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Abstract 
 

This paper employs monthly data to examine the impact of oil price shocks on the domestic 

inflation rate in Thailand from 1993 to 2016. Both linear and nonlinear cointegration tests are 

used to examine the long-run relationship between price level, industrial production and the 

real price of oil. Furthermore, the two-step approach is used to examine how an oil price 

shock and oil price volatility affect the inflation rate. In addition, the asymmetry of oil price 

shocks on inflation is also investigated. The results show that price level is positively affected 

by the real oil price and industrial production index in the long run. The short-run analysis 

reveals that there is a positive relationship between an oil price shock and domestic inflation. 

The estimated results from the two-step approach show that an oil price shock causes 

inflation to increase while oil price uncertainty does not cause inflation. Furthermore, the 

short-run relationship between inflation and oil price shocks is not asymmetric. There is also 

bidirectional causality between inflation and inflation uncertainty, which might stem from 

monetary policy exercised by the central bank. The findings of this study will encourage the 

monetary authorities to formulate a more accommodative policy to respond to oil price 

shocks, which positively affect inflation rate. In addition, oil subsidization by the government 

should not be abandoned. 
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1. Introduction 
 

One of the interesting topics related to the relationship between oil shocks and 

macroeconomic variables is the impact of oil price shocks on the domestic inflation rate. The 

rise of oil price can cause firms’ production costs to increase. Therefore, the pass-through of 

an oil price hike is reflected in an increase in the general price level of an economy. In 

addition, changes in the oil price in the last five decades exhibit oil price volatility that can 

distort the decisions made by economic agents. Lee and Ni (2002) find that oil price shocks 

affect economic performances via both demand and supply channels. Earlier studies by Mork 

and Hall (1980) and Mork (1989) point out that inflation induced by oil price shocks can 

reduce real balances, a measure purchasing power, in the economy, thus causing a recession. 

Bernanke et al. (1997) argue that the stagflation threat from the oil shocks in the 1970s 

should not be underestimated. The Federal Reserve adopted too high an interest rate policy 

and thus did not respond to oil price shocks accurately. This resulted in either decreased 

output or recession in the US. Hamilton (2003) indicates that oil shocks matter because they 

disrupt spending by consumers and firms on key sectors, and thus reducing output growth. 
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As to the supply channel, oil price shocks can cause consumer prices to increase. This 

phenomenon depends on the share of the oil price in the price index. Hooker (2002) examines 

the effects of oil price changes on inflation in the US under a Phillips curve framework that 

allows for asymmetries, nonlinearities and structural breaks. The results show that oil price 

shocks seem to affect inflation through the direct share of the oil price in consumer prices. 

Furthermore, monetary policy has become less accommodative of oil price shocks, thus 

preventing oil price changes from passing directly into core inflation. Cunado and De Gracia 

(2005) use quarterly data from 1975 to 2000 to examine the impact of oil price shocks on 

economic activities and inflation in Japan, Singapore, South Korea, Malaysia, Thailand and 

the Philippines. They find that the impact is more pronounced when oil prices are measured 

in domestic currencies. Ewing and Thompson (2007) find that oil prices lead the cycle of 

consumer prices in the US. The oil price pass-through into inflation in industrialized 

countries can decline due to certain factors. De Gregono and Lanerretche (2007) find that the 

pass-through declines because of the fall in energy intensity. Fukac (2011) indicates that the 

effect of oil price changes is stronger due to temporarily accommodating monetary policy and 

structural change in the US economy. Valcarcel and Wohar (2013) find that oil price-inflation 

pass-through may have shifted from a supply-side to a demand-side phenomenon in the US 

since the great moderation period. Therefore, it can affect the ability of monetary 

policymakers in dealing with the adverse impact of oil price shocks in the aggregate 

economy. Huang and Chao (2012) examine the effects of international and domestic oil 

prices on the price indices in Taiwan using monthly data from January 1999 to December 

2011. They find that changes in international oil prices have more crucial impacts on the 

price indices than do changes in domestic oil prices. Chu and Lin (2013) find that oil price 

shocks have both long-term and short-term pass-through effects on Taiwan’s producer price 

index. Gao et al. (2014) find that the degree of positive pass-through from oil price shocks to 

disaggregate US consumer prices is observed only in energy-intensive consumer price 

indices. In addition, the main causes of the pass-through are increases in the prices of energy-

related commodities. 

 

Many previous studies document that oil price shocks can have an adverse impact on the 

output because they raise the level of oil prices and oil price volatility. Oil price shocks also 

positively affect inflation. In addition, the asymmetric relationship between oil price shocks 

on output can be partly explained by the economy’s response to oil price volatility. Federer 

(1996) provides evidence that support this proposition. Furthermore, positive and negative oil 

price shocks have different impacts on inflation rate. However, Farzanegan and Markwadt 

(2009) find that both positive and negative oil price shocks exert positive impacts on inflation 

in Iran. Their results also show that negative oil price shocks have a stronger short- and long- 

run effect on inflation compared to positive oil price shocks. Therefore, the asymmetric 

impacts of oil price shocks on inflation are not found. Ajmi et al. (2015) find similar results 

for South Africa. They use an asymmetric causality test to examine the relationship between 

international oil prices and price level. They find no cointegration between oil prices and 

price level. However, they find a causal relationship running from oil prices to price level. 

Furthermore, both positive and negative oil price shocks have a positive impact on price level 

changes even though a negative oil price shock has a stronger effect. Rafiq et al. (2009) 

examine the impact of oil price volatility measured by realized volatility, on key 

macroeconomic indicators of Thailand using quarterly data from 1993 to 2006. They find that 

there is unidirectional causality running from oil price volatility to economic growth, 

investment, unemployment and inflation. However, the results from impulse response 

analysis show that the impact of oil price volatility on inflation lasts for only a short time 
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horizon. Rafiq and Salim (2014) find that oil price volatility affects output growth, but does 

not affect inflation in Thailand. However, the impact on output growth disappears after the 

financial crisis because the Thai government implemented oil subsidization after the crisis. 

Olofin and Salou (2017) examine the relationship between oil price and inflation for selected 

OPEC and EU countries. They find that the relationship between oil price and inflation is 

stronger in oil-exporting countries than in oil-importing countries. Moreover, oil price 

asymmetries seem to matter more in oil-exporting countries. Castro et al. (2016) find that the 

inflationary effect of oil prices remain in the Euro area because no deflationary effect of oil 

prices will result in a negative inflation rate. 

 

The monetary policymakers in Thailand have tried to maintain price stability by adopting 

inflation targeting in 2000. The main purpose of the present study is to examine the role of oil 

price and its volatility in exerting an impact on inflation besides the role of monetary policy. 

The real price of oil is used as in the study by Cunado and Perez de Gacia (2005) who use 

two different definitions of oil prices. This study uses their second definition, which is the 

real price of oil.
1
  In addition, an oil price shock is either the real domestic oil price in first 

differences or an oil price change. Furthermore, an increase in real oil price is defined as a 

positive shock while a decline in real oil price is a negative shock. This paper contributes to 

the existing literature by providing evidence showing that the long-run impact of oil price 

shocks on domestic inflation in a net oil-importing country is found from a nonlinear 

cointegration test. In addition, the short-run impact of oil price shocks on inflation is not 

asymmetric as found in some previous studies. Furthermore, oil price volatility does not 

cause inflation, but inflation itself causes inflation uncertainty in the Thai economy. This 

paper is organized as follows. The next section presents the data and estimation methods that 

are used in the analysis. Section 3 presents the empirical results. Section 4 discusses the 

results found in this study. The last section gives concluding remarks and some policy 

implications based on the results of this study. 

  
2. Data and Methodology 
 

In this section, the data and their properties are presented. The estimation methods used in the 

analyses are described.  

 

2.1 Data 
 

The dataset used in this study comprises monthly data during 1993 and 2016. The rationale 

for using this period is that the availability of industrial production index dates from 1993. In 

addition, monthly data give a larger sample size than does using quarterly data. The consumer 

price index, industrial production index and the US dollar exchange rate (bath/dollar) series 

are obtained from The Bank of Thailand’s website. The series of Brent crude oil spot price 

expressed in US dollar per barrel is obtained from the US Energy Information 

Administration. The oil price series is international oil price. By multiplying the oil price 

series by the US dollar exchange rate and deflating by the consumer price index, the domestic 

                                                 
1
 Most studies concerning the impact of oil prices on macroeconomic variables in advanced countries 

use different definitions of the price of oil. For example, Hamiltion (1996) uses the world price of 

crude oil while Cologni and Manera (2009) use the real price of oil as one of various definitions of oil 

shocks. Also, real oil price can reflect both the true purchasing power and the cost of production. 
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real oil price series is obtained.
2
 All series are transformed into logarithmic series. The 

sample size comprises 288 observations. 

 

The conventional unit root tests can have low power in the presence of structural breaks in 

the series. To overcome this problem, unit root tests with an unknown structural break date 

proposed by Zivot and Andrews (1992) are performed on both levels and first differences of 

the series. The results are shown in Table 1. 

 

 

Table 1  
Results of Zivot-Andrews tests for unit root: 1993M1-2016M12. 

Variables Test A Break 

date 

Test B Break 

date 

p 
(Level of consumer price 

index) 

-3.750[1] 

(0.258) 

2005M1 -2.792 [1] 

(0.955) 

2014M5 

 ∆p 

(Difference in consumer 

price index) 

-12.234***[0] 

(0.000) 

2008M8 -13.575***[0] 

(0.000) 

2008M8 

ip 
(Level of industrial 

production index) 

-3.336 [2] 

(0.480) 

2002M2 -4.389 [2] 

(0.171) 

2002M12 

∆ip 
(Difference in industrial 

production index) 

-20.508***[0] 

(0.000) 

2014M3 -20.594***[0] 

(0.000) 

2014M3 

op 
(Level of real oil price) 

-4.160 [1] 

(0.110) 

1999M2 -4.531 [1] 

(0.272) 

2014M6 

∆op 
(Difference in real oil price) 

-14.250***[0] 

(0.000) 

2008M10 -14.235***[0] 

(0.000) 

2008M10 

Note: Test A includes intercept only while Test B includes intercept and a linear trend. The 

numbers in bracket represent the optimal lag length determined by Schwarz information 

criterion (SIC),. ***, ** and ** denote significance at the 1%, 5% and 10% level, respectively. 

The numbers in parenthesis represent the probability of accepting the null hypothesis of unit root 
provided by Vogelsang (1993).  

 

The results from unit root tests show that the degree of integration of all series is one, i.e., 

they are I(1) series. The null hypothesis of unit root cannot be rejected for the levels of series, 

but it is rejected at the 1% level of significance for the first difference of series. It should be 

noted that the test for the level of the consumer price index with constant only seems to reject 

the null hypothesis, but the level of significance is only 10%. Therefore, it can be concluded 

that all series are I(1). This is suitable in performing cointegration tests. The stationary 

property of first differences of series is also suitable in the estimate of a bivariate gerneralized 

autoregressive conditional heteroskedastic (GARCH) model as well as the standard pairwise 

causality test described in the next sub-section.
3
 

 

                                                 
2
 Cunado and De Gracia (2005) find that this measure of real oil price is more important  than is real 

international oil price, which does not take into account of the impact of the exchange rate that 

influences the domestic oil price. 
3
 A bivariate GARCH model requires that all series be stationary. 
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The basic characteristics of the level and first difference of the time series data are describe in 

Table 2. 

 

Table 2 
Descriptive statistics: 1993M01-2016M12. 

A. Level of series 

Variable p ip op 
Mean 4.406 4.907 7.404 

Median 4.389 4.977 7.411 

Maximum 4.681 5.436 8.423 

Minimum 3.975 4.205 6.185 

Standard deviation 0.201 0.375 0.578 

Skewness -0.358 -0.198 -0.247 

Kurtosis 2.112 1.475 1.780 

JB 15.606 

(0.000) 

29.768 

(0.000) 

20.779 

(0.000) 

Observations 288 288 288 

B. First difference of series 

Variable ∆p ∆ip ∆op 
Mean 0.002 0.004 0.003 

Median 0.002 0.004 0.010 

Maximum 0.026 0.476 0.222 

Minimum -0.031 -0.446 -0.290 

Standard deviation 0.005 0.056 0.089 

Skewness -0.543 -0.385 -0.577 

Kurtosis 10.712 39.150 3.927 

JB 725.336 

(0.000) 

15634 

(0.000) 

26.164 

(0.000) 

Observations 287 287 287 

Note: JB is Jarque-Bera statistic with p-value in parenthesis. 

 

 

For the level of series, consumer price index domestic real oil price, and industrial production 

are negatively skewed, but all series do not show excess kurtosis. The Jarque-Bera statistics 

reveal that both series are not normally distributed. The average monthly inflation rate is 0.2 

percent, whereas the average monthly oil price shock is 0.3 percent and the average monthly 

industrial production is 0.4 percent. All series exhibit excess kurtosis and are negatively 

skewed. The Jarque-Bera normality test rejects the null hypothesis of a normal distribution of 

all series, indicating that there may be the presence of an autoregressive conditional 

heteroskedastic (ARCH) effect.  

  

Co-movement between price level and the real domestic oil price series is plotted in Fig. 1. 

Even though the real oil price is linked to the trend of price level, the real oil price variable 

fluctuates more. Starting from a low oil price with some fluctuations, the impact of a new oil 

shock in 2000 causes the price to increase. Again, the oil price reaches its peak near mid-

2009. Oil price volatility plotted in Fig. 2 shows that high volatility occurs around 2000 and 

again around 2009 and 2015.
4
 

 

                                                 
4
 Real oil price volatility series are generated by a bivariate GARCH model reported in Section 3. 
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Fig. 1 Co-movement of price level with real oil price. 
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Fig. 2 Volatility of real oil price. 

 

 

2.2 Estimation Methods 
 
The methods used in the analysis comprise cointegration tests, VAR analysis and bivariate 

GARCH(1.1) with Granger causality. 

 

2.2.1 Cointegration tests 
 



7 

 

The existence of cointegration between price level and real oil price implies that there is a 

long-run relationship between the two variables in a bivarite framework. However, industrial 

production can interact with both price level measured by consumer price index and real oil 

price. Therefore, trivariate cointegration analysis can be used to test whether there is positive 

long-run relationship between price level and the real domestic oil price when industrial 

production is treated as a control variable. 

 

2.2.1.1 Residual-based cointegration tests with unknown breakpoints 
 

Similar to conventional residual-based test for cointegration, this test proposed Gregory and 

Hansen (1996) is similar to Engle and Granger (1987) procedure in that it can be used by 

estimating the relationship between three non-stationary series: price level proxied by 

consumer price index, domestic oil price and industrial production. However, Gregory-

Hansen procedure takes into account the impact of unknown level shift as well as regime 

shift.
5
 The relationship can be expressed as: 

 

                                          tttt eopbipbap +++= 21                                                 (1) 

 

If real oil price and industrial production have impacts on price level (consumer price index), 

the coefficient b1 and b2 should statistically significant. The residual series, et, obtained from 

the estimation of Eq. (1) can be used to test for unit root using the Augmented Dickey-Fuller 

(ADF) test, which is expressed as: 

 

                                                  11 −− ∆+=∆ ttt eee φρ                                                   (2) 

 

The t-statistic obtained from the estimation of Eq. (2) is the ADF statistic. This statistic is 

used for comparison with the critical value statistic provided by Vogelsang (1993). If the 

ADF statistic is larger than the critical value, the null hypothesis of unit root in the residual 

series will be rejected. Therefore, there is cointegration or long-run relationship expressed in 

Eq. (1).  On the contrary, the smaller value of the ADF statistic than that of the critical value 

leads to an acceptance of the null hypothesis of unit root and thus the absence of 

cointegration.  

 

The existence of cointegration from Eq. (1) indicates that the relationship between price 

level, industrial production and real domestic oil price can be represented by the error 

correction model (ECM) that can be expressed as: 

 

                   tt

p

i
iit

p

i
iit

p

i
tt uopippep +∆+∆+∆++=∆ −

=
−

=
−

=
− ∑∑∑ 1

1

4

1

3

1

2110 ϕϕϕλϕ           (3) 

 

where ECt-1 is the lagged value of the corresponding error term, which is called the error 

correction term (ECT), and λ, φ2i, φ3i and φ4i are the regression coefficients while ut is a 

random variable. The sign of the coefficient of the ECT should be negative and has the 

absolute value of less than one. If this coefficient is statistically significant, any deviation 

from the long-run equilibrium will be corrected and thus the long-run relationship is stable. 

 

                                                 
5
 Zivot and Andrews (1992) also propose similar residual-based tests for cointegration with different 

test-statistics. 
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2.2.1.2 Nonlinear cointegration tests 
 

It is important to confirm that the relationship between the three variables is not nonlinear. In 

case of the absence of linear cointegration between price level, industrial production and real 

oil price, it is possible that the long-run relationship is nonlinear and asymmetric. Therefore, 

the threshold autoregressive (TAR) and momentum threshold autoregressive (MTAR) models 

can be utilized. The two models are residual-based tests developed by Enders and Granger 

(1998) and Enders and Siklos (2001). The residuals from the estimate of Eq. (1) are 

decomposed and the test equation is expressed as: 

                                  tit

k

i ittttt ueeIeIe +∆+−+=∆ −=−− ∑ 11211 )1( βρρ                       (4) 

where ut ~ iid.(0,σ
2
) and the lagged augmented term (∆êt-i) can be added to yield uncorrelated 

residuals of the estimates of equation (4). The Heaviside indicator function for TAR is 

specified in Eq. (5) while this function for MTAR is specified in Eq. (6), which are: 
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and                                      






<∆
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=

−

−

τ

τ

1

1

0

1

t

t

t eif

eif
I                                                         (6) 

 

where the threshold value τ can be endogenously determined endogenously. According to 

Pertrucelli and Woolford (1984), the necessary and sufficient conditions for the stationarity 

of {et-1} are ρ1 < 0, ρ2 < 0 and (1+ρ1)(1+ρ2) < 1. The long-run equilibrium value of the error 

term should be zero when these conditions are met. Ender and Siklos (2001) propose two test 

statistics for the null hypothesis of no cointegration, i.e., t-Max and the F statistic called Ф. If 

cointegration exists, the t-Max and Ф statistics should be larger than the 5% critical values. 

However, the Ф statistic has substantially more power than the t-Max statistic for testing the 

null hypothesis of 021 == ρρ  or no cointegration. The main drawback of the Ф statistic is 

that it can lead to the rejection of the null hypothesis when only one of the rho coefficients is 

negative.  

 

If the evidence indicates the existence of linear cointegration between price level, industrial 

production and real oil price, the time series dynamics of the relationship between the three 

variables can be explored by a vector autocorrelation mechanism (VECM). The VECM can 

be expressed as: 

               tt
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and       

               tt

p

i
iit

p

i
iit

p

i
tt uopippep 11

1

4

1

3

1

21120

~~~~ +∆+∆+∆++=∆ −
=

−
=

−
=
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where P is the lag order, λ1 and λ2 are the coefficients showing the speeds of adjustment.
6
 The 

short-run dynamics allow for testing the alternative hypothesis pertaining to the short-run 

                                                 
6
 The speed of adjustment is 11 ρλ tI=  in the first regime and 22 )1( ρλ tI−=  in the second 

regime while It in equation (5) is used for the TAR model and is It in Eq. (6) is used for the 

MTAR model. 
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relationship between price level, industrial production and real oil price. The coefficients of 

the lagged differences for industrial production and for real oil price show the short-run 

impacts of the two variables on the first difference of price level while the coefficients of the 

asymmetric errors correction terms are the speeds of adjustment toward the long-run 

equilibrium. Eqs. (7) and (8) can also be used to test for short-run causality between 

industrial production, real oil price and price level. 

 
 
2.2.2 Short-run analysis and the role of oil price volatility 

The two-step approach is employed to explain the relationship between nominal oil price and 

its uncertainty (or volatility) as well as inflation and its uncertainty. In the first step, a 

bivariate GARCH(1,1) model with constant conditional correlation (ccc-GARCH) model 

proposed by Bollerslev (1990) is employed to generate inflation uncertainty and oil price 

volatility. In the second step, these generated series along with the inflation rate and the series 

of real oil price changes are employed in the standard Granger (1969) causality test. Pagan 

(1984) criticizes this procedure because it produces the generated series of volatility or 

uncertainty. When these generated series are used as regressors in Granger causality test, the 

model might be misspecified. However, it can be argued that the main advantage of the two-

step procedure is that it provides room for the ability to establish causality between 

variables.
7
 The system equations in a ccc-GARCH(1,1) model comprises the following five 

equations. 
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                                            2/12/1
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where ∆p is the change in price level or inflation, and ∆op is the change in real oil price or oil 

price shock, h
∆p

 is the conditional variance of inflation, h
∆op

 is the conditional variance of real 

oil price change, and h
∆p,∆op

 is the conditional covariance of the two variables. The constant 

conditional correlation is ρ12. The system equations can be estimated simultaneously. 

 

The pairwise Granger causality test is performed in the following equations. 

                                       tit

k
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k
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1

1

1
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and 

                                      tit

k
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k
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1
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1
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=

−
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∑∑                               (15) 

 

                                                 
7
 The current value of one variable might not affect the current value of another variable, but some of 

its lags might do.  
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where y and x are two variables that can exhibit causal relationship. The optimal lag length is 

determined by SIC. If any independent variable causes the dependent variable, there should 

be at least one significant coefficient of that lagged independent variable. This also indicates 

that the F-statistic in the standard causality test must show significance for each pair of 

variables. In the present study, the causal relationship of the pairs of variables that will be 

focused are {∆op, ∆p}, {∆op, h
∆op

}, {h
∆op

, ∆p}, {∆p, h
∆p

}, {h
∆p

, ∆op} and {h
∆op

, h
∆p

}. It 

should be noted that all variables in the test must be stationary. A VAR model is used to 

detect the sign of lagged variables. In addition, impulse response functions (IRFs) and 

variance decompositions (VCDs) can be obtained from the specified VAR model to detect 

the response of each variable to a shock and the impact of each variable on other variables.  
 
 
3. Empirical Results 
 
This section reports the results from cointegration tests and short-run dynamics, IRFs and 

VCDs, and Granger causality tests. 

 
3.1 Long-run relationship and short-run dynamics 
 
The model expressed in Eq. (1) is used for testing the existence of a long-run relationship 

between price level (p), industrial production (ip) and real domestic oil price (op).
8
 The 

results from Gregory-Hansen testing for cointegration are shown in Table 3. 

 

The results in Table 3 show that there is no cointegration because both the model with level 

shift and the model with regime shift are smaller than the 5% critical values for the three-

variable model. Zivot and Andrew (1992) tests give the Za* statistic = 43.247 for the level 

shift model and Zt* statistic = -4.849 for the regime shift model, which are smaller than the 

critical values of -46.98 and -5.29 respectively. The break date is 1997M6 for the level shift 

model, which is almost the same as the impact of the 1997 Asian financial crisis. Without the 

presence of cointegration, the estimation of ECM representation expressed in Eq. (3) is not 

valid. 

 

Table 3  
Results of Gregory-Hansen cointegration tests. 

Model t-statistic lag Break date 

1. Level shift -3.416 2 1996M12 

2. Regime shift -3.317 2 2002M7 

Note: The 5% critical values with the three-variable model provided by Gregory and 

Hansen (1996) are -5.29 and -5.50 for the model with level shift and the model with 

regime shift, respectively. 

 

Even though the results of Gregory-Hansen cointegration tests suggest that there is no linear 

cointegration between the three variables, it is still possible that the long-run relationship can 

be nonlinear. The TAR and MTAR models are estimated. Firstly, the long-run relationship is 

estimated with a dummy variable determined by the Zivot-Andrews model with level shift. 

Secondly, the residual series is obtained from the estimated equation with the 1997 financial 

crisis dummy reported in Table 3 being used to test for threshold cointegration.  

                                                 
8
 International oil price should not be suitable because it does not take into account  the role of the 

nominal exchange rate of an oil-importing economy. 
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Table 4 
Long-run coefficients of the estimated models. 

Dependent variable is pt 

Independent variable Coefficient t-statistic p-value 

Dt 0.113*** 9.437 0.000 

ipt 0.388*** 17.095 0.000 

opt 0.053*** 3.910 0.000 

Adj. R
2
 = 0.914 

Note: ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively. 

 

 

There seems to be a positive long-run relationship between price level, industrial production 

and real oil price. A one percent increase in industrial production causes the price level to rise 

by 0.39 percent and vice versa. Since the industrial sector comprises many manufacturing 

firms, which are energy intensive, the reduction of oil use cannot be avoidable. Therefore, 

firms in the manufacturing sector can adjust themselves to oil price shocks in the long run. 

For the real price of oil, the positive relationship between price level and real oil price is not 

surprising. A one percent increase in the real oil price causes the price level to rise by 0.05 

percent in the long run. The claimed positive impact of the real oil price on the general price 

level will be valid if threshold cointegration is found. The impact of level shift is significantly 

positive. 

 

In testing for threshold cointegration, the results are obtained from the estimation of Eq. (4) 

by estimating Eq. (1), which includes the 1997 Asian financial crisis dummy variable as 

suggested by the Zivot-Andrews cointegration test to obtain the residual series.  The results 

from the estimated TAR and MTAR models are reported in Table 5. 

 

 

Table 5 
Results of Threshold cointegration. 

 TAR MTAR 

ρ1 -0.213 (0.044) 0.035 (0.061) 

ρ2 -0.069 (0.047) -0.210 (0.037) 

τ 0.043 0.015 

κ 1 1 

t-Max -1.489 [-2.090] 0.571 [-2.278] 

Ф 12.884**[8.306] 16.465**[9.539] 

F-Equal 5.240 [6.055] 12.001**[8.190] 

Note: Standard deviation is in parenthesis, the number in bracket represent the 5% 

critical value, ** and * indicate significance at the 5% and 10% level, respectively, τ 

is the threshold value, κ is the number of lagged augmented term, Ф is the F

021 == ρρ , and F-Equal is F
21 ρρ = . 

 

 

The results reported in Table 5 show that the estimated ρ1 and ρ2 are negative with the 

absolute value of less than one and (1+ρ1)(1+ρ2) is equal to 0.811 for the TAR model. 

However, for the MTAR model, ρ1 is positive and ρ2 is negative. Therefore, the convergence 

condition is not met for the MTAR model. The Ф statistic is 12.884 and 16.465 for the TAR 

and MTAR models, respectively, while the simulated critical values at the 5% level are 8.306 
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and 9.539 for the TAR and MTAR models, respectively. For the TAR model, the null 

hypothesis of no threshold cointegration is rejected at the 5% level of significance while the 

null hypothesis is rejected at the 5% level for the MTAR model. Based on the MTAR model, 

there is nonlinear cointegration between price level, industrial production and the real price of 

oil. However, the null hypothesis of no asymmetric adjustment toward the long-run 

equilibrium cannot be rejected because the F-Equal statistic is smaller than the critical value 

at the 5% level of significance for the TAR model while the null hypothesis of no asymmetric 

adjustment is rejected for the MTAR model. According to Enders and Siklos (2001), the Ф 

statistic can lead to a rejection of the null hypothesis of no cointegration when only one of the 

rho coefficients is negative, but the convergence condition is not met as in the case of the 

MTAR model. Thus it can be concluded that there is nonlinear cointegration between the 

three variables under the TAR estimate without asymmetric adjustment.
9
 The tests are also 

conducted for the TAR and MTAR models at the 10% level of significance, the results show 

that only the TAR model meets the convergence or stationary condition. The Ф statistic is 

12.84 and is larger than the simulated 10% critical value of 7.40. Also, the F-Equal statistic is 

5.24 and is larger than the 10% critical value of 4.55. Using the lower level of significance, 

threshold cointegration with asymmetric adjustment holds under the estimated TAR model 

because the estimated statistics are larger than their respective critical values, and thus the 

null hypotheses of no cointegration and no asymmetric adjustment are rejected. 

 

The results from two types of cointegation tests reveal that there is no long-run relationship 

between price level, industrial production and domestic real oil price in Gregory and Hansen 

(1996) and Zivot and Andrew (1992) tests. However, the TAR model shows the presence of 

asymmetric adjustment in the nonlinear long-run relationship at the 10% level of 

significance. The short-run dynamics will depend on the symmetric ECM framework 

specified in Eq. (3) when nonlinear cointegrattion without asymmetric adjustment is found in 

the TAR model at the 5% level of significance. If a lower level of significance at the 10% 

level is accepted, the short-run dynamics of asymmetric adjustment specified in Eqs. (7) and 

(8) are used. The results of symmetric adjustment specified in Eq. (3) are reported in Table 6. 

 

Table 6 
Results of short-run dynamics.  

Dependent variable: ∆pt 

Variable Coefficient Standard Error t-statistic p-value 

1
ˆ −te  -0.016*** 0.061 -2.611 0.010 

∆pt-1 0.238*** 0.061 3.884 0.000 

∆pt-2 0.104* 0.060 1.719 0.087 

∆ipt-1 -0.003 0.005 -0.488 0.626 

∆ipt-2 -0.002 0.005 -0.289 0.773 

∆opt-1 0.011*** 0.003 3.071 0.002 

∆opt-2 -0.006* 0.004 -1.750 0.081 

Intercept 0.002*** 0.001 4.720 0.000 

Adjusted R
2
 = 0.142,  F = 7.715 

Serial correlation test: χ
2

(2) = 1.608 (p-value = 0.448) 

ARCH test: χ
2

(1) = 1.147 (p-value = 0.234)  

Note: ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively. 

                                                 
9
 This is the main drawback of the Ф statistic because it can lead to the rejection of the null hypothesis 

when only one of the rho coefficients is negative.  It does not seem to be an exceptional case for this 

dataset when applied to the MTAR model.  
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The lag length for symmetric adjustment shown in Table 6 is two determined by HQ 

information criterion because SIC indicates that the lag should be zero. The estimated short-

run equation passes important diagnostic tests, i.e., the no serial correlation in the residuals 

and no ARCH effect. The coefficient of the error correction term has a correct sign with the 

absolute value of 0.016, which is less than one and significant at the 1% level. Therefore, any 

deviation from long-run equilibrium will be corrected. However, the coefficients of lagged 

changes in industrial production are insignificant. Using the Wald F test, F2,277 = 0.143 with 

p-value = 0.867, short-run causality running from changes in industrial production to 

inflation is not found. On the contrary, positive short-run causality running from oil price 

shocks to inflation is found at the 1% level of significance because the Wald F2, 277 = 5.774 

with p-value = 0.004, which leads to a rejection of the null hypothesis of no causality. 

 

When a lower level of significance is accepted for the TAR model, the asymmetric 

adjustments of the higher and lower regimes are reported in Table 7. 

 

Table 7 
Results from the estimated ECMs from the TAR Model. 

 Higher regime 

(Above threshold) 

 Lower regime  

(Below threshold) 

 

 ∆pt  ∆pt  

1
ˆ −te  -0.011 

(0.244) 

 

 

-0.022*** 

(0.001) 

 

 

∆pt-1 0.240 

(0.062) 

 0.244** 

(0.061) 

 

 

∆pt-2 0.104* 

(0.061) 

 0.106* 

(0.060) 

 

∆ipt-1 -0.001 

(0.005) 

 

 

0.001 

(0.005) 

 

 

∆ipt-2 -0.001 

(0.005) 

 0.002 

(0.005) 

 

∆opt-1 -0.011*** 

(0.004) 

 0.010*** 

(0.003) 

 

∆opt-2 -0.006* 

(0.004) 

 -0.006 

(0.004) 

 

Intercept 0.002*** 

(0.001) 

 0.001*** 

(0.007) 

 

 

Adjusted R
2
 0.125  0.142  

F-Statistic 6.806  7.726  

% of sample 15%  85%  

Diagnostics:     

χ
2

(2) = 0.440 

(prob. = 0.802) 

  χ
2

(2) = 1.688 

 (prob. = 0.403) 

 

χ
2

(1) =1.398  

(prob. = 0.237) 

  χ
2

(1) =1.611  

(prob. = 0.204) 

 

Note: Standard error is in parenthesis. ***, **and *indicate significance at the 1%, 

5% and 10% level, respectively. The statistic χ
2

(2) is used to test for serial correlation 

and χ
2

(1) is used to test for the ARCH effect. 

 
The estimated ECMs pass two important diagnostic tests, i.e., there are no serial correlation 

in the residuals and no ARCH effect. For lagged residuals above the threshold value, the 
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coefficient of the error correction term has the expected sign and size. However, this 

coefficient is not statistically significant, and thus any deviation from the long-run 

equilibrium will not be corrected. The Wald F = 0.006 with p-value = 0.994 accepts the null 

hypothesis that lagged changes in industrial production do not cause inflation. In addition, the 

null hypothesis that lagged oil price shocks do not cause inflation is rejected at the 1% level 

of significance since the Wald F = 5.896 with p-value = 0.003. The causality results suggest 

that there is no causality running from changes in industrial production to inflation while 

there is negative causality running from oil price shocks to inflation in the higher regime. For 

the lower regime when lagged residuals are below the threshold value, the coefficient of the 

error correction term has a negative sign with the absolute value of less than one and is 

significant at the 1% level. This indicates that any deviation from the long-run equilibrium 

will be rapidly corrected. In the Granger causality sense, there is no short-run causality 

running from lagged changes in industrial production to inflation because the Wald F = 0.293 

with p-value = 0.911. However, there is positive short-run causality running from lagged oil 

price shocks to inflation since the Wald F = 5.641 with p-value = 0.004, which leads to a 

rejection of the null hypothesis of no causality at the 1% level of significance. 

 
It should be noted that the results from the estimated ECM in the lower regime are similar to 

the results of symmetric ECM reported in Table 5 because the lower regime comprises 

approximately 85% of the whole sample. Overall, the results suggest that there is a positive 

causality running from oil price shocks to inflation in the short run. 

 
3.2 Short-run relationship and the role of oil price volatility 
 

In analyzing the short-run relationship, the two step approach explained in the previous 

section is utilized. First, a bivariate GRACH model is estimated to obtain two volatility 

series. The next step is to employ the standard Granger causality test and an unrestricted 

VAR model to examine short-run causality and the use of IRFs as well as VCDs to examine 

the interactions among variables of interest. 

 

In performing a bivariate GARCH estimate, the unit root statistics for the full sample period 

reported in Table 1 show that the first differences of the two series are stationary and thus 

suitable for the estimation. 

 
The bivariate GARCH estimation for the system equations (9) to (13) to obtain volatility or 

uncertainty series are reported in Table 8. The two series, ∆p and ∆op, are stationary as 

required. The assumption of constant conditional correlation facilitates the simplicity of the 

system estimation. The model performs quite well in the dataset. The mean equation for 

domestic inflation rate is assumed to be dependent on the lag of domestic oil price change 

while the mean equation for domestic oil price change is assumed to be dependent on 

inflation rate.
10

  

  

 

 

 

  

                                                 
10

 Even though the country is a small oil-importing country, its inflation rate should not affect the 

world oil price. However, the oil price series is converted to real domestic oil price. Therefore, it is 

possible that inflation and oil price shocks will be interdependent. 
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Table 8 Results from the bivariate ccc-GARCH(1,1) estimation. 

Mean equations: 

11 ***009.0**201.0***001.0 −− ∆+∆+=∆ ttt oppp  

         (3.99)         (2.71)               (3.74)               

11 *245.1**139.0007.0 −− ∆+∆+−=∆ ttt popop  

            (-1.24)     (2.03)           (1.67) 

(t-statistic in parenthesis) 

Variance and covariance equations: 
p

t
p

t
p

t hh ∆
−

∆
−

∆ ++= 1

,2

1 ***635.0***331.0***001.0 ε  

          (2.98)         (3.83)                  (8.61) 
op
t

op
t

op
t hh 1

,2

11 ***781.0***172.0**001.0 −
∆

−
∆
− ++= ε  

           (1.98)       (2.64)                   (12.39) 
2/12/1, )()(***289.0 op

t
p

t
opp

t hhh ∆∆∆∆ =  

              (4.72) 

(t-statistic in parenthesis)  

System diagnostic test: 

Q(4) =11.403 (p-value = 0.784) 

Note: The variables, ∆p and ∆op, stand for changes in price level and oil price shock, 

respectively. The conditional variances are: h
∆p

 for inflation rate and h
∆op

 for oil price shock. 

The conditional covariance is h
∆p,∆op

. ***, ** and * denotes significance at the 1%, 5% and 

10%, respectively. Q(k)  is the statistical test for the residuals obtained from system residual 

Portmanteau tests for autocorrelations, where k is the lag length. 
 

 

The lags are chosen so that the system equations are free of serial correlation. Panels A and B 

contain the results of the conditional means and variances for inflation rate and oil price 

changes, respectively. Referring to Panel A, the inflation rate is positively affected by the 

one-period lagged oil price changes. In Panel B, oil price change is positively affected by its 

one-period lag and lagged inflation. The coefficients in the two conditional variance 

equations are non-negative. Both conditional variance equations give significant ARCH and 

GARCH terms (α1 and β1). The sum of the coefficients of the ARCH and GARCH terms for 

inflation rate is 0.966 whereas the sum of the coefficients for the rate of oil price change is 

0.953. These results show that the GARCH variance series as measures of volatility or 

uncertainty is stationary. The constant conditional correlation in Panel C is 0.289, which is 

low and statistically significant.11
 The system diagnostic test using residual portmanteau test 

for autocorrelation accepts the null of no autocorrelation as indicated by the Q(4) statistic. 

Therefore, the system equations are free of serial correlation. The volatility series are 

generated to examine their impacts on inflation and volatility in the standard Granger 

causality test. The results of a pairwise Granger causality test are reported in Table 9. The 

results in Table 9 show that an oil price shock tends to cause the inflation rate to increase 

while inflation also causes an oil price shock to rise. Also, an oil price shock causes higher oil 

price volatility. In addition, oil price volatility tends to cause oil price shocks to decrease. Oil 

price volatility significantly causes an oil price shocks to decrease. However, oil price 

volatility does not cause inflation uncertainty but inflation uncertainty causes oil price 

volatility to increase. In addition, inflation uncertainty causes oil price shocks to decrease. 

Therefore, this effect can partly reduce the size of oil price shock when oil price volatility 

rises. Furthermore, inflation causes oil price volatility to decrease, but oil price shocks do not 

                                                 
11

 This result shows that inflation and oil price change series are positively correlated. 
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cause inflation uncertainty. Even though inflation uncertainty does not cause oil price 

volatility, inflation uncertainty causes oil price shocks to decrease. Finally, oil price volatility 

does not cause inflation.  

 

 

Table 9 Results of pairwise Granger causality test  

Hypothesis F-statistic  p-value 

∆op
 
does not cause ∆p 9.640**(+)  0.002 

∆p
 
does not cause ∆op 3.878** (+)  0.050 

∆op does not cause h
∆op 13.083***(-)  0.000 

h
∆op

 does not cause ∆op 7.313* (-)  0.007 

h
∆op

 does not cause h
∆p

 0.232 (+)  0.631 

h
∆p

 does not cause h
∆op

 8.908*** (-)  0.003 

h
∆p

 does not cause ∆op 10.965***(-)  0.001 

h
∆p

 does not cause ∆p 5.891**(-)  0.016 

∆p does not cause h
∆op

 3.131*(-)  0.078 

∆op does not cause h
∆p

  1.160 (-)  0.282 

h
∆p

 does not cause ∆op 10.691***(-)  0.001 

h
∆op

 does not cause ∆p  1.016 (-)  0.314 

Note: ∆p and ∆op stand for inflation and oil price shocks, respectively. The conditional 

variances, h
∆p

 for inflation rate and h
∆op

 for oil price shocks. ***, ** and * denotes 

significance at the 1%, 5% and 10% level, respectively. The +  sign indicates positive 

causation while the – sign indicates negative causation. The lag length in the pairwise 

causality test is 1 determined by HQ. 
 

 

It should be noted that inflation is positively affected by oil price shocks, but it is not affected 

by oil price volatility. 

 

The estimate of VAR(1) model allows for performing an analysis of IRFs and VDCs. The 

results of impulse response analysis are shown in Fig. 3. The figure shows the IRFs from the 

Monte Carlo simulated at 95 percent intervals. The response of inflation rate (∆p) to a shock 

in oil price (∆op) shows that inflation significantly increases in the next month following the 

contemporaneous effect of that shock. This impact starts to decay and the whole impact is 

incorporated within four months. The response of inflation to a shock in oil price volatility 

(h
∆OP

) shows that inflation decreases until the 4
th

 month and starts to recover and is 

incorporated in the 12
th

 month. The response of inflation to a shock in oil price volatility 

starts in the 2
nd

 month and the negligible impact starts to increase but decays later on. For the 

oil price shock variable, the response of a shock in oil price to inflation starts in the next 

month, i. e., inflation has a significantly positive impact on the real price of oil but decays 

and is incorporated in the 4
th

 month. Oil price shocks respond negatively to inflation 

uncertainty in the 2
nd

 month and the impact subsides and is incorporated in the 6
th

 month. On 

the contrary, oil price shocks respond positively to oil price volatility. The positive impact 

occurs in the 2
nd

 month and starts to decay later on. The impact of inflation on inflation 

uncertainty is positive but becomes negligible after the 2
nd

 month while its slight impact on 

oil price shocks is negative and incorporated in the 8
th

 month. The impact of inflation 

uncertainty on oil price volatility is negative, but the impact is very slight and last until the 

12
th

 month. As for oil price volatility, this variable responds negatively to both inflation and 

oil price shocks. Even though the impacts subside within few months but they never 

dissipate. Finally, the positive response of oil price volatility to inflation uncertainty is 
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significant in the 4
th

 month and reaches its peak in the 7
th

 month. Even though the impact 

subsides later on, it never dissipates.   
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Fig. 3 Impulse response functions including volatility series. 

 

VDCs shown in Table 10 can be used to ascertain how important the innovations of other 

variables are in explaining the fraction of each variable at different step ahead forecast 

variances. The results of this analysis provide evidence for the independency of an oil price 

shock and other variables. An oil price shock has a significantly positive impact on inflation 

and inflation uncertainty. Furthermore, oil price volatility has a slight impact on inflation, but 

no impact on inflation uncertainty. 
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Table 10  
Variance decompositions of ∆p, ∆op, h

∆p
, and h

∆op
. 

Variance decomposition of ∆p 

Month ∆p ∆op h
∆p

 h
∆op

 

1 100.00 0.00 0.00 0.00 

2 96.77 2.75 0.41 0.07 

4 94.83 3.06 2.02 0.09 

8 93.59 3.05 3.13 0.09 

12 93.40 3.04 3.47 0.09 

Variance decompositions of ∆op 

1 8.09 91.91 0.00 0.00 

2 9.96 86.77 2.36 0.90 

4 9.68 83.27 4.79 2.25 

8 9.55 81.51 5.36 3.58 

12 9.55 81.08 5.36 4.01 

Variance decompositions of h
∆p

 

1 1.70 0.02 98.28 0.00 

2 1.08 0.09 98.81 0.01 

4 0.87 0.21 98.84 0.08 

8 0.80 0.24 98.68 0.22 

12 0.79 0.24 98.56 0.40 

Variance decompositions of h
∆op 

 

1 0.83 0.60 0.01 98.56 

2 1.98 1.88 0.43 95.71 

4 4.50 3.58 3.44 88.48 

8 5.91 4.51 11.29 78.29 

12 6.07 4.63 15.99 73.31 

Note: ∆p is inflation rate, ∆op is oil price shocks, h
∆p

 is inflation uncertainty, and 

h
∆op

 is oil price volatility. 

 

Inflation explains only its own variances in the first month. It explains approximately 3% of 

the variances of oil price shocks in the 4
th

 month and only 2% and 1% of inflation uncertainty 

and oil price volatility, respectively. The oil price shock variable explains 8% of the variances 

of inflation, but it does not explain the variances of inflation uncertainty and of oil price 

volatility in the first month. This variable explains more than 9% of the variances of inflation 

for the remaining months, and it explains 5% and 2% of the variances of inflation uncertainty 

and oil price volatility in the 4
th

 month. It explains 5% and 4% of the variance of inflation 

uncertainty and oil price volatility in the 12
th

 month. Inflation uncertainty explains almost 2% 

of the variance of inflation in the first month. From the 2
nd

 month onward, it slightly explains 

the variances of other variables. Finally, oil price volatility explains its own variances in the 

first month. It explains 16% of the variances of inflation uncertainty in the 12
th

 month and 

only 6% and almost 5% of the variances of inflation and oil price shocks.         

        

3.3 Symmetric responses between real oil price and inflation  
 

One of the important aspects of the relationship between inflation and oil price shocks is 

whether the short-run relationship is either symmetric or asymmetric. Following Mork (1989 

procedure, oil price shocks are separated as positive and negative components. The 

asymmetric causality is tested and the results are reported in Eq. (16). 
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          −
−

+
−− ∆+∆+∆+=∆ 111 **010.0**013.0***247.0***002.0 tttt opoppp         (16) 

                    (5.52)         (4.19)                    (2.55)                 (1.98) 

          Adj. R
2
 = 0.117,   F = 13.652, χ(2)2 = 3.903 (p-value = 0.142)  

          (t-statistic in parenthesis). 

 

The null hypothesis to be tested is that the coefficients of lagged positive oil price shocks 

(op
+
) and lagged negative oil price shocks (op

-
) are the same. The lag length is determined by 

HQ because SIC gives zero lag length. The estimated equation possesses no serial 

correlation. The results show that both positive and negative oil price shocks positively 

causes inflation. The Wald F test for the null hypothesis that the coefficients of positive and 

negative oil price shocks are the same is accepted, i.e., F = 0.259 with p-value = 0.611. 

Therefore, the impacts of positive and negative oil price shocks are not asymmetric. This 

results is consistent with the evidence found by Ajmi et al. (2015) for South Africa. 

 

An unrestricted VAR model can be utilized to examine inflationary effects of both positive 

and negative oil price changes.
12

  For this purpose, stationary series of price level changes 

along with positive and negative oil price changes enter into the specified VAR model. The 

lag length of one is determined by HQ. The estimated VAR models show that the coefficient 

of lagged positive oil price shock is 0.018, which is significant at the 1% level while the 

coefficient of a lagged negative oil price shock is 0.013, which is significant at the 5% level. 

Fig. 4 shows the IRFs of positive oil price shock and inflation. 
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                                 Fig. 4 Positive oil price shock and inflation 

                                                 
12

 Again, following Mork (1989), the oil price change series are separated into positive and negative 

components.  



20 

 

 

The response of inflation to initial positive oil price shocks is significantly positive after the 

first month of the shocks. The peak is reached in the 2
nd

 month. The impact of the shock 

dissipates in the 5
th

 month. The shocks in inflation significantly causes the real oil price to 

decease and the impact dissipates in the 4
th

 month. Fig. 5 shows the IRFs of negative oil price 

shock and inflation. The impact of negative oil price shocks is similar to the impact of 

positive oil price shocks. 
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                                 Fig. 5 Negative oil price shock and inflation 

  

The results from impulse response analysis suggest that there seem to be no asymmetric 

impacts of oil price shock on inflation because the coefficients of positive and negative oil 

price shock variables are not quite different. The inflation rate seems to respond to the lagged 

positive and negative oil price shocks in a similar manner. However, the impact of inflation 

on negative oil price shock seems to be more pronounced than the impact on positive oil price 

shock. The results appear to be in line with the findings of Fazanegan and Markwardt (2009) 

and Ajmi et al. (2015). 

 

Table 11 reports variance decompositions of positive and negative oil price shocks in 
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inflation. 

 

 

Table 11 
Variance decompositions of positive and negative oil price shocks. 

Month ∆p+ ∆op+ ∆p- ∆op- 

Variance decompositions of inflation 

1 100.00 0.00 100.00 0.00 

4 96.85 3.12 97.95 2.05 

8 96.85 3.15 97.94 2.06 

12 96.85 3.15 97.94 2.06 

Variance decompositions of oil price shocks 

1 1.26 98.74 11.59 88.41 

4 1.56 98.44 14.57 85.43 

8 1.56 98.44 14.58 55.42 

12 1.56 98.44 14.58 85.42 

Note: ∆p+ denotes inflation affected by positive oil price shocks (∆op+), and ∆p- 

denotes inflation affected by negative oil price shocks (∆op-). 

 

Both positive and negative oil price shocks affect the volatility of inflation in the model to 

somewhat similar degrees. For fluctuations of oil price shocks, inflation affects volatility of 

negative oil price shocks to stronger degree than it affects positive oil price shocks. 

Therefore, it cannot be concluded that the impacts of positive and negative oil price shocks 

on inflation are asymmetric. 

 

4. Discussion 
 

Previous studies find that oil price shocks affect domestic inflation. Furthermore, there is a 

non-linear adjustment between oil price changes and price indices. The present study uses 

two techniques of cointegration analysis to examine the long-run relationship between price 

level, industrial production and real oil price. The presence of cointegration is not found in 

linear cointegration tests with structural breaks. However, cointegration is found when using 

a threshold cointegration test that includes the 1997 financial dummy variable. The short-run 

dynamics reveal that the adjustment toward long-run equilibrium is observed only in the 

regime below the threshold value. The results of short-run analysis reveal that domestic oil 

price shocks Granger cause domestic inflation and this result is contradictory to Huang and 

Chao (2012) who find that international oil price plays a more important role than does 

domestic oil price on price indices. In addition, oil price volatility does not cause inflation as 

in the study by Rafiq and Salim (2014). Even though oil price uncertainty does not affect 

inflation, inflation itself positively causes inflation uncertainty, which supports Friedman 

(1977)’s hypothesis. On the contrary, inflation uncertainty lowers the inflation rate, which is 

contradictory to Cukierman and Meltzer (1986)’s hypothesis. However, the impact of oil 

price shocks on inflation might surpass the negative impact of inflation uncertainty on 

inflation. Therefore, the inflation induced by oil price shocks should not be ignored by the 

monetary authorities. The main finding in the short run that oil price shocks cause inflation is 

in line with one of the main findings of Cunado and De Gracia (2005) who use quarterly data 

in their analyses. However, the evidence that the impacts of oil price shocks are not 

asymmetric is consistent with the findings of Fazanegan and Markadt (2009) and Ajmi et al. 

(2015). 
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5. Concluding Remarks and Policy Implications 
 
This study investigates the impact of oil price shocks on domestic inflation in Thailand. 

Monthly data from January 1993 to December 2016 are used. This study employs various 

techniques to capture the impact of oil price shocks on inflation. Both linear and nonlinear 

cointegration tests with structural breaks are adopted to detect the long-run relationship 

between price level, industrial production and the real price of oil. In the short-run, the two-

step approach is also adopted to examine the impact of oil price shocks on inflation and 

inflation uncertainty. In addition, an asymmetric causality test is also used to test for 

asymmetric impacts of oil price shocks on inflation.  

 

The main findings are threefold. Firstly, one threshold cointegration between price level, 

industrial production and real domestic oil price is found in the threshold autoregressive 

model. Both industrial production and real oil price have positive impacts on price level. In 

addition, asymmetric adjustments toward long-run equilibrium are found at the low level of 

significance. Secondly, oil price shocks positively cause inflation, but oil price volatility does 

not significantly cause inflation. Furthermore, inflation itself positively causes inflation 

uncertainty. This finding is also confirmed by impulse response analysis and variance 

decompositions. Finally, the presence of asymmetric impacts of oil price shock on inflation is 

not found in the Thai economy. The implications based upon the results of this study are that, 

besides the inflation-targeting that has been implemented by the monetary authorities, 

monetary measures should also be designed to accommodate inflation induced by oil price 

shocks. The oil fund as subsidization should not be discarded. 
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