t (θ0)

∣

∣

∣

∣

ρ

≤ Kt−(d∗+1)ρ+1

and thus

Eθ0

∣

∣

∣

∣

∣

1√
n

n
∑

t=1

At(θ0)

∣

∣

∣

∣

∣

ρ

≤ Kn−(d∗+ 3
2
)ρ+2 →

n→∞
0

since from assumption A9 we have (d∗ + 3
2)ρ − 2 > 0. Using Markov inequality, we

can conclude
1√
n

n
∑

t=1
|At(θ0)| tends to 0 in probability. Similar arguments yield that

1√
n

n
∑

t=1
|Bt(θ0)| tends to 0 in probability, which proves the first part of (37). In addition,

we have

∂st
∂θ

− ∂s̃t
∂θ

=
−2

δ

[[

ε2t
σ2
t

− ε2t
σ̃2
t

] [

1

σδ
t

∂σδ
t

∂θ

]

+
ε2t
σ̃2
t

[

1

σδ
t

− 1

σ̃δ
t

]

∂σδ
t

∂θ
+

ε2t
σ̃2
t

1

σ̃δ
t

[

∂σδ
t

∂θ
− ∂σ̃δ

t

∂θ

]]

whence, for all k ∈ {1, . . . , r + 1}, using similar notations as in (30) and (31),

sup
θ∈V (θ0)

∣

∣

∣

∣

∂st
∂θk

− ∂s̃t
∂θk

∣

∣

∣

∣

st−h ≤ Kη2t−hη
2
t sup
θ∈V (θ0)

σ2
t−h(θ0)

σ2
t−h(θ)

σ2
t (θ0)

σ2
t (θ)

∣

∣

∣

∣

1

σδ
t

∂σδ
t

∂θk

∣

∣

∣

∣

χt

+Kη2t−hη
2
t sup
θ∈V (θ0)

σ2
t−h(θ0)

σ2
t−h(θ)

σ2
t (θ0)

σ̃2
t (θ)

∣

∣

∣

∣

1

σδ
t

∂σδ
t

∂θk

∣

∣

∣

∣

χt

+Kη2t−hη
2
t sup
θ∈V (θ0)

σ2
t−h(θ0)

σ2
t−h(θ)

σ2
t (θ0)

σ̃2
t (θ)

χ
(k)
t .

Then similarly to (33), from independence of η2t with σδ
t and its derivatives, assumption

A11, Lemma 2, (27), and (32) we have, using Hölder inequality, and Toeplitz lemma,

sup
θ∈V(θ0)

∣

∣

∣

∣

∣

1

n

n
∑

t=1

(

∂st
∂θk

− ∂s̃t
∂θk

)

st−h

∣

∣

∣

∣

∣

→
n→∞

0

since χt and χ
(k)
t tend to 0 almost surely as t tends to infinity. In a like manner, we
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obtain that

E sup
θ∈V(θ0)

∣

∣

∣

∣

∣

1

n

n
∑

t=1

∂st−h

∂θk
(st − s̃t)

∣

∣

∣

∣

∣

≤ E

[

K

n

n
∑

t=1

η2t−hη
2
t sup
θ∈V(θ0)

σ2
t−h(θ0)

σ2
t−h(θ)

∣

∣

∣

∣

1

σδ
t

∂σδ
t

∂θk

∣

∣

∣

∣

χt

]

→
n→∞

0.

Using Markov inequality, we thus obtain that n−1
∑n

t=1 sup
θ∈V(θ0)

|∂At(θ)/∂θk| → 0 in

probability as n tends to infinity. Similar arguments yield the convergence of the term

n−1
∑n

t=1 sup
θ∈V(θ0)

|∂Bt(θ)/∂θk| and thus we have shown the second part of (37).

Using a Taylor expansion of r̃h at θ̃n for h = 1, . . . ,m along with (37) yields

√
nr̃h(θ̃n) =

√
nr̃h(θ0) +

∂r̃h(θ
∗
n)

∂θ

√
n(θ̃n − θ0)

oP (1)
=

√
nrh(θ0) +

∂rh(θ
∗
n)

∂θ

√
n(θ̃n − θ0)

for some θ∗
n between θ0 and θ̃n. In addition, assumption A11 and Lemma 2 entail that

there exists a neighborhood V(θ0) of θ0 such that for all i, j ∈ {1, . . . , r + 1}

sup
θ∈V(θ0)

Eθ0

∣

∣

∣

∣

∂2st(θ)st−h(θ)

∂θi∂θj

∣

∣

∣

∣

< ∞.

Using a second Taylor expansion, the ergodic theorem, and Theorem 2, we thus obtain

for all 0 < h < n

∂rh(θ
∗
n)

∂θ
→ Eθ0

[

∂stst−h(θ0)

∂θ

]

= −2

δ
Eθ0

[

st−h(θ0)
1

σδ
t (θ0)

∂σδ
t (θ0)

∂θ

]

since Eθ0 [st∂st−h(θ0)/∂θ] = 0 and thus we have

√
nr̃m(θ̃n)

oP (1)
=

√
nrm(θ0) +Cm

√
n(θ̃n − θ0). (38)

We now derive the asymptotic distribution of
√
n(rm(θ0), θ̃n − θ0). Let us denote

st−1:t−m = (st−1, . . . , st−m)′ and remark that rm(θ0)
oP (1)
= n−1

∑n
t=1 stst−1:t−m. From

the proof of Theorem 3, we have

√
n(θ̃n − θ0)

oP (1)
= J−1 1√

n

n
∑

t=1

(η2t − 1)
1

σ2
t (θ0)

∂σ2
t (θ0)

∂θ
,

thus the central limit theorem applied to the martingale difference

{

(

st
1

σ2
t

∂σ2
t (θ0)

∂θ′
, sts

′
t−1:t−m

)′

;F(ηu, u ≤ t)

}
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shows that

√
n

(

θ̃n − θ0

rm(θ0)

)

oP (1)
=

1√
n

n
∑

t=1
st





J−1 1

σ2
t

∂σ2
t (θ0)

∂θ

st−1:t−m





L→ N
(

0,

[

(κη − 1)J−1 (κη − 1)J−1C ′
m

(κη − 1)CmJ−1 (κη − 1)2Im

])

.

(39)

From (38) and (39), we obtain

√
nr̃m(θ̃n)

L→ N (0,D) , with D = (κη − 1)2Im − (κη − 1)CmJ−1C ′
m

and we can show that D̂ → D almost surely as n → ∞. Finally, we show that D is

invertible. From assumption A2, the law of η2t is non-degenerated hence κη > 1 and it

suffices to show the non singularity of

(κη − 1)Im −CmJ−1C ′
m = Eθ0V V ′, with V = s−1:−m +CmJ−1 2

δ

1

σ2
0

∂σ2
0(θ0)

∂θ
.

If this matrix is singular, then there exists λ = (λ1, . . . , λm)′ such that λ 6= 0 and

λ′s−1:−m + µ′ 1

σ2
0

∂σ2
0(θ0)

∂θ
a.s., where µ =

2

δ
λ′CmJ−1. (40)

If µ = (µ1, . . . , µr+1) = 0, then λ′s−1:−m = 0 almost surely, and thus there exists j ∈
{1, . . . ,m} such that s−j ∈ F(st, t 6= −j), which is impossible since st are independent

and non-degenerated, and thus we have µ 6= 0. Denoting by Rt any random variable

measurable with respect to F(ηu, u ≤ t), we have

µ′∂σ
2
0(θ0)

∂θ
= µ1 +

∞
∑

i=1

[

r+1
∑

j=2
µj

∂α+
i (φ0)

∂φj
1η−i≥0 +

r+1
∑

k=2

µk
∂α−

i (φ0)

∂φk
1η−i<0

]

σδ
−i(θ0)|η−i|δ

= µ1 +

[

r+1
∑

j=2
µj

∂α+
1 (φ0)

∂φj
|η+−1|δ +

r+1
∑

k=2

µk
∂α−

1 (φ0)

∂φk
|η−−1|δ

]

σδ
−1(θ0) +R−2

where η
+(−)
t = ηt1ηt≥(<)0. In addition, we have

σδ
0(θ0)λ

′s−1:−m = (ω0 + a1,t−1(φ0)|η−1|δσδ
−1(θ0) +R−2)(λ1η

2
−1 +R−2)

= λ1σ
δ
−1(θ0)a1,t−1(φ0)|η−1|δ+2 + (ω0λ1 +R−2)η

2
−1 +R−2.
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Thus (40) entails almost surely

0 = λ1σ
δ
−1(θ0)α

+(−)
1 (φ0)|η+(−)

−1 |δ+2 +

[

r+1
∑

j=2
µj

∂α
+(−)
1 (φ0)

∂φj

]

σδ
−1(θ0)|η

+(−)
−1 |δ

+(ω0λ1 +R−2)|η+(−)
−1 |2 +R−2.

Since an equation of the form a|x|δ+2 + b|x|δ + c|x|2 + d = 0 cannot have more than

three positive or more than three negative roots, except if all the coefficients are equal to

0, assumption A2’ implies
r+1
∑

j=2
µj

∂α+
1 (φ0)

∂φj
= 0 and

r+1
∑

j=2
µj

∂α−
1 (φ0)

∂φj
= 0 almost surely.

Iterating this argument, we obtain for all i+h (φ0) and i−h (φ0) a similar result, and thus

from assumption A10(ii), we must have µ = 0 which is impossible and thus contradicts

the singularity of D, concluding the proof.

Proof of Proposition 1. The first part of the proposition is a standard result for test-

ing linear constraints. See for example Chapter 17 of Gouriéroux and Monfort[26] for

proofs of the asymptotic distributions. The second part directly follows from Theorem

2 in Francq and Zakoïan[18].
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