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Abstract 

Applications of machine learning techniques to economic problems are increasing. These are 

powerful techniques with great potential to extract insights from economic data. However, care 

must be taken to apply them correctly, or the wrong conclusions may be drawn. In the 

technology clubs literature, after applying a clustering algorithm, some authors train a 

supervised machine learning technique, such as a decision tree or a neural network, to predict 

the label of the clusters. Then, they use some performance metric (typically, accuracy) of that 

prediction as a measure of the quality of the clustering configuration they have found. This is 

an error with potential negative implications for policy, because obtaining a high accuracy in 

such a prediction does not mean that the clustering configuration found is correct. This paper 

explains in detail why this modus operandi is not sound from theoretical point of view and uses 

computer simulations to demonstrate it. We caution policy and indicate the direction for future 

investigations. 

 

 

Keywords: Machine learning; clustering, technological change; technology clubs; knowledge 

economy; cross-country 

JEL: C45; C53; O38; P41; O57  
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1. Introduction 

 

Applications to nearly all fields of economics of machine learning, especially clustering, and 

neural networking, and deep learning, are on the rise. A simple word search in this journal 

(Applied Economics) for the phrases, or combinations thereof, machine learning, clustering 

techniques, neural networking, technology clubs, and technology club convergence reveals no 

less than 2590 counts. While we cannot be sure what the counts refer to specifically, we know 

for certain that with advances in big data science the increase in applications has been so much 

so that Athey and Imbens (2019) call attention to machine learning methods economists should 

know, especially those at the intersection of theoretic econometric models and applied 

algorithmic approaches  (Athey, 2017; Varian, 2014, Bajari, Dalton, Hang, and Khwaja, 

2014).1 Specifically, Basturk, Paap, and van Dijk (2012) use a clustering technique to group 

countries according to their level of economic growth, and thereafter apply regression models 

to explain what factors might drive the composition of each cluster. Usage of clustering 

techniques is rising with the growth of the literature on technology clubs and technology club 

convergence, not surprisingly because of the rising role of technology in the competitiveness 

of nations (Porter, 1990; Fagerberg, Srholec, and Knell, 2007). In this literature researchers use 

different types of clustering techniques to classify countries according to their technological 

prowess and to characterize their technological progress. How well are technology clubs 

classified and how correctly is the classification evaluated? This is the research question for 

this paper, and one that we should care about for policy and future research reasons. Regarding 

the former, the effectiveness of policy depends on whether a country is classified well, and its 

classification correctly evaluated. This is important because the fact that technology clubs exist 

is a clear indication of technological heterogeneity among countries even when they are 

classified in one cluster (club). Indeed, one can argue that the “multiple regimes” which 
Durlauf and Johnson (1995) observe in the economic growth of countries are due to the 

underlying technological differences. Consequently, a one-size-fits-all policy is likely both 

inappropriate and ineffective. In other words, this study helps decision-makers (policy-makers 

and researchers alike) correctly identify, design, and target policy to appropriate technology 

clubs. The increasing popularity of these new techniques is a measure of their importance to 

both policy and research (Kreiner and Duca, 2020; Cerulli, 2020: Mueller, 2020; Liu, and Xie, 

2019; Curie, Kleven and Zwiers, 2020; Rambachan, Kleinberg, Ludwig, and Mullainathan, 

2020; Athey, Bryan, and Gans, 2020; Cowgill and Stevenson, 2020). 

 

In the past, countries were grouped in “clubs” according to one or a few simple metrics such 

as the level of income (low vs. high income countries), geography (South vs. North), political 

ideology (East v. West), and so on. The observation that technology clubs perform differently 

within and across each other, gave rise to questions about technology club convergence, leading 

to the introduction of more quantitative approaches like clustering. Rezankova (2014), for 

example, evaluates different clustering algorithms, and she points out that mixture clustering 

 

1
 FYI Professor Susan Athey once served as a consultant chief economist for the Microsoft Corporation, Hal 

Varian is Google Chief Economist, and Pat Bajari is a chief economist and vice-president for Amazon.com. 
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methods are a more promising tool for uncovering hidden patterns in our data. Wolfson, Madjd-

Sadjadi, and James (2004) employ hierarchical clustering and characterize the clusters without 

validation. While the applications of cluster analysis and machine learning techniques have 

made possible quantitative classification of technology clubs using more than just a few 

characteristics, such improvement still leaves unanswered the question about the evaluation of 

technology club classification as our research question clearly shows. For example, we 

observed that a number of papers in the literature on technology clubs have accepted 

uncritically the clustering classification and evaluation of technology clubs and proceeded to 

analyze the performance of technology clubs and characterize their contribution to economic 

growth and development as such. Consequently, the literature inadvertently formalized an 

error, because it has assumed that if the clusters found really reflect a true structure in the 

data, a classifier will be able to make good predictions (high accuracy) about the cluster’s 
label (Castellacci, 2008; Castellacci, 2011). The consequence of the mistaken approach is not 

a minor methodological issue; it is a matter of relevance to the correct use of the results 

obtained from clustering. Hence, the objective of this paper is to demonstrate that this 

assumption is incorrect, and by doing so enhance the utility of the previous literature.  

 

The novelty of the paper is that it illustrates clearly that even when there are no clusters in the 

data, or when the number of clusters found by the clustering algorithm does not coincide with 

those really present in the data, there is a very high probability that the classifier will predict 

with very high accuracy the cluster’s label. The modus operandi of this mistaken approach is 

based on the supposition that if the clusters found really reflect a true structure in the data, the 

classifier will be able to make good predictions (high accuracy) about the cluster’s label. As 

we will show in this paper, the assumption is incorrect. From a theoretical point of view, it does 

not make sense to use a classifier (such a decision tree) to evaluate the quality of a clustering 

configuration. Consequently, the main contribution of the paper is a caution that it is an error 

that some papers on the literature on "technology clubs" did not employ a correct approach to 

validate the significance/precision of the resulting clusters (country clubs). Using an incorrect 

technique to assess the results of the clustering will yield an apparently good performance of 

the model (good metric), and yet a false impression that the “right” technology clubs have been 
found, leading to false and misleading policy implications from the viewpoint of decision- 

makers. This paper explains why it is not theoretically adequate to use a classifier to evaluate 

the quality of a clustering configuration. It uses computational simulations to show how this 

approach leads to very misleading results, and proposes the use of clustering techniques based 

on information theory, such as Bayesian information criterion (BIC), to find the optimum 

number of technology clubs in a given problem.  

 

The rest of this paper is organized as follows. In the next section below, we briefly summarize 

some concepts, including the key references. Section 3 describes the operation of clustering 

algorithms and classifiers, from which it can be inferred why it does not make sense to use a 

classifier to evaluate a clustering configuration. In the Results section, we show computational 

simulations to demonstrate this effect. Finally, we discuss and conclude in Section 5 with some 

indications of directions for future investigations. 
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2. Some Concepts about Clustering and the Error   

 

As used in this paper, the clustering technique is an unsupervised machine learning technique 

whose purpose is to find groups (clusters) of data similar to each other, and different from the 

data of other groups (Xu, 2015). These groups are often used as a summary of the original data. 

It is an exploratory data mining technique. If the algorithm has found a proper set of clusters, 

instead of reasoning over many, perhaps even hundreds or thousands of, individual data points, 

the analyst may reason over a small number of clusters. In the specific case of cross-country 

analysis, this means that instead of having to reason over dozens or hundreds of individual 

countries, we can reason over a much smaller number (typically, 2-6) of clusters of countries 

(clubs) that ideally are reasonably homogeneous. A technology club, for example, is a cluster 

of economic units (countries, industries, etc.) whose data on key variables identifies them as 

having the same level of technology at any given point in time. Presumably, there are many 

such clusters in the world (Antonelli, 1999, p. 182; Castellacci, 2008, Hypothesis 1, p. 303).   

 

Durlauf and Johnson (1995) use regression trees and some sort of supervised machine learning 

technique and then use decision trees for classification (categorical variable) or regression 

(continuous variable), the outcome variable of which predicted “multiple” economic 

performance “regime”. This approach is different from cluster analysis where there is no 

variable to be predicted and the cluster analysis determines endogenously the potential groups 

without making any a priori assumption. The problem here is that to validate the clusters found 

some authors train a classifier to predict the cluster label, and then they use some performance 

metric of the classifier, such as accuracy, to evaluate the quality of the clustering configuration. 

We are unable to trace the specific origins of the error and how it seeped into the literature on 

technology clubs. However, the error is apparent in Castellacci (2006) who shows that 

differences in technology are the basis for technology clubs and technology clubs have different 

growth dynamics; they progress (converge or diverge) towards the technology frontier at 

different rates. The labels for these are “advanced” technology clubs which tend to converge 

more rapidly than “followers” technology clubs which converge gradually but still faster than 

the “marginalized” technology clubs which diverge. Castellacci (2008) used a hierarchical 

clustering to obtain and label the three technology clusters exactly the same: "advanced", 

"followers", and "marginalized." The author then uses "classification and regression tree 

techniques (CART) in order to check the robustness of the hierarchical analysis results, and to 

identify the threshold values of the input variables that determine what club each country 

belongs to" (Castellacci, 2008, p. 304). Castellacci and Archibugi (2008) used for similar 

purposes an ordinal classifier (multinomial logistic regression) which for some of the growth 

clubs predicted correctly 100% of cases. More recently Castellacci (2011) examined the 

dynamics of technological innovation in a cross-country setting. Technological change is 

measured by the formation of growth clubs. We stress that our paper does not downplay the 

value of the previous literature; in fact, it improves (adds values) to that literature.  For example, 

Castellacci’s (2008) regression tree algorithm sought to identify technology-related variables 

that explain the nexus between technology and economic growth. There is no a priori reason 



6 

 

 

 

to believe that the country classification and dynamics of the exercise-growth relationship the 

paper observes are unimportant. Even so, how the clusters a validated should matter for both 

policy and future research, since the formation of clubs depends on technological knowledge 

which is a function of structural properties and initial conditions of individual countries. It is 

not enough for the literature to assume the validation is correct.  

 

In a sample of 54 high income countries De la Paz Marín et al. (2015) investigated the dynamics 

of the knowledge economy over the period 2007-2009. They employed a hierarchical clustering 

to find "advanced," "medium," "initiated," and "early stage" clusters. Then, they used "three 

ordinal classifiers” to validate the four clusters" (De la Paz Marín et al., 2015, p.563). A similar 

approach is followed in De la Paz Marín et al. (2012) to predict R&D expenditures for a sample 

of 25 European countries. Although, the studies by Paz Marín et al. (2012, 2015), Castellaci 

(2006, 2011), and Arcihibugi and Castellacci (2008) are well designed and executed, the 

problem is the results are still questionable because they are based on an inappropriate 

approach. They use classifiers as a validation method of clusters algorithms. Economic policy 

will be ill-informed if researchers and policymakers continue to deal with clusters and validate 

them with classifiers. Even, Stöllinger (2013) whose study draws upon sound economic models 

of Nelson-Phelps (1966) on absorptive capacity and Benhabib-Spiegel (1994) on human capital 

in the spirit of Romer (1990), himself assume the classification by Castellaci (2008). His results 

show that the strongest effects of the technology gap on economic growth occurs in the 

intermediate group which we associate with the imitation club. Shaaba and Olalekan (2020) 

employ a clustering algorithm to show the patterns of ICT convergence for 205 countries. The 

clusters reveal equal convergence globally, but unequal regionally, except for Sub-Saharan 

Africa (SSA) and South Asia which diverge, with SSA having seven technology clubs, 

indicating that policy should consider regional idiosyncrasies. The conclusion is well-taken. 

However, how reliable are these results if the validation on which they are based is flawed?  

 

 

3. Methods: Classifier Algorithms  

 

The goal of cluster analysis is to find out how subjects or instances are similar on a number of 

variables (Xu, 2015). After a successful clustering, the analyst may study and interpret 

aggregate statistics describing the variables of the set of objects that have fallen in each cluster, 

such as the mean and standard deviation, instead of the values of the individual objects. In most 

clustering algorithms (especially those known as partitional clustering algorithms, which 

include K-means, K-medoids, or a mixture of models), the analyst needs to specify in advance 

how many clusters the algorithm will return (for example, via the K parameter in K-means) 

(that is not a trivial issue). When a given number of clusters is specified, the algorithm will 

always return that number of clusters, regardless of how many clusters really exist in the data 

(see, Figure 1). Even if the number of clusters specified by the analyst as a parameter matches 

the number of clusters existing in the data, most clustering algorithms do not guarantee that the 

algorithm will always converge to the proper solution (see Figure 1F). In the case of 

hierarchical clustering algorithms implemented using agglomerative algorithms, while the 
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analyst needs not to specify in advance the number of clusters, any number of clusters between 

1 and n, where n being the number of data points, can be obtained by cutting the dendrogram 

at the appropriate height (see for instance Kaufman and Rousseuw, 1990). 

 

[Figure 1 near here] 

 

Furthermore, when applied to a dataset the vast majority of clustering algorithms (including 

partitional and hierarchical clustering) always return either the specified number of clusters or 

a dendrogram that can be cut to any height, regardless of true clusters being present in the data 

or not (see Figure 2). The algorithms when grouping the data separate the different clusters by 

borders. In the case of the K-means algorithm, probably the most popular in the economic 

literature, these borders delimit linear regions called Voronoi regions (see, Figures 1 and 2). 

The algorithm will find these borders, even if the data is not distributed in groups (see Figure 

2) or if the number of groups obtained does not match the true number of groups present in the 

data (see Figure 1). Thus, after executing a clustering algorithm, no matter how bad the cluster 

configuration found may be, we will always have borders that perfectly separate the data in 

clusters. Given this situation, there is an obvious need of having metrics to evaluate how good 

a set of clusters that have been found are. 

 

[Figure 2 near here] 

 

Classifiers are algorithms that, implicitly or explicitly, search for boundaries that separate the 

data in such a way that all the data that fall in the same region belong to the same class 

(Kuncheva, 2014). If the class is made up by the different clusters obtained by a clustering 

algorithm, by definition, there are borders that perfectly separate the data, irrespective of how 

good or bad the cluster configuration is. If a classifier is used to find these borders (predict the 

labels of the clusters) what is being tested is either how powerful that given classifier is, or 

how much skill the data analyst has in configuring the classifier’s parameters, but not if the 
borders found by the classifier correspond to a true underlying structure in the data (which is 

what we would like to evaluate in a clustering algorithm). Hence, from a theoretical point of 

view, it does not make sense to use a classifier to evaluate a clustering configuration. 

4. Results 

 

We will illustrate using computational simulations in R, version 3.6.0 (R Core Team, 2020), 

what happens when a classifier is used to evaluate a clustering configuration (all the R code is 

available in the supplementary materials). The code is made by two scripts. The first script 

simulates scenarios where there are no groups in the data. It generates uniformly distributed 

random datasets of different sizes (n = 100, 200, 500, 1000, 2000, 5000, and 10,000). For each 

size, it generates 100 times a random dataset with a random number of dimensions (variables), 

between 5 and 15. Then, K-means is applied to each dataset with a random K between 3 and 6. 

Finally, four different classifiers are trained to predict the cluster labels: a decision tree 

(Therneau, 2016) and a neural network (Günther, 2010) with default parameters (thus no tuning 

has been applied); and the same decision tree and neural network where some parameters have 
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been tuned (although they are the same for all the datasets).  Neural networks are more powerful 

classifiers than decision trees; they permit finding non-linear highly complex borders, while 

decision trees can only find linear borders that have to be orthogonal to the axes of the feature 

space (see for instance, Samarasinghe, 2016). 

The second script simulates scenarios in which there are clusters in the data by using a random 

number (between 3 and 6) of multidimensional Gaussians to generate the data. The Gaussians 

have a random number of dimensions between 5 and 15 and they all generate the same 

proportion of data. The same dataset sizes are simulated as in the previous case, and for each 

size 100 different simulations are performed. Then K-means is executed with a random value 

of K between 3 and 6 that must be different from the number of Gaussians that generated that 

dataset. Hence "the wrong number of clusters” is always obtained. Finally, the same four 

classifiers from the previous script are then trained to predict the cluster’s labels. 

Figures 3 and 4 plot the accuracy of each classifier for each size of the data set, and Tables 1 

and 2 show the mean accuracy, where accuracy means the percentage of observations correctly 

classified divided by the total number of instances. When using a powerful classifier with 

proper parameters (the neural network with optimized parameters) over uniformly distributed 

random datasets the accuracy is > 99%, except for n =10,000, where the accuracy is 98.8%, 

For the Gaussian datasets, where the K used is always from the number of Gaussians, the 

accuracy is always > 99.8%.  In the case of the decision tree with tuned parameters, the 

accuracy for both datasets is always > 90%. Note also that choosing the appropriate parameters 

for the classifier has more impact on its accuracy than the presence or absence of true clusters 

in the data. 

[Figure 3 near here] 

[Figure 4 near here] 

[Table 1 and Table 2 near here] 

 

5. Discussion and Conclusions 

 

The simulation results show that it is possible to train a classifier to make a very accurate 

prediction of the label of a cluster (unsupervised learning algorithm), even if there are no groups 

in the data (Figure 3 and Table 1), or if a number of clusters different from the true number of 

groups present in the data has been found during the clustering (Figure 4 and Table 2). They 

also show that, rather than the presence or absence of clusters in the data, the tuning of the 

classifier has more impact on its performance. 

Some classifiers, such as decision trees, have the advantage of being easy to interpret. 

Therefore, it may make sense to use a decision tree to predict the labels of a cluster, in order to 

understand/interpret a given clustering configuration (Fraiman, 2013). For example, the 

decision trees of Figure 5 permit understanding of the clusters found with K-means data on the 

left better than the mean vectors of the centroids of each cluster, or the mathematical 



9 

 

 

 

expressions of the Voronoi regions. The fact that those decision trees have a high accuracy 

means that the borders they found are very close to those created by the clustering algorithm; 

hence the trees could be an adequate tool to try to understand the clustering configuration 

found.  However, as it can be seen in Figures 5A and 5B, this does not mean that the clustering 

configuration found reflects a true structure in the data. This seems to be a fact ignored by some 

papers in literature on technology clubs.  

While this paper does not offer one specific solution, it recommends that authors and 

policymakers looking for a suitable way to evaluate the clustering configurations may check 

(Halkidi, 2002), especially when the problem in question is determining the proper number of 

clusters, we recommend abandoning the old and venerable K-means in favor of mixture model 

algorithms and using the Bayesian Information Criterion (BIC) to select the number of clusters 

(Ahlquist, 2012). For a recent application in the field of Economics of mixture models see, 

Sulkowski and White (2016), Scharfenaker and Schneider (2020), and Clement (2020).  

[Figure 5 near here] 

BIC provides a quantitative measure that favors cluster configurations that represent well the 

data (high likelihood) but at the same time it favors those clusters configurations that are as 

simple as possible (those that have a smaller number of clusters, and therefore of parameters). 

If the structure of a set contains clusters, when executing mixture model algorithm with a 

number of clusters lower than the true number of clusters present in the data, the optimal 

likelihood has not been achieved since the data would be better modeled with more components 

in the mixture. Hence, if we increase the number of components the likelihood, and therefore 

BIC, tend to increase until the number of clusters in the mixture matches the number of clusters 

truly present in the data (Figure 6 B). If we continue to increase the number of components in 

the mixture, the likelihood will not change significantly, but the model becomes more complex 

(more mixtures means more parameters), which will cause BIC to begin to decrease. Therefore, 

if the data contains true clusters, when running the mixture model with an increasing number 

of clusters (from 3 to 10 in Figure 6), a clear maximum should occur BIC when the number of 

mixes matches the number of actual clusters. On the other hand, if there are no clusters present 

in the data, it should not appear a clear maximum in BIC when the number of components of 

the mixture progressively increases (Figure 6 A). We invite economists to explore the use of 

sound techniques, such as BIC, to measure the quality of a cluster configuration and to 

determine the number of clusters present in their data, rather than the erroneous approach of 

using a classifier to predict the labels of clusters. 

[Figure 6 near here] 

Cluster validation and labeling should proceed cautiously because they require careful 

considerations. Besides the use of BIC, other machine learning techniques that would be benefit 

policy and future research on this topic are emerging and economists should take note of them. 

For example, Onan (2019) shows that a classification may be correct in terms of the number of 

clusters, but there may be a “minority class” phenomenon by which one cluster has very small 

instances relative to others because of an imbalance in the dataset, a probable situation when 
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dealing with technology clubs in developing countries where data is normally both inadequate 

and imprecise. In such cases other machine learning techniques must be brought to bear. 

Ensemble approaches enable (text) mining for specific information within the clubs themselves 

before clustering (Onan, 2016). These methods have proved useful in characterizing 

“sentiment” in the data, leading to efficient classification and accurate prediction of phenomena 

(Onan, 2020; Onan and Tocoglu, 2020). Hybrid ensemble permits supervised and unsupervised 

analysis of structured and unstructured data by combining search algorithms and k-means into 

a “classifier ensemble” with higher analytical and predictive power than conventional classifier 
algorithms that are not diverse (Onan, 2017). The objective is not just classification, but to 

utilize data mining for strategic planning (Onan, Bul, and Yaner, 2016), identify the subjective 

content of the data (Onan, Korukoglu, and Bulut, 2016), and or promote multiple objectives 

that are implicit in individual technology clusters as (a) Onan and Tocoglu (2021) illustrate 

with the example of the use of neural language network and deep neural networks to uncover 

deep meaning such as as sarcasm, (b) Onan, Korukoglu, and Bulut, 2016) show with respect to 

“multiobjective weighted rating ensemble classifier,” and (c) Onan and Korukoglu, (2015) 

advocate in selecting the appropriate model based on a specific feature and rank aggregation. 

All this literature supports the need to use machine learning techniques carefully. The 

cautionary note which this paper presents is a good example of the issues that can arise when 

techniques are not used properly. 
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Figure 1. Dataset made up by 500 random data points generated by four two-dimensional Gaussians. 

Cluster assignment after executing K-means is shown in color, and Voronoi regions are drawn in 

black. Source: Own elaboration 
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Figure 2. Two-dimensional dataset made up by 500 data generated by random uniform distribution 

(hence there are no clusters). Cluster assignment after executing K-means is shown in color, and 

Voronoi regions are drawn in black. Source: Own elaboration. 
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Figure 3. Boxplots of the accuracy of the uniformly distributed random datasets. Source: Own 

elaboration 
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Figure 4. Boxplots of the accuracy of the Gaussian datasets where K is always different from the 

number of Gaussians. Source: Own elaboration. 
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Figure 5. Decision trees may help in explaining a clustering configuration, but not in 

assessing if it reflects the true structure in the data. Source: Own elaboration. 
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Figure 6. On the left, a data set made up of 1000 uniform randomly distributed points, and the BIC 

resulting from executing a Gaussian model mixture algorithm with a number of Gaussians 

(components) between 3 and 10. On the right, 1000 points generated by 5 Gaussians, and the 

corresponding BIC as using between 3 and 10 components. Note how when clusters are present in the 

data, a clear maximum appears in the BIC plot. Source: Own elaboration 
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Table 1. Accuracy (mean + standard deviation) of each classifier for the uniformly distributed random 

datasets (DT: Decision Tree, NN: Neural Network).  Source: Own computation. 

Dataset size 100 200 500 1000 2000 5000 10000 

DT default parameters 79.1 ± 5.6 79.5 ± 5.6 78.0 ± 6.8 75.8 ± 8.4 75.5 ± 9.4 79.2 ± 8.9 81.4 ± 8.4 

NN default parameters 74.4 ± 10.6 73.1 ± 11.1 71.3 ± 9.9 72.2 ± 9.3 72.1 ± 9.9 72.6 ± 8.8 72.6 ± 8.0 

DT optimized parameters 92.1 ± 2.5 93.2 ± 2.4 93.4 ± 2.2 94.1 ± 2.3 92.8 ± 3.2 90.5 ± 4.6 90.1 ± 5.1 

NN optimized parameters 99.7 ± 0.5 99.6 ± 0.8 99.1 ± 1.4 99.4 ± 0.9 99.1 ± 1.6 99.3 ± 1.3 98.8 ± 1.1 

 

Table 2. Accuracy (mean + standard deviation) of each classifier for the uniformly distributed random 

datasets (DT: Decision Tree, NN: Neural Network). Source: Own computation 

Dataset size 100 200 500 1000 2000 5000 10000 

DT default parameters 89.6 ± 4.2 90.8 ± 2.8 91.3 ± 3.6 91.5 ± 3.8 89.0 ± 5.2 88.6 ± 5.4 88.6 ± 5.7 

NN default parameters 84.8 ± 10.5 82.0 ± 10.1 82.2 ± 11.2 82.6 ± 9.9 82.1 ± 10.5 83.4 ± 9.6 84.0 ± 9.9 

DT optimized parameters 95.8 ± 2.2 96.8 ± 1.3 97.4 ± 1.1 98.0 ± 0.9 97.3 ± 1.4 95.6 ± 2.6 94.6 ± 3.1 

NN optimized parameters 99.9 ± 0.1 99.9 ± 0.2 99.9 ± 0.2 99.9 ± 0.2 99.8 ± 0.7 99.8 ± 0.5 99.8 ± 0.4 

 

 

 


