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Abstract. Crude oil intra-day return curves collected from the commodity futures market of-

ten appear to be serially uncorrelated and long-range dependent. Existing functional GARCH

models, while able to accommodate short range conditional heteroscedasticity, are not designed

to capture long-range dependence. We propose and study a new functional GARCH-X model

for this purpose, where the covariate X is chosen to be weakly stationary and long-range depen-

dent. Functional analogs of autocorrelation coefficients of squared processes for this model are

derived, and compared to those estimated from crude oil return curves. The results show that

the FGARCH-X model provides a significant correction to existing functional volatility models

in terms of an in-sample fitting, while its out-of-sample performances do not appear to be more

superior than those of the existing functional GARCH models.
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1. Introduction

Modeling and forecasting the volatility of crude oil returns are of great interest to market

practitioners, researchers and policy makers, given that it is often used as a leading indicator for

risk, portfolio management and option pricing. Previous empirical works have typically applied

scalar GARCH-type processes (Engle, 1982; Bollerslev, 1986) to model and predict the crude

oil volatility, see for instance Wei et al. (2010) and Charles and Darné (2014). More recently,

given the increasing availability of high (in time) resolution data on financial assets, one is

often faced with the question of how to incorporate such data in order to improve the crude oil

volatility modeling and forecasting. For empirical attempts to model crude oil volatility with

intra-day data, we refer readers to Ma et al. (2019) and Zhang and Wang (2019).

Methodologically, early work (Andersen and Bollerslev, 1997) has found that intra-day returns

behave quite distinctly from inter-daily returns. This renders scalar GARCH-type models less

effective when they are used in a high frequency environment. As a consequence, several studies

have subsequently focused on exploring the usefulness of information stored at an intra-day level

for inter-daily volatility modeling in financial econometrics (e.g., Bollerslev et al., 2016; Gorgi

et al., 2019). In the mean time, intra-day trading activities call for risk management tools

that can be suitably used at the intra-day level, which encourages modeling volatility dynamics

directly at the intra-day level. To this end, in the current paper we consider the modeling of the

volatility of crude oil intra-day return curves.

Analyzing intra-day return curves has recently been carried out by using techniques developed in

functional data analysis. Daily return curves may be constructed by interpolating or smoothing

high resolution, even tick-by-tick, data, which has the benefit of preserving all of the intra-day

price information. The resulting time series of daily curves can then be analyzed by using

techniques developed in functional time series analysis. We refer the readers to Bosq (2000)

and Horváth and Kokoszka (2012) for monographs on functional data analysis and its extension

to functional time series; and Kearney and Shang (2019) and Rice et al. (2020b) for financial

applications involving these return curves. There are very few studies that explore the volatility

of crude oil intra-day return curves, providing us with an opportunity to bridge between the

methodological development and its potential applications in the financial markets.
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In this paper, we model and forecast conditional volatility of West Texas Intermediate (WTI)

crude oil intra-day return curves collected from the commodity futures market. By investigating

this curve process, we found that crude oil return curves appear to be serially uncorrelated, but

also exhibit long-range conditional heteroscedastic. Given the fact that the existing functional

conditional volatility models (i.e., functional ARCH model – Hörmann et al., 2013; functional

GARCH(1,1) model – Aue et al., 2017; functional GARCH(p,q) model – Cerovecki et al.,

2019) are all designed for modeling short-range conditional heteroscedasticity, we propose a

parsimonious functional GARCH-X (FGARCH-X) model, where the stationary covariate X is

chosen to accommodate long-range conditional heteroscedasticity in the intra-day return curves.

The weak stationary solution and the autocorrelation structure of the new model process are

provided in this paper. In addition, we introduce two new basis selection methods in the

dimension reduction for the purpose of estimating the models, namely, a functional sparse

and non-negative basis and a truncated predictive factors. A Monte Carlo simulation study

shows that compared with the functional ARCH (FARCH) and functional GARCH (FGARCH)

processes, the proposed FGARCH-X model can better restore the autocorrelation dynamics

observed from the real data.

In the application part, we use the FGARCH-type models – FGARCH(1,1) and FARCH(5), as

well as the proposed FGARCH-X model to fit and predict conditional volatility of crude oil

return curves. We consider four types of exogenous covariates derived from historical intra-day

returns and volumes for the FGARCH-X model. In order to evaluate the out-of-sample forecast,

we compute intra-day Value-at-Risk (VaR) through the predicted values of conditional volatility.

Our results indicate that in terms of the in-sample fitting, all three model candidates pass a series

of goodness-of-fit tests and are able to accommodate conditional heteroscedasticity of crude oil

intra-day return curves, but the FGARCH-X model better restores the autocorrelation structure

in the squared process of return curves. In terms of the out-of-sample performance, all of the

models are able to forecast valid intra-day VaR by allowing their violation processes to pass

the unbiased and independence backtests (Rice et al. 2020b). Despite its ability of explaining

long-range conditional heteroscedasticity, the FGARCH-X model does not appear to offer a

clear-cut superiority over the FGARCH(1,1) model. This result extends the findings of Hansen

and Lunde (2005) to functional conditional volatility models.
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Our paper contributes to the existing literature in three important aspects. First, we introduce a

novel way for modeling the volatility of crude oil intra-day returns, which refines the intra-day

risk management tool in commodity futures markets. Second, there have been only a few studies

that focus on the importance of modeling the second-moment dynamics of functional time series

data (Hörmann et al., 2013; Aue et al., 2017; Cerovecki et al., 2019). We observe that the intra-

day return curves derived from crude oil market are second-order long-range dependent and

develop a simple model to enhance the ability of the model to capture this stylized fact. Finally,

we address the inherent problem in the estimation of functional volatility models by proposing

data-driven, non-negative and predictive basis functions for a dimension reduction.

The remaining parts of this paper are organized as follows. Section 2 studies the characteristics

of the crude oil intra-day price data. Section 3 proposes a functional GARCH-X model and

discusses the selection of basis functions for the functional volatility model estimation. Section

4 investigates the autocorrelation structure of the proposed functional volatility models by means

of a Monte Carlo simulation. Lastly we carry out a forecasting exercise for conditional volatility

of crude oil futures intra-day returns in Section 5. Section 6 concludes the paper with a few

remarks.

2. Main features of crude oil intra-day return curves

This section introduces the data and studies the stylish features of intra-day return curves. We

collect the raw price data at a five-minute frequency on WTI crude oil contracts quoted on the

NYMEX-CME. The price time series is obtained by obeying the rule that uses the front-month

future contract, and rolls over when the next contract becomes more traded than the expiring

one, normally few days before the expiration. Investors are able to trade crude oil around the

clock from Sunday to Friday. To preserve the quality of the data we only use the main market

time zone from 9:00 to 14:30, which delivers 66 grid points at the intra-day level. Our sample

covers the period from 2nd January 2015 to 1st May 2020, including 1,375 trading days.

In order to construct intra-day return curves, we denote Pi(tj) as the price of crude oil on

day i at intra-day time tj . After applying interpolation or smoothing techniques to these raw

data, see e.g. Chapter 3 of Ramsay and Silverman (2006), full intra-day price curves Pi(t) can

be produced, where we assume that the intra-day time parameter t is normalized to the unit

interval t ∈ [0, 1]. We then define the weakly stationary overnight cumulative intra-day log
4



return (OCIDR) curves as

Yi(t) = 100[logPi(t)− logPi−1(1)], 1 ≤ i ≤ N, t ∈ [0, 1] (2.1)

where Pi−1(1) is the adjusted closing price from the previous trading day. The OCIDR curve

was initially introduced in Rice et al. (2020a). Compared with other versions of intra-day

return curves (Kokoszka and Reimherr, 2013; Kokoszka et al., 2017), the OCIDR curves are

more suitable for modeling volatility, given the important role of the overnight effect, which

they capture (Hansen and Lunde, 2006).

Figure 2.1 displays an example plot of the OCIDR curves of crude oil from March 2019

constructed from 5 minute resolution price data. The basic properties of OCIDR curves can

Figure 2.1. Plots of ten OCIDR cruves derived from five-minute resolution

records of WTI crude oil from March, 2019.
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be investigated by implementing recently developed hypothesis tests for functional time series

data, including the KPSS-typed stationary test (Horváth et al. 2014), the normality test based

on static FPCA (Górecki et al., 2018), the independent test (Kokoszka et al. 2017), and the

heteroscedasticity test (Rice et al., 2020a). The technical details of each of these tests are

omitted from presentation and readers are referred to the respective papers. Overall, we find

that the crude oil OCIDR curves are weakly stationarity, non-normal, serially uncorrelated but

conditionally heteroscedastic. For detailed p-values of these tests, see Table 5.1 in Section 5.

In modeling curve process with such features, Hörmann et al. (2013) adapted the idea of the

ARCH model to the functional time series setting, in which conditional volatility of intra-day
5



return curves is modeled linearly in terms of the past squared curve. Their model was then

subsequently generalized to FGARCH models in Aue et al. (2017) and Cerovecki et al. (2019).

A well-known characteristic of daily asset returns data is the presence of long memory in the

volatility process (Ding et al., 1993), and such a feature might be expected to appear in intra-day

return curves as well.

In order to measure the autocorrelation structure of the observed return curves, we letCh(t, s) =

Cov(Yi(t), Yi+h(s)) and define a scale free functional autocorrelation measure (FACF) of the

OCIDR curves at a non-negative lag h as

ρh =

(∫ 1

0
C2

h(t, s)dtds
)1/2

∫ 1

0
C0(t, t)dt

=
‖Ch‖

trace(C0)
. (2.2)

It is also of interest to consider the same quantity with Yi being replaced by Y 2
i , in order to

measure the extent of serial dependence in the squared OCIDR curves. Estimators of ρh as

a function of h up to lag 40 for the raw and squared OCIDR curves derived from 5-minute

resolution WTI crude oil prices are illustrated in the left panel of Figure 2.2, along with 95%

confidence intervals for ρh centered at 0 constructed under the assumption that the curves are

independent and identically distributed. Values of the estimators that are not included in these

confidence intervals can be taken as evidence of significant autocorrelation in the sequence of

raw or squared OCIDR curves. One can readily observe here that serial correlation estimated

in the raw OCIDR curves is generally consistent with the series evolving as a (weak) white

noise, but that the autocorrelation observed in the squared OCIDR curves decays quite slowly,

indicating the presence of long memory in the volatility process. A similar finding is also

evidenced by Casas and Gao (2008), who showed long-range dependence in the daily volatility

functional time series. The right hand panel of Figure 2.2 shows the theoretical FACF of squared

FARCH(1) and FGARCH(1,1) processes fit to the OCIDR curves, where it is apparent that the

FGARCH(1,1) model appears to capture the short range dependence well, but does not appear

to capture the same rate of decay of the FACF at long lags. To the best of our knowledge, no

model has been developed to date to capture this stylized feature.
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Figure 2.2. Left hand panel: Plots of estimators of ρh of the raw and squared

OCIDR curves derived from 5-minute resolution WTI crude oil prices, along

with a 95% confidence interval for these estimators constructed under the as-

sumption that the series follows a strong white noise. Right hand panel: The-

oretical approximations of the FACF of the squared FARCH and FGARCH fit

using pseudo-maximum likelihood estimation to the OCIDR curves, with with

the same 95% confidence interval as in the left hand figure for reference.

3. Functional volatility models and the basis function selection

This section proposes an FGARCH-X model to account for the long-range second moment

dependence of the crude oil return curves, and we also discuss the basis selection in the

dimension reduction for the purpose of model estimation. For notational convenience, the

intra-day return curve yi(t) is assumed to be square integrable and drawn from a L2[0, 1]

Hilbert space, equipped with an inner product 〈y1, y2〉 =
∫
y1(t)y2(t)dt, resulting a norm

||y(t)|| = [
∫
y2(t)dt]1/2, where

∫
≡

∫ 1

0
. The kernel integral operatorg(y)(t) =

∫
g(t, s)y(s)ds,

for g(t, s) ∈ L2[0, 1]2. Considering that functional volatility processes are strictly positive,

we further define subspaces L2[0, 1]+ = {y ∈ L2[0, 1], y(t) ≥ 0} and L2[0, 1]+∗ = {y ∈

L2[0, 1], y(t) > 0}, for almost every t ∈ [0, 1].

3.1. Functional GARCH-X model.

Let us first focus on the FGARCH(p,q) model (Cerovecki et al., 2019), which accommodates

conditional heteroscedasticity of the OCIDR curves by assuming that yi(t) follows a recursion

relationship as specified below:

yi(t) = σi(t)εi(t), t ∈ [0, 1]

σ2
i (t) = ω(t) +

q∑

j=1

αj(y
2
i−j)(t) +

p∑

k=1

βk(σ
2
i−k)(t),

(3.1)
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where σ2
i (t) is a latent conditional volatility function, ω(t) ∈ L2[0, 1]+∗ , and the kernels of the

coefficient operators, αj(t, s) and βk(t, s) are elements in L2[0, 1]+ × L2[0, 1]+.

In addition, we also consider an FARCH(q) model, in which the conditional volatility equation

is specified as,

σ2
i (t) = ω(t) +

q∑

j=1

αj(y
2
i−j)(t). (3.2)

Intuitively, increasing the lag length of the ARCH component in the conditional volatility

equation allows it to capture a richer dependence structure. By computing the functional

autocorrelation functions in (2.2), we assess the dependence structures of FARCH and FGARCH

processes and state our first result.

Proposition 3.1. Suppose that assumption A.1-A.3 are satisfied, the curve sequence {yi(t)},

1 ≤ i ≤ N , t ∈ [0, 1], defined either in (3.1) or in (3.2), are short-range dependent in its second

moment.

In specific cases that yi(t) follows (3.1) with p = q = 1 and (3.2) with q = 2, we have:

first, if the sequence {yi(t)} follows an FGARCH(1,1) process, the functional autocorrelation

coefficient of {y2i (t)} at lag h is given by

ρfgarchh =
||πh−1α+

∑∞
j=1

∑∞
j=h+1 π

2(j−1)α2||∫
1 +

∑∞
j=1

∑∞
j=1 π

2(j−1)α2(t, t)dt
,

where π(t, s) = α(t, s) + β(t, s);

second, if the sequence {yi(t)} follows an FARCH(2) process, the functional autocorrelation

coefficient of {y2i (t)} at lag h is given by

ρfarchh =
||
∑∞

j=0

∑∞
j=h(

∑j
k=0 θ

k
1θ

j−k
2 )2||

∫ ∑∞
j=0

∑∞
j=0(

∑j
k=0 θ

k
1θ

j−k
2 (t, t))2dt

,

where the kernel coefficients θ1 + θ2 = α1 and θ1θ2 = −α2. In both cases, the FAC measures

decay exponentially fast and converge to zero.

Proposition 3.1 implies that both the FARCH and FGARCH models with a finite number of

lags are not designed to accommodate the long-range dependence of the conditional volatility

of asset returns; therefore a new model is called for.

A parsimonious model that facilitates the interpretation of long-range dependence can be ob-

tained by introducing an exogenous covariate. Inspired by the seminal work in Engle (2002) and
8



others (e.g. Han, 2015), we propose a functional GARCH-X model that allows the conditional

volatility σ2
i (t) in (3.1) to be explained by an additional non-negative covariate {xi(t)} (or

{x2i (t)}), which is given by,

σ2
i (t) = ω(t) +α(y2i−1)(t) + β(σ2

i−1)(t) + γ(xi−1)(t). (3.3)

where [ω(t) + γ(xi−1)(t)] ∈ L2[0, 1]+∗ for all i, and the kernel of the coefficient operators,

α(t, s), β(t, s) and γ(t, s) are elements in L2[0, 1]+ × L2[0, 1]+. The introduction of the

covariate xi(t) into the model is to add richness to the dependence structure of the process,

which can be modeled as being independent or dependent with the return curves. In a scalar

time series context, Han (2015) discussed the properties of the GARCH-X process when the

covariate X follows a stationary, fractionally integrated, or non-stationary process. His result

indicates that introducing a covariate X with long-range dependence into the GARCH process

can adequately explain the long memory property in volatility of daily returns. In the present

paper, we do not consider non-stationary curves and focus instead only on the stationary

functional curves with long-range dependence. An example of such {xi(t)} is that it admits a

functional FARIMA(p,d,q) process specified in Li et al. (2019) that, for d ∈ (0, 1/2),

▽
dxi(t) = ui(t), ▽ = 1− B, (3.4)

where B is a backshift operator, and ui(t) is a functional ARMA(p,q) process. To suppress

notations, for p = q = 1 we write,

ui(t)− ϑ1(ui−1)(t) = ǫi(t) + ϑ2(ǫi−1)(t).

In practice, {xi(t)} can be chosen from a wider range of economic variables, alternatively it

can be derived from historical return data, which will be further discussed in Section 5.

We are now ready to state our next result.

Proposition 3.2. Under assumptions A.1-A.4, there exists a stationary and non-anticipative

solution to (3.3); the curve sequence {yi(t)}, 1 ≤ i ≤ N , t ∈ [0, 1], has long-range dependence

in its second moment.
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Particularly, the functional autocorrelation coefficient of {y2i (t)} at lag h is defined as

ρfgarchxh =
||
∑∞

j=0

∑∞
j=h π

2jγ2ϕ∞ +
∑∞

j=1

∑∞
j=h+1(π

(j−1)α)2||∫ ∑∞
j=0

∑∞
j=0 π

2jγ2(t, t)ϕ∞ +
∑∞

j=1

∑∞
j=1(π

(j−1)α(t, t))2dt
,

where ϕ∞ =
∑∞

k=0

∑∞
k=0 ϕ

2
k and for large h,

h−2ςρfgarchxh <∞, as h→ ∞.

The FAC of the FGARCH-X process decays hyperbolically with rate −2ς .

Proposition 3.2 guarantees the stationary solution to the FGARCH-X model, and it shows that the

FGARCH-X process is long-range dependent in the second moment, providing a more natural

approach to model volatility of crude oil intra-day return curves. The proofs of propositions in

this section are given in Appendix A.

3.2. Basis selections for the model estimation.

This section focuses on estimation of the FGARCH-X model. We use the method of Cerovecki

et al. (2019) and project the conditional volatility σ2
i (t) of (3.3) to a finite M -dimensional

subspace of L2[0, 1]+. The coefficients are then obtained by solving a Quasi-Likelihood opti-

mization program. Suppose that there areM known linearly independent non-negative functions

{ψ1, ψ2, . . . , ψM} ∈ L2[0, 1]+, and there exists a non-negative vector D = [d1, . . . , dM ]⊤ in

R
M
+ , and non-negative matrices A = (al,m), B = (bl,m), G = (gl,m) in R

M×M
+ such that for

(3.3) we have,

ω =
M∑

l=1

dlψl, α =
M∑

l,m=1

al,mψlψm,β =
M∑

l,m=1

bl,mψlψm,γ =
M∑

l,m=1

gl,mψlψm,

and this forms a finite parameter space,

θ = vec(D,A,B,G) ∈ Θ ≡ R
M+3×M2

+ .

Then, the parameter vector θ can be consistently estimated by solving

θ̂N = argmin
θ∈Θ

1

N

N∑

i=1

M∑

l=1

{
〈y2i , ψl〉

〈σ̃2
i , ψl〉

+ log
〈
σ̃2
i , ψl

〉
}. (3.5)
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By setting initial values of y0(t) andσ2
0(t) as ω̂(t) and unit-valued constant function, respectively,

we can recursively calculate the conditional variance σ̃2
i via,

σ̃2
i = ω̃(t) + α̃(y2i−1)(t) + β̃(σ2

i−1)(t) + γ̃(xi−1)(t).

It is important to note that in the estimation we need to determine the number of basis M and

the choice of basis functions ψ. Various criteria are available for selecting M , such as, the total

variation explanation, which selects a big enough number of M to explain a certain proportion

of the total variation; cross-validation approach; or, the diagnostic checking tests (Rice et al.,

2020a). Relatively speaking, it is far more important to choose appropriate basis functions

because we want that the projection scores to better capture the dependence structure of curve

data, and the positivity of conditional volatilities is warranted. We note that the positivity

constraint discussed here aligns with Bollerslev (1986)’s constraint, which requires that every

component of conditional volatility is non-negative. We also point out that Cerovecki et al.

(2019)’s heuristic data-driven approach truncates the negative part from empirical bases that are

derived from y2(t) via the functional principal component analysis -which we call Truncated

FPCA (TFPCA). Below we introduce two new basis functions.

3.2.1. Functional sparse and non-negative basis (FSNN).

A more natural way to derive data-driven basis functions is to impose a sparse and non-negative

constraint to the FPCA. This method draws our interests because (i) the non-negativity can aid

interpretability of results, together with the fact that the total variance explained by these non-

negative bases is additive, and (ii) the sparse PCA can preserve as much as possible variation

of the data under an optimal sparsity pattern to avoid a production of redundant information.

In the context of multivariate time series analysis, Sigg and Buhmann (2008) developed an

expectation-maximization (EM) algorithm to compute sparse non-negative empirical bases.

We adapt their method to be utilised in the context of the FPCA and obtain functional basis

functions for our study. Below we present the resulting algorithm,
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Algorithm 1: Sparse and Non-negative PCA for Functional Data

Input: x2i (t) ∈ L2[0, 1], where i ∈ [0, 1], 1 ≤ i ≤ N .

Output: ψ̂l(t), l ∈ [1,M ]

Step 1. project x2i (t) to a finite number K of B-spline basis functions to obtain functional

loadings si ∈ R
N×K , for K ≥M ;

Step 2. apply the EM algorithm (Sigg and Buhmann, 2008) on the functional loadings si to

obtain sparse and non-negative vector principal components ǫ̂l, l ∈ [1,M ];

Step 3. linearly interpolate the vector principal components ǫ̂l into functional principal

components ψ̂l(t), l ∈ [1,M ].

In step 3, we choose the simple linear interpolation because there is only a negligible effect on

the choice of interpolation method (Ramsey and Silverman, 2006).

To briefly explain the EM algorithm, we assume that the covariance matrix of si can be

approximated by its first M eigenvectors. There exists a latent variable zi in the principal

component subspace R
M satisfying E(zi) = ǫ⊤r si, where ǫr are the principal components with

elements ǫl, l ∈ [1,M ], at the rth iteration in the optimizing process. This says that si is

projected onto the rth principal component, and the principal components are estimated by

solving the optimization problem,

ǫ̂ = argmin
ǫ
(

N∑

i=1

z2i ǫ
⊤ǫ− 2

N∑

i=1

zis
⊤
i ǫ).

The sparse and non-negative principal components can then be obtained by imposing two

constraints on the optimization:
∑M

l=1 |ǫ|l ≤ B and ǫl ≥ 0, ∀l. The upper bound B is

selected for a desired sparsity pattern. To combine these two constraints, the intersection of

the feasible regions of ǫ is taken. The EM algorithm starts from some initial values of ǫr, and

iteratively solves the optimization problem repeatedly over many times until the condition of

|ǫ⊤r+1ǫr| > 1− a is met, for some positive constant a.

3.2.2. Truncated predictive factors (TPF).

In the second approach, we resort to a predictive factor basis (Kargin and Onatski, 2008)

and extend it to be used in the functional volatility models to capture the rich autocovariance

structure. The main impediment in applying this technique to the functional volatility models is

that its theoretical construction is originally built under a functional AR framework. However,
12



it is possible to overcome this hurdle by noticing that the FGARCH model can be written in an

FARCH form, as shown in detail in Appendix A.3.

Following Kargin and Onatski (2008), we denote by C0 and Cj , 1 ≤ j ≤ q, the covariance

operator and the cross-covariance operator of y2i (t), respectively, which can be estimated by

Ĉ0 =
1
N

∑N
i=1(y

2
i (t)− ȳ20)(y

2
i (s)− ȳ20) and Ĉj =

1
N−j

∑N−j
i=1 (y2i (t)− ȳ20)(y

2
i+j(s)− ȳ20), for the

sample mean ȳ2i . We further denote RL as a set of all finite-rank operators acting on L2[0, 1].

There should exist a series of operators U j ∈ RL to approximate αj in (3.2) by minimizing

E||y2i (t)− (ω(t) +U 1(y
2
i−1)(t) + · · ·+U q(x

2
i−q)(t))||

2.

Given that ω(t) is a positive constant function, this is equivalent to minimizing,

E||(α1 −U 1)(y
2
i )(t) + · · ·+ (αq −U q)(y

2
i−q+1)(t)||

2.

It is easy to see that the minimization will be attained if E||(αj −U j)(y
2
i )(t)||

2 is minimized,

for 1 ≤ j ≤ q. This reduces to solving the following problem

min
Uz∈RL

||U j −αj||s,2, (3.6)

where || · ||s,2 is a modified Hilbert-Schmidt norm. Under assumptions A.1-A.2, Equation

(3.6) shares the same optimization problem with Equation (3) in Kargin and Onatski (2008).

Theorem 1 in their paper indicates that (3.6) can be solved by decomposing the empirical operator

Ĉj = Ĉ
1/2
0 Ĉ⊤

j Ĉj Ĉ
1/2
0 which contains the information for estimating the kernel coefficients αj ,

and the eigenfunctions decomposed from Ĉj are expected to explain the dynamics from x2i−j(t)

to x2i (t). However, the empirical eigenfunctions of Ĉj cannot be directly used because they do

not converge to the corresponding true quantities. Kargin and Onatski (2008) suggested the

adoption of a regularized version of Ĉj,τ by replacing Ĉ0 with Ĉ0,τ = Ĉ0 + τ · I, with some

τ > 0 and an identity matrix I. We note that selecting the parameter τ can be tricky for the

estimation. Here, we choose τ = 0.75 by drawing on the past empirical experience. Eventually,

the data-driven PF f̂j,l is obtained as,

f̂j,l(t) =
〈
xi(t), Ĉ

−1/2
0,τ v̂j,l(t)

〉
, 1 ≤ l ≤M,
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where v̂j,l(t) is the eigenfunctions of Ĉj,τ . Meanwhile, for the sake of securing the positivity

constraint, we apply a truncation trick to eliminate their negative parts to yield,

f̂j,l(t) = inf
t∈[0,1]

f̂j,l(t) ∧ 0, for all l = 1, . . . ,M .

4. A simulation study to compare functional volatility processes

In this section we consider three functional volatility processes, viz, FGARCH(1,1), FARCH(5),

and FGARCH-X, and conduct a simulation study to assess their dependence structures. Choos-

ing lags up to 5 for the FARCH model is of particular interest given the inclusion of information

at a weekly level in practice. The data are generated through the mean equation of (3.1),

and their volatility processes, which follow (3.1), (3.2), and (3.3), respectively. We use an

Ornstein-Uhlenbeck process as the innovation curve in the mean equation,

εi(t) = e−t/2Wi(e
t), t ∈ [0, 1], (4.1)

where Wi(·) are iid standard Brownian motions. Then, the kernel coefficients in the volatility

equations are specified respectively as:

ω(t) = χ0t(1− t), α(t, s) = χ1t(1− t)s(1− s)

β(t, s) = χ2t(1− t)s(1− s), γ(t, s) = χ3t(1− t)s(1− s),

where the values of parameters χ0,1,2,3 are suggested by the empirical data and determined in

Table 4.1. The covariate {xi(t)} in the FGARCH-X process is assumed to follow a functional

FARIMA(1,d,1) process, c.f. (3.4), where the kernel coefficients

ϑ1(t, s) = 0.34 exp(−(t2 + s2)/2), ϑ2(t, s) =
3

2
min(t, s).

Here we specify d = 0.45 so that xi(t) is a weakly stationary curve sequence with relatively

strong long-range dependence. Each sample contains 500 observation with a grid point of 50.

These processes are generated with 1000 replications, and the FAC up to lag 50 is calculated

correspondingly.

14



Table 4.1. The selected values of the parameters χ0, χ1, χ2, and χ3.

χ0 χ1 χ2 χ3

y2i−1 y2i−2 y2i−3 y2i−4 y2i−5 σ2
i−1 x2i−1

FGARCH(1,1) 0.5 6 - - - - 16 -

FARCH(5) 0.5 8 4 3 3 3 - -

FGARCHX 0.5 6 - - - - 16 8

Figures 4.1 - 4.3 display the FAC plots of the squared simulated return data. The solid

lines indicate the averaged FAC over 1000 replications, while the dotted lines represent their

confidence intervals at the 95% significance level. In the case of the FGARCH(1,1) process,

the FAC of the squared process decays exponentially fast to an iid level; a similar pattern is

also observed for the squared FARCH(5) in Figure 4.2 when the lag exceeds a certain number

around 5. These results are in concordance with the property of short-range dependence stated

in Proposition 3.1. However, the FAC of the squared FGARCH-X in Figure 4.3 exhibits a

pattern more similar to the autocorrelation of real data as displayed in Figure 2.2. In this case,

the FAC decreases exponentially fast at few initial lags, and then shows a hyperbolic decay for

a large number of lags. In summary, this result numerically confirms the claim made in the

second part of Proposition 3.2.

Figure 4.1. FAC Plots of the squared returns of simulated FGARCH(1,1) process.
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Figure 4.2. FAC Plots of the squared returns of simulated FARCH(5) process.
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Figure 4.3. FAC Plots of the squared returns of simulated FGARCH-X process.
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5. Modeling and forecasting the volatility of crude oil return curves

In this section, we empirically model the volatility of crude oil intra-day return curves and

perform a one-day-ahead forecast. The out-of-sample exercise is conducted between the begin-

ning of 2017 and the beginning of May 2020, allowing each training sample to fit 500 curves.

To this end, we re-estimate the models with a rolling window approach for every quarter (63

trading days) to accommodate new information from evolving market conditions. We remark

that all of the models discussed in the paper are able to provide multistep-ahead forecasts, with

a potentially substantial increase in forecasting errors and computational requirement.

5.1. Model specification and in-sample fitting.

To be consistent with the simulation study in Section 4, the FGARCH(1,1), FARCH(5) and
16



the FGARCH-X models are considered as model candidates. We implement the FGARCH-X

model, and the list of the covariate X chosen in the estimation of the FGARCH-X model is as

follows:

(1) HMV – historical mean variation curve

We first construct the covariate X by averaging the absolute value of historical intra-day

log returns:

xi(t) =
1

m

m∑

j=1

|ri−j(t)|, (5.1)

where ri(t) = 100[logPi(t)− logPi(t−∆)], ∆ = 5min. We set m = 5 given that the

trading information within one week is included. This estimator is inspired by Corsi

(2009) who averaged past realized volatilities to model the long-memory property of

daily returns. It is important to point out that equation (5.1) is not a realized estimator

although it contains the same information measured as the realized volatility.

(2) IRV – intra-day range variation curve

In the context of the scalar volatility modeling, Christensen and Podolskij (2007) intro-

duced a realized range estimator that is more efficient than realized volatility in a market

frictionless world. Here we introduce a curve-type intra-day range estimator to preserve

this information:

xi(t) = 100| logP h
i (t)− logP l

i (t)|

where P h
i (t) and P l

i (t) are respectively the maximum and minimum prices of 5-minute

intervals.

(3) IBV – intra-day bipower variation curve

Another proxy variable is enlightened following the discussion in Barndorff-Nielsen and

Shephard (2006), who defined a realized bipower variation estimator that is immune to

jumps. Although we do not consider jumps in the context of the functional data analysis,

a similar curve estimator can be assembled to depict variations in the curve:

xi(t) = |ri(t)||ri(t−∆)|

where intra-day log return ri(t) is defined in Equation (5.1).
17



(4) IVOL – intra-day volume curve

Lastly, we use an intra-day volume curve, and we refer to Fuertes et al. (2009)

for discussions about the performance of trading volume in the context of the scalar

GARCH-X model. Since the trading volumes from intra-day intervals V OLi(t) form a

non-stationary process, we proceed with the usual log transformation:

xi(t) = | log V OLi(t)− log V OLi(t−∆)|.

To further understand the properties of the covariate processes, we estimate the memory param-

eter “LRS-d" (Li et al., 2019) and calculate the resulting statistic summaries. The properties

are summarized by using the first training sample (500 observations from January 2015 to

December 2016). The same procedure could be recursively performed for each rolling window

of the training sample. To save some computational costs, we skip this repetitive analysis,

and in an unreported analysis, we find that the results are generally consistent with randomly

selected training samples. Table 5.1 shows that the OCIDR curves themselves are short-range

dependent with LRS-d = 0.04. Also, we find that the chosen four X covariates are weakly sta-

tionary, non-normal, autocorrelated, and conditionally heteroscedastic. The LRS-d parameters

range between 0.23 and 0.29, indicating a property of long-range dependence. This leads us

to conclude that the covariates xi(t) discussed above are suitable for the FGARCH-X model in

order to explain the persistence in the second moment of crude oil OCIDR curves.

Table 5.1. Statistical summary of the OCIDR and X covariates with the P-

values documented for stationary, normality, autocorrelation, and conditional

heteroscedasticity tests.

No.Obs Stationary Normality Autocorrelation Heteroscedasticity LRS-d

H 1 5 10 20 1 5 10 20

OCIDR 500 0.31 0.00 0.99 0.34 0.75 0.17 0.00 0.00 0.00 0.00 0.04

HMV 500 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29

IRV 500 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27

IBV 500 0.24 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.23

IVOL 500 0.16 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23

We now assess the in-sample fitting of the model candidates. As discussed in section 3.2,

choosingM data-driven bases is essential for the dimension reduction in deciding for the model

estimation. Applying the TFPCA, FSNN, and TPF methods, we find that the first two bases

from all of the approaches used in the study account for over 90% of the total variation, thereby
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prompting us to set M = 2 and treating the remaining bases as noises. Note the selected

basis functions are normalized with a unit norm. Figure 5.1 displays the estimation result for

the kernel coefficients α(t, s), β(t, s) and γ(t, s) in Equation (3.3) when HMV is used as the

covariate X. The first and second rows represent the estimated kernel operators with FSNN and

TPF basis functions. The results of the TFPCA bases are suppressed because their values are

very close to the FSNN after the normalization. From the plot, we note that the magnitude of the

estimated operators β(t, s) and γ(t, s) are much larger than the ARCH-effect operator α(t, s),

indicating that the crude oil intra-day return curves exhibit a strong persistence volatility effect.

Figure 5.1. Plots of the estimated kernel functions in the FGARCH-X(HMV)

model with the first row presenting the estimators using the FSNN bases and the

second row presenting the estimators using the TPF bases for M = 2.

Table 5.2 reports the norm of estimated coefficients of each model. The columns D, A1−5, B

and G represent the non-negative coefficient matrices used to obtain operators ω(t), α(t, s),

β(t, s), and γ(t, s), respectively, and the calculated Euclidean norms show persistence of the

conditional volatility process. The overall results are in line with Figure 5.1. The TFPCA and

FSNN bases produce the same performances as similar information is being captured. Besides,

Table 5.2 also reports the P-values of the goodness-of-fit test for each of the model candidates.

We apply the MN,K,ε test by Rice et al. (2020a) to diagnostically check dependence of model

fitted errors at lags {1, 5, 10, 20}. We find that the proposed FGARCH-X models are able to

fit conditional heteroscedasticity in the return curves adequately, in particular when the TPF

bases are adopted. Relatively speaking, the existing FGARCH-type models are less adequate
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in this dimension, when they are tested at lag H = 20; and lastly the FARCH-type models are

generally much less adequate at fitting conditional heteroscedasticity at higher lags.

Furthermore, we also plot the FAC of squared curves from the fitted FGARCH-X model. Figure

5.2 displays the FAC plot of the squared fitted curves from these models when the covariate

X is chosen as HMV, IRV, IBV, and IVOL, respectively. Comparing with the counterparts

obtained from the true squared observations as well as the fitted FARCH and FGARCH models

as shown in Figure 2.2, it is noticeable that the FGARCH-X models are generally more suitable

for capturing long-range dependence and are able to restore the empirical FAC.

Table 5.2. The Euclidean norm of estimated coefficient matrices and the P-

values of goodness-of-fit test on model candidates.

Kernel estimation Goodness-of-fit

D A1 A2 A3 A4 A5 B G H=1 H=5 H=10 H=20

TFPCA 0.10 0.22 - - - - 0.75 - 0.63 0.32 0.65 0.04

FGARCH(1,1) FSNN 0.10 0.22 - - - - 0.75 - 0.63 0.32 0.65 0.04

TPF 0.11 0.15 - - - - 0.47 0.26 0.23 0.38 0.01

TFPCA 0.39 0.21 0.04 0.06 0.07 0.08 - - 0.15 0.02 0.00 0.00

FARCH(5) FSNN 0.39 0.21 0.03 0.06 0.07 0.09 - - 0.14 0.01 0.00 0.00

TPF 0.42 0.26 0.02 0.06 0.03 0.08 - - 0.21 0.00 0.00 0.00

TFPCA 0.55 0.13 - - - - 0.95 0.92 0.72 0.94 0.91 0.07

FGARCH-X

(HMV)
FSNN 0.56 0.13 - - - - 0.95 0.94 0.72 0.95 0.91 0.07

TPF 0.46 0.12 - - - - 0.44 0.95 0.73 0.98 0.75 0.22

TFPCA 0.34 0.10 - - - - 0.95 0.90 0.76 0.96 0.92 0.07

FGARCH-X

(IRV)
FSNN 0.34 0.10 - - - - 0.95 0.90 0.76 0.96 0.92 0.07

TPF 0.11 0.08 - - - - 0.42 0.94 0.75 0.98 0.79 0.25

TFPCA 0.85 0.14 - - - - 0.96 0.95 0.69 0.93 0.93 0.04

FGARCH-X

(IBV)
FSNN 0.83 0.14 - - - - 0.84 0.94 0.68 0.92 0.93 0.03

TPF 0.76 0.12 - - - - 0.47 0.95 0.73 0.97 0.79 0.12

TFPCA 0.89 0.16 - - - - 0.95 0.04 0.62 0.90 0.91 0.02

FGARCH-X

(IVOL)
FSNN 0.88 0.16 - - - - 0.58 0.02 0.60 0.89 0.91 0.02

TPF 0.83 0.15 - - - - 0.51 0.04 0.72 0.96 0.76 0.08

5.2. Forecasting Value-at-Risk for intra-day return curves.

To evaluate the out-of-sample performance, we compute one-day-ahead Value-at-Risk (VaR)

by using the predicted conditional volatilities. From the mean equation in (3.1), the intra-day

V̂aR
τ
(t) at day i+ 1 can be calculated as:

V̂aR
τ

i+1(·) = σ̂i+1(·)ε̂
τ (·), t ∈ [0, 1] (5.2)
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Figure 5.2. FAC plots of the squared OCIDR curves and the squares of

FGARCH-X model fitted curves with the FSNN basis.

where σ̂2
i+1(t) is the predicted intra-day volatility curve obtained from the functional volatility

models, and ε̂τ (t) is the unconditional quantile of the error process at a selected significance

level τ . To find suitable estimators for ε̂τ (t), we consider three types of error processes: (i)

a Gaussian process, i.e., the series at each time point t follows a standard normal distribution;

(ii) a process with observations at each time point t following a student-t distribution with 5

degrees of freedom; and (iii) an empirical process obtained from iid bootstrapping the residual

curves of the FGARCH, FARCH, and FGARCH-X models with 1000 replications.

These intra-day VaR curves provide a valid evaluation on volatility forecasting as the evolution

of intra-day return curves should not exceed the VaR curves at a certain significance level if

the volatility forecasts are sufficiently accurate. This can be measured by counting the number

of times that intra-day return curves cross the VaR curves, i.e., the number of the violations.

Following Rice et al. (2020b), the point-wise violation process Zτ
i (t) is defined as,

Zτ
i (·) = 1{yi(·)<V̂aR

τ

i (·)}
, for any t ∈ [0, 1].

where 1 is an indicator function and the process Zτ
i (t) is composed of values between 0 and 1,

representing no exceedance and point-wise exceedance over the intra-day interval, respectively.

These violation curves should be unbiased and independent if the intra-day VaR curves are

valid. Importantly, we apply the unbiasedness and independence tests (Rice et al., 2020b) to

backtest the following hypothesis on the violation curves:

H
(1)
0 : E[Zτ

i (·)− τ ]=0 and H
(2)
0 : Zτ

i (·) is IID along i.

Table 5.3 displays the P-values of backtests for the intra-day VaR curves forecasts at the nominal

levels τ = 0.05 and 0.01. Panel A reports the results of the unbiasedness test, which indicate that
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all of the model candidates, except for the FGARCH-X (IVOL) model with TFPCA and FSNN

bases, produce unbiased violations to the nominal levels, even when we use the unconditional

quantile taken from the Gaussian-type errors. Furthermore, Panel B shows the P-values of

independence test with a maximum lag length H ∈ {1, 5, 10}. Overall, all of the models

perform reasonably in the independent backtesting. The null hypothesis is rejected in some cases

of the FGARCH-X models, and this is particularly manifested when we test the independence at

lag length H = 1 and the Gaussian or Student-T errors are employed. Besides, Figure 5.3 plots

the P-values of the independence tests on the violation processes with τ = 0.05 obtained from

the model candidates by using the TPF basis and bootstrapped errors over the lag length from

H = 1 up to 20. In a nutshell, the FGARCH(1,1) model is still competitive enough to forecast

valid intra-day VaR curves, and the FGARCH-X models does not appear to unambiguously

outperform the other models. A similar finding is also reported in the scalar context that the

simple GARCH(1,1) model is not outperformed by more sophisticated in-sample fitting models

(Hansen and Lunde, 2005). Explaining other potential stylized features, such as the leverage

effect (Sun and Yu, 2020), may improve the out-of-sample forecasting of volatility, but this is

beyond the main scope of this article, so we leave it as future research work.

Table 5.3. The P-value of backtests of the unbiasedness and the independence

for the VaR curves forecasts with the bold values indicating the significance at

the 5% Level.

FGARCH(1,1) FARCH(5) X-HMV X-IRV X-IBV X-IVOL

TFPCA FSNN TPF TFPCA FSNN TPF TFPCA FSNN TPF TFPCA FSNN TPF TFPCA FSNN TPF TFPCA FSNN TPF

Panel A: H
(1)
0 : the unbiasedness test

Gaussian
τ = 0.05 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.33 0.33 1.00 0.00 0.00 1.00

τ = 0.01 0.99 0.99 0.80 0.88 0.86 0.70 1.00 1.00 0.94 1.00 1.00 0.80 1.00 1.00 1.00 0.12 0.10 0.81

Student-T
τ = 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.22 0.24 1.00 0.00 0.00 1.00

τ = 0.01 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.97 0.37 0.42 1.00 0.00 0.00 1.00

Bootstrap
τ = 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.90 0.93 1.00 0.00 0.00 1.00

τ = 0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 0.76 1.00 1.00 1.00 0.08 0.13 0.60

Panel B: H
(2)
0 : the independence test, H = 1

Gaussian
τ = 0.05 0.48 0.55 0.71 0.52 0.55 0.41 0.59 0.60 0.27 0.42 0.69 0.70 0.47 0.28 0.65 0.36 0.36 0.72

τ = 0.01 0.70 0.54 0.28 0.70 0.72 0.83 0.36 0.47 0.10 0.56 0.51 0.23 0.04 0.05 0.27 0.52 0.46 0.28

Student-T
τ = 0.05 0.53 0.53 0.55 0.44 0.46 0.41 0.54 0.65 0.30 0.43 0.64 0.61 0.79 0.11 0.74 0.43 0.26 0.59

τ = 0.01 0.42 0.40 0.02 0.47 0.37 0.53 0.27 0.29 0.19 0.44 0.07 0.15 0.31 0.43 0.16 0.63 0.43 0.15

Bootstrap
τ = 0.05 0.49 0.56 0.42 0.59 0.65 0.71 0.55 0.56 0.60 0.47 0.59 0.35 0.38 0.35 0.45 0.01 0.03 0.42

τ = 0.01 0.46 0.58 0.24 0.19 0.09 0.47 0.21 0.21 0.73 0.41 0.46 0.25 0.02 0.04 0.26 0.42 0.60 0.26

H
(2)
0 : the independence test, H = 5

Gaussian
τ = 0.05 0.12 0.07 0.02 0.60 0.53 0.30 0.14 0.09 0.02 0.15 0.17 0.00 0.44 0.29 0.03 0.72 1.00 0.04

τ = 0.01 0.42 0.41 0.12 0.45 0.49 0.32 0.35 0.31 0.07 0.46 0.50 0.05 0.53 0.42 0.16 0.74 0.59 0.09

Student-T
τ = 0.05 0.13 0.12 0.01 0.59 0.58 0.35 0.06 0.05 0.12 0.22 0.31 0.00 0.49 0.36 0.04 0.39 0.94 0.01

τ = 0.01 0.37 0.36 0.28 0.38 0.37 0.42 0.38 0.43 0.20 0.46 0.39 0.26 0.42 0.42 0.27 1.00 0.00 0.27

Bootstrap
τ = 0.05 0.25 0.26 0.21 0.37 0.35 0.63 0.14 0.11 0.22 0.05 0.07 0.20 0.16 0.29 0.12 0.54 0.39 0.20

τ = 0.01 0.36 0.37 0.35 0.43 0.30 0.40 0.19 0.18 0.09 0.46 0.57 0.34 0.98 0.25 0.35 0.77 0.60 0.35

H
(2)
0 : the independence test, H = 10

Gaussian
τ = 0.05 0.09 0.12 0.09 0.56 0.53 0.33 0.17 0.19 0.12 0.32 0.34 0.03 0.56 0.46 0.10 0.51 0.41 0.11

τ = 0.01 0.47 0.44 0.12 0.48 0.49 0.43 0.42 0.42 0.13 0.48 0.42 0.11 0.41 0.34 0.17 0.65 0.87 0.16

Student-T
τ = 0.05 0.15 0.16 0.09 0.54 0.57 0.34 0.17 0.19 0.18 0.37 0.36 0.10 0.51 0.46 0.05 0.77 0.75 0.02

τ = 0.01 0.42 0.42 0.28 0.47 0.44 0.58 0.50 0.49 0.24 0.39 0.34 0.30 0.44 0.41 0.28 0.95 0.52 0.24

Bootstrap
τ = 0.05 0.27 0.32 0.28 0.50 0.51 0.75 0.16 0.12 0.21 0.07 0.09 0.23 0.40 0.44 0.28 0.47 0.42 0.27

τ = 0.01 0.40 0.39 0.39 0.35 0.35 0.30 0.30 0.33 0.18 0.51 0.57 0.30 0.44 0.39 0.42 0.84 0.68 0.42
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Figure 5.3. P-values of the independence backtest for the FARCH(1),

FGARCH(1,1) and FGARCH-X models applied to the violation processes with

5% nominal level at a function of H , H = 1, . . . , 20.
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6. Conclusion

This paper considers the topic of modeling volatility of crude oil intra-day return curves. We

find that the overnight cumulative intra-day return curves derived from the WTI crude oil

commodity futures are serially uncorrelated and conditionally long-range heteroscedastic. In

order to fit this stylized feature, we propose a functional GARCH-X model given the fact that the

existing functional ARCH and GARCH-typed models only capture the short range conditional

heteroscedasticity. The functional autocorrelation coefficients of the squared processes are

derived to allow us to study the dependence structure of the functional ARCH, GARCH and

GARCH-X models. Also, we introduce two types of bases that ensure the estimation process

to generate non-negative volatility curves and produce more accurate out-of-sample forecasts,

including the functional sparse and non-negative basis, and truncated predictive factor. A set of

simulation study confirms that an FGARCH-X process is long-range dependent on its second

moment if the covariate X is specified to be long-range dependent.

Empirically, we consider four exogenous covariates derived from intra-day returns and volumes

to capture the long-range dependence in crude oil intra-day return curves. Our results show

that the FGARCH-X model provides relatively more reliable in-sample fitting performances

to explain the long-range dependence property. In terms of out-of-sample forecasting, all

functional volatility models are useful at producing Value-at-Risk curves for the purpose of

conducting an intra-day risk management exercise, however the in-sample out-performance of
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the FGARCH-X model does not appear carry over to a marked improvement in terms of the out-

of-sample forecast relative to the standard FGARCH(1,1) model. As avenues for future work, we

may explore and model further potential features of asset intra-day return curves and improve the

model predictability. Also, we may focus on exploring the impacts of potentially non-stationary

exogenous covariates on the FGARCH-X models and their forecasting performances.

Appendix A. Proofs of the main results

A.1. Proof of Proposition 3.1.

To obtain the functional volatility models, the following regularity conditions are assumed.

Assumption A.1. The sequence {εi} is independent and identically distributed (iid) with zero

mean E[εi|Ft−1] = 0 and positive definite covariance function cε(t, s) = E(ε0(t)ε0(s)), and

E[ε2i (t)|Ft−1] = 1.

Ft is the filtration containing information available at time t. The conditionE[ε2i (t)] = 1 ensures

the model identifiability of 3.1.

Assumption A.2. lim
i→∞

1
i
log ||

∏∞
j=0 Ψi−j|| < 0, where the operator Ψi ∈ Hp+q is defined as,

Ψi =




α1(ε
2
i ) . . . αq−1(ε

2
i ) αq(ε

2
i ) β1(ε

2
i ) . . . βp−1(ε

2
i ) βp(ε

2
i )

IH . . . 0 0 0 . . . 0 0

0
. . . 0 0 0 . . . 0 0

0 . . . IH 0 0 . . . 0 0

α1 . . . αq−1 αq β1 . . . βp−1 βp

0 . . . 0 0 IH . . . 0 0

0 . . . 0 0 0
. . . 0 0

0 . . . 0 0 0 . . . IH 0




.

Assumption A.2 is a condition on the top Lyapunov exponent of the FGARCH(p,q) model,

ensuring a unique strictly stationary and non-anticipative solution. As the main object of

interest is to study the squared process, we also generally assume that a higher moment of yi(t)

exists throughout the paper.

Assumption A.3. E||yi||
r <∞, for some r ≥ 8, and i ∈ Z.
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Following Li et al. (2019), we define the term of long range dependence as follows.

Definition A.1. Consider a curve sequence xi(t) that follows a linear process represented as

an MA(∞),

xi(t) =
∞∑

j=0

ϕj(vi−j)(t), (A.1)

where {vi(t)} is an iid error sequence, and the integral operators are equipped with the kernel

coefficients ϕj(t, s) such that ϕj(v)(t) =
∫
ϕj(t, s)v(s)ds, v ∈ L2[0, 1]. We say that xi(t) is a

short-range dependent curve if the supreme of L2 norm {sup ||ϕj||}, j > 0 is summable; xi(t)

said to be long-range dependent if the property of summability is not satisfied.

We next prove Proposition 3.1 by taking p = q = 1 in (3.1) and q = 2 in (3.2) without

loss of generality. Denoting the iid sequence ηi(t) = y2i (t) − σ2
i (t) with zero mean and unit

variance, (3.1) and (3.2) can be written as a functional ARMA representation for the squared

process. According to Spangenberg (2013), there exists a functional linear process for each of

the functional ARMA-typed process. Thus, {y2i } from an FGARCH(1,1) follows,

y2i = ω + π(y2i−1) + ηi − β(ηi−1)

=
∞∑

j=0

πjω + ηi +
∞∑

j=1

πj−1αηi−j,
(A.2)

where π = (α+β). Equation (A.2) takes the form of (A.1) in Definition A.1. The short-range

dependence structure of the FGARCH(1,1) model can be verified by showing the summability

of sup ||πj−1α||. Under assumption A.2, Cerovecki et al. (2019) in their Proposition 1 showed

that for some i ≥ 1, E log ||(πi−1 . . .π1)|| < 0 in the case of p = q = 1, where πi = αε2i + β.

Recall Eε2i = 1, this leads ||π|| < 1 and ||πj|| being summable, by using Cauchy-Schwarz

inequity,

∞∑

j=1

sup ||πj−1α|| ≤

∞∑

j=1

sup ||πj−1|| sup ||α|| ≤

∞∑

j=1

sup ||πj−1|| = C1 <∞,

where C1 is some positive finite number.

We further calculate the autocovariance operator λh(t, s) to obtain the functional autocorrelation

coefficient ρh of the FGARCH(1,1) model at lag h, h ≥ 1. By substituting (A.2),
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λh = E[(y2i−h − E(y2))(y2i − E(y2))]

= E[(ηi−h +
∞∑

j=1

πj−1αηi−h−j)(ηi +
∞∑

j=1

πj−1αηi−j)]

= E[ηi−hηi + ηi−h

∞∑

j=1

πj−1αηi−j + ηi

∞∑

j=1

πj−1αηi−h−j +
∞∑

j=1

πj−1αηi−h−j

∞∑

j=1

πj−1αηi−j]

= πh−1α+
∞∑

j=1

∞∑

j=h+1

π2(j−1)α2 ≤

∞∑

j=1

∞∑

j=h

π2(j−1)α2 ≤ C2 <∞,

for some positive finite number C2. The upper bound tells us that the FAC of the FGARCH(1,1)

process decays exponentially fast. When h = 0, we have the variance term λ0 = 1 +
∑∞

j=1 π
2(j−1)α2, and ρfgarchh is obtained.

Next, we consider the FARCH(2) process with a squared process {y2i } having the form of a

linear process,

y2i =
∞∑

j=0

(α1 +α2)
jω + (1− θ1B)−1(1− θ2B)−1ηi

=
∞∑

j=0

(α1 +α2)
jω +

∞∑

j=0

(

j∑

k=0

θk1θ
j−k
2 )(ηi−j),

(A.3)

where B is a backshift operator, and θ1 + θ2 = α1, θ1θ2 = −α2. It is not hard to see that

∑∞
j=0(

∑j
k=0 θ

k
1θ

j−k
2 )(ηi−j) <

∑∞
j=0(θ1 + θ2)

j(ηi−j). Given that (θ1 + θ2) < (α1 + α2), we

therefore have the summability of sup ||(θ1 + θ2)
j|| if sup ||(α1 + α2)

j|| is summable. Under

assumption A.2, we deduce that for some i ≥ 1, E log ||(α1ε
2
i−1 + α2) . . . (α1ε

2
1 + α2|| < 0,

which results ||α1 +α2|| < 1 and ||(α1 +α2)
j|| summable. For some positive finite C3,

∞∑

j=0

sup(

j∑

k=0

θk1θ
j−k
2 ) <

∞∑

j=0

sup(θ1 + θ2)
j <

∞∑

j=0

sup(α1 +α2)
j = C3 <∞.

Following (A.3), we further derive the autocovariance operator λh(t, s) as,
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λh = E[(
∞∑

j=0

(

j∑

k=0

θk1θ
j−k
2 )ηi−h−j)(

∞∑

j=0

(

j∑

k=0

θk1θ
j−k
2 )ηi−j)]

=
∞∑

j=0

∞∑

j=h

(

j∑

k=0

θk1θ
j−k
2 )2 ≤

∞∑

j=0

∞∑

j=h

(θ1 + θ2)
2j ≤ C4 <∞.

Under Assumption A.2, the autocovariance converges to an upper bound C4, which indicates

an exponential decay for the autocovariance of an FARCH(2) process. Meanwhile, given the

variance term λ0 =
∑∞

j=0

∑∞
j=0(

∑j
k=0 θ

k
1θ

j−k
2 )2, ρfarchh is derived. �

A.2. Proof of Proposition 3.2.

To prove Proposition 3.2, we assume an additional condition,

Assumption A.4. There exists a bounded positive number κ, for u = 1, . . . , κ, to let the kernels

of xi(t) satisfying, ∫
ϕj(t, s)ψu(s)ds ∼ pu(t)j

−ς , as j → ∞, (A.4)

where the long-range parameter 1/2 < ς < 1, and the functions pu(t) satisfy the condition

that their limit of (E 〈puvi〉
2)1/2, for u = 1, . . . , κ, is positively bounded and monotonically

decreasing.

Assumption A.4 is a compact version of Assumption 2 stated in Li et al. (2019). Taking the form

of the Karhunen-Loève representation, Assumption A.4 extends the limit results for scalar or

multivariate long-range dependence into the functional time series context. This assumption is

valid for most of empirical applications, and both the existence and consistency of the estimator

of κ have been rigorously discussed in their paper. Also as indicated by Li et al. (2019), a long

range dependent curve can be decomposed into a long-range dependence part and a short-range

dependence part. Thus, Equation (A.4) shows that there exists a dominant sub-space, and

projecting scores onto such a sub-space can reproduce the long-range dependence structure of

xi(t), where the dependence degree is measured by the long-range dependence parameter ς .

Under the definition A.1, we know that, as a linear process, xi(t) is a weakly stationary functional

time series with an MA(∞) representation. Decomposing xi(t) onto infinite dimensional

spaces, there exist a sequence of orthonormal eigenfunction ψu(t), u ≥ 1 with corresponding

eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0 that xi(t) can be approximated via,
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xi(t) =
∞∑

u=1

ξui ψu(t),

where the functional score ξui =
∑∞

j=0

∫ ∫
ϕj(t, s)vi−j(s)ψu(t)dsdt, following (A.1).

To show the first part of Proposition 3.2, we have

E(σ2
i ) = E[ω + γ(xi−1) +α(y2i−1) + β(σ2

i−1)]

= E[ω + γ(xi−1) + (α+ β)(y2i−1)− β(ηi−1)]

= E[
∞∑

j=0

(α+ β)j(ω + γ(xi−j)) +
∞∑

j=1

(α+ β)jα(ηi−j)]

=
∞∑

j=0

(α+ β)j(ω) +
∞∑

j=0

(α+ β)j(xi−j) <∞,

where the covariate xi(t) is a stationary sequence under assumption A.4. Together with As-

sumption A.2 and the proof in A.1, the conditional volatility curve σ2
i (t) from the FGARCH-X

model is well defined as σi(t)
2 <∞, for all i ≥ 1 and t ∈ [0, 1].

The second part of Proposition 3.2 can be shown straightforwardly. Using the definition of

xi(t), we write the squared process of the FGARCH-X model in the following form,

y2i =
∞∑

j=0

πj(ω + γ(xi−j)) + ηi +
∞∑

j=1

πj−1αηi−j,

=
∞∑

j=0

πj(ω) +
∞∑

j=0

πjγ(
κ∑

k=0

ϕk(vi−j−k)) + ηi +
∞∑

j=1

πj−1αηi−j

=
∞∑

j=0

πj(ω) +
∞∑

j=0

κ∑

k=0

πjγϕkvi−j−k + ηi +
∞∑

j=1

πj−1αηi−j.

(A.5)

This shows that y2i is a linear process that is subject to iid variables vi and ηi. By definition y2i

is short-range dependent if both sup ||
∑κ

k=0 π
jγϕk|| and sup ||πj−1α|| are summable. From

A.1 we have known that
∑∞

j=1 sup ||π
j−1α|| < ∞, but under Assumption A.4, it is obvious

that summability of the prior one is invalid.

Given the result in (A.5), we calculate the autocovariance operator as,
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λh = E[(
∞∑

j=0

κ∑

k=0

πjγϕkvi−h−j−k + ηi +
∞∑

j=1

πj−1αηi−h−j)

(
∞∑

j=0

κ∑

k=0

πjγϕkvi−j−k + ηi +
∞∑

j=1

πj−1αηi−j)]

=
∞∑

j=0

∞∑

j=h

π2jγ2

κ∑

k=0

κ∑

k=0

ϕ2
k +

∞∑

j=1

∞∑

j=h

(πj−1α)2

≤
∞∑

j=0

∞∑

j=h

π2jγ2

κ∑

k=0

κ∑

k=0

ϕ2
k + C2

∼

∞∑

j=0

∞∑

j=h

π2jγ2

κ∑

k=0

κ∑

k=0

pk(h)
−2ς + C2

∼ C5h
−2ς + C2 <∞, as h→ ∞. �

A.3. FARCH (∞) representation of the FGARCH(p,q) model.

This section derives an ARCH(∞) representation of the model (3.1). Under assumptions A.1-

A.3, we denote σ2
i =




σ2
i (t)

σ2
i−1(t)

...

σ2
i−p+1(t)




, y2
i
=




y2i (t)

0

...

0




and B =




β1 β2 . . . βp+1 βp

IH 0 . . . 0 0

0 IH
. . .

...
...

...
. . .

. . . 0 0

0 . . . 0 IH 0




, and

the volatility equation in (3.1) can be rewritten as

σ2
i = ω +

∞∑

ℓ=1

ai−ℓy
2

i−ℓ
(A.6)

where ω =
∑∞

l=0 B
ℓω(t), for ω(t) = [ω(t), 0, . . . , 0]⊤, and the kernel operator ai−ℓ gives

ai−ℓ =




α⊤

ℓ +
∑ℓ−1

j=1 B
jα⊤

ℓ−j, 0 ≤ i ≤ q,
∑q

j=1 B
jα⊤

ℓ−j, i > q,
for αj = [αj , 0, . . . , 0]

⊤.

To admit this representation, we vectorize the volatility equation in (3.1) as
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


σ2
i (t)

σ2
i−1(t)

...

σ2
i−p+1(t)



=




β1 β2 . . . βp+1 βp

I 0 . . . 0 0

0 I
. . .

...
...

...
. . .

. . . 0 0

0 . . . 0 I 0







σ2
i−1(t)

σ2
i−2(t)

...

σ2
i−p(t)



+




ω(t) +
∑q

j=1 αj(y
2
i−j)(t)

0

...

0



,

where I is an identity operator in L2[0, 1]2. To present the above equation in a vector form, we

write iteratively,

σ2
i = Bσ2

i−1 + Yωi

= B(Bσ2
i−2 + Yωi−1

) + Yωi

· · · =
∞∑

ℓ

B
ℓYωi−ℓ

.

And by substituting Yωi−ℓ
, we sequentially obtain

σ2
i =

∞∑

l=0

B
ℓ[ω(t) +

q∑

j=1

αj(y
2
i−j)(t), 0, . . . , 0]

⊤
i−ℓ. (A.7)

By expanding Equation (A.7), an explicit representation is given as,

σ2
i =

∞∑

l=0

B
lω(t) +α⊤

1 y
2

i−1
(t) + (α2 +Bα⊤

1 )y
2

i−2
(t)+

· · ·+ (αq +

q−1∑

j=1

B
jα⊤

q−j)y
2

i−q
(t) +

∞∑

ℓ=q+1

q∑

j=1

B
jα⊤

ℓ−jy
2

i−ℓ
(t)

where ω = [ω(t), 0, . . . , 0]⊤, y2
i
= [y2i (t), 0, . . . , 0]

⊤, and αj = [αj, 0, . . . , 0]
⊤. According to

the above specification, we can see that the kernel coefficients for the ARCH parts are not entirely

included until the lag q, and the kernel coefficients on the lags of x2i (t) become exponentially

varying after the lag q.
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