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To address the endogeneity bias of early cross-country studies of the effect 

of fertility on economic growth, later studies adopt panel models with fixed 

effects. However, the fixed effects eliminate long-term fertility differences, 

and thus the estimation captures mainly the short-term effect. To capture 

the long-term effect while addressing endogeneity, this article estimates a 

long-term lagged panel model using one-off fertility shocks. Based on the 

data from 138 countries from 1960 to 2016, this article found that an 

increase in fertility first reduces and then increases economic growth, and 

the long-term average effect is significantly positive. Comparable results 

are obtained when focusing on countries in different development levels or 

using within-country variation from China’s one-child policy. This finding 

explains why previous studies, which differently capture the long-term 

effect of fertility, obtain mixed results. More importantly, it suggests that 

anti-natalist policies prevalent in the developing world may hinder long-run 

economic growth.  
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1. Introduction 

It is crucial not only for demographers and economists but also for policymakers to 

investigate the impact that declines in secular fertility may have on long-run economic 

growth. Declining fertility is among the most salient features of global demography. As 

presented in Figure 1, the world total fertility rate (TFR) dramatically declined, from 

4.98 in 1960 to 2.41 in 2018. Most of the global fertility declines came from middle- 

and low-income countries, but during this period, fertility rates in high-income 

countries were nearly halved, from 3.0 to 1.6. Although many high-income countries 

adopt pro-natalist policies to increase their birth rates, most low- and middle-income 

countries still adopt anti-natalist policies to curb fertility (United Nations 2015). In 

sharp contrast to the worldwide adoption of pro-natalist or anti-natalist policies, almost 

all literature reviews find that there is an ambiguous effect of fertility on economic 

growth (e.g., Simon 1992, Kelley and Schmidt 1994, Schultz 2008, Headey and Hodge 

2009). Without a robust estimate of the causal effect of fertility on economic growth, it 

is difficult for policymakers to evaluate the costs and benefits of the population policies 

adopted in their country. 

 

Figure 1. Fertility Trends Over the Past Six Decades 

Note: The data are derived from the World Development Indicators. The figure classifies a country as high income, 

middle income, or low income based on its 2016 gross national income per capita, here per the definition of the 

World Bank. 
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Table 1 summarizes the existing macro-level studies on the fertility–income nexus, 

finding that evidence of the causal effect of fertility on income growth is surprisingly 

scarce.1 Numerous early studies have examined the association between fertility and 

income growth, but most of them were based on cross-sectional regression models that 

did not adequately address endogeneity bias (Simon 1989, Kelley and Schmidt 1994). 

These early studies generally found no robust association between fertility and income 

growth. For example, Julian Simon (1992, p.ix) summarized that “the most important 

fact in today’s population economics is the lack of observed correlation between the 

rate of a country’s population growth and the rate of its economic development.” More 

recent studies have shifted their attention to the (reversed) causal effect of income on 

fertility, generally finding that long-run economic growth reduced fertility. Possibly 

because of the difficulty of addressing the endogeneity of fertility, few studies have 

estimated the causal effect of fertility on income growth using instrumental variables 

(IV) estimation, and these studies also found mixed results. For example, Bloom and 

Williamson (1998) used several IVs (e.g., population policy and religious composition) 

and found a positive effect of population growth on income growth, and Li and Zhang 

(2007) employed an intensity measure of China’s one-child policy as the IV and found 

a negative effect of fertility on income growth. 

Table 1. A Summary of Empirical Studies on the Fertility–Income Nexus 

Fertility  Income  

Abundant but mixed evidence: see the surveys from, e.g., Simon 

(1992), Kelley and Schmidt (1994), Paul Schultz (2008), and 

Headey and Hodge (2009). 

Income   Fertility 
Negative long-run causal effects: e.g., Eckstein et al. (1999), Herzer 

et al. (2012), Chatterjee and Vogl (2018). 

Fertility   Income  
Scarce and mixed evidence: Bloom and Williamson (1998) found a 

positive effect, but Li and Zhang (2007) found a negative effect. 

Note: A B denotes an association between A and B, and A B denotes a causal effect of A on B.  

 

1 This table excludes the following three branches of studies on the fertility–income nexus. First, it 

excludes micro-level studies because they are incapable of capturing the economy-wide spillovers 

associated with population growth (Dasgupta 1995). Second, it excludes studies based on data from 

premodern times because the fertility–income association may change from premodern times to modern 

times (Galor 2011). Third, it excludes pure time sereis studies because it is difficult to interpret the 

Granger causality as the true causality because of the concern of post hoc fallacy. Note that there exist 

excellent studies providing family-level evidence (e.g., Black et al. 2005, Ashraf et al. 2014), using data 

from pre-modern times (e.g., Lee and Anderson 2002, Ashraf and Galor 2011), and adopting time series 

estimation methods (e.g., Herzer et al. 2012, Hafner and Mayer-Foulkes 2013). 
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The current article argues that the failure to capture the long-term lagged effects of 

fertility is a major reason for why existing studies have not found a robust effect of 

fertility on income growth. Individuals interact differently with the economy over 

different stages of the life cycle; thus, the effect of a change in the fertility rate may last 

for decades and differ substantially in the short term and long term. A larger newborn 

cohort could reduce short-run economic growth by reducing parental labor supply 

(Galor and Weil 1996) and could hinder long-run economic growth by reducing human 

capital investment (Becker et al. 1990) and diluting per capita physical capital (Solow 

1956). A larger newborn cohort may also promote short-run economic growth by 

generating higher demands and more pressures on the economy (Boserup 1981) and 

may enhance long-run economic growth by providing a larger working age cohort 

(Bloom et al. 2009) and more potential innovators (Romer 1990). Therefore, a relevant 

estimate of the effect of fertility on income growth should capture both the short- and 

long-term effects. Studies that have attempted to identify the causal effect of fertility 

usually depend on panel models that use fixed effects to account for confounding 

factors. The present article illustrates that because the fixed effects eliminate most long-

term cross-sectional fertility differences, what is captured in the model is mainly the 

short-term effect.2 

To complement the literature, the current article adopts two estimation strategies 

that can capture the long-term lagged effects of fertility. The first strategy is to estimate 

a series of panel models, each of which regresses the current income growth rate on the 

fertility rate lagged by different years, ranging from zero to decades. The potential 

endogeneity bias is then addressed by fixed effects and plausibly exogenous IVs 

constructed from birth control policies. The fertility coefficients estimated from this 

strategy reveal the dynamic effects of a fertility change on income growth over the life 

cycle of individuals, and the average of these estimates reflects the long-term average 

effect of fertility. The second strategy follows the logic of the standard difference-in-

differences (DID) model to capture the long-term lagged effects by employing one-off 

fertility shocks from exogenous events. Specifically, I employ plausible exogenous 

fertility shocks from the global epidemic disease interventions around 1940 and from 

the global family planning campaigns around the mid-1960s. This strategy captures the 

 

2 Although cross-sectional studies have the potential to capture the long-term effect by comparing 

cross-sectional long-term differences in fertility and economic growth, the resulting estimates could be 

subject to substantial endogeneity bias. 
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long-term lagged effect of fertility shock over the post-shock periods. 

I applied these two estimation strategies to national data from 138 countries and to 

provincial data from China. Based on the first strategy, both the ordinary least squares 

(OLS) estimates and two-stage least squares (2SLS) estimates suggest that although the 

short-term effect of higher fertility on income growth is negative or statistically 

insignificant, the long-term average effect is significantly positive. These results apply 

to low-, middle-, and high-income countries although the long-term effect is much more 

positive in high-income countries. The effect estimated based on national data is 

comparable to that based on China provincial data. The most credible 2SLS estimate 

based on the first strategy suggests that a 10% increase in fertility would raise the long-

term GDP per capita by 23.8%. Evidence based on the second strategy supports the 

finding that the long-term average effect of a higher fertility rate is significantly positive. 

The most credible 2SLS estimate based on the second strategy indicates that a 10% 

increase in fertility would raise the long-term GDP per capita by 23.5%. 

The findings of the current article have three important implications. First, the 

results imply that secular fertility declines represent a strong force driving down long-

run economic growth. This finding is in sharp contrast with the conventional view that 

there is a virtuous cycle between fertility decline and income growth. The observation 

that growth spurts are often associated with demographic transitions had led to the 

hypothesis that fertility decline promotes economic growth. 3  Combining this 

hypothesis with the fact that higher income leads to lower fertility, a virtuous cycle 

emerges: growth of income per capita leads to reduced fertility, which in turn causes 

income growth to rise further, which leads to a further decline of fertility, and so forth. 

This virtuous cycle has been stressed so much in development economics. The findings 

of this article, however, do not support the existence of this cycle. Instead, it suggests 

the existence of a long-run equilibrium between fertility and growth: higher income 

leads to lower fertility, which in turn reduces income growth. 

Second, the present article provides strong evidence supporting the scale effect 

prediction of R&D-based growth models—faster population growth increases the long-

 

3 However, there are good reasons to believe that this association may actually reflect that income 

growth reduces fertility. For example, it has been proposed that rising income increases the opportunity 

cost of fertility for women (Galor and Weil 1996), that technological progress raises the importance of 

human capital relative to raw labour (Galor and Weil 2000), and that higher income reduces the needs of 

old-age security from children (Strulik 2003). 
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run economic growth. First-generation models of R&D-based growth (Romer 1990, 

Grossman and Helpman 1991, Aghion and Howitt 1992) predict a strong scale effect in 

which a larger population leads to faster economic growth. Later contributions 

eliminate the strong scale effect by assuming either lower intertemporal knowledge 

spillovers (Jones 1995), increasing the difficulty of R&D (Kortum 1997, Segerstrom 

1998), or a diluting effect of product proliferation (Peretto 1998, Howitt 1999). 

Nevertheless, even in these frameworks, a weak scale effect is still present—faster 

population growth increases long-run economic growth. Although the scale effect 

prediction is naturally derived from R&D-based growth models, empirical evidence 

supporting this prediction is scarce. The present article shows that once adopting an 

estimation method that can capture the long-term lagged effects of population growth, 

strong evidence for the scale effect can be found. Therefore, in line with the seminal 

work by Kremer (1993) and Jones (1995), the current article contributes to establishing 

a positive link between population, technological change, and economic growth in the 

long run. 

Finally, the findings of this article are useful when evaluating the economic impact 

of family planning programs. The Malthusian fears that fast population growth hinders 

income growth have led many developing countries to adopt family planning programs 

(Coale and Hoover 1958, Ehrlich 1968). The number of countries that adopted family 

planning programs reached 95 by 1976 and increased to 160 by 2013 (United Nations 

2015), and birth control efforts are still in progress in the developing world (Kuang and 

Brodsky 2016, Stover and Sonneveldt 2017). In recent years, many studies have 

evaluated the impact of family planning interventions on development and well-being 

(e.g., Ashraf et al. 2014, Cavalcanti et al. 2020). However, evidence on the impact of 

family planning programs on income growth largely comes from family-level studies, 

which generally have found that families with fewer children have a higher per capita 

income. Micro-level studies are, however, incapable of capturing the positive spillovers 

associated with population growth because these effects are economy wide (Dasgupta 

1995). In contrast to the promise of family planning programs,4 the current article finds 

strong macro-level evidence that birth control efforts could significantly hinder long-

run economic growth. 

 

4 The rationale for family planning programs has extended from promoting per capita income to 

women’s empowerment and reproductive health and rights since the fifth international population 
conference held in Cairo in 1994 (Cleland et al. 2006). 
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2. Motivating Theory and Estimating Framework  

2.1 Motivating Theory 

To frame the empirical analysis, I characterize the effect of a change in the fertility 

rate over the life cycle of a newborn cohort in the closed-economy neoclassical (Solow-

Swan) growth model. Economy i   has the constant returns to scale aggregate 

production function: 

 1 ,
it it it it it

Y A H K L
   − −=   (1) 

where 1 +  , it
A  denotes total factor productivity (TFP), it

K  is physical capital, it
L  

is the supply of land, and it
H  is the effective units of labor given by it it itH h N= , where 

it
N  is the total employment and it

h  is the human capital per worker. Without loss of 

generality, I normalize 1it iL L= =  for all i  and t . Thus, the output per worker is 

 .it it it it

it

it it

Y A H K
y

N N

 

= =   (2) 

Based on the standard assumptions of the Solow-Swan model, the growth rate of the 

output per worker around the steady state can be written as  

 ( )* *
ln ln ,

y

it it ig y y= − −   (3) 

where *

i
y  denotes the steady-state output per worker in country i , and *  measures the 

speed of convergence. Equation (3) will be familiar to anyone who has read an 

advanced macroeconomics textbook (e.g., Barro and Sala-i-Martin 2003). It is also 

consistent with the empirical growth literature, especially that studies focusing on 

conditional convergence (e.g., Barro 1991, Mankiw et al. 1992, Sachs et al. 1995). As 

highlighted by the demographic-dividend literature (e.g., Bloom and Williamson 1998), 

per capita output can be written as:  

 ,it it it it

it it

it it it it

Y Y N N
y y

P N P P
= = =  (4) 

where it
P  is the total population. This expression can be converted into the growth rate 

of per capita output: 

 ,y y N P

it it it it
g g g g= + −   (5) 

where y

it
g   is given by equation (3) and N

it
g   and P

it
g   are the growth rates of the total 

employment and population, respectively. 



8 

 

To characterize the dynamic effects of a change in fertility over the lifecycle of the 

newborn cohort, the model focuses on a time horizon from the birth ( 0t = ) to the death 

( t T= ) of a single cohort. For simplicity, the model assumes that the economy contains 

only two cohorts—the newborn cohort and the parent cohort—and that the mortality 

rate is zero. Thus, the total population is kept constant during ( )0,t T : ( )1
i i i

P N e= + , 

where 
i

N   denotes the parent cohort population and i
e   is the fertility rate. Thus, the 

fertility rate in the model is defined as the births per adult in a single year ( 0t = ). 

To capture the time-varying effects of i
e   over the life cycle in a reduced-form 

manner, I assume the following relationships: 

 ( )1 ,t

it i i
N N e

= +   (6) 

 ( )1 ,t

it i it i i i
A A N A N e

 = = +   (7) 

 ( )1 ,t

it i i
h h e

= +   (8) 

 ( )1 ,t t

it it it i i i
H h N h N e

 += = +   (9) 

 ( )1 ,t

it i i
K K e

= +   (10) 

where 
i

A , 
i

h , and 
i

K  are the base-year TFP, human capital, and total physical capital, 

respectively. Equation (6) characterizes the time-varying effects of fertility on the total 

labor supply (Galor and Weil 1996, Bloom et al. 2009). Newborns reduce parents’ labor 

supply because childrearing is time-consuming, but the time parents spend on each 

child may decline as the child matures. The newborn cohort eventually contributes to 

the labor force when reaching working age. Therefore, I assume that the elasticity 

coefficient t
   increases from negative to positive over the life cycle. Equation (7) 

follows the R&D-based growth models to assume 0  , which means that a higher 

labor supply (and thus more potential innovators) leads to faster technological progress 

(e.g., Romer 1990, Aghion and Howitt 1992). Thus, fertility has time-varying effects 

on TFP through the labor supply (captured by t
 ). Equation (8) follows the quality–

quantity trade-off theory (e.g., Becker et al. 1990, Galor 2005) to assume that higher 

fertility leads to lower human capital investment in each child. For simplicity, I assume 

0t =  before the new cohort enters the labor force and 0t   after that. Equation (9) 

characterizes the effect of fertility on the effective labor supply through the human 

capital and labor supply ( t t + ). Finally, equation (10) captures the potentially positive 
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effect of fertility on physical capital accumulation ( 0t   ). Numerous studies (e.g., 

Solow 1956, Cass 1965, Boserup 1981, Simon 1992) have argued that the higher 

demand and pressure on the economy arising from population growth might promote 

physical capital accumulation. To the extent that a newborn’s demand and, thus, 

pressure on the economy increase with age, the elasticity coefficient t
  could increase 

over time as well. 

To sum up, equations (6)–(10) characterize the time-varying effects of fertility 

through four channels: labor supply, TFP, human capital, and physical capital. In 

addition, N P

it it
g g−  in equation (5) characterizes the fifth channel by the dilution effect 

of population growth on per capita output (Malthus 1798, Solow 1956). Substituting (6)

–(10) into (2) and taking logs, I obtain the following log-linear relationship between 

per worker output and fertility: 

 ( )( )ln 1it i t t t iy D e     + + + − +  , (11) 

where the time-invariant term ln ln ln ln
i i i i i i i

D A N h N K N
  = + + − , and I applied the 

approximation ( )ln 1
i i

e e + .5 I combine (11) with (3) and (5) to obtain a relationship 

between the growth rate of per capita output and fertility: 

 ( )* * * ' * *
ln ln ln

y

it i it t i i i t ig y y e y D e     − +  − +  , (12) 

where ( )' * * *
= + 1

t t t t t
         − − − −  is the time-varying coefficient of fertility. 

Note that (12) uses the conditions 0p

it
g =   (i.e., constant population during 0 t T   ) 

and 'N

it t t
g e   (which is derived from (6), and '

t
   denotes the first derivative of t

  ). 

Equation (12) highlights the complexity and time-varying nature of the effect of a 

change in fertility rate on the per capita income growth over the life cycle of the 

newborns. The effect depends not only on constant elasticity coefficients ( ,  , and 

  ), but also on the time-varying elasticity coefficients ( t
  , t

  , and 
t

  ), the first 

derivative of t
  ( '

t
 ), and the speed of convergence ( * ). The complex combination of 

these coefficients implies that the effect of fertility on income growth is theoretically 

ambiguous and most likely time varying. The next subsection will convert this 

theoretical framework into an estimation framework that can be used with real data. 

 

5 Note that the fertility rate is a very small value because it is defined in the model as the births per 

adult that occur in a given year. 
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2.2 Estimating Framework 

The above theoretical model focuses on a single newborn cohort, but in reality, new 

cohorts emerge continuously. To transform (12) into a regression equation that can be 

estimated by the real data, I introduce a new time dimension to it to denote the birth 

year of each cohort relative to the current time. Specifically, when adding an error term, 

potential covariates, and the new time dimension to (12), I obtain the following 

estimation equation: 

 
( )

0

T
y

it i t s i t s it it

s

g TFR Z    −
=

= + + + +  , (13) 

where y

it
g   is the annual growth rate of GDP per capita in year t   and country i  ; i

v  

denotes the country-fixed effects that are used to account for the confounding effects of 

country-specific, time-invariant determinants of income growth, i.e., * *(ln )
i i

y D − ; t  

is year fixed effects used to account for the confounding effects of time-varying factors 

common across countries; itZ  denotes a vector of control variables; and it
  is the error 

term. The new time dimension s  denotes the cohort born s  years prior to the current 

time t . The key explanatory variable, ( )i t s
TFR − , is TFR s  years prior to the current year. 

Thus, the coefficient ( )' * * *
+ 1

s s s s s
         = − − − −  captures the -years lagged 

effect of fertility on income growth. In this distributed-lag model setting, the changes 

of s
  over 0 s T   reflect the differential effects of a change in fertility rate on income 

growth over the life cycle of the newborn cohort, and the average of s
  captures the 

long-term average effect of fertility. 

A major advantage of (13) compared with the standard fixed effects panel model 

used in previous studies is in capturing the long-term lagged effects of fertility. Previous 

fixed effects panel regressions usually include only the current fertility or fertility 

lagged by several years (usually one or five years), thus capturing only the short-term 

effects of fertility. This is because the fixed effects eliminate long-term cross-sectional 

fertility differences; thus, the identification depends mainly on short-run interannual 

fertility changes. As illustrated in Appendix B1, even for a panel of fertility data 

covering five decades, most of the fertility changes used in the identification of the 

fixed effects panel model are short-term fertility changes. By using long-term lagged 

fertility rates as explanatory variables, (13) provides a natural way to identify the long-
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term lagged effects of fertility in a fixed-effects panel model.6 An alternative way to 

capture the long-term lagged effect is to estimate the effect of one-off fertility shocks 

(occurring at the early stages of a long sample period), following the logic of a standard 

DID model.7 This alternative approach will be detailed later. 

However, it is infeasible to directly estimate model (13) because of serious 

collinearity issues: fertility rates in successive years are highly correlated with one 

another. 8  Unless collinearity is adequately addressed, the estimate of s
   could be 

imprecise and have incorrect signs. A standard method for addressing collinearity is to 

use a restricted least squares estimator that depends on a polynomial distributed lag, 

which was first explored by Almon (1965). To do this, however, one must first know 

the pattern of the time effects, which can then be translated into parameter restrictions. 

Unfortunately, the time evolution of the effects of fertility is too complicated to be 

characterized by a tractable functional form.9 Because imposing incorrect restrictions 

on parameters can lead to additional biases, I do not seek to solve the collinearity 

problem by using restricted least squares estimators. 

Instead, I transform (13) into a series of estimating equations, each of which only 

includes one of the lag terms of TFR, with a lag length ranged from 0 to T years: 

 ( ) 0,1,2, ,
y s

it i t s i t s it it
g TFR Z s T    −= + + + + =，  . (14) 

To the extent that nearby lags are correlated with one another, the coefficient of the 

included lag, s
 , captures the effect of the “omitted” nearby lags. The estimate of s

  in 

model (14) can be seen as the weighted average of the effects of the included lag and 

 

6 The current article is not the first to adopt a lagged model setting to estimate the long-term lagged 

effect of fertility. Barlow (1994) made the first attempt to separate the long-term and short-term effects 

of fertility by including both long-term lagged fertility and current fertility in a single regression. Based 

on data from 86 countries, he found that per capita income growth is negatively related to current fertility 

and positively related to 17-year lagged fertility. However, no study has used this estimation strategy 

after Barlow’s paper. Note that studies that have lagged the fertility rate by one or a few years do not 

fulfill this criterion because the positive effect of fertility takes longer to express. 
7 To see this, assume that there are panel data for 100 countries over a 60-year period and that only a 

one-off exogenous fertility decline occurred in the tenth year in half of the sample countries. A standard 

DID model that compares the income growth before and after the fertility decline across the 100 countries 

could capture the long-term average effect of the fertility decline over the 50 years following it. 
8 If 

( )i t s
TFR −  follows a pattern over time, then 

( 1)i t s
TFR − +  will follow a similar pattern, thus causing 

( )i t s
TFR −  

and 
( 1)i t s

TFR − +  to be strongly correlated. The data from the 138 countries examined in this article show that 

the correlation between the current TFR and TFR lagged by 3, 5, and 10 years are 0.99, 0.98, and 0.96, 

respectively. 
9 The lagged effects of fertility are more complicated than the lagged effects of other factors, such as 

fiscal policies, because an individual’s interaction with the economy may last for decades and change in 

a nonlinear manner over time. 
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the omitted nearby lags, and the weighting is the strength of the correlation. It is well-

known that this kind of pure serial correlation does not cause bias in the regression 

coefficient estimates (Greene 2010, p.903), but it tends to bias the estimated variances 

of the regression coefficients. For this reason, I report autocorrelation-consistent 

standard errors (e.g., the Newey–West standard errors) throughout this article. Note that 

the simple average of s
  (over 0,1,2, ,s T= ) captures the long-term average effect of 

a change in fertility rate on income growth. 

Although it is good at capturing the long-term lagged effects of fertility, model (14) 

does not adequately address the endogeneity bias from the omitted variables and reverse 

causality. The model includes country-fixed effects to account for the confounding 

effects of country-specific time-invariant factors and includes year fixed effects to 

account for the confounding effects of annual shocks common to all countries. However, 

these fixed effects cannot address the potential bias caused by omitted country-specific 

time-varying factors. The model also reduces the potential bias from reverse causality 

thanks to its lagged model design. However, reverse causality is not fully addressed 

because fertility could be affected by expectations of future income growth. 

Considering that income growth generally has a negative effect on fertility in modern 

times (Eckstein et al. 1999, Herzer et al. 2012, Chatterjee and Vogl 2018), the estimate 

of s
  is expected to be downwardly biased by reverse causality. 

I have adopted two approaches to address the remaining endogeneity. The first is to 

find an excluded IV for TFR and then conduct the 2SLS estimation of model (14). Note 

that a suitable IV must have sufficient time variation because TFR in the model is 

lagged by various years. This kind of IV is only available when using Chinese 

provincial data for the estimation. The second approach is to employ one-off fertility 

shocks to estimate a version of the model (14) that includes only the current TFR. 

Because only the current TFR is included in the modified model, it is not difficult to 

construct excluded IVs for TFR from one-off fertility shocks when using country-level 

data. As mentioned above and detailed in Appendix B1, if the fertility shock occurred 

at the early stages of a long sample period, this approach can also capture the long-term 

lagged effects of fertility. As presented in the following sections, both the OLS and 

2SLS estimates of model (14) (and its variation) suggest that higher fertility rates 

significantly increase long-term average income growth, even though the 2SLS 

estimates suggest a much larger effect than the OLS estimates. 
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3. Global Evidence 

This section estimates model (14) based on data from 138 countries. The estimation 

finds that a higher fertility rate first reduces and then increases income growth, and the 

long-term average effect is significantly positive. This finding is robust when adjusting 

for serial correlation, including various control variables, and when focusing on 

countries with different income levels. Estimates based on plausibly exogenous fertility 

shocks confirm this finding. The data sources and summary statistics of all variables 

are presented in Appendix Table A1. 

3.1 Long-term Average Effect of Fertility 

Figure 2 presents the OLS estimate of s
  (the solid line) from model (14)  and the 

corresponding 95% confidence intervals (broken lines). The confidence intervals are 

calculated based on the Newey–West standard errors, which are robust to 

autocorrelation and heteroskedasticity. The estimation uses annual data from 138 

countries (listed in Table A2), where GDP per capita and TFR are available 

continuously from 1960 to 2016. The GDP data (in 2011 USD) are derived from the 

Maddison Project Database 2018, and TFR data are derived from the World 

Development Indicators. The estimation controls for four of the most important 

determinants of income or fertility: the five-year lagged log GDP per capita (used to 

capture the effect of economic convergence), years of total schooling (used to capture 

the effect of human capital), infant mortality, and life expectancy. Other control 

variables are set aside for robustness checks. All control variables are lagged by the 

same years as TFR in each regression to avoid overcontrol bias.10 The coefficients of 

the current TFR and TFR lagged up to 50 years are estimated, but the figure only reports 

the coefficients up to 40 lagged years because the remaining estimates are statistically 

insignificant and have very wide confidence intervals (complete results are reported in 

Appendix Table B1). 

 

10 If the control variables are not lagged, which means that they are in the same time period as the 

dependent variable, the control variables could partially account for the true effect of the lagged fertility. 

Specifically, if there are any correlations between the future values of the control variables and the past 

TFR, it is most likely that the past TFR is the cause of the correlation. In this case, these (current) control 

variables are the channel variables through which the lagged TFR affects income growth, and controlling 

for these channel variables would account for the true effect of the lagged fertility. 
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Figure 2. Current and Lagged Effects of the Fertility Rate on the Growth Rate of 

GDP per capita 

Notes: The figure presents the estimated TFR coefficients of model (14) using data from 138 countries from 1960 to 
2016. Each dot on the solid line is the point estimate of the coefficient of TFR lagged by the year indicated by the x-
axis, and the broken lines indicate the corresponding 95% confidence intervals that are calculated based on the 
Newey–West standard errors. 

Figure 2 shows that a higher fertility rate first reduces and then increases income 

growth and that the effect lasts for more than three decades. Specifically, the initially 

negative effect turns positive after 15 lagged years, and the positive effect peaks at 25 

lagged years, after which it declines and becomes statistically insignificant after 33 

lagged years. This finding highlights the importance of estimating the long-term 

average effect: studies focusing only on the short-term effect tend to overestimate the 

negative effect, and studies focusing only on the long-term effect tend to overestimate 

the positive effect. It can be calculated that the average of the estimates of s
  over 0 to 

40 lagged years is 0.12%, with a 95% confidence interval (0.03, 0.21). Therefore, a 

one-unit increase in TFR would significantly raise the long-term average growth rate 

of GDP per capita by 0.12%. The accumulated effect calculated based on this estimate 

suggests that a one-unit increase in TFR would raise the GDP per capita by 5.0% for an 

average sample country over four decades.11 Because the average TFR had declined by 

2.53 from 1960 to 2016, this estimate implies that secular fertility declines reduced 

GDP per capita by 9.1% (5.0%*2.53*40/56) over four decades. Note that, however, the 

OLS estimates tend to underestimate the positive effect of fertility because of the 

downward bias from reverse causality. 

The effect pattern presented in Figure 2 can be explained by the mechanisms 

 

11 The accumulative effect is approximately calculated according to 
0 40

(1 ) 1
ss


 

+ − . 
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proposed in the motivating theory: (1) the initial (0–15 lagged years) negative effect of 

higher fertility could be driven by the negative dilution effect of population growth on 

per capita income and the negative effect from the time cost of childrearing; (2) the 

negative effect gradually disappears and becomes positive, possibly because the time 

cost of childrearing declines with the lag length, while the stimulating effect on physical 

capital formation increases with it; (3) the positive effect increases further possibly 

because the new cohort directly contributes to the labor force and innovations; (4) the 

effect eventually peaks (at 25 lagged years) and then gradually declines, eventually 

reaching zero, possibly because 25 years old is approximately the reproductive age of 

individuals (and thus a new cycle begins). Figure 2 also suggests that the negative effect 

of higher fertility on human capital formation (i.e., quality–quantity trade-off) does not 

dominate the lagged effect.12 

3.2 Robustness Checks 

Table 2 examines the robustness of the baseline results (presented in Figure 2) to 

autocorrelation, omitted variables, and income levels. To facilitate a comparison, 

column 1 replicates the baseline estimates. All robustness checks have the same model 

setting as the baseline estimation, except for the one specified in each check. Additional 

robustness checks are presented in Appendix B3.  

Columns 2–4 of Table 2 show that the estimated standard errors are robust to 

autocorrelation. As detailed before, the estimated variances of the coefficients from 

model (14) are likely downwardly biased by autocorrelation. This is why the baseline 

estimation reports the Newey–West standard errors that are robust to autocorrelation. 

Column 2 shows the extent of the bias by presenting the OLS estimates of the standard 

errors that do not adjust for autocorrelation. The OLS standard errors are only slightly 

smaller than the Newey–West standard errors (reported in column 1), suggesting no 

substantial bias from autocorrelation. This finding is not surprising when considering 

that the year fixed effects included in the model could have accounted for most of the 

trends in fertility. Column 3 clusters the error terms at the country level to adjust for 

within-country correlation of the error terms caused for any reason, instead of only by 

 

12 This finding is in line with the existing empirical evidence. Although early studies (e.g., Leibowitz 
1974, Hanushek 1992) found evidence supporting the quality–quantity trade off, later studies using the 
incidence of twinning or the sibling sex composition as instruments have usually found mixed evidence 
(Angrist and Evans 1998, Black et al. 2005, Cáceres-Delpiano 2006, Lee 2008). See Schultz (2007) for 
a review of this literature.  



16 

 

autocorrelation (Abadie et al. 2017). The resulting standard errors are larger, but all the 

corresponding estimates are statistically significant, at least at the 10% level. Note that 

clustering the error terms at the country level is not a preferred method for addressing 

autocorrelation here because it also accounts for the error correlations caused by 

omitted channel variables. 13  Column 4 directly accounts for autocorrelation by 

controlling for linear and quadratic country-specific time trends while also finding 

comparable results.  

Columns 5 and 6 show that the estimates are robust to omitted variables. The 

baseline estimation only controls for four time-varying determinants of fertility and 

growth. Column 5 controls for four additional time-varying factors: GDP per capita as 

a ratio of US GDP per capita (which is another control of income convergence), the 

share of urban population, net international migration, and the share of natural resource 

rents in GDP. Controlling for these factors has only a negligible effect on the estimates, 

and the long-term average effect calculated (presented in the last row) is identical to the 

baseline estimate. I have also tried to control for other (less relevant) time-varying 

factors, such as temperature, inflation, and foreign direct investment and found very 

similar results. Note that all time-invariant factors are excluded from the model because 

they have been well controlled for by the included country-fixed effects. However, a 

potential concern is that time-invariant factors may have time-varying effects on 

income growth, which cannot be controlled for by fixed effects. To address this concern, 

column 6 controls for the potential time-varying effects of three important time-

invariant variables (the dummy of landlocked, first official language, and average index 

of political stability) by including the interactions of each of them with a full set of year 

dummies. 14  The resulting estimates are slightly larger but have no statistically 

significant difference from the baseline estimates. 

  

 

13 For example, lagged TFR could affect future income growth by affecting future education, so the 

model intentionally excludes future (nonlagged) education as a control variable to avoid overcontrol bias 

(see Footnote 10 for details). The “omitted” future education naturally leads to a within-country error 

correlation given the lagged model setting of (14). Adjusting for this kind of error correlation could lead 

to upward-biased standard errors. 
14 The index of political stability is a time-varying variable. However, because the data are only 

sparsely available mainly after 1990s for most countries, I have chosen to control for it by using its mean 

value over all available observations. 
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Table 2. Robust to Autocorrelation, Omitted Variables, and Income Levels 

  Autocorrelation  Omitted variables  Income levels 

 (1) (2) (3) (4)  (5) (6)  (7) (8) (9) 

Lags  Baseline 

(Newey–West) 

OLS Cluster at 

country level 

Control for 

time trends 

 Additional time-

varying controls 

Additional time 

-invariant controls 

 Low 

-income 

Middle 

-income 

High 

-income 

L0 -0.0056*** -0.0056*** -0.0056*** -0.0053***  -0.0069*** -0.0069***  -0.0074*** -0.0043** -0.0056* 

 (0.0010) (0.0007) (0.0020) (0.0007)  (0.0010) (0.0010)  (0.0016) (0.0018) (0.0031) 

L5 -0.0058*** -0.0058*** -0.0058*** -0.0056***  -0.0057*** -0.0058***  -0.0057*** -0.0067*** -0.0040 

 (0.0011) (0.0008) (0.0019) (0.0008)  (0.0011) (0.0011)  (0.0019) (0.0019) (0.0036) 

L10 -0.0036*** -0.0036*** -0.0036* -0.0033***  -0.0032** -0.0030**  -0.0018 -0.0083*** -0.0048 

 (0.0013) (0.0009) (0.0019) (0.0009)  (0.0013) (0.0014)  (0.0020) (0.0021) (0.0050) 

L15 -0.0001 -0.0001 -0.0001 0.0003  0.0004 -0.0000  0.0036* -0.0045* 0.0032 

 (0.0014) (0.0011) (0.0024) (0.0011)  (0.0015) (0.0016)  (0.0021) (0.0025) (0.0072) 

L20 0.0056*** 0.0056*** 0.0056* 0.0058***  0.0060*** 0.0064***  0.0107*** 0.0042 0.0222*** 

 (0.0016) (0.0012) (0.0033) (0.0012)  (0.0016) (0.0017)  (0.0026) (0.0027) (0.0075) 

L25 0.0101*** 0.0101*** 0.0101** 0.0100***  0.0099*** 0.0105***  0.0137*** 0.0181*** 0.0294*** 

 (0.0020) (0.0015) (0.0042) (0.0015)  (0.0020) (0.0021)  (0.0036) (0.0028) (0.0092) 

L30 0.0078*** 0.0078*** 0.0078** 0.0079***  0.0081*** 0.0082***  0.0099* 0.0148*** 0.0268** 

 (0.0026) (0.0021) (0.0033) (0.0021)  (0.0026) (0.0026)  (0.0050) (0.0024) (0.0108) 

L35 -0.0018 -0.0018 -0.0018 -0.0019  -0.0009 -0.0003  -0.0023 0.0027 0.0235*** 

 (0.0024) (0.0019) (0.0040) (0.0018)  (0.0024) (0.0026)  (0.0050) (0.0022) (0.0076) 

L40 -0.0007 -0.0007 -0.0007 -0.0005  0.0008 0.0026  0.0065 -0.0030 0.0252*** 

 (0.0026) (0.0021) (0.0048) (0.0020)  (0.0025) (0.0027)  (0.0060) (0.0026) (0.0079) 
Average  

(L0–L40) 
0.0012*** 0.0012*** 0.0012** 0.0014***  0.0012*** 0.0013***  0.0033*** 0.0019*** 0.0096*** 

(0.0004) (0.0004) (0.0006) (0.0004)  0.0004 0.0005  0.0007 0.0007 0.0012 

Notes: This table reports the estimates of the lagged TFR from model (14), with the lag length denoted in the first column. Column 1 replicates the baseline estimates reported 

in Figure 2. Columns 2–4 examine the robustness to autocorrelation, columns 5 and 6 the robustness to control variables, and columns 7–9 the robustness to the income 

levels of the sample countries. The last row reports the long-term average effect of TFR lagged by 0 to 40 years. Robust standard errors are reported in parentheses. 

Significance levels are *** p<0.01, ** p<0.05, * p<0.1. 
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Columns 7–9 separately estimate the model for low-, middle-, and high-income 

countries. To avoid using a subjective definition of income levels, I classify the 138 

sample countries into three equal-sized groups based on the ranking of their 1960 GDP 

per capita.15 The estimations find the same effect pattern for each group of countries: 

higher fertility first reduces and then increases per capita income, and the long-term 

average effect is significantly positive. As expected, the estimated positive effect is 

much larger in high-income countries than in low- and middle-income countries.16 

These subsample regressions also provide a way to verify the existence of downward 

bias from reverse causality. Because fertility declines with income, the reverse causality 

bias should be larger when pooling countries from different income groups. This is 

because when using the pooled data, more fertility variation comes from cross-country 

fertility differences caused by income differences. If the effects that are estimated 

separately for each income group are all larger than the pooled baseline estimate, this 

can be taken as evidence of reverse causality bias. The estimated long-term average 

effects are 0.33%, 0.19%, and 0.96%, respectively, for low-, middle-, and high-income 

countries, which are all much larger than the baseline estimate using data from all 

countries (i.e., 0.12%). 

Appendix B3 presents the three groups of additional robustness checks. First, I adopt 

an alternative fertility measure, the crude birth rate, in place of TFR. Second, I exclude 

sample countries with a 1960 population smaller than 2 million (40 countries) or larger 

than 50 million (12 countries) to determine whether the findings are mainly driven by 

these relatively small or large countries. Finally, I exclude countries from America, Asia, 

Europe, and Sub-Saharan Africa one region each time to check if the findings are 

sensitive to countries from a specific region. All of these robustness checks find 

estimates comparable to the baseline estimates. 

  

 

15 I have also used the classification of low-, middle-, and high-income countries provided by the 

World Bank and found comparable results. 
16 The relatively abundant physical and human capital stocks in high-income countries imply smaller 

negative effects of fertility through physical capital dilution and quantity–quality trade off. In addition, 

as usually modelled in theoretical studies (e.g., d’Albis 2007, Boucekkine et al. 2002), the marginal 

positive effect of fertility could be higher when the fertility level is lower, which is the case regarding 

high-income countries. 
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3.3 Evidence from Global Epidemic Disease Interventions 

A major concern of the above estimation is endogeneity bias, especially bias from 

reverse causality. To address this concern, this subsection adopts an alternative 

estimation strategy employing plausibly exogenous one-off fertility shocks to identify 

the long-term causal effect. As mentioned before, the coefficient of the current fertility 

in a fixed effects panel model mainly captures the short-term effect because the fixed 

effects eliminate most of the long-term fertility variation. However, if the identification 

is based on one-off fertility shocks, long-term effects can be captured (see Appendix 

B1 for a detailed discussion). Specifically, this can be done by constructing IVs from 

exogenous fertility shocks for the 2SLS estimation of the following fixed effects panel 

model: 

 ln it i t it it ity TFR Z    = + + + +  , (15) 

which regresses log GDP per capita, ln
it

y , on the current fertility rate. The first stage 

of the 2SLS estimation is given by 

 it i t it it itTFR ShockIV Z    = + + + +  ,  (16) 

where itShockIV   is the IV constructed from plausibly one-off fertility shocks,    is a 

coefficient, and it
  is the error term. The identification of the 2SLS estimation depends 

on comparing the relative changes in income between countries with high and low 

intensities of fertility shocks in the post-shock period to that in the pre-shock period. 

As long as the fertility shock is approximately a one-off and the post-shock period is 

long enough, the long-term average effect of fertility can be captured by the coefficient 

  . Note that the log GDP per capita (instead of the growth rate) is an appropriate 

dependent variable in this estimation framework; this is because depending on one-off 

fertility shocks means insufficient fertility variation that can be used to identify the 

time-varying effects on the growth rate.17 

I first estimate model (15) using an IV constructed from the global epidemic disease 

interventions that occurred around 1940. As detailed in Acemoglu and Johnson (2007), 

 

17 In addition, it is not a good idea to estimate the effect on the long-term average growth rate in this 

estimation framework because of the concern of a downward bias. This is because, as shown in Figure 

2, the initial effects of fertility on the growth rates are negative while the lagged effects are positive. 

Because income is generally an increasing trend, a 1% initial income change should be smaller than a 1% 

later income change. As such, the estimated effect on the average growth rate underestimates the true 

effect on income growth. 
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a series of global drug and chemical innovations around the year 1940 dramatically 

reduced mortality from epidemic diseases across the world. Because mortality and 

fertility are strongly correlated (Olsen and Wolpin 1983, Angeles 2010), this event also 

generated a shock to fertility. I follow Acemoglu and Johnson (2007) in constructing an 

IV for fertility based on the mortality rate of each country from 15 of the most important 

infectious diseases prior to 1940 and the global intervention dates for each specific 

disease. Specifically, Acemoglu and Johnson (2007) constructed a predicted mortality 

instrument based on  

  40(1 )I

it dt di dt dFt

d D

M I M I M


= − +  , (17) 

where dt
I   is a dummy for intervention for disease d   ( 1dtI =   after the intervention), 

40diM   is the preintervention mortality from disease d   in country i  , and dFt
M   is the 

mortality rate from disease d  at the health frontier of the world at time t . The authors 

argued for the exogeneity of the predicted mortality instrument based on the fact that 

the global intervention dates for each disease ( dt
I ) are exogenous to individual countries. 

 
Figure 3. Changes in TFR and predicted TFR  

Notes: The figure presents 34 countries where the data for TFR, GDP per capita, and predicted mortality were 
available from 1900 to 2010. 

It may not be a good idea to directly use predicted mortality as the IV for the fertility 

rates when examining the effect of fertility on income because the predicted mortality 

could affect income through channels that are uncorrelated with fertility. To address this 
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concern, in two steps, I construct an IV for fertility based on the predicted mortality. 

First, I use predicted mortality as an IV for life expectancy to obtain the 2SLS estimates 

of the following: 

 it i t it it itTFR Lifee Z    = + + + +  ,  (18) 

where itLifee   denotes life expectancy (instrumented by predicted mortality),    is a 

coefficient, and it
   is an error term. Note that the 2SLS estimate of    captures the 

effect of predicted mortality on TFR only through the channel of life expectancy. 

Second, I predict TFR from the 2SLS estimates of (18) and then use the predicted TFR 

( itpTFR )as the IV for TFR. By construction, itpTFR  could affect income only (directly 

or indirectly) through fertility.18 Figure 3 shows that the changes in TFR from 1940 to 

2010 are strongly correlated with the changes in the predicted TFR over the same period.  

Table 3. Causal Effect of TFR on Log GDP per Capita 

 
(1) 

IV = Predicted 

mortality 

(2)  

IV = Predicted 

TFR 

(3) 

IV = Program 
starting year 

 

Panel A. Second stage (Dependent variable: log GDP per capita) 

TFR (instrumented) 0.298*** 0.168*** 0.574***  

 
(0.093) (0.042) (0.160)  

Panel B. First stage (Dependent variable: TFR)  

Predicted mortality 1.06***    

 (0.21)    

Predicted TFR  0.99***   

  (0.09)   

Program dummy   -0.26***  

   (0.06)  

County FE Yes Yes Yes  

Year FE Yes Yes Yes  

First-stage F  24.7 110 19.4  

Observations 408 408 1683  

Countries 34 34 31  

Notes: The table presents the 2SLS estimates based on Equations (15) and (16). The IVs are predicted mortality, 

predicted TFR, and the dummy of the family planning programs starting year in columns (1), (2), and (3), 

respectively. Robust standard errors are reported in parentheses. Significance levels are *** p<0.01, ** p<0.05, * 

p<0.1. 

Columns 1 and 2 of Table 3 present the 2SLS estimates of model (15) using 

 

18 Departing from the standard 2SLS regressions, I use a generated IV. According to Wooldridge 

(2010, p.124), parameter estimates in 2SLS regressions with generated instruments are asymptotically 

distributed, as in standard 2SLS regressions. 
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predicted mortality and predicted fertility as IVs, respectively. The estimations are 

based on 10-year interval data from 1900 to 2010 (instead of the continuous annual data 

from 1960 to 2016) because the predicted mortality data constructed by Acemoglu and 

Johnson (2007) are available in 10-year intervals since 1900. The data on GDP per 

capita are still derived from the Maddison Project Database 2018, but the data on TFR 

are derived from Roser (2014) (instead of from the World Development Indicators, 

where the data prior to 1960 are unavailable). There are 34 countries (see Figure 3) 

where the data for TFR, GDP per capita, and predicted mortality are available for this 

period. Employing the early data implies that most of the usually used control variables 

are unavailable, so these estimations control only for the country and year fixed 

effects.19 

The first-stage estimates in columns 1 and 2 (Panel B) indicate that both predicted 

mortality and predicted fertility have a significantly positive effect on TFR, confirming 

that they are likely strong IVs for TFR. The second-stage estimates in columns 1 and 2 

(Panel A) suggest that a one-unit increase in TFR raises the long-term GDP per capita 

by 29.8% and 16.8%, respectively, when using predicted mortality and predicted 

fertility as IVs. As detailed above, the estimated effect based on the predicted fertility 

IV is more credible. However, no matter which IVs are being used, the 2SLS estimates 

are much larger than the OLS estimate from the last section (which suggests a 5.0% 

long-term effect). This finding confirms that the OLS estimate is indeed substantially 

downward biased, potentially because of reverse causality. Recall that these 2SLS 

estimates reflect the long-term effect of fertility on income only when the fertility 

change from the global disease interventions can be approximately seen as a one-off 

fertility shock. To the extent that the interventions have long-term lagged effects on 

fertility, the 2SLS estimates still tend to underestimate the long-term effects of fertility.  

The above 2SLS estimations are based on the assumption that predicted mortality 

(and, thus, predicted fertility constructed from it) is exogenous. The exogeneity of 

predicted mortality has been thoroughly examined in Acemoglu and Johnson (2007). 

Similar to their examinations, Appendix B4 presents two pieces of evidence supporting 

that predicted mortality and predicted fertility are likely exogenous. First, columns 1 

and 2 of Table B2 show that the leads of predicted mortality and predicted fertility have 

 

19 The early data for some channel variables, such as education, are available, but controlling for 

channel variables could lead to overcontrol bias. 
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no significant effect on TFR. Because the global disease interventions did not start 

before 1940, the leads of the IVs should have no effect on TFR. If the leads are 

correlated with TFR, the correlation must be driven by preexisting trends, which 

implies endogeneity. Second, columns 3–6 of Table B2 show that the changes in TFR 

and GDP per capita prior to the global interventions (from 1930 to 1940) have no 

predictive power on the preintervention changes in predicted mortality and predicted 

fertility (from 1940 to 2010). If prior-intervention changes in fertility or income have a 

significant effect on post-intervention changes in the IVs, the IVs are endogenous in 

the sense of reverse causality. The findings are the same when examining the correlation 

using data from different pre- and post-intervention periods. 

3.4 Evidence from the Global Family Planning Campaigns 

A potential concern of the above 2SLS estimates is that because global disease 

interventions only indirectly affect fertility through mortality, it may take a long time 

(possibly decades) for fertility to respond to the mortality changes from the disease 

interventions (Angeles 2010). If this is true, the above 2SLS estimates may still have 

underestimated the long-term effect of fertility. For this reason, this subsection employs 

fertility changes from a second event that directly affected fertility: the global family 

planning campaigns.  

Starting around the mid-1960s, increasing concerns over the unprecedented levels 

of population growth in the developing world have led many developing countries to 

adopt family planning programs (Robinson and Ross 2007). De Silva and Tenreyro 

(2017) found strong evidence that national family planning programs significantly 

reduced the fertility rates in developing countries. I use the dummy of the national 

family planning program starting year (equals one for all years after the starting year) 

as the IV for fertility for the 2SLS estimation of model (15). As compiled by De Silva 

and Tenreyro (2017) from various sources, the exact starting year of state-led family 

planning programs is available for 31 developing countries. As presented in Figure 4, 

most of the 31 countries started their family planning programs in the time period of 

1960–1970, which is consistent with the timing of the global family campaigns. Note 

that although several intensity measures of family planning programs are available, the 

estimation of this article does not depend on these intensity measures because of data 
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limitations and endogeneity concerns.20 

 
Figure 4. The Starting Year of State-Led Family Planning Programs and Log GDP per 

Capita in the Starting Year 

The 2SLS estimates using the program starting year as the IV are presented in 

column 3 of Table 3. The estimation depends on continuous annual data from 1960 to 

2016 for the 31 sample countries and controls for five potential confounding factors.21 

The first-stage estimates suggest that family planning programs significantly reduced 

fertility by 0.26 children per woman. The second-stage estimates suggest that a one-

unit increase in TFR raised the long-term GDP per capita by 57.4%. As expected, the 

estimated effect is much larger when using the program starting year instrument than 

when using the predicted fertility instrument. This could reflect the fact that family 

planning programs directly (thus promptly) affected fertility, while disease 

interventions mainly indirectly affected fertility by affecting the size of childbearing 

 

20 There are three intensity measures of family planning programs: the effort score, the percentage of 
women exposed to family planning messages, and the funds for family planning per capita (De Silva and 
Tenreyro 2017). However, all these measures are not suitable for constructing IVs for fertility (when the 
target is to identify the long-term effect) because the data are only sparsely available over narrow (post-
program) periods. For example, data on the percentage of women exposed to family planning messages 
are only available for several years from 1993 to 2013. More importantly, as argued by Bloom et al. 
(2009), these intensity measures are most likely endogenous to countries’ economic performances. 

21 The five control variables are infant mortality, life expectancy, the share of urban population, net 

international migration, and the share of natural resource rents in GDP. Other (contemporaneous) control 

variables are not included because of the concern of overcontrol bias. For example, years of total 

schooling is not included because fertility could affect the long-term income growth by affecting 

education. 
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cohorts and parents’ preferences regarding fertility, which may take decades to see the 

results of. Because the average TFR for the study sample is 4.1, this estimate suggests 

that a 10% increase in TFR could raise the long-term GDP per capita by 23.5%. 

The 2SLS estimation is based on the assumption that—conditional on country and 

year fixed effects—the starting year of the program is exogenous to income growth. I 

found four pieces of evidence supporting this assumption. First, the consistency of the 

program starting years with the timing of the global family planning campaigns (see 

Figure 4) suggests that the program starting year is primarily determined by exogenous 

global family planning campaigns. Second, as presented in Figure 4, there is no obvious 

correlation between the program starting year and log GDP per capita in that year, 

suggesting that the income level of the country is not a determinant of the staring year. 

Third, the starting year is not determined by the income growth rates prior to it. As 

presented in Appendix Table B3 (columns 2–4), the average growth rate of GDP per 

capita 3, 5, or 10 years prior to the starting year has no effect on the starting year. Fourth, 

as presented in column 1 of Table B3, the 1-, 5-, and 10-year leads of the starting year 

have no significant effect on TFR. This finding confirms that the effect of the starting 

year on fertility indeed comes from family planning programs instead of from any 

omitted factors correlated with the starting year. 

4. Evidence from China’s One-Child Policy 

This section depends on data from China’s one-child policy (OCP) to estimate model 

(14). China implemented the OCP in 1979 to curb its population explosion (Coale 1981). 

The OCP lasted for three decades and was significantly modified in 2011. From 1979–

2010, the OCP generally allowed each couple to only have one child but had several 

exemption rules.22 Residents who violated the OCP faced a stiff fine. Ebenstein (2010) 

collected province-level OCP violation fine rates (measured in times of local yearly 

household income) in China from 1979–2000, finding substantial cross-province and 

temporal variations in the fine rate (see Figure C1). Many studies have used the policy 

fine rate as an IV or proxy variable for fertility when examining the effect of the OCP 

on the sex ratio (Ebenstein 2010), saving rates (Wei and Zhang 2011), man-made twins 

 

22 The three most important exemptions were (1) couples with an agricultural hukou (a system of 

household registration) were allowed to have a second child if their first child was a girl; (2) residents 

who belonged to an ethnic minority group were allowed to have more than one child; and (3) residents 

in Xinjiang and Tibet were not subject to the OCP until the early 1990s (Baochang et al. 2007). 
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(Huang et al. 2016), or various micro-level individual outcomes (Huang et al. 2020). 

Appendix Table C1 estimates that the policy fine rate had a significantly negative and 

robust effect on fertility. 

I use the policy fine rate lagged by s  years ( ( )p t s
Fine − ) as the IV for the fertility rate 

lagged by the same years ( ( )p t s
CBR − ) in the 2SLS estimation of a version of model  (14): 

 
( ) ( ) 0,1,2, ,

y s

pt p t s p t s p t s pt
g CBR Z s T    − −= + + + + =，  . (19) 

The key explanatory variable, ( )p t s
CBR − , is the crude birth rate (CBR) in province p  

lagged by s   years. Here, fertility is measured by CBR instead of TFR because 

province-level TFR data are not available for China.23 All other variables are the same 

as defined before but at the province level. The estimation depends on annual data from 

1980 to 2010 for 27 of the 31 mainland Chinese provincial districts that enforced the 

OCP.24 The data sources and summary statistics of all variables are presented in Table 

A3. 

There are two alternative intensity measures of OCP used as IVs for fertility in the 

literature. The first is the excess fertility rate (measuring local violations of the OCP; 

see Appendix D), which has been used to examine the effect of child quantity on child 

quality (Bingjing Li and Hongliang Zhang 2017). The second is the ethnic minority 

population share (because ethnic minorities are subjected to less-strict birth control 

measures, see Footnote 22), which has been used to examine the effect of fertility on 

income growth (Li and Zhang 2007). The main analysis of this article does not depend 

on these two intensity measures because the data on excess fertility rate are only 

available for two census years, while the ethnic minority population share is subject to 

endogeneity concerns. However, as presented in Appendices D and E, analyses based 

on these two intensity measures also find that the long-term effect of fertility on income 

growth is significantly positive. 
 

23 CBR is defined as the annual number of births per thousand population, while TFR is defined as 
the average number of children that a woman would have over her childbearing years. Therefore, TFR is 
a better measure of current fertility than CBR because it is not affected by the age distribution of the 
population. Note that using CBR as the fertility measure in the global analysis yielded a comparable 
result (see Figure B1). 

24 The provinces of Xinjiang and Tibet are excluded because they were not subjected to the OCP until 

the early 1990s, and Hainan and Chongqing are excluded because they were separated from Guangdong 

and Sichuan in 1988 and 1997, respectively. The year of 1979 is excluded because the OCP was 

implemented at the end of 1979, thus having no effect on fertility in 1979 (due to the nine-and-a-half-

month length of a pregnancy). Data after 2010 are excluded because the OCP was significantly modified 

in 2011. 
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The 2SLS estimation of (19) is based on the assumption that changes in the policy 

fine rates are exogenous. Studies using the policy fine rate as an IV have usually argued 

that changes in the province-level policy fine rate are determined by local-specific 

factors, such as the new provincial governors’ preferences, which are not systematically 

correlated with the outcomes of interest. This argument is supported by Figure C1: no 

obvious common patterns are found for the timing, magnitude, or direction of the 

changes in the policy fine rate. A series of tests presented in Appendix C3 also supports 

the exogeneity assumption. First, Table C2 shows that prior income levels or growth 

rates have no predictive power on the current policy fine rate. Second, Table C3 shows 

that the policy fine rate is uncorrelated with various important determinants of income 

growth. Third, Table C4 shows that the lead of the policy fine rate is not correlated with 

current fertility and income growth. 

The estimation further addresses endogeneity concerns by including various control 

variables. First, it controls for five time-varying determinants of fertility and growth: 

five-year lagged log GDP per capita, share of labor with secondary education, crude 

death rate, net migration rate, and share of urban population. All these controls are 

lagged by the same years as the CBR to avoid overcontrol bias. Second, the estimation 

controls for the indicators of two important events that may confound the effects: the 

tax system reform in 1994 and joining the World Trade Organization (WTO) in 2001. 

Specifically, the estimation controls for the interactions between the timing and 

intensity of each event.25 China reformed its tax system in 1994 to triple the central 

government’s share of revenues in GDP from 3% to 9% (Brandt and Rawski 2008, pp. 

431–440). I control for this event by the interaction between the 1994 dummy and 

government spending share of GDP. China joined the WTO in 2001, which dramatically 

increased its international trade and liberalized its service sectors (Brandt and Rawski 

2008, pp.657–659). I control for this event by using the interactions between the 2001 

dummy and trade-to-GDP ratio and the contribution of services to the GDP, respectively. 

Finally, the model also controls for province-specific time trends.  

  

 

25 Another important event, the reform and opening up in 1978, is not controlled for because it 

occurred before the OCP. I have attempted to control for this event by the interactions between a full set 

of year dummies and two intensity measures of this event (the trade-to-GDP ratio and distance to the 

nearest port) and find a similar result. 
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Figure 5. Current and Lagged Effects of Fertility on Income Growth in China  

Notes: The figure presents the 2SLS estimates (Panel A) and OLS estimates (Panel B) of model (19). The x-axis 
indicates the lagged years of the CBR. Each dot on the solid line is the point estimate of the coefficient, and the 
broken lines indicate the corresponding 95% confidence intervals.  

Panels A and B of Figure 5 present the 2SLS and OLS estimates, respectively, of 

model (19).26 The 2SLS estimates show a similar effect pattern as the OLS estimates: 

the effect of a higher fertility rate first increases and then declines (although the 2SLS 

estimates of the initial effects are close to zero). As expected, the 2SLS estimates are 

much more positive than the OLS estimates. For example, when the lag length is 12 

years, the OLS estimate suggests that a one-unit increase in CBR raises the growth rate 

of GDP per capita by 0.23%, but the 2SLS estimate suggests that the effect is as large 

as 0.99%. The average OLS estimate of s
  over 0 to 20 lagged years (the last year with 

a significant effect) is 0.07%, while the average 2SLS estimate over the same period is 

as high as 0.66%. When calculating the accumulated effect over 20 years, the OLS 

estimates suggest that a one-unit increase in CBR will raise GDP per capita by only 

 

26 Panel A of the figure only presents the second-stage estimates, and the first-stage estimates are 
reported in Table C1, which shows that the policy fine rate has a significantly negative and robust effect 
on CBR. 

Panel B. OLS Estimates 

Panel A. 2SLS Estimates 
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1.5%, while the 2SLS estimates suggest an accumulated effect of 14.1%.27  

To make a comparison with the 2SLS estimates based on country-level data, I 

transform the marginal effect of CBR in China to the marginal effect of TFR. The 

country-average CBR and TFR in China from 1980 to 2010 were 16.9 and 1.99, 

respectively. As such, according to the 2SLS estimate, a one-unit increase in TFR would 

raise the long-term GDP per capita by 119.7% (i.e., 14.1*16.9/1.99). Thus, a 10% 

increase in TFR from its mean (1.99) raises the long-term GDP per capita in China by 

23.8%. This estimate is close to the most credible 2SLS estimate obtained based on the 

timing of national family planning programs, which suggests that a 10% increase in 

TFR raises long-term GDP per capita by 23.5%.  

Table 4 presents the robustness checks for the 2SLS estimates. For simplicity, the 

table only reports the estimates for contemporaneous CBR and the lagged CBR in five-

year intervals, and the full results are reported in Table C5. Column 1 repeats the 

baseline 2SLS estimates reported in Figure 5. Recall that the baseline estimation 

controls for five time-varying factors, indicators of two concurrent events, and 

province-specific time trends. I test the robustness to these controls by excluding all of 

them (column 2), including only the five time-varying controls (column 3), and 

including only indicators of the two events (column 4). These tests produce results 

similar to the baseline estimates in column 1, suggesting that the estimates are not 

sensitive to omitted variables. Column 5 clusters the error term at the province level, 

based on the bootstrap procedure suggested by Cameron et al. (2008), given the small 

number of clusters. The clustered standard errors are slightly larger, but the significance 

levels are unaffected. Column 6 uses the one-additional-year lagged policy fine rate 

( 1)p t s
Fine − −  as the IV for ( )p t s

CBR −  to allow a lag for the translation of the policy fine rate 

change to fertility change. Doing so leads to a slightly larger estimated effect than that 

from the baseline estimation.  

 

27 The OLS estimates based on the data from China indicate shorter initial negative effects than the 
OLS estimates based on global data (Figure 2). This may reflect the fact that China implemented the 
most coercive birth control policy in the world. If more fertility declines were from birth control policies 
in China than in other countries, the OLS estimates based on the data from China tend to subject to less 
bias from reverse causality. 
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Table 4. Robustness Checks of the 2SLS Estimates 

Lag length 

(1) 

All controls 

(2)  

No controls 

(3)  

Five controls  

(4)  

Five controls and two 

events 

(5)  

Clustered at the 

province level 

(6)  

Lagged policy fine 

rate 

L0 0.0001 0.0023 0.0051 0.0004 0.0001 0.0017 

 (0.0019) (0.0024) (0.0038) (0.0020) (0.0021) (0.0021) 

L5 0.0001 0.0041 0.0056* 0.0008 0.0001 0.0001 

 (0.0019) (0.0025) (0.0033) (0.0021) (0.0021) (0.0020) 

L10 0.0102*** 0.0100*** 0.0115*** 0.0104*** 0.0102*** 0.0105*** 

 (0.0027) (0.0029) (0.0038) (0.0030) (0.0029) (0.0030) 

L15 0.0090*** 0.0088*** 0.0086** 0.0086** 0.0090*** 0.0096** 

 (0.0031) (0.0028) (0.0034) (0.0034) (0.0042) (0.0045) 

L20 0.0050 0.0258 0.0031 0.0031 0.0050 -0.0039 

 (0.0159) (0.2116) (0.0179) (0.0179) (0.0051) (0.0106) 

L25 -0.0062 -0.0078 -0.0059 -0.0059 -0.0062 -0.0095 

 (0.0043) (0.0073) (0.0050) (0.0050) (0.0037) (0.0130) 

Country FE Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

5 controls Yes No Yes Yes Yes Yes 

2 events Yes No No Yes Yes Yes 

Time trends Yes No No No Yes Yes 

Clustered standard error No No No No Yes No 

Additional policy fine lag No No No No No Yes 

Notes: Column 1 repeats the 2SLS estimates of Figure 5. The remaining columns test the robustness to the control variables (columns 2, 3, and 4), clustered standard errors 

(column 5), and an additional lag year of the policy fine rate (column 6). Robust standard errors are reported in parentheses. For simplicity, the table only reports the estimates 

in five-year intervals, and the full results are reported in Table C5. Significance levels are *** p<0.01, ** p<0.05, * p<0.1. 
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5. Concluding Remarks 

This article has revisited the causal effect of fertility on long-run economic growth. 

Existing empirical studies on this topic generally find mixed results. This article 

highlights that failing to capture the long-term lagged effects of fertility is a crucial 

reason for the mixed findings found in the literature. When adopting estimation 

methods that can capture the long-term lagged effects of fertility, both the OLS and 

2SLS estimates indicate a significantly positive long-term average effect of fertility on 

income growth. This result can be found separately for low-, middle-, and high-income 

countries, and when using province-level data from China. 

This finding has important implications for economists and policy makers. Although 

the R&D-based growth models unambiguously predict the scale effect that faster 

population growth raises long-run economic growth, existing empirical studies find 

little evidence supporting this prediction. In contrast, development economists usually 

hypothesize a virtuous cycle between fertility decline and income growth based on the 

assumption that lower fertility promotes income growth (and the fact that higher income 

reduces fertility). This article provides strong evidence supporting the scale effect 

prediction of R&D-based growth theories, thus questioning the existence of the virtuous 

cycle between fertility decline and income growth. Although fertility has dramatically 

declined in almost all countries over the past few decades, many developing countries 

still adopt family planning programs to curb their population growth, partly motivated 

by the conventional view that fast population growth hinders long-run economic growth. 

However, the findings of this article suggest that fertility declines caused by family 

planning programs could significantly reduce these countries’ long-run economic 

growth. 
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Online Appendix 

A. Data Appendix 

Table A1 presents the data sources and summary statistics of all the variables used 

in the country-level analyses. Table A2 lists the 138 sample countries. Table A3 presents 

the data sources and summary statistics of all the variables used in the China province-

level analyses. The growth rate of GDP per capita and fertility rates are calculated as 

five-year moving averages to reduce the confounding effects of short-term fluctuations; 

similar results are obtained if the moving averages are not taken into consideration. 

Table A1. Sources and Summary Statistics of Country-level Data  

Variable Name Definition Source Mean 

Growth rate of GDP per capita  Annual growth rate of real GDP per capita in 

2011 USD 

A 0.019 

Total fertility rate  The average number of children a woman 

would have over childbearing years 

B, E 4.1 

Five-year lagged GDP per capita  Five-year lagged GDP per capita in natural 

log, 2011 USD 

A 8.5 

Infant mortality rate  The number of deaths per 1,000 live births  B 58.5 

Life expectancy Life expectancy at birth, year B 62.6 

Years of schooling Years of total schooling for individuals aged 

25 or over 

C 5.1 

Income ratio to US GDP per capita as ratio of US GDP per 

capita 

A 0.3 

The share of urban population  Urban population as a percentage of total 

population, % 

B 47.7 

Migration Net international out-migration, 1,000 B 801 

Resource rents The share of natural resource rents in 

GDP, % 

B 6.6 

Landlocked The dummy of landlocked F 0.2 

Official language  The first official language F -- 
Political stability Average of the political stability index B -0.2 

Program staring year  Starting year of national family planning 

program 

D 1966 

Predicted mortality The 1940 predicted mortality rate, 100 
individuals per year 

G 0.46 

Note: 1. Data sources:  

A: The Maddison Project Database 2018 

B: World Development Indicators, the World Bank 

C: Barro and Lee (2013) 

D: De Silva and Tenreyro (2017) 

E: Roser (2014), for data before 1960 

F: Mayer and Zignago (2011) 

G: Acemoglu and Johnson (2007) 

2. All variables are at the country level. All data are for the 138 sample countries in the period of 1960–
2016. 
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Table A2. Sample Countries 

Afghanistan Dominican Republic Lebanon Puerto Rico 

Albania Ecuador Lesotho Romania 

Argentina Egypt, Arab Rep. Liberia Russian Federation 

Australia El Salvador Libya Rwanda 

Austria Equatorial Guinea Macedonia Sao Tome and Principe 

Bangladesh Ethiopia Madagascar Saudi Arabia 

Barbados Finland Malawi Senegal 
Belgium France Malaysia Sierra Leone 

Benin Gabon Mali Singapore 

Bolivia Gambia Malta Slovenia 

Bosnia  Germany Mauritania South Africa 

Botswana Ghana Mauritius Spain 

Brazil Greece Mexico Sri Lanka 

Bulgaria Guatemala Mongolia St. Lucia 

Burkina Faso Guinea Montenegro Sudan 

Burundi Guinea-Bissau Morocco Swaziland 

Cabo Verde Haiti Mozambique Sweden 

Cambodia Honduras Myanmar Switzerland 

Cameroon Hong Kong SAR, China Namibia Syrian Arab Republic 

Canada Hungary Nepal Tanzania 

Central African  Iceland Netherlands Thailand 

Chad India New Zealand Togo 

Chile Indonesia Nicaragua Trinidad and Tobago 

China Iran Niger Tunisia 

Colombia Iraq Nigeria Turkey 

Comoros Ireland Norway Uganda 

Congo, Dem. Rep. Israel Oman United Kingdom 

Congo, Rep. Italy Pakistan United States 

Costa Rica Jamaica Panama Uruguay 

Cote d’Ivoire Japan Paraguay Venezuela, RB 

Croatia Jordan Peru Vietnam 

Cuba Kenya Philippines Yemen, Rep. 
Cyprus Korea, Dem. Rep. Poland Zambia 

Denmark Korea, Rep. Portugal Zimbabwe 

Djibouti Lao    
Note: This table lists the 138 sample countries (or regions) for which the data on the growth rate of GDP per 

capita and TFR are available for each year from 1960 to 2016. 
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Table A3. Sources and Summary Statistics of the China Provincial Data 

Variable Name Definition Source Mean 

Growth rate of GDP per capita Annual growth rate of real GDP per capita A, B 0.078 

Crude birth rate The annual number of births per thousand 

population 

A, B 17.9 

Five-year lagged GDP per capita Five-year lagged real GDP per capita in 

natural log, 2010 CNY 

A, B 8.36 

Share of labor with secondary 

education 

Percentage of labor with middle and high 

school education (grades 7–12)  

C 0.45 

Share of the population in urban 

areas 

Percentage of the population living in 

urban areas 

A, B 0.30 

Crude death rate The annual number of deaths per thousand 

population 

A, B 6.41 

Out-migration rate Out-migration as a percentage of the total 

population, % 

A, B 0.34 

Distance to port The distance from each province’s centroid 

to the nearest port, 100 km 

D 5.15 

Share of services in GDP The contribution of services to GDP A, B 0.29 

Policy fine rate  The average monetary penalty rate for one 

unauthorized birth, in years of local 

household income 

E 1.74 

Minority population share Percentage of minorities in the population F, G 0.10 

Note: 1. Data sources:  

A: China Compendium of Statistics 1949–2008 

B: National Bureau of Statistics of China 

C: China Population (and Employment) Statistics Yearbook (various years) 

D: China province Shapefile 

E: The dataset of Ebenstein (2010) 

F: National Population Census of the PRC (decennial census) 

G: The 1% Population Sample Survey (during the inter-censual years ending with 5) 

2. All variables are at the province level. All data are from 1980 to 2010 if not specified in the definition. The 

data for education (before 1989), migration (after 2007), and minority population share are only available at five-

year intervals, and continuous yearly data were obtained by linear interpolation.  
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B. Global Evidence Appendix 

B1. Fertility Variation in the Fixed Effects Panel Model 

Because fixed effects eliminate all cross-sectional long-term fertility differences, the 

identification of the fertility coefficient in a fixed-effects panel model depends mainly 

on interannual fertility changes. Considering that fertility declines continuously over 

time, most of the fertility changes used in the identification are short-term fertility 

changes. To see this, assume that we regress the income growth rate on the fertility rate 

in a fixed effects panel model by using a panel of data covering five decades. As an 

illustration, the following matrix presents the contemporaneous and lagged fertility 

changes used in the estimation: 

 

1 1 1 1 1

0 1 2 3 4

2 2 2 2

0 1 2 3

3 3 3

0 1 2

4 4

0 1

5

0

v v v v v

v v v v

V v v v

v v

v

 
 
 
 =
 
 
 
 

 , 

where j

i
v  denotes the fertility change that occurred in decade j  and affected income 

growth i  decades later. For example, 2

0v  denotes the fertility change that occurred in 

the second decade and affected the income growth in the same decade, and 1

2v  denotes 

the fertility change that occurred in the first decade and affected the income growth two 

decades later. By assuming that fertility declines evenly over time, it can be calculated 

that only 40% of the fertility changes used in the identification occurred two decades 

ago, that is, ( )1 2 3 1 2 1

2 2 2 3 3 4 6 /15 40%
j

iv v v v v v v+ + + + + = = . Because it takes about two 

decades for a newborn to grow up to be an adult, it is appropriate to define “long-term” 

in this study as longer than two decades. Therefore, even for a panel of data covering 

five decades, a large share (60%) of the fertility variation used in the identification 

reflects “short-term” fertility changes. Note that if the time span of the panel data is 

shorter than 20 years, no long-term effects of fertility can be captured in the fixed-

effects panel model. 

Two ways of capturing the long-term lagged effects of fertility in a fixed effects 

panel model have emerged from this illustration. The first is to use lagged fertility as 

the explanatory variable, which is the primary estimation strategy used in this article. 
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For example, when fertility is lagged by two decades, the matrix V  turns out to be: 

 

1 1 1

2 3 4

2 2

2 3

3
2 2

0 0

0 0

0 0

0 0

0

L

v v v

v v

V v

 
 
 
 =
 
 
 
 

 , 

which shows that all of the remaining fertility changes occurred two decades ago. 

Intuitively, by estimating the effects of the fertility rate lagged by different years, we 

can reveal both the short-term and long-term effects of fertility. 

The second way to identify the long-term effect of fertility in a fixed-effects panel 

model is to employ one-off fertility shocks occurring in the early stages of the sample 

period. For example, if there is only a one-off fertility shock that occurred in the first 

decade, matrix V  would become: 

 

1 1 1 1 1

0 1 2 3 4

0 0 0 0

0 0 0

0 0

0

shock

v v v v v

V

 
 
 
 =
 
 
 
 

 . 

In this case, the fixed effects panel model captures the lagged effects of the fertility 

shock over the four decades following the shock. This identification strategy follows 

the same logic as the standard DID model, which is usually used to identify the long-

term effect of a one-off treatment. In practice, one-off fertility shocks can be introduced 

to the model by IVs constructed from exogenous events. However, to the extent that the 

event employed has lagged effects on fertility, this approach tends to capture more of 

the short-term effect. 
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B2. Full Results of Column 1 in Table 2  

Table B1 presents the full estimates of the fertility coefficients from model (14), 

with a maximum lag length of 50 years.  

Table B1. Full Results of Column 1 in Table 2 

Lags Coef. Se Lags Se Lags Se Coef. Se 

L0 -0.0056 0.0010 L17 0.0020 0.0016 L34 -0.0009 0.0023 

L1 -0.0061 0.0010 L18 0.0030 0.0016 L35 -0.0018 0.0025 

L2 -0.0064 0.0011 L19 0.0044 0.0017 L36 -0.0021 0.0026 

L3 -0.0064 0.0011 L20 0.0057 0.0017 L37 -0.0025 0.0026 

L4 -0.0063 0.0011 L21 0.0067 0.0017 L38 -0.0021 0.0024 

L5 -0.0059 0.0011 L22 0.0078 0.0017 L39 -0.0007 0.0024 

L6 -0.0054 0.0012 L23 0.0089 0.0018 L40 -0.0007 0.0026 

L7 -0.0049 0.0012 L24 0.0095 0.0019 L41 -0.0009 0.0031 

L8 -0.0045 0.0012 L25 0.0101 0.0021 L42 -0.0008 0.0037 

L9 -0.0040 0.0013 L26 0.0109 0.0023 L43 -0.0025 0.0042 

L10 -0.0036 0.0013 L27 0.0110 0.0026 L44 -0.0056 0.0043 

L11 -0.0032 0.0014 L28 0.0104 0.0027 L45 -0.0062 0.0047 

L12 -0.0026 0.0014 L29 0.0096 0.0028 L46 -0.0057 0.0049 

L13 -0.0018 0.0014 L30 0.0079 0.0027 L47 -0.0069 0.0056 

L14 -0.0010 0.0015 L31 0.0056 0.0024 L48 -0.0046 0.0066 

L15 -0.0001 0.0015 L32 0.0032 0.0022 L49 0.0040 0.0094 

L16 0.0009 0.0015 L33 0.0010 0.0021 L50 0.0286 0.0164 
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B3 Additional Robustness Checks 

This appendix presents three additional robustness checks for the baseline estimates 

in Figure 2. First, as presented in Figure B1, I use an alternative fertility measure—

CBR—to replace TFR and find estimates very similar to the baseline estimates 

(although in different units). The main analysis does not measure fertility by CBR 

because it is sensitive to the age distribution of the population (see Footnote 24). Figure 

B2 excludes sample countries with a 1960 population smaller than 2 million (40 

countries), and Figure B3 excludes sample countries with a 1960 population larger than 

50 million (12 countries). The resulting estimates are quite similar to the baseline 

estimates, suggesting that the findings are not sensitive to relatively small or large 

countries. Figure B4 excludes sample countries from America, Asia, Europe, and Sub-

Saharan Africa, respectively, showing that the baseline estimates are not mainly driven 

by countries from a specific region. 

 

Figure B1. Measuring Fertility by Crude Birth Rate 

Note: This figure replicates Figure 2. The only difference is that this figure measures fertility by the crude birth rate 
instead of by TFR. 

 

 

Figure B2. Excluding Small Countries 
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Note: This figure replicates Figure 2. The only difference is that countries with a 1960 population smaller than 2 
million were excluded. 

 

 

Figure B3. Excluding Large Countries 

Note: This figure replicates Figure 2. The only difference is that countries with a 1960 population larger than 50 
million were excluded. 

 

 

Figure B4. Excluding Countries from each Region 

Note: This figure replicates Figure 2. The only difference is that countries from America, Asia, Europe, and Sub-
Saharan Africa, respectively, were excluded. 

  



44 

 

B4 The Exclusion Restriction 

Table B2 provides evidence to support the exogeneity of predicted mortality and 

predicted fertility. Column 1 regresses TFR on current predicted mortality, lag predicted 

mortality, and lead predicted mortality. Note that because the data used in the estimation 

are in 10-year intervals, one lag (lead) corresponds to 10 years. It finds that the lead 

predicted mortality has no effect on TFR, confirming that disease interventions—

instead of preexisting trends—affect TFR. In addition, lag predicted mortality has a 

significant effect on TFR, reflecting the fact that it takes time for fertility to respond to 

disease interventions. Similarly, column 2 finds that lead predicted fertility has no effect 

on TFR, while lag predicted fertility has a significant effect. Columns 3 and 4 regress 

the changes in predicted mortality from 1940 to 2010 on changes in log GDP per capita 

and TFR from 1930 to 1940, respectively. These regressions indicate no effect of 

preintervention changes in income and TFR on post-intervention changes in predicted 

mortality, confirming the exogeneity of the predicted mortality instrument. Similarly, 

columns 5 and 6 find no effect of preintervention income and TFR on the predicted 

fertility instrument. 

Table B2. Exogeneity of Predicted Mortality and Predicted Fertility 

 (1) (2) (3) (4) (5) (6) 

 

TFR TFR 

Changes in 
predicted 
mortality 

(1940–2010) 

Changes in 
predicted 
mortality 

(1940–2010) 

Changes in 
predicted 
fertility 

(1940–2010) 

Changes in 
predicted 
fertility 

(1940–2010) 
Predicted 

mortality 

0.27      

(0.19)      

Lag predicted 

mortality 

0.70***      

(0.15)      

Lead predicted 

mortality 

0.14      

(0.15)      

Predicted fertility  0.32     

 (0.47)     

Lag predicted 

fertility 

 1.37***     

 (0.36)     

Lead predicted 

fertility 

 -0.59     

 (0.38)     

Changes in log 

GDP per capita 

(1930–1940) 

  0.03  -0.56  

  (0.32) 
 

(0.59) 
 

Changes in TFR 

(1930–1940) 

   0.19  0.38 

   (0.14)  (0.27) 

Country FE Yes Yes     

Year FE Yes Yes     
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Observations 340 340 34 34 34 34 

Notes: Column 1 regresses TFR on current predicted mortality, lag predicted mortality, and lead predicted mortality. 

Column 2 regresses TFR on current predicted fertility, lag predicted fertility, and lead predicted fertility. Columns 3 

and 4 regress post-intervention changes in predicted mortality (1940–2010) on preintervention changes in log GDP 
per capita and TFR (1930–1940), respectively. Columns 5 and 6 regress post-intervention changes in predicted 
fertility (1940–2010) on preintervention changes in log GDP per capita and TFR (1930–1940), respectively. Robust 

standard errors are reported in parentheses. Significance levels are *** p<0.01, ** p<0.05, * p<0.1. 

 

Table B3 presents evidence supporting the exogeneity of the starting year of national 

family planning programs. Column 1 regresses TFR on the starting year dummy, and 

1-, 5-, and 10-year leads of the starting year dummy. It finds that the leads have no 

significant effect on fertility, confirming that it is the family planning programs instead 

of pre-existing trends that affect TFR. Columns 2–4 regress the starting year on the 

average growth rate of GDP per capita 3, 5, and 10 years prior to the starting year, 

respectively. The regressions show that the growth rates prior to the starting year have 

no significant effect on the starting year, which eases the concern that the starting year 

could be determined by the economic performance of the country examined. 

Table B3. Exogeneity of the Starting Year of Family Planning Programs 

 (1) (2) (3) (4) 

 TFR Starting year Starting year Starting year 

Starting year  -0.17***    

(0.08)    

1-year lead starting year 0.02    

(0.10)    

5-year lead starting year -0.10    

(0.07)    

10-year lead starting year 0.03    

(0.10)    

Average growth rate 3 years 

prior to the starting year 

 -6.94   

 (34.4)   

Average growth rate 5 years 

prior to the starting year 

  0.59  

  (33.7)  

Average growth rate 10 years 

prior to the starting year 

   -12.3 

   (36.4) 

Country FE Yes    

Year FE Yes    

Observations 1373 31 31 31 

Notes: Column 1 regresses TFR on the 1-, 5-, and 10-year leads of the family planning program starting year dummy. 

Columns 2–4 regress the starting year on the average growth rate of GDP per capita 3, 5, and 10 years prior to the 

starting year, respectively. Robust standard errors are reported in parentheses. Significance levels are *** p<0.01, 

** p<0.05, * p<0.1. 
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C. China Evidence Appendix 

C1. Spatial and Temporal Variations in the Policy Fine Rate 

Figure C1 presents the monetary penalty rate for one unauthorized birth in each 

province for the period 1979–2000. The fine rate is measured in years of local 

household income. The data are derived from Ebenstein (2010).  

 

Figure C1. One-Child Policy Violation Fine Rates, 1979–2000 

Data sources: Ebenstein (2010) 
Notes: This figure plots the monetary penalty rate (in years of local household income) for one unauthorized birth 
from 1979 to 2000 in each province. 
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C2. First-Stage Estimates of the 2SLS Estimation 

Table C1 reports the first-stage estimates of the 2SLS estimation of model (19). 

Column 1 regresses the CBR on the policy fine rate in a panel model that includes 

province and year fixed effects. The estimates suggest that a one-unit increase in the 

policy fine rate reduces CBR by 0.42, and this effect is statistically significant at the 1% 

level. This finding is consistent with previous studies showing that the OCP 

significantly reduced fertility in China.28 The remaining columns provide robustness 

tests. Column 2 includes five time-varying control variables (five-year lagged GDP per 

capita, share of labor with secondary education, share of urban population, crude death 

rate, and out-migration rate); column 3 controls for the three indicators of two 

concurrent events (as detailed in the main text) and province-specific linear time trends; 

and column 4 clusters the error term at the province level using a bootstrap procedure. 

Estimates from these robustness checks are very similar to those in column 1, 

suggesting that the policy fine rate has a robust effect on CBR.  

Table C1. First-Stage Regression Results 

  Dependent variable: The crude birth rate 

 (1) (2) (3) (4)  

Policy fine rate  

(years of household income) 
-0.42*** -0.43*** -0.44*** -0.44***  

(0.11) (0.11) (0.11) (0.11)  

Time-varying control variables  Yes Yes Yes  

Indicators of concurrent events   Yes Yes  

Province time trends   Yes Yes  

Clustered stander error    Yes  

Province FE Yes Yes Yes Yes  

Year FE Yes Yes Yes Yes  

Observations 781 781 781 781  

R-squared 0.870 0.886 0.887 0.887  

Notes: The standard errors (in parentheses) account for arbitrary heteroskedasticity. Significance levels are *** 

p<0.01, ** p<0.05, * p<0.1. 

 

 

 

  

 

28 For example, Goodkind (2017) found that China’s low fertility was achieved two or three decades 
earlier than would be expected given its level of development. McElroy and Yang (2000) estimated that 
a complete removal of monetary penalties for violating the OCP would have increased fertility in rural 
China by 0.33 cumulative births per woman by 1992. Bingjing Li and Hongliang Zhang (2017) estimated 
that a one-percentage-point increase in the enforcement intensity of the OCP reduced family size from 
1981–1999 by approximately 0.05. 
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C3. Exogeneity of the Policy Fine Rate 

A critical assumption of using the policy fine rate as the IV for fertility is that it is 

exogenous to income growth. This appendix presents three pieces of evidence 

supporting this assumption. 

C3.1 The predictive power of preexisting income levels and growth rates 

A major endogeneity concern is that the policy fine rate could be determined by 

income levels or growth rates. To ease this concern, Table C2 regresses the policy fine 

rates in the next one, three, and five years on the current growth rate (or level) of GDP 

per capita in columns 1a, 2a, and 3a (columns 1b, 2b, and 3b), respectively. All 

estimates are small and have a p-value larger than 0.1, suggesting that the policy fine 

rate is not determined by prior income growth rates or levels. Although it is infeasible 

to directly examine whether the policy fine rate is determined by expectations of future 

income, it seems reasonable to believe that if the policy fine rates were not set based on 

the readily available information of past income, they were even less likely to be set 

based on the uncertain predictions of future income. 

Table C2. Predictive Power of Prior Incomes on the Policy Fine Rates 

 Dependent variable: One-child policy fine rate 

 
1 year later  3 years later  5 years later 

(1a) (1b)  (2a) (2b)  (3a) (3b) 

Growth rate of GDP 

per capita (%) 

-0.002   0.015   0.025  

(0.029)   (0.026)   (0.026)  

Log GDP per capita  0.278   0.193   -0.034 

 (0.707)   (0.817)   (0.831) 

Province FE Yes Yes  Yes Yes  Yes Yes 

Year FE Yes Yes  Yes Yes  Yes Yes 

Year trends Yes Yes  Yes Yes  Yes Yes 

R-squared 0.69 0.69  0.70 0.70  0.73 0.73 
Notes: This table regresses the policy fine rates in the next one, three, and five years on the current growth rate (or 

level) of GDP per capita in columns 1a, 2a, and 3a (columns 1b, 2b, and 3b), respectively. All regressions include the 

province and year fixed effects, as well as the province-specific linear year trends. The standard errors (in parentheses) 

are clustered at the province level. Significance levels are *** p<0.01, ** p<0.05, * p<0.1. 

C3.2 Correlations with time-varying income determinants 

Another endogeneity concern is that the policy fine rate may be correlated with 

omitted determinants of income growth. This concern has been substantially reduced 

by the province and year fixed effects and the time-varying control variables included. 

Therefore, the remaining concern pertains only to the omitted province-specific, time-
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varying factors. Although it is impossible to examine the correlation with unobservable 

factors, this concern can be eased if the policy fine rate is not correlated with even the 

most important observable factors.  

Table C3. P-values for the Correlations of the Policy Fine Rates with the Nine 

Growth Determinants 

 
Dependent variable: One-child policy fine rate 

 

(1) 
1 year later 

(2) 
3 years later 

(3) 
5 years later 

(4) 
First difference 

Share of labor with secondary education 0.19 0.12 0.31 0.19 

Share of urban population 0.36 0.49 0.76 0.36 

Crude death rate 0.13 0.20 0.10 0.13 

Out-migration rate 0.16 0.18 0.35 0.16 

Trade share in GDP 0.24 0.20 0.18 0.24 

Government spending share 0.41 0.41 0.26 0.41 

Notes: Columns 1, 2, and 3 regress the policy fine rates in the next one, three, and five years, respectively, on the 

current value of each of the six growth determinants. Column 4 regresses the changes in the policy fine rate on the 

changes in each of the growth determinants. All regressions include the province and year fixed effects and the 

province-specific linear trends. All values reported are p-values. The standard errors used for calculating the p-

values are clustered at the province level. 

Table C3 examines the correlations between the policy fine rate and a set of time-

varying growth determinants. Specifically, I regress the policy fine rates in the next one, 

three, and five years, respectively, on each of the six determinants in a panel model with 

province and year fixed effects (columns 1, 2, and 3 of Table C3). I also examine 

whether changes in these determinants are correlated with changes in the policy fine 

rate in a similar model setting (column 4). None of the p-values associated with the 

coefficients of these variables are smaller than 0.1, suggesting no significant correlation 

with the policy fine rate. I have also examined the joint significance of all or subsets of 

these variables and still find no significant association. 

C3.3 Effects of the lead of the policy fine rate 

To the extent that the policy fine rate captures the impact of the OCP’s strictness on 

fertility rather than differential trends across provinces (which could be caused by 

omitted variables), the future policy fine rate should not predict current fertility and 

income growth. Table C4 examines the effects of the five-year lead policy fine rate on 

income growth and fertility by including it as a control variable in the first- and second-

stage regressions of the 2SLS estimation. To facilitate this comparison, column 1 of 

Table C4 lists the baseline 2SLS estimates presented in Figure 5. For brevity, the table 
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only reports the estimates from regressions in which the CBR is lagged by 5 or 10 years; 

the findings are similar for other lags. 

Panel A presents the effect of the five-year lead policy fine rate on the income growth 

rate. The estimated coefficient for the five-year lead policy fine rate is extremely small 

and statistically insignificant. In addition, including the five-year lead policy fine rate 

as a control variable has no effect on the estimated effect of the CBR. Panel B presents 

the effect of the five-year lead policy fine rate on fertility. Similarly, the five-year lead 

policy fine rate has no significant effect on fertility. Therefore, the evidence does not 

support the concern that the policy fine rate captures the impact of differential trends 

across provinces. 

Table C4. Effects of the Lead of the Policy Fine Rate on Income Growth and Fertility  

 
Baseline  Controlling for the 5-year lead fine rate 

(1a) (1b)  (2a) (2b) 

 
Panel A: The second-stage estimates (Dependent variable: the growth 

rate of GDP per capita) 

5-year lagged CBR 0.001   0.001  

(0.001)   (0.001)  

10-year lagged CBR  0.01***   0.01*** 

 (0.003)   (0.004) 

5-year lead policy fine rate    -0.001 0.001 

   (0.001) (0.003) 

 Panel B: The first-stage estimates (Dependent variable: 5-year and 10-

year lagged CBR in columns a and b, respectively) 

5-year lagged policy fine 

rate 

-0.50***   -0.55***  

(0.11)   (0.12)  

10-year lagged policy fine 

rate 

 -0.56***   -0.55*** 

 (0.13)   (0.15) 

5-year lead policy fine rate    -0.22 -0.46 

   (0.19) (0.33) 

Province FE Yes Yes  Yes Yes 

Year FE Yes Yes  Yes Yes 

R-squared 0.86 0.82  0.81 0.85 

Notes: This table examines the effects of the five-year lead policy fine rate on income growth and fertility by including 

it as a control variable in the 2SLS estimation of model (19). Panel B presents the first-stage estimates, and Panel A 

presents the second-stage estimates. The standard errors (in parentheses) are clustered at the province level. 

Significance levels are *** p<0.01, ** p<0.05, * p<0.1. 
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C4. Full Results of Table 4 

Table C5. Various Robustness Checks of the 2SLS Estimates (Full results of Table 4) 

Lags  
(1a) 

Coefficient 

(1b) 

Se 

(2a) 

Coefficient 

(2b) 

Se 

(3a) 

Coefficient 

(3b) 

Se 

(4a) 

Coefficient 

(4b) 

Se 

(5a) 

Coefficient 

(5b) 

Se 

(6a) 

Coefficient 

(6b) 

Se 

0 0.0001 0.0020 0.0023 0.0024 0.0051 0.0038 0.0005 0.0020 0.0001 0.0021 0.0017 0.0021 

1 0.0019 0.0021 0.0038 0.0027 0.0084 0.0046 0.0024 0.0023 0.0019 0.0021 0.0031 0.0023 

2 0.0031 0.0022 0.0049 0.0028 0.0109 0.0051 0.0037 0.0024 0.0031 0.0022 0.0031 0.0022 

3 0.0031 0.0021 0.0054 0.0028 0.0106 0.0046 0.0038 0.0022 0.0031 0.0021 0.0022 0.0021 

4 0.0017 0.0020 0.0049 0.0027 0.0084 0.0039 0.0025 0.0022 0.0017 0.0020 0.0007 0.0021 

5 0.0002 0.0020 0.0041 0.0026 0.0057 0.0034 0.0009 0.0021 0.0002 0.0021 0.0001 0.0021 

6 0.0003 0.0020 0.0043 0.0026 0.0046 0.0033 0.0009 0.0021 0.0003 0.0020 0.0014 0.0021 

7 0.0019 0.0020 0.0051 0.0027 0.0050 0.0034 0.0026 0.0022 0.0019 0.0020 0.0042 0.0024 

8 0.0045 0.0023 0.0066 0.0028 0.0070 0.0036 0.0051 0.0025 0.0045 0.0023 0.0073 0.0028 

9 0.0077 0.0025 0.0085 0.0029 0.0096 0.0039 0.0081 0.0028 0.0077 0.0025 0.0099 0.0030 

10 0.0102 0.0027 0.0100 0.0029 0.0116 0.0039 0.0104 0.0030 0.0102 0.0029 0.0105 0.0030 

11 0.0105 0.0026 0.0098 0.0026 0.0107 0.0033 0.0104 0.0028 0.0105 0.0026 0.0102 0.0028 

12 0.0100 0.0025 0.0097 0.0024 0.0101 0.0030 0.0099 0.0027 0.0100 0.0025 0.0098 0.0027 

13 0.0101 0.0026 0.0099 0.0025 0.0101 0.0030 0.0099 0.0028 0.0101 0.0026 0.0089 0.0030 

14 0.0090 0.0027 0.0090 0.0026 0.0087 0.0030 0.0087 0.0029 0.0090 0.0027 0.0084 0.0036 

15 0.0090 0.0031 0.0088 0.0029 0.0087 0.0035 0.0087 0.0034 0.0090 0.0042 0.0096 0.0045 

16 0.0102 0.0037 0.0093 0.0034 0.0097 0.0042 0.0097 0.0042 0.0102 0.0037 0.0131 0.0069 

17 0.0132 0.0051 0.0107 0.0044 0.0130 0.0059 0.0130 0.0059 0.0132 0.0051 0.0112 0.0088 

18 0.0137 0.0073 0.0088 0.0058 0.0132 0.0083 0.0132 0.0083 0.0137 0.0073 0.0136 0.0333 

19 0.0133 0.0129 0.0061 0.0123 0.0113 0.0150 0.0113 0.0150 0.0133 0.0129 -0.0176 0.0964 

20 0.0050 0.0159 0.0258 0.2116 0.0031 0.0180 0.0031 0.0180 0.0050 0.0051 -0.0039 0.0106 

21 -0.0062 0.0127 -0.0020 0.0290 0.0003 0.0089 0.0003 0.0089 -0.0062 0.0127 -0.0154 0.0204 

22 -0.0100 0.0077 -0.0061 0.0111 -0.0040 0.0060 -0.0040 0.0060 -0.0100 0.0077 -0.0185 0.0227 

23 -0.0093 0.0054 -0.0058 0.0072 -0.0045 0.0050 -0.0045 0.0050 -0.0093 0.0054 -0.0141 0.0152 

24 -0.0057 0.0035 -0.0040 0.0051 -0.0037 0.0037 -0.0037 0.0037 -0.0057 0.0035 -0.0100 0.0088 

25 -0.0062 0.0044 -0.0079 0.0073 -0.0060 0.0050 -0.0060 0.0050 -0.0062 0.0037 -0.0096 0.0130 

26 -0.0029 0.0023 -0.0054 0.0057 -0.0028 0.0026 -0.0028 0.0026 -0.0029 0.0023 -0.0058 0.0058 

27 -0.0018 0.0009 -0.0035 0.0020 -0.0018 0.0010 -0.0018 0.0010 -0.0018 0.0009 0.0008 0.0024 

28 -0.0001 0.0009 0.0000 0.0013 -0.0002 0.0009 -0.0002 0.0009 -0.0001 0.0009 -0.0073 0.0051 

Notes: This table presents the full results of Table 4. Columns 1 repeats the 2SLS estimation of Figure 5, column 2 excludes all control variables, column 3 includes the five controls, column 

4 includes the indicators of the two events, column 5 clusters the standard error at province level, and column 6 uses the policy fine rate lagged by an additional year. 
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D. Evidence from Local Policy Violations 

An alternative intensity measure of the OCP is the extent of local OCP violation. 

Based on microdata from the 1982 Chinese Population Census, Bingjing Li and 

Hongliang Zhang (2017) constructed the excess fertility rate (EFR) as a measure of 

local violations of the OCP. The EFR was constructed as the percentage of Han Chinese 

mothers aged 15–49 years who gave a higher order birth in 1981. They found 

substantial regional differences in the EFR and used it as an exogenous source of 

variation in fertility to examine the causal effects of child quantity on child quality. 

Using a similarly constructed EFR, Junsen Zhang (2017) examined the effect of the 

OCP on marital status, labor supply, and migration. Since only two waves of the 

population censuses (in 1982 and 1990) contained sufficient information to construct a 

provincial EFR, the EFR cannot be used as an IV to identify the dynamic causal 

effects.29 Instead, this appendix uses the EFR as an intensity measure in a DID model 

to estimate the long-term average causal effect of a decline in fertility. 

D1. The Excess Fertility Rate 

Regional differences in such factors as implementation methods and work styles 

could lead to differential local violation of the OCP. This appendix follows Bingjing Li 

and Hongliang Zhang (2017) to construct the EFR as a measure of local violation of 

the OCP, using the microdata from the 1982 and 1990 Chinse Population Censuses, 

which contained information for 1981 and 1989, respectively. The EFR is constructed 

as follows: 
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j j
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= 

 −  =



 
 ,  (20) 

where 
pjt

Birth  is an indicator of whether woman j  in province p  gave a birth in year 

t   (either 1981 or 1989), and 
pjt

NSC   denotes her number of surviving children for 

woman j  by the end of year t . I calculate the ,p t
EFR  for all Han Chinese women aged 

15–49 from non-agricultural households. Thus, the .p t
EFR  measures the percentage of 

non-agricultural Han mothers (i.e., those with at least one surviving child) aged 15–49 

 

29 There were three Censuses during the sample period, but the publicly available microdata from the 

2000 census do not contain sufficient geographic information to construct the provincial EFR. 
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who gave a higher order birth in year t .30 This construction is slightly different from 

that of Bingjing Li and Hongliang Zhang (2017); their construction focused on all Han 

Chinese mothers (from both agricultural and non-agricultural households) aged 25–44 

(instead of 15–49). Focusing on non-agricultural Chinese mothers helped to avoid a 

potential bias due to pre-existing correlations between income growth and the share of 

rural residents (couples with an agricultural hukou were allowed to have a second child 

if the first was a girl, see Footnote 22). A robustness check (row 3 of Table D3) shows 

that using the EFR constructed for both agricultural and non-agricultural mothers leads 

to a comparable result. 

Figure D1. Correlation between the CBR and the EFR Calculated based on the 

Population Censuses 1982 and 1990 

Notes: The correlations are plotted for the 27 sample provinces in China. The EFR in Panel A (Panel B) is calculated 
for all Han Chinese mothers using 1982 (1990) Census data, while the EFR in Panel C (Panel D) is calculated for 
non-agricultural Han Chinese mothers using 1982 (1990) Census data. 

The EFR would be 0 if the OCP was strictly enforced with no violations, and a larger 

EFR value corresponds to more relaxed enforcement. As presented in Figure D1, the 

EFR indicates that the OCP was not perfectly enforced. For example, the 1981 EFR for 

 

30 I used the number of surviving children in mid-1982 to proxy for that in end-1981, which was not 

available from the census. 

A. 1982 census, all mothers  B. 1990 census, all mothers  

C. 1982 census, non-agricultural mothers D. 1990 census, non-agricultural mothers 

t-value = 18.7  
p-value = 0.00 

t-value = 16.0  
p-value = 0.00 

 

t-value = 8.81  
p-value = 0.00 

t-value = 8.08  
p-value = 0.00 



54 

 

non-agricultural Han Chinese women ranged from 0.92–7.89 across provinces, with a 

mean of 4.24 and a standard deviation of 1.60. Figure D1 also shows that the EFR is 

positively and significantly correlated with the crude birth rate. 

D2. The DID Estimates 

This subsection employs variations from both the timing of the OCP and the local 

violation thereof in a reduced-form model to examine the long-term average effect of 

fertility change on income growth. The estimation strategy is to compare the relative 

changes in economic growth between provinces with high violation and low violation 

of the OCP in the post-OCP period to that in the pre-OCP period. The estimation 

equation is written as follows: 

 
1 ,1981pt p t p t pt pt

y EFR post Z    = + +  + +  , (21) 

where 
,1981p

EFR  is the excess fertility rate of province p  in 1981, 
t

post  is an indicator 

variable that equals one for the periods after and including 1980, and 
pt

  is the error 

term. Other variables are defined the same as in the main text. Coefficient 1  captures 

the additional income growth experienced after the OCP by provinces with higher OCP 

violation rates. Since the OCP caused a long-run fertility difference between provinces 

with different EFRs, coefficient 1  reflects the long-term average effect of a change in 

fertlity on income growth. 

This estimation strategy can most clearly be illustrated by the simplified DID 

estimates presented in Panel A of Table D1. The table disaggregates the sample 

provinces into two groups that approximately equal in size—the “high-violation” group 

and the “low-violation” group—according to the 1981 EFR. It then compares the 

average growth rates of GDP per capita during 1960–1979 to that during 1980–2010 

across the two groups of provinces. The DID estimates presented in the final column 

indicate that after 1980, the high-violation provinces experienced a growth rate that was 

1.3 percentage points higher, with a standard error of 0.4. Because the EFR is strongly 

and positively correlated with the CBR (see Figure D1), this DID estimate suggests that 

provinces with higher fertility experienced faster income growth. 
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Table D1. Difference-in-Differences Estimates of the Effect of OCP Violation on 

the Growth Rate of GDP per capita 

 Low Violation High Violation Difference 

Panel A: Experiment of Interest (growth rate of GDP per capita)   

1960-1979 average 0.034 0.027 -0.007** 

   (0.003) 

1980-2010 average 0.083 0.089 0.006** 

   (0.002) 

Difference-in-differences   0.013*** 

   (0.004) 

Panel B: Control Experiment (growth rate of GDP per capita)  

1960-1969 average 0.011 0.003 -0.008 

   (0.005) 

1970-1979 average 0.057 0.049 -0.008 

   (0.005) 

Difference-in-differences   -0.0005 

   (0.007) 

Notes: This table disaggregates the sample provinces into two approximately equal-sized groups 

according to their 1981 EFR and compares the growth rates between these two groups in different 

periods. Standard errors are in parentheses. Significance levels are *** p<0.01, ** p<0.05, * p<0.1. 

This estimation strategy is based on a parallel-trends assumption that in the absence 

of the OCP, changes in the income growth rate would not have been systematically 

different across the low- and high-violation provinces. This assumption is supported by 

two pieces of evidence. Panel B in Table D1 shows that prior to 1980, there was no 

significant difference between the changes in the income growth rate of low- and high-

violation provinces. Specifically, I compare the average growth rates for 1960–1969 

and that for 1970–1979 across low- and high-violation provinces and find a DID 

estimate close to zero (-0.05 percentage points). In addition, the next subsection will 

estimate a flexible version of model (21) that includes interactions between the 1981 

EFR and a full set of year dummies. The estimation found that prior to the OCP, the 

effects of the EFR on income growth were all small and statistically insignificant, but 

after the policy was implemented, the EFR effects were all positive, noticeably larger, 

and mostly statistically significant. 

The estimates for model (21) are presented in Table D2. The estimations were based 

on 1970–2010 data for the 27 sample provinces.31 The baseline estimates presented in 

 

31 The data prior to 1970 were not used in this estimation because of the concern that China provincial 

data prior to 1970 might be unreliable. A similar result was found when the data were extended back to 

1960. 
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column 1 show that a one-percentage-point increase in the EFR raised the growth rate 

of GDP per capita by 0.62 percentage points, and the effect was statistically significant 

at the 1% level. Because the EFR is strongly and positively correlated with the CBR, 

this estimate suggests that the long-term average effect of higher fertility rates on the 

aggregate income growth rate is significantly positive. 

Table D2. Effect of Local OCP Violation on Long-Run Income Growth 

 Dependent variable: Growth rate of GDP per capita  
(1) (2) (3) (4) (5) 

1981 1980EFR dummy  0.0062*** 0.0060*** 0.0049*** 0.0047***  
 

(0.0011) (0.0012) (0.0012) (0.0012)  

1980t
CBR dummy (IV: 1981 1980

EFR dummy )     0.0097*** 

    (0.0032) 

Five time-varying controls  Yes Yes Yes Yes 

Fertility preferences × all year dummy   Yes Yes Yes 

Controls for the reform and opening-up in 1978   

1978Trade share in GDP dummy    Yes Yes 

1978Distance to port dummy    Yes Yes 

Control for the tax system reform in 1994      

1994Government spending share dummy   
  Yes Yes 

Controls for joining the World Trade Organization in 2001   

2001Trade share in GDP dummy   
  Yes Yes 

2001Share of services in GDP dummy   
  Yes Yes 

Province fixed effects Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes 

First-stage F-statistics      26.7 

Observations 1,107 1,107 1,107 1,107 1,107 

R-squared 0.519 0.598 0.662 0.679 0.328 

Notes: Column 1 presents the baseline OLS estimate of model (21). Columns 2–4 provide robustness checks that 

increasing include more sets of control variables. Column 5 contains the 2SLS estimates of a modified version of 

model (21) that replaces ,1981p t
EFR post   by ,p t t

CBR post  . The standard errors (in parentheses) account for 

arbitrary heteroskedasticity. Significance levels are *** p<0.01, ** p<0.05, * p<0.1. 

Robustness tests are presented in columns 2–4 of Table D2 and in section D4. 

Column 2 of Table D2 includes the five time-varying control variables; column 3 

further controls for preexisting fertility preferences, which are measured by the 

interactions between a full set of year dummies and the average total number of births 

of females aged 45–54 in 1981 (calculated from the microdata from the 1982 Census); 

column 4 further controls for three events that had the potential to confound the 

estimated effects: the reform and opening-up in 1978, tax system reform in 1994, and 

joining the World Trade Organization (WTO) in 2001 (see the main text for details). 

Including these control variables leads to slightly smaller estimates, but t-tests found 
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no significant difference from the baseline estimate reported in column 1. In addition, 

section D4 shows that the finding is robust to alternative EFR constructions, subsamples, 

and series correlation. 

To obtain the marginal effect of fertility, column 5 of Table D2 provides the 2SLS 

estimate of a modified version of model (21) that replaces 
,1981p t

EFR post   with 

,p t t
CBR post . The first-stage regression of the 2SLS estimation is 

 
, ,1981p t t p t p t pt it

CBR post EFR post Z     = + +  + +  . (22) 

The 2SLS estimate suggests that a one-unit increase in the CBR increased the average 

growth rate of GDP per capita for 1980–2010 by 0.97 percentage points. Since the 

average CBR during this period was 15.4, the 2SLS estimate suggests that a 1% 

increase in fertility leads to an income growth rate that is 0.15 percentage points higher.  

D3. Exogeneity of the EFR 

A crucial assumption of identifying the causal effect by equation (21) is that 

provinces with different EFRs would have the sample growth trends if without the OCP. 

If this assumption is true, the EFR should have no effect on income growth prior to the 

OCP. As such, this assumption can be tested by estimating the following flexible 

version of equation (21) that includes the interactions between the 1981 EFR and a full 

set of year dummies: 

 
2010

,1981

1971

pt p t j p j pt pt

j

y EFR dummy Z    
=

= + +  + +  , (23) 

where 
j

dummy  equals 1 in year j . The estimated vector of s
j

  reveals the correlation 

between the EFR and the growth rate in each year. If the EFR was not correlated with 

growth trends prior to the OCP, then the estimated s
j

  would be expected to be close 

to zero for the years before the OCP was implemented. 
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Figure D2. Flexible Estimates of the Relationship between the EFR and the Income 

Growth Rate 

Note: Each dot on the solid line is the point estimate of s
j

a  from equation (23), and the broken lines 

indicate the corresponding 95% confidence intervals. The equation is estimated using annual data from 

1970 to 2010 for the 27 Chinese provinces. The estimation controls for the province and year fixed effects 

as well as the five time-varying control variables. 

Equation (23) is estimated based on the 1970–2010 data for the 27 sample provinces. 

Figure D2 plots the point estimates of s
j

  (dots on the solid line) and the corresponding 

95% confidence intervals (the broken lines). During the 1971–1979 period, the 

estimated coefficients are all small and statistically insignificant, which supports the 

assumption that the EFR was not correlated with growth trends prior to the OCP. The 

figure also shows that the coefficients after 1980 are much larger and mainly 

statistically significant after 1980, which suggests that provinces with higher OCP 

violations experienced faster income growth after 1980. 

D4. Further Robustness Tests 

Table D3 provides five additional robustness tests for the baseline estimates reported 

in column 1 of Table D2. All robustness tests have the same model setting as the 

baseline estimation, except for the one specified in each test. For simplicity, only the 

estimated coefficient of the EFR is reported. To facilitate comparison, row 1 replicates 

the baseline estimate.  

Row 2 uses the EFR calculated from the 1990 Census instead of that from the 1982 

Census. The estimated effect of the EFR is still positive and statistically significant, but 

it is smaller, potentially because the 1990 EFR captures the average effect over a shorter 
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period (1990–2010). Row 3 uses the 1981 EFR calculated for both agricultural and non-

agricultural mothers (recall that the baseline analysis only used the 1981 EFR calculated 

for the non-agricultural mothers) and presents a smaller marginal effect. This finding is 

reasonable because the mean value of the 1981 EFR calculated in this way is 

approximately two-times larger. Rows 4 excludes the five provinces with a minority 

population share that is greater than 10% in order to further address the concern that 

minority provinces might have different growth trends from other provinces (recall that 

the EFR is only calculated for Han Chinese mothers). The estimated effect is slightly 

smaller, but there is no statistically significant difference from row 1. Rows 5 and 6 

examine the robustness to series correlation by controlling for province-specific time 

trends and clustering the standard errors at the province level, respectively. The 

resulting estimates are very close to the baseline estimate. 

Table D3. Robustness Tests of the Effect of the EFR on Income Growth 

 

Coefficient 

of interest 

Standard 

error 

(1) The baseline estimate from column 1 of Table D2 0.0062*** (0.0011) 

(2) The EFR calculated from the 1990 Population Census 0.0027*** (0.0008) 

(3) The 1981 EFR for both agricultural and non-agricultural mothers 0.0022*** (0.0007) 

(4) Excluding provinces with minority population share higher than 10% 0.0051*** (0.0011) 

(5) Controlling for province-specific time trends 0.0063*** (0.0011) 

(6) Clustering the standard errors at the province level 0.0062*** (0.0021) 

Notes: All robustness tests have the same model setting as that in column 1 of Table D2, except for the one 

specified in each test. The standard errors (in parentheses) account for arbitrary heteroskedasticity (and clustered 

at the province level in row 6). Significance levels are *** p<0.01, ** p<0.05, * p<0.1. 
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E. Evidence from the Minority Population Share 

A third intensity measure of the OCP is the ethnic minority population share (MPS). 

Recall that ethnic minorities were subjected to less-strict birth control measures during 

the OCP. The MPS was used as an IV for fertility by Li and Zhang (2007) when they 

examined the effect of fertility on income growth. As detailed below, however, the 

province-level MPS is endogenous in the sense that even after controlling for the 

province and year fixed effects and various time-varying factors, it is strongly 

correlated with preexisting growth trends. As such, the main analysis of this article does 

not depend on this intensity measure. Nevertheless, comparable dynamic effects are 

found when using the MPS as the IV for fertility. 

Figure E1. Percentage of minorities in each province (upper panel) and percentage of 
each province’s population in China (lower panel), 1980–2010  

Notes: The figure only shows the 31 mainland Chinese provinces. See data sources from Table A3.  

The endogeneity of the MPS is a concern because of the fact that minorities only 

comprised a small share (about 10%) of the Chinese population and most minorities 

live in non-presentative western provinces. Figure E1 shows that minorities mainly live 

in the seven western provinces, which together contain less than 10% of the Chinese 

population but cover more than half of China’s territory. It is difficult to believe that the 

western minority provinces, which have significantly lower populations and economic 
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densities, could experience the same growth trends as other provinces. 

Table E1. Predictive Power of the Current Income Growth Rate on the Future Minority 

Population Share 

 Dependent variable: The minority population share 

 
1-year later  3-year later  5-year later 

(1)   (2)   (3)  

Growth rate of GDP 

per capita 

-0.74***   -0.87***   -0.68***  

(0.023)   (0.022)   (0.020)  

7 control variables Yes   Yes   Yes  

Province FE Yes   Yes   Yes  

Year FE Yes   Yes   Yes  

R-squared 0.99   0.99   0.99  
Notes: This table examines whether the current income growth rate has predictive power on the minority population 

shares in the next one, three, and five years, respectively. All regressions include province and year fixed effects and 

the five time-varying control variables. The standard errors (in parentheses) are clustered at the province level. 

Significance levels are *** p<0.01, ** p<0.05, * p<0.1. 

This concern can be confirmed by examining the predictive power of the current 

income growth rate on the future MPS. If the MPS is exogenous to income growth, the 

current income growth rate should have no predictive power on the future MPS, 

conditional on province and year fixed effects. I regress the MPS in the next one, three, 

and five years on the current growth rate of GDP per capita, respectively, in columns 1, 

2, and 3 of Table E1. All regressions include province and year fixed effects and the 

five time-varying control variables. All regressions are based on the 1980–2010 data 

for the 27 provinces. Details of the MPS data are presented in Table A3. The estimates 

are all large and statistically significant at the 1% level, which suggests that the MPS is 

endogenous. 

 
Figure E2. Current and Lagged Effects of Fertility on Income Growth in China 

(2SLS, Using the minority population share as the IV) 

Notes: The figure presents the 2SLS estimates of model (19) that uses the minority population share as the IV. The 
x-axis indicates the lagged years of the CBR. Each dot on the solid line is the point estimate of the coefficient, and 
the broken lines indicate the corresponding 95% confidence intervals. 
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Nevertheless, I still provide the 2SLS estimates of model (19) that uses the MPS as 

the IV for CBR. As presented in Figure E2, consistent with the 2SLS estimates based 

on the policy fine rate, the effect of higher fertility rates is statistically insignificant 

when the lag length is small, but becomes significantly positive and much larger later 

on. The figure only presents the estimates up to a 16-year lag length, because the 

following estimates are all statistically insignificant and unreasonably large, possibly 

due to the endogeneity bias. 

It worth to note that Li and Zhang (2007) also used the MPS as an IV to estimate the 

causal effect of fertility on income growth in China. Specifically, depending on China 

provincial data from 1978 to 1998, they estimated the current (instead of the lagged) 

effect of the CBR on the growth rate of GDP per capita in a fixed-effects panel model 

that uses the MPS as an IV for the CBR. They found a negative effect of fertility on 

income growth. Because their model only used the current CBR as the explanatory 

variable, as illustrated in Appendix B1 of this article, what they estimated is mostly the 

short-term effect. I replicated their estimation using the data during their sample period 

and found a similarly negative short-term effect of higher fertility on income growth. 

Because the MPS is likely endogenous, however, the IV estimates based on it may be 

biased. 


