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Budgeting in the traditional sense is simply too slow and rigid to keep pace with the swiftly 

changing business environment. At the moment, there is far too much volatility, complexity, 

and uncertainty. A driver-based planning and budgeting model is more data-driven than a 

traditional budget model. This budgeting strategy shortens the time it takes to create a budget. 

Most driver-based planning and budgeting models center on predictions. One of the most 

difficult aspects of using driver-based planning, however, is identifying appropriate business 

drivers and predicting the impact of these drivers. Machine learning can assist driver-based 

budgeting processes in identifying the key drivers and predicting the impacts of these drivers. 

This study discusses the building of predictive modeling using machine learning. It illustrates 

stages from quantifying the budgeting issues to determining the best predictive mode for 

driver-based budgeting. 
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Introduction 

Budgeting is an essential part of financial success. Instead of reacting in a panic to 

unfavorable developments, many businesses now use the budgeting process to cautiously 

plan ahead of time for a variety of possible contingencies. Budgets are an essential 

component of management control systems, and when managed thoughtfully, they promote 

coordination and communication among company subunits, provide a framework for judging 

performance and facilitating learning, and motivate managers and other employees. (C 

Godley, 2016) 

Every organization has plans and objectives that are derived from the organization's long- 

term strategy. The goal of budgeting is to assign financial values to those targets and plans, 

https://paperpile.com/c/m4XKWE/5dGy
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making progress easily measurable, and to translate strategic ideas into easy - to - understand 

operational actions (Réka, Ştefan and Daniel, 2014) 

Traditional budgeting methods are inefficient and costly; they rarely focus on strategy and 

frequently contradict one another; they add little value; they prioritize cost reduction over 

value creation; and they strengthen vertical command and control. Although traditional 

budgets have evolved over time, it is now believed that they are incapable of dealing with 

changes in the economic and business environment and must be reshaped; alternative 

budgeting methods must be developed (Réka, Ştefan and Daniel, 2014). 

Budgeting has come under increasing scrutiny in recent years. It takes far too long and thus 

costs far too much. However, it has additional flaws. Due to the rapid pace of change in many 

markets, the annual budget is obsolete almost immediately upon completion. That is why it is 

critical to have the ability to re-forecast more frequently. Organizations must reassess the 

future on a regular basis; realign their operational plans and resources accordingly. Once a 

year, or even twice a year, is insufficient for the majority of organizations, and they are well 

aware of this (Barrett, 2007). 

Budgeting, it has been argued, is a critical component of management accounting in the 

majority of organizations. Nevertheless, its contribution to the organization has been met with 

criticism. While some believe it is necessary, others believe it is a pointless distraction. Libby 

and Lindsay (2010) conducted additional research on the use of budgeting in organizations 

and its relevance and discovered that many organizations continue to use traditional 

budgeting despite widespread criticism from scholars (May, 2017). 

Opponents of the traditional budgeting maintained that the traditional budgeting frequently 

results in dysfunctional behavior among employees, consumes management time, and impairs 

an organization's flexibility and adaptability in any given business environment. Additionally, 

it has been argued that budgets not only consume a significant amount of an organization's 

time and resources, but also fail to adapt to changes in a competitive business environment, 

thereby rendering the organization obsolete and uninteresting (May, 2017). 

https://paperpile.com/c/m4XKWE/bA0x
https://paperpile.com/c/m4XKWE/bA0x
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https://paperpile.com/c/m4XKWE/rLt9
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Driver-based budgeting 

DBB (driver-based budgeting) is a technique that focuses on linking the performance of a 

business activity with a corresponding financial forecast. DBB improves overall transparency 

by evaluating the business drivers that impact financial performance. This necessitates close 

collaboration between finance teams and business leaders in order to identify all relevant 

drivers affecting business performance. 

Driver-based plans have an actual advantage over their simpler, trend-based counterparts in 

times of increased volatility and little historical precedent. While current popular movements 

may have sufficed in the past, results from the past may no longer be reliable predictors of 

future success in the increasingly unpredictable economy of today (Bahnub, 2010). When 

activity is heavily influenced by market forces or economic shocks, an increased reliance on 

external economic drivers should also be considered. 

Driver-based budgeting models line item expenses using both non-financial and financial 

driver data. Drivers vary by industry and even by company, and it may appear as though there 

is no one-size-fits-all definition of what it means to be a driver (Leon, Rafferty and Herschel, 

2012). However, a working definition has been given as follows: In driver-based planning 

and budgeting, a driver is a piece of non-financial or financial data that, when modified, has a 

direct effect on either revenues or expenses, thereby affecting the forecast profit and loss 

account, cash flow, and balance sheet. 

There are different types of drivers. Some of his instances have been reported below. 

Different types of drivers if we limit our attention to factors that have a direct impact on 

revenues or line item expenses; we see that there are numerous different types of drivers used 

in planning and budgeting. Among them are the following: 

Rates of consumption, productivity, or cycle times; these indicate the quantity of resources 

required to meet demand or produce one unit of output. Examples: • Simple productivity 

ratios, • The ratio of staff to supervisors. Costs of unit resources; the average cost of a unit of 

resource over a specified time period. For instance, the cost of a liter of gasoline; the average 

salary of a particular grade of staff; and the anticipated cost to replace a desktop computer. 

Unit selling prices: The average price at which a product or service is sold. Examples include 

the average premium for a specific type of insurance policy, the anticipated fee for each 

consulting engagement, and the anticipated selling price for a specific product. 

https://paperpile.com/c/m4XKWE/NAwX
https://paperpile.com/c/m4XKWE/4Bdc
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Quantitative indicators of demand; this includes both the forecast level of demand for the 

goods or services sold to clients and the level of demand experienced by specific 

departments. Examples: The number of customers who are currently active • Market size and 

market share • the quantity of a product sold • The quantity of items in a sales order.(Barrett, 

2007), (Kale, 2014) , (Suveera, no date),(Saporito, 2014). 

. 

 
One advantage of driver-based planning and budgeting is that it shortens the time it takes to 

create a budget or re-forecast. This is without a doubt one of the most significant and 

appealing advantages, as there are frequently tangible cost savings associated with driver- 

based budgeting (Barrett, 2007). 

 

Moreover, budgets based on driver aid in overcoming the calendar year fixation. Many of the 

relationships and rules in driver-based planning and budgeting models span multiple time 

periods (Collier and Agyei-Ampomah, 2005) . One of the benefits of systematically modeling 

resource requirements and comparing them to the amount of resource actually supplied is that 

excess capacity is instantly calculated and addressed directly across the organization (Rael, 

2017). 

 

According to the literature, another advantage of driver-based budgeting and planning is that 

it saves resources (Rael, 2017), (Barrett, 2007). There may be some cost savings because the 

time needed to complete the yearly budgeting cycle or produce a mid-year re-forecast is 

decreased and may require less iteration. Typically, this occurs in the finance department, 

where either the quantity of extra hours needed during the annual budgeting cycle is reduced 

or one or more junior positions can be eliminated or redeployed to more beneficial tasks 

(Cokins, 2017) (Risk Management Institute Singapore, 2014) (Kale, 2016) 

 

One of the most difficult aspects of using driver-based planning is identifying appropriate 

business drivers and understanding the impact of these drivers. In practice, determining 

specific drivers is often difficult due to the growing volume of business data, the complexity 

of today's business operations, and the rapid changes in the business environment (Risk 

Management Institute Singapore, 2014) . The identification of drivers and the determination 

of cause-and-effect relationships necessitates the provision of high-quality information from 

all organizational units (Andersen et al., 2008), including financial and operational units, so 

that it can be used in an integrated manner to make accurate predictions. 

https://paperpile.com/c/m4XKWE/qikN
https://paperpile.com/c/m4XKWE/qikN
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https://paperpile.com/c/m4XKWE/qikN
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https://paperpile.com/c/m4XKWE/bdvn
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A massive amount of data from various sources that is constantly growing (Lee, 2021), as 

well as the need for filtering, organization, and integration, may pose a significant barrier to 

identifying key drivers, conducting analysis, and reaching meaningful conclusions. Because 

this is critical to successfully implementing driver-based planning, it is clear that incorrectly 

defined drivers can result in poor budgeting and forecasting. When developing a driver-based 

model, it is critical to avoid overcomplicating and over-detailing. There is no reason to 

include variables that do not provide analytical benefits. It is more important to develop a 

model that is accurate, actionable, and focused on key performance drivers. 

 

Most driver-based planning and budgeting models begin with a demand measurement. This 

could be a market-based model in consumer markets, with market size, market growth, and 

market share driving sales volumes and demand across the board. Organizations competing in 

business-to-business markets may begin by viewing sales and marketing activity as the 

primary driver of demand for their model (Barrett, 2007). 

 

 

 

 

 
Machine learning 

 
Machine learning is becoming a progressively important tool in business, to the point where 

almost all employees will be impacted in some way over the next few years. Machine 

learning is concerned with learning the relationships between variables, making predictions, 

and making decisions in a changing environment using large data sets. 

 

The amount of data available for machine learning is increasing at an exponential rate. It is 

estimated that over a two-year period, we generate nine times the amount of data that existed 

at the start of the two years. Companies now have more information about their customers 

and their purchasing habits than ever before (Maruster, 2003). Advances in computer 

processing speeds and lower data storage costs enable us to process this data and draw 

conclusions in ways that were previously impossible. 

 

Machine learning is an artificial intelligence subfield (AI). AI is concerned with developing 

methods for machines to mimic and possibly improve human intelligence. Machine learning 

is the process of creating intelligence by learning from large amounts of data. It is arguably 

https://paperpile.com/c/m4XKWE/SAGA
https://paperpile.com/c/m4XKWE/qikN
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the most exciting advancement in AI, with the potential to transform virtually every aspect of 

a business. 

 

There are societal benefits of replacing human decision-making with machines. One 

advantage is that it is faster. Machines can process data and reach conclusions much more 

quickly than humans. A machine's output is consistent and easily replicated on other 

machines. Humans, on the other hand, occasionally behave erratically, and training a human 

for a task can be time-consuming and costly (Sammut and Webb, 2010). 

 

 

 

Building predictive models with machine learning 

 
The first steps in developing a predictive model for driver-based budgeting using machine 

learning is to quantify the budgeting challenge, that is, to express what the company is 

seeking to accomplish as a single number of score. The first stage requires a detailed 

understanding of what the company wants, and then explains this in terms that can be 

reflected by the forecast scores provided by the model they create (Safar et al., 2006). 

The second stage of building predictive models for DBB involves conducting exploratory 

analysis to understand the organization's data and IT assets, how they work, and how they 

interact with each other and the rest of the business, in addition to determining how to 

articulate the business aim quantitatively. This includes the following (Laud and Ibrahim, 

1995): 

a) The type of databases the company is equipped with b) the purpose of each database, and 

how are they used in business processes. c) The contents of the databases i.e. what data 

pieces and how those data items are formatted. d) The methods used to update and maintain 

each database Most businesses have a mix of “real-time” client databases that are updated as 

soon as something changes and batch databases that are updated less regularly, such as at the 

end of the month. e) The systems of decision-making already in place. c) Determining 

whether the model be integrated into an existing system or necessitates the development of 

new functionality. f) The information the company currently utilizes to make decisions. Even 

if this data is used to feed an archaic manual process, it is likely to be incredibly relevant for 

machine learning purposes because the company has previously designated it as useful. 

https://paperpile.com/c/m4XKWE/Bsen
https://paperpile.com/c/m4XKWE/vRAD
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Stage three includes constructing the machine learning „‟development sample‟‟. The stage 

three occurs once a data analyst has a strong knowledge of what data a business has and how 

it is structured, they may 

To develop predictive models, one naive method is to just put every piece of data an 

organization has into the machine learning process. Much data is out-of-date, unstable, or 

otherwise improper in practice (Olivera et al., 2017). As a result, it should be eliminated from 

the development sample if it degrades the machine learning process' performance. 

 
The following are some common reasons for excluding data from the machine learning 

process: a) Data that is no longer valid. Data that is no longer relevant to today's world should 

not be considered. Data on how people bought a particular product before an event   isn't 

going to help understand how people buy the product today. 

b) Data consistency. When the model is implemented, it is crucial to check whether the data 

utilized in the machine learning process is available. A data item should be excluded if it is 

not available at the time of implementation. 

c) Inexplicability. A key premise of machine learning is that it is necessary to avoid 

developing models with data that is completely comprehensible. This is especially true for 

models that are regulated by the industry or are strategically crucial to a company's success. If 

a data analyst comes with a model based on data that they are unable to explain. 

 
The process's fourth stage is data preparation. This is necessary because the raw data may be 

incorrectly formatted, contain errors, or do not provide the best possible representation of the 

data; a different depiction will make it much easier for the machine learning process to 

identify significant patterns in the data. During data preparation, four primary tasks occur 

(Barbieri and Berger, 2004): 

1. Generating new data. For instance, for the majority of problems, if x is more predictive 

than y, as a result, if only the y is available, x may need to be calculated from y, if they are 

linearly related. If one has credit card transaction data for the customers, it is best to create 

summary variables that represent the average spend per transaction, the number of 

transactions last month, and the time since the last transaction, among other things. 

2. Cleaning of data. There may be omissions or errors in the data during the Driver-based 

budgeting process. A primary goal of data preparation is to identify instances of this type of 

data and to either eliminate it (an exclusion) or reformat it; that is, to replace all 

incorrect/missing data with a standard value. 

https://paperpile.com/c/m4XKWE/Coj8
https://paperpile.com/c/m4XKWE/Coj8
https://paperpile.com/c/m4XKWE/Coj8
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4. Numeric conversion. Algorithms for machine learning utilize numerical data. Instead of 

"Yes"/"No"/"Maybe," "Yes"/"No"/"Maybe" response data from consumers of a particular 

item would be converted to 0/1/2 flags. When dealing with complex text or speech, such as a 

Twitter feed for the customers of a product, one approach is to include flags indicating 

whether or not certain words appear, or to start generating counts of the number of times 

certain words show up. 

 
The fifth stage to build a predictive model for DB budgeting involves pre - processing and 

preliminary variable choice once an appropriate data sample has been collected. Pre- 

processing data entails transforming it into a format that is most amenable to the machine 

learning algorithm being used. Typically, pre-processing entails two steps: standardization 

and transformation. Standardization processes normalize data so that it has comparable values 

(Cockburn, Gutwin and Greenberg, 2007). 

Variable selection (variable reduction) is the process of determining which data elements to 

discard and which to retain and present to the machine learning algorithm. The primary 

reason for this is that, despite the incredible power of today's computers, there is frequently 

too much data to process in a reasonable amount of time. Frequently, there will be thousands, 

if not millions, of individual data items created during data preparation and pre-processing. 

Typically, only a few of these prove to be materially significant in terms of generating 

accurate predictions for driver-driven budgeting. 

 
Variable selection is typically a quick and straightforward process. Numerous statistical tests 

are run to determine the degree to which each piece of observation data is correlated with the 

predicted outcome. Data items are retained only if a correlation is established. Typically, this 

process retains between 1% and 10% of data items. Additionally, there are methods such as 

Principal Component Analysis (PCA) that attempt to reduce a large set of initial data items to 

a manageable number of new ones. These new data items are then used to construct the 

model. 

 
Model construction is the sixth step in the process of making a predictive model for driver 

based budgeting. For a model building process, this is frequently the most notable feature of 

the machine learning process. However, that model construction accounts for only a small 

portion of the overall end-to-end process. Model construction begins with the presentation of 

development data to machine learning software, followed by the execution of the appropriate 

https://paperpile.com/c/m4XKWE/3NjU
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algorithm(s) and the generation of a predictive model. Typically, this would resemble 

scorecards, decision trees, and neural networks. Machine learning software in the modern era 

is highly automated. At the push of a button, a diverse array of algorithms is available. 

Numerous others include features for data preparation, pre-processing, and variable selection. 

Without the necessary technical background, it is possible that the data will not be properly 

prepared or preprocessed. Similarly, there are frequently a variety of different options 

available for a given algorithm, and the finance analyst ought to understand how each option 

affects the final solution. Similarly, one may be unable to interpret the software's outputs or 

be unaware of them. However, it is entirely possible for the software to report (correctly) that 

the model created is extremely accurate when, in fact, the model is useless. 

 
After developing a predictive model for budgeting using the development sample, additional 

work is required, at the seventh stage to evaluate the model's performance. From a technical 

standpoint, this primarily entails evaluating the model's predictive accuracy across different 

data samples. These should be completely unrelated to the data used to build the model in 

order to provide an accurate and unbiased assessment of the model's performance when 

applied operationally to new cases. If the development sample was created several months 

ago, the model should be evaluated using more recent data to ensure it continues to perform 

as expected. While a data analyst may report model performance based on the development 

sample, all final model performance assessments should be based on one or more 

independent validation samples. 

Other validation activities may be more qualitative in nature, to ensure compliance with any 

applicable legal restrictions on the use of specific types of data and to make sure that the data 

used during the model will be available when the model is applied; for example, if the model 

is going to be incorporated into one of the organization's systems, the data required to 

calculate the model's scores must be available (Carrion Schafer and Wakabayashi, 2012). 

Iterative processes are required for machine learning once a predictive model for budgeting 

has been developed. The last stage involves these iterative activities. Often, several models 

are constructed using varieties of different algorithms and/or different representations of the 

data before settling on a final model. With additional time and resources, it is always possible 

to improve predictive accuracy by a small margin. However, time and resources are limited in 

the real world. As a result, a decision must be made regarding when to terminate the machine 

learning process. 

https://paperpile.com/c/m4XKWE/YFxJ
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It is crucial to review the developed models and choose one to be the final model. The final 

predictive budgeting model should be evaluated in terms of performance indicators and 

bottom line benefits from a business perspective. These should have been taken into account 

from the start. 

 

 

 

Conclusion 

It's no surprise that the traditional, out-of-date approach to budgeting and planning is in 

desperate need of an overhaul. While it is time-consuming and demanding, the true tragedy of 

traditional budgeting and planning occurs when decision makers are presented with 

incomplete or inaccurate data. That is because business changes can render plans quickly 

obsolete and, in some cases, unusable. 

 
These difficulties are compelling financial organizations to reconsider their approach to 

budgeting and planning. And an increasing number are now adopting driver-based budgeting. 

Rather than taking a bottom-up approach, DBB takes a simplified top-down approach that 

focuses on key business drivers. These critical drivers serve as the information hub that 

enables leaders to make informed decisions efficiently. 

Machine learning applications based on predictive models are increasingly being used to 

supplement and/or replace expert judgment and manual decision-making in a wide variety of 

fields. This is because predictive models are typically more precise and objective than human 

experts. 
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