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Abstract

According to the literature, the bimodality of estimates in mixed causal–non-

causal autoregressive processes is due to unlucky starting values and happens only

ocassionally. This paper shows that a unique and convergent solution is not always

the case for models of this class. Instead, the likelihood function is not convex

leading to the multimodality of estimated parameters. It can be attributed to the

magnitude and sign of the autoregressive coefficients. Simultaneously, the number

of local modes grows with the number of autoregressive parameters in the model.

This multimodality depends on the parameters of the process and the chosen error

distribution. We have to apply grid search methods to extract candidate solutions.

The independence of residuals is a necessary hypothesis for the proper identification

of the processes. A simple AIC criterion helps to select an independent model.

Finally, I sketch a roadmap on estimating mixed causal-noncausal autoregressive

models and illustrate the approach with Brent spot oil price returns.

Keywords: non-causal model, non-convex likelihood, non-Gaussian, nonfundamen-

talness, multimodality.

JEL classification: C13, C22, C51, C52, C53, E37

1 Introduction

Non-causal autoregressive models gain popularity in recent years. The term ”non-causal”

may lead to the idea of the future affecting the current state. Instead, the non-causal
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component can be seen as a sustained expectational component incorporating our best

current knowledge of possible future scenarios. This reasoning follows Hansen and Sar-

gent (1991), who suggested using these models to solve the non-fundamentalness problem

of a rational expectations model. Also, the non-causal processes help model speculative

bubble phenomena and asymmetric cycles. Finally, Lanne and Saikkonen (2011) sug-

gest comparing non-causal autoregressive with non-invertible moving average processes,

which provides a wide range of potential model applications.

The non-causal autoregressions are successful in capturing the effects of omitted

variables or mitigating them. Lof (2013) shows that a univariate non-causal process

provides a good approximation for a multivariate process with omitted elements. He

also finds that non-causal models outperform causal alternatives when data is generated

by a nonlinear process. Lof and Nyberg (2017) emphasize that univariate non-causal au-

toregressions fit the data better when the actual data-generating process is multivariate.

By introducing leads of the data, the non-causal autoregression captures causal effects

induced by unavailable variables.

In this vein of discussion, it is fruitful to consider the fundamentalness issue. Under

the fundamentalness assumption, we believe the econometrician has the same data as

agents do. Thus, given all the relevant information, the modeled process can be seen as

a sequence of unseen shocks. In other words, the autoregressive structure can be con-

sistently inverted into a moving average process - and this implies causal structure. As

part of a large-scale multivariate causal model, a few series do not contain all the infor-

mation agents possess. Usually, factor models solve the practical non-fundamentalness

problem since they extract information from a lot of data. The non-causal models are,

in turn, non-fundamental: the econometrician has less information than agents do. De-

spite the lack of information on actual regressors, leads of the data approximate the

effect of unknown relevant predictors. Consequently, non-fundamentalness is modeled

by the non-causal framework.

Non-causal models also serve as an indicator of heterogeneous information available

for agents. These models can approximate large systems — an excellent engineering

example provided in Lu et al. (2019). They compare non-causal models with state-of-

the-art systems using high-dimensional gain matrices in a large-scale MIMO framework.

Non-causal autoregressive models are nonlinear and have no closed-form solution.

Breidt, Davis, Lii, and Rosenblatt (1991) developed an MLE estimator for the non-

causal models. The necessary assumption for estimation is the non-normality of the

data, which is often an empirical economic observation. If data is Gaussian, the model
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is not identifiable directly (Rosenblatt (2000)). Recently, attempts to identify non-causal

models with Gaussian innovations have been made by Lu et al. (2019).

Different fat-tailed parametric assumptions are used in order to support inference on

non-causal models. Lanne and Saikkonen (2011) used Student’s t-distribution. Gorieroux

and Zakoian (2013) applied Cauchy distribution to their analysis of non-causal processes.

Huang and Pawitan (2000), Wu and Davis (2010), as well as Hecq, Lieb, and Telg (2015)

advocated the use of Laplace distribution or the LAD estimator. The latter work has

shown a critical observation: if the innovations are just slightly non-normal, the param-

eter estimates have non-symmetric and non-normal distribution around the true values.

Student’s t-distribution has a seemingly alluring property - it approximates almost

any degree of heavy-tails from Gaussian to Cauchy in both limits. Additionally, it does

not belong to the exponential class of distribution, and the logarithmic transformation

of the likelihood is not very convenient. At the same time, the Laplacian assumption

is parsimonious in parameters and simple in logarithmic transformation. Besides MLE

and LAD estimators, Gourieroux and Jassiak (2017) designed another semiparametric

method for estimating non-causal VAR. It aims at getting linearly and nonlinearly un-

correlated residuals associated with the true parameter set. The decision on whether the

residuals are correlated or not relies on a combination of Ljung-Box-type test statistics.

Wu and Davis (2010) mention the objective function to be non-convex, but they

do not consider how seriously this fact affects the parameter estimates. Recently, Bec,

Nielsen, and Saidi (2020) discuss a relevant problem within the context of near-unit root

processes and a simple case with positive parameter values.

This paper aims to show that unimodality is instead a unique feature for mixed

causal-noncausal processes. In some cases, the number of modes may be as large as

the number of distinct roots in the process. Multimodality implies that optimization

algorithms crucially depend on starting values. By estimating the model only a few

times, we may not find a global optimum.

In this paper, I focus on the multimodality of the objective function. I illustrate how

the phenomenon is associated with autoregressive parameters: their magnitude and sign.

It is not guaranteed that the majority of estimates are located near the true parameters.

I suggest an independence condition is necessary to determine the global optimum. The

optimal model always has the maximized likelihood and minimized AIC of the residuals.

A parametric assumption plays a significant role as well. In the appendix, I discuss the

relevance of the actual distribution of innovations for estimation efficiency.

The rest of the paper consists of five sections. The second section discusses non-
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causal models, associated peculiarities, and, briefly, the estimation approach. The third

chapter illustrates the issue of multimodality with respect to different parameter settings

of mixed causal-noncausal processes. I show when the multimodality of the objective

function occurs and demonstrate why it is a potential problem. The fourth section

considers an empirical application for the Brent and WTI oil spot price returns. Finally,

the last section concludes the paper.

2 A General Model

Noncausal autoregressive processes comprise leading and lagging components in the

structure. Breidt et al. (1991) and Lanne and Saikkonen (2011) use the following repre-

sentation of the lag polynomial:

φ(L−1)ψ(L)yt = ǫt, ǫt ∼WN(0, σ2), (1)

where

ψ(L) = (1− ψ1L− ψ2L
2 − · · · − ψrL

r) = (1− λψ1L)(1− λψ2L) . . . (1− λψr L)

is the lag polynomial with r possibly distinct roots |λψj | < 1, and

φ(L−1) = (1− φ1L
−1 − φ2L

−2 − · · · − φsL
−s) = (1− λφ1L

−1)(1− λφ2L
−1) . . . (1− λφsL

−1)

is the lead polynomial with s distinct roots |λφj | < 1.

A purely causal process has λφj = 0, ∀ j = 1 . . . s. Similarly, we get a purely

noncausal process if λψj = 0, ∀ j = 1 . . . r. Otherwise, it is a mixed causal-noncausal

(MAR) process.

We can rewrite Eq. 1 and invert the lead polynomial:

φ(L−1)ψ(L)yt = ǫt

ψ(L)yt = φ(L−1)−1ǫt

Which (for MAR(1,1)) has a noncausal MA(∞) representation, since the lead polynomial

is invertible (in future):

ψ(L)yt = ǫt + φǫt+1 + φ2ǫt+2 + · · ·++φnǫt+n + . . . (2)

ψ(L) is an invertible lag polynomial (in past) with a regular MA(∞) representation,

then yt has a double-sided MA representation. Hence, the model from eq. 2 is nonfun-

damental: the space spanned by current and past values of yt is not contained in the
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space spanned by current and past values of ǫt. Following the Definition 1 in Alessi,

Barigozzi, and Capasso (2011) , the lag-lead polynomial ψ(L)φ(L−1) has r eigenvalues

inside the unit disk and s eigenvalues outside the disk.

The double-sided MA representation for the mixed causal-noncausal processes is

therefore:

yt =
∞
∑

i=−∞

πiǫt−i, (3)

where the sequence {πi} are the coefficients in front of zi in the Laurent series expansion

of (φ(z−1)ψ(z))−1, which exists in an annulus d < |z| < d−1 for some d < 1, see

Brockwell and Davis (1991). Causal autoregressive roots correspond to the right arm,

while non-causal roots associated with the left arm of the MA. This MA representation

is a natural way to justify and interpret non-causal autoregressions, see Figure 2.

A classical one-sided MA representation, or an impulse response function, can be

seen as a particular case of the double-sided one - with zero coefficients in the left arm.

In this sense, MAR allows a more general solution for the impulse response coefficients

making a classical autoregressive process a special case of the MAR.

Lanne and Saikkonen (2011) suggested a connection between noncausal autoregres-

sive and noninvertible moving average processes. Indeed, consider a noninvertible MA(1)

with |θ| > 1: zt = (1 + θL)et. It can be rewritten as zt = θL(1 + θ−1L−1)et, which is

invertible in future.

Following Brockwell and Davis (1991) and Lanne and Saikkonen (2011) we can see,

how the noncausal model MAR(r,s) can be estimated. Consider two auxillary processes:

ut = φ(L−1)yt and vt = ψ(L)yt, such that φ(L−1)vt = ǫt. Then,
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In matrix notation, we have

x = Ay

z = Cx or

z = CAy

The processes vt and ut are independent since they are built with (non) causal poly-

nomial operators. The joint pdf of z under true parameters may be expressed as

hU (u1, . . . , ur)

(

T−s
∏

t=r+1

f(ǫt;σ, λ)

)

hV (vT−s+1, . . . , vT ).

Where, hU and hV denote the joint pdf functions of first and last components of the

residuals (u1, . . . , ur) and (vT−s, . . . , vT ). In terms of the data y1, . . . , yT we have:

hU (φ(L
−1)y1, . . . , φ(L

−1)yr)

(

T−s
∏

t=r+1

f(φ(L−1)ψ(L)yt;σ, λ)

)

×

hV (ψ(L)yT−s+1, . . . , ψ(L)yT )|det(A)|

The determinant is independent of the size T, and because r and s are small relative

to T, we can approximate the joint pdf by central component and run the Approximate

ML estimator. The details of the method can be seen in Lanne and Saikkonen (2011).

The final question regarding the estimation method is what parametric assumption to

choose for the likelihood function. The mixed causal-noncausal processes are somewhat

similar to the infinite variance autoregressive processes and should have heavy-tailed

innovations. In this paper, I proceed in a direction of Wu and Davis (2010) and Hecq et
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al. (2015). However, instead of LAD estimator I use Laplacian MLE. An application of

plain absolute deviation minimizer worsenes the multimodality situation:

{ψ̂, φ̂, σ̂} = argmin
ψ,φ,σ

−L(yt|ψ, φ, σ) (4)

L(yt|ψ, φ, σ) = −(n ln 2σ +
1

σ

n−r−1
∑

t=s+1

|yt − a(ŷt|ψ̂, φ̂)|) (5)

where a(ŷt|ψ̂, φ̂) = φ̂(L−1)ψ̂(L)yt. Laplacian parametric distribution assumes the

LAD estimator, but the scale parameter participates in weighing the observations picking

up a better combination of parameters. The difference can be seen by comparing Table

3 and Table 4, where the first one reports LAD minimization and the second - Laplacian

likelihood maximization. There might be a link to quantile regression as well, but the

mixed causal-noncausal processes are nonlinear and are not a good match for linear

quantile regression.

The parameter estimates are asymptotically Normal, as shown in Wu and Davis

(2010) for the LAD estimator and Andrews, Davis, and Breidt (2006) for a general ML

estimator. In the non-causal setting, a consistent estimate of a lag order is obtained

by minimizing Akaike’s information criterion (AIC). At the same time, BIC usually

underestimates the number of non-causal autoregressive components, as in Andrews

and Davis (2013). AIC for purely causal structures suggests r + s lags and leads. For

example, a lag order of 2 obtained with the AIC approach suggests not only AR(2) but

two non-causal models (MAR(1,1) and MAR(0,2)) – 3 models in total.

By definition, a mixed causal-noncausal process consists of two autoregressive poly-

nomial parts. We may expect the process to drastic changes if there is a non-causal

component. However, it is not always the case. Instead, the behavior of a dominant

autoregressive arm is affected by the behavior of a latent one. What is dominant or

latent depends on the magnitude of each polynomial’s autoregressive roots. A positive

non-causal term smoothes the process and increases the amplitude of the causal part.

This property is useful in simulating speculative bubbles. A negative non-causal root

acts as a frequency modifier of the process and induces clusters of volatility. Figure 1

illustrates this behavior in detail. Non-causal processes with negative roots have prop-

erties similar to volatile processes – additional variability is coupled with clusters of

volatility, for example, various asset returns data.
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3 Multimodality of Estimates

In this chapter, I illustrate multimodality of the objective function in simulations and

work with the following model:

φ(L−1)ψ(L)yt = ǫt (6)

ǫt ∼ Laplace(0, σ)

Parameter σ is a scale parameter for the Laplacian distribution. It is not comparable to

a regular variance or Gaussian scale parameter.

Before the discussion, let’s define what is unimodal and what is not. Strictly speak-

ing, there is multimodality if an optimization converges to several optimal parameters.

However, we may allow some non-identical results to cluster around the true value due

to the rounding error from a practical perspective.

Proposition 1 (Different cases of Multimodality). Estimated parameters are strictly

unimodal if they form a bell shape. The parameters are mildly multimodal if no more

than 20% of them are distributed significantly far from the true value. Parameters are

heavily multimodal if more than 20% of realizations are located in different parts of the

hyperplane.

Next, I show that strictly unimodal distributions are not general results for mixed

causal-noncausal processes. Non-convexity of the likelihood function depends on coef-

ficients of the autoregressive polynomials and their sign. Thus, multimodality is not a

special case but a general problem related to non-causal models.

In the following, we develop an auxiliary tool that helps us understand some patterns

of multimodality.

First, we can rewrite the lag and lead polynomials as a vector product:

ψ(L) = 1− ψ1L− ψ2L
2 − · · · =

[

1 1 . . .
]













1

−ψ1L

−ψ2L
2

. . .













= V1Ψ, (7)

and

φ(L−1) = 1− φ1L
−1 − φ2L

−2 − · · · =
[

1 1 . . .
]













1

−φ1L
−1

−φ2L
−2

. . .













= V1Φ, (8)
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where V1 is a vector of ones. Next, we can rewrite the lag and lead polynomial as a

product of the representations above

φ(L−1)ψ(L) = (V1Φ)(V1Ψ)′ = V1ΦΨ
′V ′

1 = V1CV
′
1

C =













1

−φ1L
−1

−φ2L
−2

. . .













×
[

1 −ψ1L
1 −ψ2L

2 . . .
]

=













1 −ψ1L
1 −ψ2L

2 . . .

−φ1L
−1 ψ1φ1 φ1ψ2L

1 . . .

−φ2L
−2 φ2ψ1L

−1 ψ2φ2 . . .

. . . . . . . . . . . .













(9)

Matrix C may help to describe mixed causal-noncausal processes and to simulate them.

We can establish a sufficient condition for the multimodality of estimates.

3.1 A Symmetric Model

Proposition 2 (Sufficient condition for Multimodality). Let ψ(L) be a stable lag poly-

nomial with r distinct roots and φ(L−1) be a stable lead polynomial with s distinct roots,

and r = s. Suppose neither of eigenvalues of ψ(L) of φ(L−1) is near unity. Then, a

mixed causal-noncausal process shows multimodality of estimates if

TC = tr(C) = 1 +

r
∑

i=1

ψiφi < 1.

This result holds if φ and ψ are sufficiently large.

Consider MAR(1,1) model:

(1− ψL)(1− φL−1)yt = et

(1− ψL− φL−1 + φψ)yt = et

(1 + φψ)yt − ψyt−1 − φyt+1 = et

yt −
(ψyt−1 + φyt+1)

1 + φψ
=

1

1 + φψ
et

The trace of matrix C enters the reduced form of the mixed causal non-causal process

directly and affects the variance of the residual component. Processes with uniform signs

have a trace greater than one and processes with alternating signs - smaller than one.

Next, consider simulations for MAR(1,1) model with absolute parameter values

{ψ0;φ0} = [0.8; 0.3]. The particular numbers are close to the values reported in Lanne

and Saikkonen (2011). There are four sign combinations possible, and the corresponding
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contours of the likelihood functions are plotted in Figure 3. The diagonal plots are for

the parameters with uniform signs, and the off-diagonal plots are for the parameters

with alternating signs.

The likelihood hypersurface associated with uniform processes is unimodal, but there

is a local optimum in other cases. There is a unimodal distribution for diagonal and

multimodal for the off-diagonal plots. In latter cases, the modes are somewhat mirrored

with respect to the 45◦ line. If we choose parameters that are close to the dissecting

line, the multimodality disappears. Unfortunately, hypersurface plots are not available

for other MAR processes.

For the case of multimodal MAR(1,1), there are two centers of attraction for the

estimator, i.e., for the top right panel of Figure 3, they are: {ψA;φA} = {0.3;−0.8} and

{ψB;φB} = {−0.8; 0.3}. If we find an optimum, the second candidate is close to the

reflection of the first one. This is usually sufficient to reach both modes of distribution.

The resulting distribution for MAR(1,1) is illustrated in Figures 3 and 4.

For processes of a different order, we can track multimodality through the distribution

of an autoregressive parameter. The estimator converges to a cluster of similar vectors

from different starting values. Thus, we can get a potential optima list by grid search

procedure and extract the correspondent clusters.

For a more complex MAR(2,2) model, we have two stable model setups. First, all

autoregressive coefficients are inside the unit disk, i.e., their sum in each arm does not

exceed one in absolute value. Under this condition, all sign combinations of parameters

yield stable and stationary models. For this scenario (”wide case”), we have 16 different

stable and stationary models.

Next, some autoregressive parameters may be larger than one. The number of stable

and stationary models is less than the number of all possible sign combinations. If

only one autoregressive coefficient is larger than one - there are eight combinations. If

coefficients in both arms exceed unity - there are just four stationary processes. I will

call this scenario a ”narrow case.”

In simulations, I use the following scheme to visit all regions of the admissible pa-

rameter space. I estimate the MAR(r, s) model on a grid of starting values inside a

(r + s)-dimensional hypercube with a side [-0.95; 0.95]. I divide the parameter space

into an equally spaced grid of n intervals to get n(r+s) sub-hypercubes. Then I randomly

draw a point from each sub-hypercube and use it as a starting value for the MLE. Next, I

get Laplacian ML estimates and obtain a grid of optimal parameters. Such an algorithm

visits many regions of the hyperplane with relatively few attempts. A researcher quickly
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gets a wrong set of estimated parameters by choosing unlucky starting values. For some

parameters, the local mode(s) may be visited more often than the global one.

If all 16 models are stationary, the multimodality of the objective function is related

to autoregressive parameter values. The smaller are the parameters in magnitude, the

more often estimates are around the true value.

First, consider the processes with ψ0 = (0.4, 0.1) and φ0 = (0.3, 0.2). All sign com-

binations result in stable and stationary processes. Optimization yields either unimodal

or (depending on the particular innovation sequence) mildly multimodal distribution.

The illustration is in Figure 5. Perhaps, this set of parameters is sufficiently close to the

imaginable 45◦ symmetry line.

If we increase the parameter values in causal and non-causal parts of the process,

there is a gradual decrease in the number of unimodal or mildly multimodal solutions.

The general pattern reminds the chessboard pattern of matrix C.

For MAR(2,2) we have the following reduced form:

yt −
(ψ1 − φ1ψ2)yt−1 + (φ1 − ψ1φ2)yt+1

1 + φ1ψ1 + φ2ψ2
=

1

1 + φ1ψ1 + φ2ψ2
et.

Consider MAR(2,2) model with absolute parameter values ψ0 = (0.5, 0.3) and φ0 =

(0.6, 0.2). The trace of matrix C is tr(C) = 1 + φ1ψ1 + φ2ψ2 and can be found from the

Table 1. Here, main diagonal setups have unimodal or mildly multimodal hypersurface,

and models on the main antidiagonal represent multimodal cases.

For autoregressive parameters with moderate magnitude, unimodal distributions oc-

cur in 50% cases according to the chessboard pattern of matrix C. You can compare

Figure 6 with Table 1. In Figure 6, the horizontal line plots have the same ordering con-

cerning the sign pattern as the vertical plots with respect to the non-causal polynomial:

((+,+), (-,+), (+,-), (-,-)).

The chessboard pattern is not a unique one. With different autoregressive param-

eters, one can reach another matrix C. However, if parameter values are large enough,

the chessboard pattern breaks down, and more elements of matrix C do not reflect em-

pirical multimodality. Especially this situation is relevant when a root of a polynomial

approaches unity. Figure 7 demonstrates this situation with MAR parameter values:

ψ0 = (0.8, 0.7) and φ0 = (0.7, 0.2). But if the parameter values are small enough, the

results are uniformly distributed everywhere.

If we increase the parameters further, we have some unstable sign combinations.

Now, consider the situation, when ψ0 = (1.2, 0.3) and φ0 = (0.5, 0.3). The process is
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stable if ψ0 has an alternating sign pattern: ((+,-), (-,-)), while the sign pattern in non-

causal coefficients may vary. The analog of Table 1, in this case, consists of two last

columns.

The particular distribution of estimated parameters can be seen in Figure 8. For a

model with a large autoregressive parameter, the resulting likelihood function of a stable

process is almost always multimodal. Only in the first case with ψ0 = (1.2,−0.3) and

φ0 = (0.5, 0.3) the parameter estimates are mildly multimodal, and a share of correct

hits exceeds 80%.

Next, consider Figure 9, which reports the distribution of the first autoregressive

parameter estimates of a process with ψ0 = (0.5, 0.3) and φ0 = (1.2, 0.3). The non-

causal part has a parameter greater than one, and causal component parameters are

inside the unit disk.

Finally, consider the process with ψ0 = (1.7, 0.8) and φ0 = (1.5, 0.6). In this case,

we end up with four possible sign combinations. An example of such a simulation is in

Figure 10.

In this case, the pattern may depend on a difference between autoregressive coef-

ficients of the corresponding polynomial or the autoregressive polynomial roots. The

antidiagonal plots in Figure 10 have very few correct hits and show a minimal probabil-

ity of picking up the correct parameters. When roots of an autoregressive polynomial

approach unity, the multimodality gets wilder.

The multimodality considered in this block results from inappropriate starting val-

ues. By construction, stochastic search uses points from the unit cube. If the true

values do not belong to the unit cube, local maxima are chosen too often. However, in

practice, we do not know true parameters. Hence, such an approach is an appropriate

standardization.

3.2 An Asymmetric Model

The degree of multimodality in asymmetric models is attributed to signs and magnitudes

of autoregressive coefficient of causal and non-causal parts of the process.

If the true autoregressive parameters are small in magnitude, the parameter estimates

are uniformly distributed or mildly multimodal. Here, the modes of likelihood function

merge and form a unimodal hypersurface. An example of such a result is Figure 12.

There are no sets of parameters with a multimodal distribution.

If we increase the parameters to some moderate level, more multimodal outcomes
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occur. Eventually, the cases appear according to the following proposition.

Proposition 3 (Sufficient condition for Multimodality). Let ψ(L) be a stable lag poly-

nomial with r distinct roots and φ(L−1) be a stable lead polynomial with s distinct roots.

Suppose neither of eigenvalues of ψ(L) of φ(L−1) is near unity and φ and ψ are suffi-

ciently large. Then, a mixed causal-noncausal process shows multimodality of estimates

if

TC = 1 +

min (r,s)
∑

i=1

ψiφi < 1,

else the process is unimodal.

This is equivalent to the trace condition for symmetric processes, despite there is no

trace for rectangular matrices. In practice, an asymmetric model with one of the poly-

nomial having more roots than the other is more relevant. Consider, MAR(2, 1) model

or eq. (3) with r = 2; s = 1, and absolute parameter values {ψ0;φ0} = [(0.6; 0.3); (0.8)].

We have seen that the multimodality of the objective function is related to the sign

and magnitude of the autoregressive parameters. In this simplest asymmetric case,

the multimodality problem is also a significant issue. For instance, Table 6 provides

the clusters of parameter estimates of a standardized MAR(2, 1) process. Figure 11

illustrates the distribution of the first autoregressive parameter.

Perhaps multimodality depends on an appropriate choice of the likelihood function.

Consider the case with ψ0 = (0.8, 0.1) and φ0 = (0.8). The distribution of parameter

estimates can be seen in Figure 13. The two stochastic grid runs are reported in Table

3 and 4. The first one relies on LAD minimization and comprises 63 = 216 draws from

the stochastic grid with only 5% hit probability. The second uses Laplacian MLE and

contains 103 = 1000 simulations with a significantly higher correct hit probability.

At the same time, the true mode is not necessarily the most frequently visited,

as illustrated in Table 5. Sometimes, the local optimum may even have all-positive

autoregressive parameter estimates, even if the true parameters are not. In this case, we

may be lured to a trap by a nicely looking parameter vector.

It may seem evident that the magnitude of a non-causal component is solely re-

sponsible for the multimodality problem. However, it is not always true. Consider the

process with parameter values ψ0 = (0.8, 0.1) and φ0 = (0.1). Here, the non-causal root

is small in magnitude, but the likelihood function is not unimodal. Figure 14 indicates

a multimodal distribution of estimates. Albeit the non-causal component is small, it
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significantly affects parameter estimates distribution. The resulting set of histograms is

multimodal in each case.

These are sound arguments in favor of the stochastic grid search approach for MAR

estimation. The multimodality observation per se and situation when the true model

is not always dominant show that grid search is the only available tool to support our

choice of an appropriate solution.

3.3 Simulation Results

We can summarize the results for symmetric and asymmetric models in the following

way. First, if true parameters (both causal and non-causal) are small in magnitude, we

have either unimodal or mildly multimodal distribution of parameter values around the

proper set.

Next, if the true parameters are moderately large, we have a chessboard pattern for

multimodality of estimates. In this case, matrix C is a helpful tool to explore the cases

of multimodality.

Finally, if autoregressive parameters are large, parameter estimates are almost always

either mildly or significantly multimodal. In the extreme case of near-unit roots, the

distribution of parameter estimates is often multimodal and concentrated around false

values with only a few correct hits.

Technically, any estimation method relies on the analysis of correctly identified resid-

uals. However, in mixed causal-noncausal models, residuals are a nonlinear function in

autoregressive parameters. Therefore, it might be challenging to come up with correct

residuals first of all. There may be a connection between multimodality and eigenvalues

of causal and non-causal parts. However, a direct comparison of eigenvalues or dis-

tances between the largest causal and non-causal eigenvalues does not help to guess the

multimodality pattern.

Yet, there is a valuable observation about a possible number of modes in the likelihood

function. For the MAR(r,s) process, there are usually not more than r + s different

converging local and global modes. The main contribution of this paper is an emphasis

on the multimodal structure of the parameter estimates from mixed causal-noncausal

processes.

There are many competing models and no prominent tool to discriminate between

them (especially when data is not fat-tailed enough). Lanne and Saikkonen (2011)

suggested using the Ljung-Box test on autocorrelation for regular(LBT) and squared
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(McLeodLi test or absolute (LBT2)) residuals and pick a model with independent resid-

uals. This approach requires the independence of residuals as our identifying assumption.

The distribution of the Ljung-Box test statistic alone is bimodal and has a hyper-

surface similar to the likelihood function. Thus, linear independence is not a sufficient

criterion for model discrimination. The distribution of the Ljung-Box test of absolute

transformations is unimodal, but the test is almost prohibitively restrictive.

Fortunately, we can extract possible modes of the likelihood function and get associ-

ated parameter sets. Next, we need to check the residuals associated with the parameter

sets for independence. AIC is a good pointer on such independence.

In principle, AIC checks the remaining autoregressive structure in residuals associ-

ated with the parameter sets. Since there is a discrepancy between how the AIC is

calculated (Gaussian likelihood, causal structure) and how we get the residuals (Lapla-

cian likelihood, non-causal structure), some information may still exist in the residuals.

However, if AIC yields optimal lag length different to 0, we conclude the residuals to

remain dependent.

Proposition 4 (AIC for model identification (post-AIC)). Suppose we have a set of

competing models: ψ(L)φ(L−1)y
(i)
t = ǫ

(i)
t . We calculate AIC with respect to the au-

toregressive structure for i = 1, . . . , possible models. We consider the models with the

smallest estimated lag length of the residuals.

This idea is conceptually similar to the LBT criterion, but it works better in the

considered problem. The post-AIC may drop unsatisfactory models. However, it cannot

be a sole criterion due to its discrete nature. Although post-AIC is almost always zero

in globally optimal cases, it may yield zeros in suboptimal and misspecified models (see

Table 7).

If there are several models with minimal post-AIC value, the conclusion has to be

made with the objective function criterion. Ideally, the three criteria should coincide:

best objective function value, the least AIC and the best LBT (LBT2) statistic. For

example, table 7 shows that the globally optimal parameter set has minimal objective

function value, smallest possible post-AIC value, and a highly significant Ljung-Box test

statistic. This rule is the best among many I have considered and works well for different

objective functions.
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4 Empirical Application

Lof (2013), Lof and Nyberg (2017) They claim that noncausality can often be found

in financial data. The true price process may be incredibly complex, but we can ap-

proximate it with a simple non-causal process. The purpose of this chapter is to show

multimodality in real applications.

For the empirical part, I use monthly crude oil price data (”Brent” and ”WTI”)

obtained from the US. Energy Information Administration. The data covers 1M1990 -

10M2020. The prices are ”calculated by EIA from daily data by taking an unweighted

average of the daily closing spot prices for a given product over the monthly time period.”

Next, I approximate growth rates by taking the first differences of price logarithms,

see Figure 15. We estimate the optimal lag length by minimizing the Akaike Information

Criteria (AIC), which is four for both series. Thus, we can choose between 5 models: one

purely causal AR(4), one purely non-causal MAR(0,4), and three mixed causal-noncausal

MAR(4-k, k), where k = 1,2,3.

To validate the application of non-causal models, we need to test the underlying

probability distribution. If our data is Gaussian – we apply causal methods and dispose

of non-causal regressions (see Degression for details). If data is fat-tailed - the non-

causal options are allowed. In the Degression and Table 11 I illustrate the non-causal

inference is one of the most efficient for Laplacian data. Unfortunately, testing Laplacian

distribution is not a standard procedure in econometrics. There is only a limited number

of tools developed, in contrast to testing Gaussianity. I use the following two methods

to infer probability distribution.

First, we can assume the data follows Exponential Power Distribution, which nests

Gaussian and Laplacian as special cases. We can distinguish them by estimating a

specific shape parameter. This EPD nests a continuum of leptokurtic and platykurtic

cases. Thus, we can rule out Gaussianity and other platykurtic possibilities.

g(x;µ, σ, b) =
1

2σb1/bΓ(1 + 1/b)
exp

[

−1

b

∣

∣

∣

∣

x− µ

σ

∣

∣

∣

∣

b
]

(10)

The shape parameter can be estimated either by MLE or by the method developed by

Mineo (2003) and used in Franke (2014). If the parameter b̂ = 2, the data is Gaussian.

If it is smaller - the data are leptokurtic. If b̂ = 1 - the data is Laplacian. Finally, if

b̂ > 2, the distribution is platykurtic.

Second, we can refer to the ratio of maximized likelihoods (RML test). This test

was described in Balakrishnan, Kannan, and Nagaraja (2004, pp. 65-79) to discriminate
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between Laplacian or Gaussian distribution. Within this procedure, we can have a

glimpse on Type I and Type II errors and analyze both hypotheses.

Zn(θ0, θ1) =
n
∏

i=1

p(Xi, θ0)

p(Xi, θ1)
(11)

Define a ratio of maximized likelihoods and construct a test on Normality (or Laplacian-

ity) 1. According to Balakrishnan et.al. (2005), the test problem can be written in two

useful ways:

Problem1 : H0 : Normal vs. H1 : Laplace

Problem2 : H0 : Laplace vs. H1 : Normal

For each problem, there is a different rejection rule. Critical values for the Gaussian

null hypothesis are 9.46 and 5.98 under 95% and 99% significance level, respectively.

The critical values for Laplacian null hypothesis are −10.90 and −4.36 under 95% and

99% significance level, respectively. The minimum sample sizes for the test are 130 and

259 observations correspondingly. Table 8 provides various Normality tests. Generally,

Normality is rejected, and the Laplacian hypothesis is not.

Next, I estimate candidate models by Laplacian MLE from a grid of starting values.

For each model suggested by AIC = 4, we have a 4-dimensional parameter hypercube.

Then, I split each side of the hypercube into six intervals and get a grid of 64 = 1296

regions to explore. Finally, I pick a random starting point from each region and use it

as a grid search element.

The purely causal and non-causal models are unimodal by construction. However,

mixed causal-noncausal models are multimodal. For each MAR, we have a table of 1296

estimates, and I report the distribution of the first autoregressive parameter.

There are four possible autoregressive parameters, and four candidate modes are

possible. Thus, I pick the four largest bins of the first causal parameter histogram.

Then, I extract the best parameter set from each bin with the maximal objective function

value. At this moment, I have four candidate modes per each mixed causal-noncausal

model plus two unimodal solutions for pure (non)causal models - 14 candidate solutions

in total for each oil price index. These solutions are presented in Tables 10 and 9.

For WTI and Brent, the best model according to the log-likelihood function criterion

is MAR(2,2). On the other hand, most models reject autocorrelation in residuals by

1
Here I use the following sample statistics and rewrite the ratio of likelihoods in logarithmic form as:

T =
n

2
ln2−

n

2
lnπ + n lnθ̂ − n lnσ̂ +

n

2
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means of the standard Ljung-Box test(at 8 lags). Albeit, the opposite is applicable to

the same test with absolute transformations of residuals.

For Brent oil, no model satisfies the Ljung-Box test on independence for absolute

residuals. This test is very restrictive, even for simulations. MAR(2,2) is the only model

with zero post-AIC. Although most models show independence according to the standard

LBT, they still have some autoregressive structure according to AIC.

For WTI oil price, the models (1) and (2) in Table 10 are almost identical with

parameter values and log-likelihood. There are more competitive models with respect

to the post-AIC criterion. Here, four models produce independent residuals: a purely

causal AR(4), MAR(2,2), and two MAR(1,3) models (# 2 and # 3 are almost identical).

Each represents a version with independent residuals. Finally, we pick up the model with

the best objective function value - the mixed causal-noncausal model. Here we see, that

the post-AIC argument supports the choice taken based on multimodality analysis.

Despite the empirical multimodality, we have tools to discriminate the best model out

of the set of candidate solutions. However, there may be situations when the difference

between candidate models is minuscule. In this case, the candidate solutions should be

reported.

Generally, we can interpret the results using impulse response curves. The MAR(2,2)

model has a two-sided moving average representation. The right arm approximates the

causal polynomial with negative roots and oscillates around zero. The left-arm decays

exponentially in the past and describes the non-causal polynomial. The impulse response

curves can be seen on the right part of Figure 16 and roughly correspond to the one

depicted in the second plot of the third panel in Figure 2.

There are several layers of interpretation of the non-causal regression. First, the non-

causal component captures possible nonlinearities in the data and suggests speculative

behavior specific to the spot oil market. The left arm of the impulse response curve sets

up some kind of anticipation phase. The causal part of the impulse response describes

the behavior attributed to a correction phase.

Next, the non-causal part of the univariate impulse response may be generated by

omitted variables. Following Lof(2013), we can suggest the true price is a multivariate

process with possibly unobserved determinants. Those determinants are responsible for

the anticipation phase. It is important that market participants observe this information.

Finally, the anticipation phase indicates that oil price alone does not contain all

relevant information. Therefore, there is a non-fundamentalness problem for univariate

series. In the case of Brent oil, classical methods produce suboptimal results in terms of
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fit and residual autocorrelation.

Albeit MAR(2,2) is the best WTI model according to the three chosen criteria jointly,

it is not optimal in terms of model parsimony. Classical AR(4) is worse in likelihood

value, the coefficients are not statistically significant, but it is a linear model, in contrast

to MAR(2,2) or MAR(1,3). Lastly, causal AR(4) is inferior relative to the purely non-

causal MAR(0,4) that has better fit to the data, and similarly insignificant parameters.

Another interesting observation is the minuscule difference between MAR(2,2) and

the best of MAR(1,3) models. Appealing to the argument of statistical significance,

MAR(1,3) has sharper estimates than MAR(2,2) model. However, this argument has to

be discarded by the log-likelihood function value criterion.

Both WTI and Brent have very similar realizations and behave slightly differently

only in the past ten years. Thus they are governed mainly by the same economic (and

stochastic) laws. The identical results show that non-causal models can be successfully

augmented to the econometrician’s toolbox.

Empirically, the oil market is often driven by expectations of production increases or

cuts, i.e., OPEC decisions or US oil reserves changes. Directions of these movements are

usually predictable but not a magnitude (i.e., a cut or an increase). The anticipation

phase represents this predictability. Moreover, a unit shock does not have a magnitude

of 1 at the impact. Due to the predictability, the shock is spread among few periods

indicating how predictability affects the efficiency of political action.

5 Conclusion

In this paper, I discuss parameter estimation and identification problems in mixed causal-

noncausal autoregressive processes. Under the correct parametric assumption, the like-

lihood function is often non-convex and leads to multimodality of parameter estimates.

Appropriate starting points are crucial in attaining the global optimum. Unfortunately,

there is no ubiquitous starting point sufficient to achieve the true optimum. Instead, the

grid search procedure is implemented to find possible optima. A researcher has to choose

a model with the highest objective function value, given the independence of residuals.

The multimodality occurs when the autoregressive parameters are moderately large

and differ in sign. Usually, the likelihood function is unimodal for purely non-causal

models and mixed causal-noncausal with uniform parameter signs. However, the sign

does not matter if the largest autoregressive coefficient is small in magnitude, leaving the

likelihood unimodal. For moderate autoregressive cases, the trace of matrix C matches
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the observed multimodality sufficiently well. Finally, if autoregressive parameters are

large, the parameter estimates distribution becomes multimodal irrespective of the sign.

Under certain circumstances (coefficients close to the unit root, certain sign combi-

nations), parameter estimates are concentrated around false mode. In this case, only a

few starting points hit the global maximum correctly. This fact requires a grid search

approach to visit various regions of the parameter space.

Lii and Rosenblatt (1996) discuss grid search to estimate non-gaussian non-minimum

phase ARMA sequences and illustrate multimodality of an ARMA(1, 1) model with a

causal AR component and non-invertible MA part. Following Lanne and Saikkonen

(2011) we may relate non-causal autoregressive processes to non-invertible moving aver-

age processes. In this case, the source of multimodality may come from the non-invertible

moving average representation of non-causal autoregressions.

The inference on the mixed causal-noncausal autoregressive processes may be con-

ducted in the following steps.

1. First, a researcher tests if data follows Laplacian (or any other fat-tailed) distri-

bution;

2. Second, the lag order is estimated consistently by minimizing AIC for classical

causal models;

3. Third, the estimated MAR lag length as (r + s) a sum of possible lag orders in

causal/non-causal parts. Thus, we have r + s+ 1 possible autoregressive models.

4. Later, for each candidate model, a grid search approach with various starting values

must be considered. It is important to visit all regions of the parameter space.

5. Next, we pick up models with independent residuals (or the least dependent) using

post-AIC criterion and choose the model with the maximal objective function

value. Optimally, the model residuals should pass the Ljung-Box test on linear

and nonlinear autocorrelation jointly.

The multimodality poses a significant challenge for univariate non-causal models.

Simultaneously, the problem is magnified for non-causal vector autoregressions. I leave

this complication for future research.
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Appendix

How important it is to have non-Gaussian data?

Current degression extends the debate on MAR identification and estimation by con-

sidering different parametric distributions of the innovation sequences. Multimodality

can be traced and analyzed with sufficiently fat-tailed distribution but not caused by a

particular distribution. Rather, it is a model’s response to a nonlinear autoregressive

structure. If the noise component is not sufficiently fat-tailed, the false mode may have

a higher likelihood function value in (relatively) small samples. In the extreme case,

with Gaussian innovations, there is no mode but a uniform distribution of estimates

over some domain.

Again, I consider MAR(1,1) model with parameter absolute values ψ0 = 0.8 and φ0 =

0.3. I simulate the processes 500 times for several sample sizes n = (100; 300; 500; 1000)

and distributions {Gaussian, Student-t (ν = 20), Student-t (ν = 9), Student-t (ν = 3),

Laplacian }. Table 11 reports how frequent the first causal parameter falls within the

interval [0.75; 0.85]. Additionally, the table provides mean estimate of the first au-

toregressive parameter, obtained from all converging runs from different starting values.

This statistic indicates precision of our approach. In each case, I pick the result with

globally maximized likelihood function value.

First, Gaussian innovations prevent model identification and estimation in a sensible

interval. If innovations are Student t-distributed with 20 degrees of freedom, the per-

centage of correct hits ranges from 25% in a sample size n = 100 to 65% for sample size

n = 1000. Next, innovations with Student’s t (ν = 9) distribution, have a correct hits

range from 30% for n = 100 to 85% for large sample. Finally, Laplacian or t-distributed

with 3 degrees of freedom innovations are similar in performance and have at least 57%

of correct hits in small samples. For a large sample, the share of correct hits may exceed

99%.

These results can be generalized in the following way. First, the inference is better for

a large sample. We observe the share of correctly identified models grows significantly

when the sample size increases from n = 100 to n = 1000.

Second, a lot of tail-events are necessary to identify and estimate a mixed causal-

noncausal model correctly. For n = 100, the percentage of correct hits increases from

16% for Gaussian cases to about 61% with Laplacian innovations. For large samples,

there are even greater differences.

Thus, MAR estimation is appropriate in small samples if there is a guaranteed fat-
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tailedness. A similar conclusion is drawn by Hecq et al. (2015). However, they consider

models with all-positive parameters.

We cannot estimate the MAR process with Gaussian innovations. The Nonnormality

of innovations is a necessary assumption for the MAR process to be identified. It is

essential to avoid the temptation of applying MAR for subtly non-normal residuals. The

stronger is Nonnormality, the more often a global optimum is a proper one. Eventually,

if the sample is large and Laplacian, the proper estimation frequency converges to 1.

Thus, it is crucial to test data on Laplacianity to provide enough justification for MAR

application.
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Tables

noncausal\ causal (+,+) (-,+) (+,-) (-,-)

(+,+) 1.36 0.76 1.24 0.64

(-,+) 0.76 1.36 0.64 1.24

(+,-) 1.24 0.64 1.36 0.76

(-,-) 0.64 1.24 0.76 1.36

Table 1: Trace of matrix C for different sign combinations of the MAR(2,2) process with

ψ0 = (0.5, 0.3) and φ0 = (0.6, 0.2).

Causal NonCausal AIC LBT (8 lags) LLV N

ψ1 ψ2 φ1 φ2 σ MA AR Linear Absolute (minus) 1296

Simulated -0.500 0.300 -0.600 0.200

# 1 -1.665 -0.682 0.522 -0.032 30.433 1 2 0.042 0.000 25.544 165

(0.161) (0.163) (0.181) (0.188) (13.607)

# 2 -1.268 -0.312 0.152 0.300 30.803 4 4 0.000 0.000 25.635 3

(0.307) (0.293) (1.353) (0.643) (13.689)

# 3 -0.503 0.288 -0.580 0.207 28.027 0 0 0.147 0.111 25.131 940

(0.166) (0.190) (0.182) (0.166) (12.535)

# 4 0.624 -0.142 -1.753 -0.762 29.762 5 5 0.010 0.001 25.429 188

(0.339) (0.257) (0.166) (0.161) (13.317)

Table 2: There may be many solutions for the MAR(2,2) model. Distribution of the

autoregressive parameter vector estimates according to different clusters in the MAR(2,2)

model with (-,+,-,+) sign pattern. (Mode 3 is associated with the true set.)

ψ1 ψ2 φ1 LBT p.val LAD AIC N = 216

Simulated 0.8 0.1 -0.8

Cluster 1 -0.01 0.83 -0.02 0.03 484.38 4 177

Cluster 2 0.01 0.81 -0.05 0.08 484.48 0 30

Cluster 3 0.81 0.09 -0.81 0.53 450.66 0 9

Table 3: An estimation with LAD minimizer, instead of Laplacian MLE. The result is

generally the same. However in some specific cases, the frequency of a correct hit is

extremely small. For this process it is less than 5%.
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Causal Noncausal AIC LBT (8 lags) LLV N

ψ1 ψ2 φ1 σ MA AR Linear Absolute (minus) 1000

Simulated 0.8 0.1 -0.8

# 1 -1.007 -0.155 0.930 125.087 2 2 0.005 0.459 26.084 245

(0.185) (0.170) (0.098) (62.610)

# 2 0.034 0.764 -0.069 123.199 0 0 0.043 0.109 26.031 168

(0.203) (0.168) (0.187) (61.553)

# 3 0.781 0.094 -0.795 115.021 0 0 0.359 0.277 25.755 587

(0.233) (0.271) (0.198) (57.480)

Table 4: MLE and LAD estimates are different. Distribution of the autoregressive

parameter vector estimates according to different clusters in the MAR(2,1) model with

(+,+,-) sign pattern. (Mode 3 is associated with the true set.)

Causal Noncausal AIC LBT (8 lags) LLV N

ψ1 ψ2 φ1 σ MA AR Linear Absolute (minus) 1000

Simulated 0.8 -0.1 -0.8

# 1 -0.206 0.595 0.177 152.396 2 2 0.086 0.025 26.879 608

(0.353) (0.326) (0.230) (76.188)

# 2 0.821 -0.115 -0.801 144.412 0 0 0.845 0.133 26.662 392

(0.188) (0.236) (0.226) (72.235)

Table 5: The most frequent mode is not necessarily the true one. Distribution of the

autoregressive parameter vector estimates according to different clusters in the MAR(2,1)

model with (+,-,-) sign pattern. (Mode 2 is associated with the true set.)

Causal Noncausal AIC LBT (8 lags) LLV N

ψ1 ψ2 φ1 σ MA AR Linear Absolute (minus) 1000

Simulated 0.6 -0.300 -0.800

# 1 -0.559 0.135 0.309 177.468 3 3 0.000 0.005 27.489 277

(0.188) (0.163) (0.232) (88.714)

# 2 -0.303 0.258 0.060 178.527 3 3 0.000 0.001 27.512 32

(0.229) (0.301) (0.253) (89.263)

# 3 0.573 -0.286 -0.766 161.954 0 0 0.750 0.964 27.121 691

(0.171) (0.170) 0.164 (81.003)

Table 6: Distribution of the autoregressive parameter vector estimates according to

different clusters in the MAR(2,1) model with (+,-,-) sign pattern. (Mode 3 is associated

with the true set.)
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Causal NonCausal AIC LBT (8 lags) LLV N

ψ1 φ1 φ2 σ MA AR Linear Absolute (minus) 1000

Simulated 0.9 -0.6 0.3

# 1 -0.966 1.223 -0.266 94.309 2 2 0.203 0.493 24.964 354

(0.107) (0.281) (0.269) (47.094)

# 2 0.197 0.053 0.872 94.139 0 0 0.479 0.037 24.951 285

(0.230) (0.184) (0.153) (47.077)

# 3 0.910 -0.657 0.238 88.879 0 0 0.958 0.959 24.717 361

(0.150) (0.143) (0.151) (44.492)

Table 7: A non near unit root noncausal process may have a near unit root mirroring

process. Distribution of the autoregressive parameter vector estimates according to

different clusters in the MAR(1,2) model with (+,-,+) sign pattern. (Mode 3 is associated

with the true set.)

Data AR(4) MAR(3,1) MAR(2,2) MAR(1,3) MAR(0,4)

J-B test 610.602 461.885 3516.667 3100.786 2936.761 827.530

p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Shapiro-Wilk 0.916 0.933 0.886 0.891 0.888 0.924

p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

EPD: b̂ 0.984 1.074 0.895 0.903 0.895 0.981

RML test -29.516 -21.847 -38.596 -37.169 -37.253 -29.969

Table 8: Strong rejection of Normality hypothesis and evidence in favor of Laplacian

hypothesis. The EPD shape parameter and the RML test statistic for the data, and for

the various model’s residuals.
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Model Causal Noncausal σ AIC LBT(8) LLV N

Const ψ1 ψ2 ψ3 ψ4 φ1 φ2 φ3 φ4 σ MA AR Linear Absolute (minus)

AR(4) 0.014 0.215 -0.149 0.009 -0.118 4.295 4 4 0.174 0.000 18.903 1296

(0.027) (0.174 ) (0.335) (0.148) (0.312) (1.753)

MAR(3,1)

1 0.008 -0.318 -0.219 -0.097 0.521 4.218 4 4 0.010 0.000 18.796 327

(0.023) (0.080) (0.119) (0.088) (0.083) (1.722)

2 0.010 -0.114 -0.107 -0.033 0.358 4.219 4 4 0.227 0.000 18.796 519

(0.022) (0.196) (0.213) (0.183) (0.197) (1.722)

3 0.010 -0.100 -0.105 -0.031 0.342 4.220 4 4 0.240 0.000 18.797 58

(0.013) (0.431) (0.077) (0.164) (0.272) (1.723)

4 0.006 0.575 -0.201 0.010 -0.362 4.283 4 4 0.244 0.000 18.879 392

(0.024) (0.100) (0.098) (0.127) (0.112) (1.751)

MAR(2,2)

1 0.006 -0.485 -0.167 0.719 -0.236 4.159 0 0 0.417 0.000 18.711 436

(0.024) (0.144) (0.153) (0.084) (0.127) (1.697)

2 0.005 -0.367 -0.080 0.597 -0.187 4.050 4 4 0.340 0.001 18.762 287

(0.030) (0.264) (0.264) (0.156) (0.317) (1.598)

3 0.009 -0.057 -0.146 0.307 0.029 4.221 4 4 0.114 0.000 18.801 319

(0.024) (0.212) (0.189) (0.097) (0.175) (1.722)

4 0.010 0.007 -0.188 0.216 0.083 4.236 4 4 0.047 0.000 18.807 254

(0.015) NA (0.146) (0.227) (0.092) (1.733)

MAR(1,3)

1 0.003 -0.367 0.631 -0.264 0.083 4.204 4 4 0.125 0.005 18.773 580

(0.025) (0.074) (0.110) (0.112) (0.084) (1.717)

2 0.007 -0.220 0.446 -0.149 0.017 4.233 4 4 0.200 0.000 18.815 140

(0.014) (0.253) (0.133) (0.079) NA (1.729)

3 0.009 -0.060 0.305 -0.060 -0.023 4.239 4 4 0.306 0.000 18.818 94

(0.026) (0.090) (0.111) (0.099) (0.099) (1.733)

4 0.006 0.460 -0.285 -0.110 0.010 4.336 4 4 0.001 0.000 18.972 482

(0.021) (0.111) (0.110) (0.139) (0.061) (1.767)

MAR(0,4) 0.007 0.274 -0.049 0.022 -0.087 4.199 4 4 0.210 0.000 18.768 1296

(0.023) (0.110) (0.101) (0.081) (0.127) (1.714)

Table 9: Classical AR(4) is inferior to MAR(2,2) in explaining Brent spot oil price returns and contains autocorrelated residuals. In

each mixed case, 4 best models reported. LBT is a p-value of the Ljung-Box test on autocorrelation with 8 degrees of freedom, LBT.a

- same for residuals in absolute form. The columns 11 and 12 are AIC-based optimal lag length estimates with respect to AR and MA

structures. The last column is the number of solutions nearby the chosen local minimum.
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Model Causal Noncausal σ AIC LBT(8) LLV N

Const ψ1 ψ2 ψ3 ψ4 φ1 φ2 φ3 φ4 σ MA AR Linear Absolute (minus)

AR(4) 0.007 0.231 -0.056 -0.052 -0.110 4.069 0 0 0.567 0.000 18.585 1296

(0.025) (0.116) (0.127) (0.136) (0.117) (1.660)

MAR(3,1)

1 0.010 -0.367 -0.224 -0.150 0.562 4.003 4 4 0.003 0.000 18.484 615

(0.021) (0.242) (0.240) (0.168) (0.120) (1.633)

2 0.012 -0.115 -0.059 -0.125 0.334 4.021 4 4 0.264 0.000 18.514 267

(0.020) (0.099) (0.079) (0.072) (0.106) (1.640)

3 0.010 -0.083 -0.057 -0.117 0.319 4.025 4 4 0.367 0.000 18.517 275

(0.027) (0.278) (0.215) (0.127) (0.266) 1.643

4 0.006 0.698 -0.369 0.089 -0.520 4.065 4 4 0.102 0.000 18.573 139

(0.021) (0.122) (0.097) (0.083) (0.106) (1.660)

MAR(2,2)

1 0.006 -0.421 -0.129 0.677 -0.249 3.957 0 0 0.668 0.006 18.411 757

(0.022) (0.141) (0.171) (0.097) (0.128) (1.616)

2 0.007 -0.400 -0.148 0.675 -0.201 3.958 0 0 0.486 0.006 18.412 166

(0.021) (0.131) (0.213) NA (1.616)

3 0.002 0.559 -0.164 -0.375 -0.050 4.056 4 4 0.140 0.000 18.554 187

(0.027) (0.102) (0.077) (0.123) (0.178) (1.658)

4 0.005 0.251 -0.214 0.006 0.198 4.066 4 4 0.183 0.000 18.576 186

(0.020) (0.124) (0.226) (0.123) (0.241) (1.659)

MAR(1,3)

1 0.008 -0.418 0.676 -0.302 0.043 3.966 0 0 0.401 0.014 18.424 886

(0.025) (0.071) (0.060) (0.059) (0.068) (1.619)

2 0.008 -0.233 0.498 -0.198 0.006 4.010 0 0 0.532 0.000 18.490 33

(0.032) (0.203) (0.239) (0.226) (0.102) (1.638)

3 0.012 -0.171 0.413 -0.138 -0.021 4.068 0 0 0.467 0.000 18.507 21

(0.044) (0.184) (0.167) (0.211) (0.236) (1.681)

4 -0.001 0.493 -0.306 -0.101 -0.036 4.095 4 4 0.003 0.000 18.623 356

(0.022) (0.103) (0.105) (0.167) (0.105) (1.671)

MAR(0,4) 4 0.008 0.237 -0.032 -0.008 -0.073 4.008 4 4 0.197 0.000 18.493 1296

(0.026) (0.212) (0.183) (0.086) (0.083) (1.635)

Table 10: Classical AR(4) is inferior to MAR(2,2) in explaining WTI spot oil price returns. However, both produce residuals without

autocorrelation. In each mixed case, 4 best models reported. LBT is a p-value of the Ljung-Box test on autocorrelation with 8 degrees of

freedom, LBT.a - same for residuals in absolute form. The columns 11 and 12 are AIC-based optimal lag length estimates with respect

to AR and MA structures. The last column is the number of solutions nearby the chosen local minimum.
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n = 100 n = 300 n = 500 n = 1000

share of

successes

share of

successes

share of

successes

share of

successesSign pattern Distribution ψ̂1 ψ̂1 ψ̂1 ψ̂1

(+,+)

Gaussian 0.550 0.202 0.540 0.258 0.535 0.292 0.549 0.328

Student-t,ν = 20 0.567 0.190 0.613 0.354 0.636 0.436 0.680 0.588

Student-t,ν = 9 0.628 0.280 0.698 0.466 0.731 0.584 0.751 0.776

Student-t,ν = 3 0.748 0.586 0.791 0.854 0.798 0.942 0.801 0.996

Laplacian 0.749 0.586 0.787 0.872 0.794 0.946 0.798 0.996

(-,+)

Gaussian -0.234 0.190 -0.193 0.284 -0.214 0.350 -0.269 0.446

Student-t,ν = 20 -0.293 0.216 -0.361 0.402 -0.389 0.496 -0.327 0.518

Student-t,ν = 9 -0.363 0.292 -0.436 0.480 -0.508 0.610 -0.442 0.636

Student-t,ν = 3 -0.621 0.562 -0.726 0.842 -0.746 0.918 -0.695 0.898

Laplacian -0.607 0.606 -0.656 0.828 -0.688 0.874 -0.639 0.852

(+,-)

Gaussian 0.217 0.202 0.233 0.310 0.259 0.382 0.264 0.460

Student-t,ν = 20 0.351 0.266 0.323 0.374 0.382 0.494 0.322 0.504

Student-t,ν = 9 0.385 0.292 0.478 0.486 0.481 0.580 0.449 0.648

Student-t,ν = 3 0.643 0.546 0.708 0.824 0.730 0.910 0.688 0.892

Laplacian 0.600 0.586 0.663 0.810 0.682 0.878 0.665 0.874

(-,-)

Gaussian -0.559 0.200 -0.561 0.260 -0.551 0.298 -0.563 0.396

Student-t,ν = 20 -0.564 0.234 -0.623 0.352 -0.644 0.442 -0.673 0.586

Student-t,ν = 9 -0.629 0.284 -0.692 0.490 -0.728 0.638 -0.756 0.792

Student-t,ν = 3 -0.754 0.594 -0.791 0.854 -0.796 0.942 -0.799 0.994

Laplacian -0.749 0.620 -0.796 0.894 -0.798 0.974 -0.800 0.998

Table 11: For the Laplacian data, the global optimum is most likely the true one. simulation study of MAR(1,1) with true parameters

{ψ0, φ0} = {0.8, 0.3}, different sign pattern (column 1), different innovations (column 2) and sample sizes. For each case a total of 500

models considered. For each vertical block ψ̂1 is a mean estimate of the first causal autoregressive parameter for the global modes. The

share of successes is a frequency of global optima yielding the first causal estimate to be in ψ̂1 = ψ0 ± 0.05.
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Figure 1: Simulated causal AR(2) and mixed causal-noncausal MAR(2,1) processes with the same innovations and parameters

ψ = (0.6, 0.3), φ = 0.8. The first block refers to MAR(2,1) with a positive noncausal root, second - to AR(2), the third

- MAR(2,1) with a negative noncausal root. The vertical blocks represent the sign structures of the causal autoregressive

polynomial.
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Figure 2: Simulated impulse responses from various autoregressive processes with

ψ = (0.5, 0.3), φ = (0.6, 0.2). The upper row represent causal processes, second row

- noncausal processes. The lower 4 rows represent mixed causal-noncausal processes. A

dot reprents a unit shock at t = 21.
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Figure 3: Simulated likelihood function contour plots for the MAR(1,1) process with

ψ = 0.8, φ = 0.3. The upper left plot is for all-positive autoregressive roots. The bottom

right plot is for all-negative roots. The off-diagonal plots represent processes non-uniform

in roots.
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Figure 4: Distributions of the first causal autoregressive parameter of the MAR(1,1)

process with ψ = 0.8, φ = 0.3. The upper left plot is for all-positive autoregressive roots.

The bottom right plot is for all-negative roots. The off-diagonal plots represent processes

non-uniform in roots.

35



0

500

1000

−2 −1 0 1 2
Causal: +,+. NCausal: +,+

0

500

1000

−2 −1 0 1 2
Causal: −,+. NCausal: +,+

0

500

1000

−2 −1 0 1 2
Causal: +,−. NCausal: +,+

0

500

1000

−2 −1 0 1 2
Causal: −,−. NCausal: +,+

0

250

500

750

1000

−2 −1 0 1 2
Causal: +,+. NCausal: −,+

0

300

600

900

−2 −1 0 1 2
Causal: −,+. NCausal: −,+

0

400

800

1200

−2 −1 0 1 2
Causal: +,−. NCausal: −,+

0

500

1000

−2 −1 0 1 2
Causal: −,−. NCausal: −,+

0

500

1000

−2 −1 0 1 2
Causal: +,+. NCausal: +,−

0

400

800

1200

−2 −1 0 1 2
Causal: −,+. NCausal: +,−

0

500

1000

−2 −1 0 1 2
Causal: +,−. NCausal: +,−

0

500

1000

−2 −1 0 1 2
Causal: −,−. NCausal: +,−

0

250

500

750

1000

−2 −1 0 1 2
Causal: +,+. NCausal: −,−

0

300

600

900

1200

−2 −1 0 1 2
Causal: −,+. NCausal: −,−

0

500

1000

−2 −1 0 1 2
Causal: +,−. NCausal: −,−

0

500

1000

−2 −1 0 1 2
Causal: −,−. NCausal: −,−

Figure 5: The parameter vector distribution is unimodal when the parameters are small. Distributions of the first causal

autoregressive parameter of the MAR(2,2) process with ψ = (0.4, 0.1), φ = (0.3, 0.2). Diagonal plots are for processes with

matching sign pattern for causal and noncausal polynomial. The first diagonal plot is for all-positive parameters, the last

one - for all negative parameters. The off-diagonal plots represent processes with non-uniform parameters.
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Figure 6: The antidiagonal parameter combinations are multimodal when the parameters are moderately large. Distributions

of the first causal autoregressive parameter of the MAR(2,2) process with ψ = (0.5, 0.3), φ = (0.6, 0.2). Diagonal plots are

for processes with matching sign pattern for causal and noncausal polynomial. The off-diagonal plots represent processes

with non-uniform parameters.
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Figure 7: Almost all parameter vector combinations are multimodal when the parameters are large. Distributions of the

first causal autoregressive parameter of the MAR(2,2) process with ψ = (0.8, 0.1), φ = (0.7, 0.2). Diagonal plots are for

processes with matching sign pattern for causal and noncausal polynomial. The off-diagonal plots represent processes with

non-uniform parameters.
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Figure 8: Distributions of the first causal autoregressive parameter of the MAR(2,2)

process with ψ = (1.2, 0.3), φ = (0.5, 0.3). Horizontal blocks represent different sign

patterns of the noncausal component. Vertical blocks are for causal patterns.
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Figure 9: Distributions of the first causal autoregressive parameter of the MAR(2,2)

process with ψ = (0.5, 0.3), φ = (1.2, 0.3).
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Figure 10: Frequency of a correct choice is very low for antidiagonal cases. Dis-

tributions of the first causal autoregressive parameter of the MAR(2,2) process with

ψ = (1.7, 0.8), φ = (1.5, 0.6).
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Figure 11: Distributions of the first causal autoregressive parameter of the MAR(2,1)

process with ψ = (0.6, 0.3), φ = 0.8. The upper left plot is for all-positive autoregressive

roots. The bottom right plot is for all-negative roots. The off-diagonal plots represent

processes non-uniform in roots.
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Figure 12: Distributions of the first causal autoregressive parameter of the MAR(2,1)

process with ψ = (0.3, 0.1), φ = 0.4. The upper left plot is for all-positive autoregressive

roots. The bottom right plot is for all-negative roots.
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Figure 13: Distributions of the first causal autoregressive parameter of the MAR(2,1)

process with ψ = (0.8, 0.1), φ = 0.8. The upper left plot is for all-positive autoregressive

roots. The bottom right plot is for all-negative roots. The off-diagonal plots represent

processes non-uniform in roots.
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Figure 14: Distributions of the first causal autoregressive parameter of the MAR(2,1)

process with ψ = (0.8, 0.1), φ = 0.1. The upper left plot is for all-positive autoregressive

roots. The bottom right plot is for all-negative roots. The off-diagonal plots represent

processes non-uniform in roots.
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Figure 15: Upper panel: Brent (red, solid) and WTI (black, dashed) oil spot prices

1M1990-10M2020. Lower panel: Approximated Brent (red, solid) and WTI (black,

dashed) oil spot price growth rates.
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Brent and WTI have almost identical Impulse response and the anticipation phase

Figure 16: Brent (red, solid) and WTI (black, dashed) oil spot price impulse response

curve according to the best MAR(2,2) model.
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