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Abstract

The COVID-19 pandemic forced the partial or total cancellation of most sports com-

petitions worldwide. Sports organizations crucially rely on revenues raised from broad-

casting. How should the allocation of these revenues be modi�ed when sports leagues

are cancelled? We aim to answer that question in this paper by means of the axiomatic

approach.
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1 Introduction

Over the past years, professional sports leagues have gained momentum with an increasing

number of fans paying to watch games on television. According to Statista, in 2019, the NFL�s

broadcasting rights amounted to 4.4 billion U.S. dollars domestically and 120 million U.S.

dollars overseas. The English Premier League raised 2.08 billion U.S. dollars domestically and

1.75 billion U.S. dollars abroad. It can be safely argued that the sale of broadcasting rights is

currently the biggest source of revenue for sports clubs.

Most of the sports broadcasting contracts have recently been in jeopardy. The COVID-

19 pandemic caused major lockdowns worldwide, con�ning all the population and maintaining

only essential services, for non-negligible periods of time. Among many other things, this forced

the partial or total cancellation of an endless list of sports competitions.1 Most important com-

petitions resumed after lockdowns (in spite of having empty stadiums) to secure broadcasting

contracts. But some others did not, and ended up cancelling the season. An important in-

stance was Ligue 1, the French Football League, whose broadcasting rights amounted to 1.37

billion U.S. dollars in 2019, according to Statista.2 We are concerned in this paper with the

renegotiation of those broadcasting contracts after cancelling sports seasons.

The sale of broadcasting rights for sports leagues is often carried out collectively. After-

wards, the revenues collected from the sale have to be shared, which becomes a crucial aspect

for the management of sports organizations. We recently introduced a simple formal model

(Bergantiños and Moreno-Ternero, 2020a) in which the sharing process is based on the (broad-

casting) audiences that games throughout the season generate. We considered two simplifying

assumptions: a double round-robin tournament (with a �xed set of clubs), in which all games

had a constant pay-per view fee. Thus, the prior of the model was simply a square matrix,

whose entries indicate the audience of the game involving the row team and the column team,

at the former�s stadium (thus, all entries in the diagonal are zero). We extend that model here

to account for cancelled seasons.3 More precisely, the extended model allows for empty (to be

distinguished from zero) entries in the matrix and it also considers an external endowment to

be allocated (thus avoiding the simplifying assumption of constant pay-per view fee).

1See, for instance, https://www.espn.com/olympics/story/_/id/28824781/list-sporting-events-canceled-

coronavirus. Last accessed, September, 2021
2It was also the case of the football leagues in The Netherlands and Belgium, among others.
3Csató (2021) also analyzes cancelled sports seasons, but focussing on obtaining a fair ranking for them.
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A natural way to address the extended model would be to ignore the nature of cancelled

games, just treating them as games with zero audience, and solve the allocation problem with

the actual (lower) endowment after cancellation. But this might be unfair for (weaker) teams

whose games with popular teams were cancelled. For instance, in the case of Ligue 1 mentioned

above, Nimes was supposed to play PSG in late May 2019, and the game was cancelled, whereas

Amiens was able to play PSG in mid February 2019, weeks before con�nement measures took

place worldwide and Ligue 1 was cancelled. Thus, assigning Nimes zero audience in such a

game would hurt it in the allocation process with respect to Amiens, which was lucky to play

the audience-boost PSG game. Prompted by this case, we shall also explore an alternative way

to address the extended model: assigning to cancelled games the audience of the corresponding

game in the �rst leg of the tournament, provided this was not cancelled.

More precisely, we construct two operators that convert audience matrices for cancelled

leagues into audience matrices for (�ctional) non-cancelled leagues. Both operators leave audi-

ences of non-cancelled games unchanged. Thus, non-empty entries remain the same. And they

treat empty entries di¤erently. The zero operator converts them into zero. The leg operator

converts them into their symmetric entries. If we consider benchmark rules that solve the allo-

cation problem for non-cancelled leagues, then the operators convert them into rules that solve

the allocation problem for cancelled leagues.

We then take the axiomatic approach to explore the two routes that the previous two

operators convey. To wit, we explore the implications of several basic axioms for allocation rules.

The �rst two axioms we consider are natural extensions of two axioms from the benchmark

model. Null team on non-cancelled games says that if the audience of each game played by

a team is zero, then this team obtains no revenue. Essential team on non-cancelled games

says that if all games with positive audience are played by a team, then this team obtains all

the revenue. The rest of the axioms we consider are new. Baseline monotonicity compares

the allocation in two problems that have the same audience in all games except for a speci�c

game, say played by i and j at i0s stadium. If the audience has increased from the �rst to the

second problem, baseline monotonicity says that teams i and j could not receive less whereas

the rest of the teams could not receive more, provided that the total revenue is the same

in both problems. If the game has only been played at the second problem, then we apply

the same idea, but now comparing the audience of that game with the audience given by the
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operator to the cancelled game in the other problem. Reallocation proofness compares two

tournaments where the aggregate audience of a given team, as well as the aggregate audience,

coincide in both tournaments. The axiom says that this team should receive the same in both

tournaments. The last axioms consider leagues divided into conferences. Suppose that only

games among teams in the same conference have a positive audience. Then, instead of solving

the whole tournament, we can solve each conference tournament separately, assuming that

the revenue is divided among the conference tournaments proportionally to their estimated

audiences, computed via the operator. We consider two axioms, depending on how we de�ne

the conference tournament. In the single-conference axiom each team plays a single tournament

(the one given by the teams of its conference). In the multi-conference axiom each team plays

several tournaments. For each conference we consider a tournament where all teams participate,

but only the games involving the teams of the conference have been played.

We show that several combinations of the above axioms characterize the extensions of two

focal rules from the benchmark model: the equal-split rule, which splits the revenue generated

from each game equally among the participating teams, and concede-and-divide, which concedes

each team the revenues generated from its fan base and divides equally the residual. The

extended equal-split rule via the zero operator is characterized by reallocation proofness and

single-conference. The extended equal-split rule via the leg operator is characterized with weak

reallocation proofness (we claim reallocation proofness only on tournaments where no game

has been cancelled), single-conference, and baseline monotonicity. The extended concede-and-

divide via the zero operator is characterized by reallocation proofness, essential team on non-

cancelled games, and multi-conference. The extended concede-and-divide via the leg operator

is characterized by weak reallocation proofness, essential team on non-cancelled games, multi-

conference, and baseline monotonicity.

To conclude with the introduction, we mention that the broadcasting problem we consider

here is a speci�c resource allocation problem, akin to well-known problems largely analyzed in

the game-theory literature. Instances are land division (e.g., Steinhaus, 1948; Chambers, 2005;

Segal-Halevi et al., 2020), claims problems (e.g., O�Neill, 1982; Young, 1987; Thomson, 2019),

telecommunications problems (e.g., van den Nouweland et al. 1996), museum pass problems

(e.g., Ginsburgh and Zang, 2003; Bergantiños and Moreno-Ternero, 2015), or cost sharing in

networks (e.g., Bergantiños and Vidal-Puga, 2007; Bogomolnaia et al., 2010). Some of the
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insights we obtain here are somewhat reminiscent of some of the results from that literature.

The rest of the paper is organized as follows. In Section 2, we introduce the model (bench-

mark rules, operators, extended rules and axioms). In Section 3, we provide the characterization

results. Section 4 concludes. For a smooth passage, all proofs have been deferred to an appen-

dix.

2 The model

Let N describe a �nite set of teams. Its cardinality is denoted by n. Without loss of generality,

we usually takeN = f1; 2; : : : ; ng. We assume n � 4. We also assume a round-robin tournament

in which each team plays in turn against each other team twice (home and away), which is the

typical format of the national football leagues. For each pair of teams i; j 2 N , we denote by aij

the broadcasting audience (number of viewers) for the game played by i and j at i�s stadium.

We write aij = ? if the game was cancelled. For notational simplicity, we also assume that

aii = ? for each i 2 N . Let A 2 An�n denote the resulting matrix of broadcasting audiences

generated in the whole tournament involving the teams within N .

Let �i (A) denote the total audience achieved by team i, i.e.,

�i (A) =
X

i2fj;kg�N;ajk 6=?

ajk

We take �i (A) = 0 when team i has not played any game. When no confusion arises, we

write �i instead of �i (A) :

For each A 2 An�n, let jjAjj denote the total audience of the tournament. Namely,

jjAjj =
X

i;j2N;aij 6=?

aij =
1

2

X

i2N

�i:

We take jjAjj = 0 when no game has been played.

A (broadcasting) problem is a pair (A;E), where A 2 An�n is a matrix de�ned as above

and E 2 R+ is an endowment to be allocated among teams inN , based on the audience matrix.
4

The family of all the problems is denoted by P.

4In Bergantiños and Moreno-Ternero (2020a) it is assumed that each viewer pays a constant (pay-per-view)

fee, which is normalized to 1. Thus, the endowment is not a prior of the model therein as allocating the revenue

from broadcasting is the same as allocating the audiences.
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Let Pc denote the subset of P encompassing the problems corresponding to fully completed

seasons. Namely, (A;E) 2 Pc if and only if aij 6= ?, for each pair i; j 2 N , with i 6= j.
5

2.1 Benchmark rules

A (sharing) rule R is a mapping that associates with each problem an allocation indicating

the amount each team gets from the endowment. Thus, R : P ! R
N is such that, for each

(A;E) 2 P,
X

i2N

Ri (A;E) = E:

We also impose from the outset that, if jjAjj = 0, then Ri (A;E) =
E
n
, for each i 2 N .

Furthermore, Ri (A; 0) = 0, for each i 2 N .

We now consider two focal rules for problems in Pc, which have been introduced in Bergan-

tiños and Moreno-Ternero (2020a). Viewers of each game can essentially be divided in two

categories: those watching the game because they are fans of one of the teams playing and

those watching the game because they thought that the speci�c combination of teams rendered

the game interesting. We refer to them as hard-core (team) fans and neutral (football) fans,

respectively. We argue that the revenue generated by the �rst category should be allocated

to the corresponding team, whereas the revenue generated by the second category should be

divided equally between both teams. The equal-split rule and concede-and-divide are two ex-

treme rules from the point of view of treating fans. The equal-split rule assumes that only

neutral fans exist whereas concede-and-divide assumes that there are as many hard-core fans

as possible (compatible with the audiences).

Bergantiños and Moreno-Ternero (2020a) normalize the revenue generated from each viewer

to 1: Thus, they divide jjAjj among the teams. As we must divide E, the revenue generated by

each viewer is E
jjAjj
: We now adapt the de�nitions of equal-split and concede-and-divide to our

setting.

The equal-split rule splits equally the audience of each game (aij) among the two teams,

thus ignoring the existence of hard-core fans for each team. The total audience assigned to each

team is computed as the sum, over all games played by such a team, of the audiences assigned

5The domain in Bergantiños and Moreno-Ternero (2020a) is precisely the subset of Pc, for which the endow-

ment coincides with the aggregate audience of the season. Namely, (A;E) 2 Pc such that E = jjAjj.
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to each game. The amount received by each team is obtained multiplying the audience assigned

to the team by E
jjAjj
: Formally,

Equal-split, ES: for each (A;E) 2 Pc, and each i 2 N ,

ESi (A;E) =
E

jjAjj

�i

2
:

The second rule, the so-called concede-and-divide, concedes each team its number of fans

and divides equally the rest. For each team i we estimate fi; the number of fans of team i.

Given a game with audience aij; i receives fi+
aij�fi�fj

2
and j receives fj +

aij�fi�fj
2

: The total

audience assigned to each team is computed as the sum over all games played by such a team.

The amount received by each team is obtained multiplying the audience assigned to the team by

E
jjAjj
: Bergantiños and Moreno-Ternero (2020a) prove that this rule could be computed through

an easier formula in such a way that we do not need to estimate the number of fans of each

team. Formally,

Concede-and-divide, CD: for each (A;E) 2 Pc, and each i 2 N ,

CDi (A;E) =
(n� 1)�i � jjAjj

n� 2

E

jjAjj
:

2.2 Operators

We aim to provide rules that can also address problems with cancelled games. To do so, we

extend benchmark rules (such as the ones introduced above) by means of operators, associating

to each benchmark rule an extended rule resulting from a two-stage procedure in which the

matrix of audiences is modi�ed �rst, to replace its empty entries, and the rule is then used to

solve the resulting problem.6 Formally, an operator is a mapping o : P ! Pc assigning to each

problem (A;E) 2 P a problem (Ao; E) 2 Pc such that aoij = aij when aij 6= ?:

We concentrate on the following two operators. First, the one associating to a cancelled

game a null audience. Second, the one associating to a cancelled game the audience of the

game in the �rst leg of the tournament, or zero if such a game was also cancelled. Formally,

Zero, z: For each pair i; j 2 N

azij =

8
<

:
0 if aij = ?

aij if aij 6= ?:

6The concept of operators on the space of allocation rules is explored in detail by Thomson and Yeh (2008)

and Thomson (2019). See also Hougaard et al., (2012, 2013a,b) and Moreno-Ternero and Vidal-Puga (2021).
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Leg, l: For each pair i; j 2 N ,

alij =

8
>>><

>>>:

aji if aij = ? and aji 6= ?

0 if aij = ? and aji = ?

aij if aij 6= ?:

2.3 Extended rules

For each operator o, and each benchmark rule R on Pc, we can de�ne an extended rule Ro on

P in the obvious way. Namely, for each (A;E) 2 P,

Ro (A;E) = R(Ao; E):

We sometimes refer to Ro as the image of the benchmark rule R via the operator o. Some

instances are just the images of the two benchmark rules introduced above, via the two operators

also de�ned above: the zero-extended equal-split rule (ESz), the zero-extended concede-and-

divide (CDz), the leg-extended equal-split rule (ESl), and the leg-extended concede-and-divide

(CDl).

2.4 Axioms

We now consider several axioms of (extended) rules. First, the axiom that says that if a team

has a null audience in all its non-cancelled games, then such a team gets no revenue.7 Formally,

Null team on non-cancelled games (NTN): For each (A;E) 2 P with jjAjj > 0 and

each i 2 N , such that for each j 2 Nn fig, aij 2 f0;?g and aji 2 f0;?g ;

Ri (A;E) = 0:

The next axiom formalizes a sort of dual principle as it says that if only the games played by

one team have positive audience, then such an essential team should receive all the endowment.

Formally,

Essential team on non-cancelled games (ETN): For each (A;E) 2 P, and each i 2 N

such that ajk 2 f0;?g for each pair fj; kg 2 Nn fig ;

Ri (A;E) = E:

7This axiom and the next one are natural counterparts of those introduced in Bergantiños and Moreno-

Ternero (2020a) for the benchmark setting.

8



We now turn to monotonicity axioms, which are natural in resource allocation.8 To motivate

them, we consider �rst the following example.

Example 1 Let (A;E) ; (A0; E) 2 P be such that N = f1; 2; 3g ; E = 1000; and

A =

0

BBB
@

? 230 ?

? ? 210

220 ? ?

1

CCC
A
and A0 =

0

BBB
@

? 230 3

? ? 210

220 ? ?

1

CCC
A

In the latter case, teams 1 and 3 have played one more game than in the former case, with

an audience a013 = 3: How should the allocation of those teams change from one case to the

other? Two reasonable answers are possible:

1. As the total audience of team 1 increased, then the allocation to team 1 should not decrease.

2. As the relative audience (per game) of team 1 decreased, then the allocation to team 1

should not increase.

Prompted by the above discussion, we introduce a monotonicity property that, depending

on a vector of baseline audiences, suggests several possible scenarios.9

Formally, for each pair (A;E) ; (A0; E) 2 P, and each i 2 N , let

bi = f(bi ((i; j) ; A;A
0; E) ; bi ((j; i) ; A;A

0; E)) : j 2 Nn figg ;

where

bi ((i; j) ; A;A
0; E) = bj ((i; j) ; A;A

0; E) = aij;

for each aij 6= ?. We refer to B = (bi)i2N as the vector of baseline audiences. We then have

the following axiom:

Baseline monotonicity (BM): Let (A;E) ; (A0; E) 2 P for which there exist i; j 2 N

such that a0ij 6= ? and a
0
kl = akl for each (k; l) 6= (i; j) : Then, two conditions hold:

8Monotonicity is a general principle of fair division which states that when the underlying data of a problem

change in a speci�c way, the solution should change accordingly. Early formalizations of this principle, for

somewhat related models, can be traced back to Megiddo (1974), Kalai and Smorodinsky (1975), or Thomson

and Myerson (1980), among others.
9This is reminiscent of the concept of baselines in rationing problems formalized by Hougaard et al., (2012,

2013a,b). See also Ju et al., (2021).

9



1. For each k 2 fi; jg ;

Rk (A
0; E) � Rk (A;E) when a

0
ij � bk ((i; j) ; A;A

0; E) ;

Rk (A
0; E) � Rk (A;E) when a

0
ij � bk ((i; j) ; A;A

0; E) :

2. For each k 2 Nn fi; jg,

Rk (A
0; E) � Rk (A;E) when a

0
ij � max fbi ((i; j) ; A;A

0; E) ; bj ((i; j) ; A;A
0; E)g

Rk (A
0; E) � Rk (A;E) when a

0
ij � min fbi ((i; j) ; A;A

0; E) ; bj ((i; j) ; A;A
0; E)g :

Bergantiños and Moreno-Ternero (2021b) introduce several monotonicity axioms in the

benchmark broadcasting problem: Two of them are closely related with baseline monotonic-

ity. Weak team monotonicity says that for each A; A0 and i 2 N such that aij � a0ij for all

j 2 Nn fig ; aji � a0ji for all j 2 Nn fig ; and ajk = a0jk when i 2 Nn fj; kg ; then Ri (A
0) �

Ri (A) : Since bi ((i; j) ; A;A
0; E) = aij when aij 6= ?; condition 1 of baseline monotonicity is

an extension of weak team monotonicity. Reciprocal monotonicity says that for each A; A0 and

i 2 N such that aij = a
0
ij for all j 2 Nn fig ; aji = a

0
ji for all j 2 Nn fig ; and ajk � a

0
jk when

i 2 Nn fj; kg ; then Ri (A
0) � Ri (A) : Since bi ((i; j) ; A;A

0; E) = bj ((i; j) ; A;A
0; E) = aij when

aij 6= ?, condition 2 of baseline monotonicity is an extension of reciprocal monotonicity.

Obviously, the above crucially relies on the vector of baseline audiences B. We now give

some examples of possible baselines, sharing the spirit of the two operators considered above.

1. Zero. Let i 2 N: For each j 2 Nn fig, let Bz be de�ned as

bzi ((i; j) ; A;A
0; E) =

8
<

:
0 if aij = ?

aij otherwise
and

bzi ((j; i) ; A;A
0; E) =

8
<

:
0 if aji = ?

aji otherwise.

If a rule satis�es BzM , then we say that the rule satis�es zero baseline monotonicity.

Note that if a rule satis�es BzM then to play a game with zero audience could not be

worse than not playing such a game.
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2. Leg. Let i 2 N: For each j 2 Nn fig, let Bl be de�ned as

bli ((i; j) ; A;A
0; E) =

8
>>><

>>>:

aji if aij = ? and aji 6= ?

0 if aij = ? and aji = ?

aij otherwise

and

bli ((j; i) ; A;A
0; E) =

8
>>><

>>>:

aij if aji = ? and aij 6= ?

0 if aji = ? and aij = ?

aji otherwise.

If a rule satis�es BlM , then we say that the rule satis�es leg baseline monotonicity.

We now move to consider axioms preventing manipulations via reallocations.10

Suppose �rst two tournaments such that the aggregate audience of a given team, as well as

the aggregate audience of the rest of the games, coincide in both tournaments. Then, such a

given team should receive the same in both tournaments. Namely,

Reallocation proofness (RP ): Let (A;E) ; (A0; E) 2 P and i 2 N be such that �i(A) =

�i(A
0) and jjAjj = jjA0jj. Then,

Ri (A;E) = Ri (A
0; E) :

The following example captures a possibly disturbing feature with the previous axiom.

Example 2 Let A1, A2 and A3 be such that N = f1; 2; 3g ; E = 1000; and

A1 =

0

BBB
@

? 100 60

? ? 30

60 30 ?

1

CCC
A
; A2 =

0

BBB
@

? 20 140

? ? 30

60 30 ?

1

CCC
A
; and A3 =

0

BBB
@

? 100 30

? ? 30

90 30 ?

1

CCC
A
:

The audience of game (1; 2) is 100 in A1 and A3, and 20 in A2. But a rule satisfying

reallocation proofness should ignore these numbers (and take into account only the total audience

of team 1). Thus, if the rule is de�ned through an operator o; such an operator cannot depend on

the audience of game (1; 2). But it might be reasonable to do otherwise, therefore distinguishing

between A2 and the other two problems.

10Ju et al., (2007) analyze the implications of this kind of axioms in general allocation problems. A seminal

contribution for the notion is Moulin (1985) and a more recent instance is Csóka and Herings (2021).
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Prompted by the previous example, we weaken reallocation proofness by claiming that the

allocation to team i should be independent of reallocations of audiences but only when no game

has been cancelled (namely, on Pc).

Weak reallocation proofness (WRP ): Let (A;E) ; (A0; E) 2 Pc and i 2 N be such that

�i(A) = �i(A
0) and jjAjj = jjA0jj. Then,

Ri (A;E) = Ri (A
0; E) :

The last axioms we consider refer to leagues divided into conferences.11 We assume that

only games among teams in the same conference have a positive audience. An alternative

interpretation is that each conference can be seen as a di¤erent tournament. Then, instead of

solving the whole tournament, we can solve each conference tournament separately, under the

assumption that the endowment is divided among the conference tournaments proportionally

to their estimated audiences, computed via operator o. We consider two axioms, depending

on how we de�ne the conference tournament. More precisely, for each (A;E) 2 P, and each

S � N , we consider two ways of modeling the tournament induced by A among teams in S:

1. We denote by AS 2 AjSj�jSj the matrix obtained from A by considering that the set of

teams is S and the audiences are given by A: Namely, aSij = aij for all i; j 2 S:

2. We denote by AS;? 2 An�n the matrix obtained from A by assuming that only the games

between teams within S have been played. Namely,

a
S;?
ij =

8
<

:
aij if i; j 2 S

? otherwise.

Notice that in AS the set of teams is S whereas in AS;? the set of teams is N:

For each (A;E) 2 P and each S � N , we denote by jjA (S)jj the aggregate audience of all

games played among teams within S: Namely,

jjA (S)jj =
X

i;j2S;aij 6=?

aij:

We say that fN1; :::; Npg is a partition of N if N =
pS

k=1

Nk, Nk \ Nk0 = ? for each pair

k 6= k0, and Nk 6= ? for each k = 1; :::; p:

11This is the case, for instance, of the four major sports leagues in North America.
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We are now ready to state the two axioms.

O-single-conference (SCo): Let (A;E) 2 P; fN1; :::; Npg a partition of N such that if

aij > 0 with i 2 Ni0 and j 2 Nj0 then i
0 = j0. For each i 2 Ni0 ;

Ri (A;E) = Ri

0

BB
@A

Ni0 ;
jjAo (Ni0)jj
pP

k=1

jjAo (Nk)jj

E

1

CC
A :

O-multi-conference (MCo): Let (A;E) 2 P ; fN1; :::; Npg a partition of N such that if

aij > 0 with i 2 Ni0 and j 2 Nj0 then i
0 = j0. For each i 2 N;

Ri (A;E) =

pX

k=1

Ri

0

BB
@A

Nk;?;
jjAo (Nk)jj
pP

k=1

jjAo (Nk)jj

E

1

CC
A :

Note that the condition of zero-single-conference can be rewritten only in terms of A as

Ri (A;E) = Ri

�
ANi0 ; E

jjA (Ni0)jj

jjAjj

�
:

Similarly, for the zero operator, zero-multi-conference can be rewritten only in terms of the

matrix with the original audiences A. Namely, the condition to be satis�ed is

Ri (A;E) =

pX

k=1

Ri

�
ANk;?; E

jjA (Nk)jj

jjAjj

�
:

3 Characterization results

In this section we present characterization results for the zero-extended equal-split rule, leg-

extended equal-split rule, zero-extended concede-and-divide, and leg-extended concede-and-divide.

The proofs can be found in the Appendix.

Our �rst result is a characterization of the extended equal-split rule, via the zero operator,

combining two axioms.

Theorem 1 A rule satis�es reallocation proofness and zero-single-conference if and only if it

is the zero-extended equal-split rule ESz.
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An alternative characterization of the same rule is obtained upon replacing zero-single-

conference in Theorem 1 by the pair made of zero-multi-conference and null team for non-

cancelled games. In the appendix, after the proof of Theorem 1, we also explain brie�y how to

obtain this alternative characterization.

Resorting to leg-baseline monotonicity, but weakening reallocation proofness, we obtain in-

stead a characterization of the extended equal-split rule, via the leg operator.

Theorem 2 A rule satis�es weak reallocation proofness, leg-single-conference and leg-baseline

monotonicity if and only if it is the leg-extended equal-split rule ESl.

As with the previous result, an alternative characterization of the same rule is obtained

upon replacing leg-single-conference in Theorem 2 by the pair made of leg-multi-conference and

null team for non-cancelled games. In the appendix, after the proof of Theorem 2, we also

explain brie�y how to obtain this alternative characterization.

We now present the counterpart results for the extended concede-and-divide, via the zero

and leg operator, respectively.

Theorem 3 A rule satis�es reallocation proofness, essential team on non-cancelled games, and

zero-multi-conference if and only if it is the zero-extended concede-and-divide CDz.

In contrast with Theorem 1, the pair made of zero-multi-conference and essential team for

non-cancelled games cannot be replaced by zero-single-conference (which is not satis�ed by

CDz).

Theorem 4 A rule satis�es weak reallocation proofness, essential team on non-cancelled games,

leg-multi-conference and leg-baseline monotonicity if and only if it is the leg-extended concede-

and-divide CDl.

In contrast with Theorem 2, the pair made of leg-multi-conference and essential team for

non-cancelled games cannot be replaced by leg-single-conference (which is not satis�ed by CDl).

The next table summarizes the performance of the rules considered in the paper with respect

to the introduced axioms (we avoid the technical, and non-di¢cult, proofs). The axioms that

were used for each of the characterization results stated above are highlighted in each case.
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Axioms / Rules ESz CDz ESl CDl

NTN YES NO YES NO

ETN NO YESTh3 NO YESTh4

BzM YES YES NO NO

BlM NO NO YESTh2 YESTh4

RP YESTh1 YESTh3 NO NO

WRP YES YES YESTh2 YESTh4

SCz YESTh1 NO NO NO

MCz YES YESTh3 NO NO

SC l NO NO YESTh2 NO

MC l NO NO YES YESTh4

Table 1: Performance of the rules with respect to the axioms and characterization results.

We conclude with characterizations on the restricted domain Pc, i.e., in the case in which no

game has been cancelled. Note that, for each (A;E) 2 Pc and each operator o; Ao = A. Thus,

reallocation proofness and weak reallocation proofness coincide. Besides, the monotonicity and

conference axioms do not depend on the operator and we can remove it from their de�nitions.

Moreover, in the de�nition of the multi-conference axiom, we should change ANk;? by ANk;0:

Likewise, we avoid adding to the names of the axioms �on non-cancelled games�, as it would

be redundant in this restricted domain.

Theorem 5 The following statements hold:

1. A rule de�ned on Pc satis�es reallocation proofness and single-conference if and only if

it is the equal-split rule.

2. A rule de�ned on Pc satis�es reallocation proofness, multi-conference and null team if

and only if it is the equal-split rule.

3. A rule de�ned on Pc satis�es reallocation proofness, multi-conference and essential team

if and only if it is concede-and-divide.
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Theorem 5 provides some characterizations of the equal-split rule and concede-and-divide

in the benchmark broadcasting problem P c: Bergantiños and Moreno-Ternero (2020a, 2020b,

2021a, 2021b) also provide several characterizations of the equal-split rule and concede-and-

divide in P c by using, among others, the axioms of null team and essential team. The axioms

of reallocation proofness, single-conference and multi-conference are used in this paper but not

in the previous ones.

4 Final remarks

We have explored in this paper the allocation of resources raised from selling broadcasting

rights for sports leagues, after the leagues have been cancelled. We have provided normative

foundations for the extension of two focal rules (equal-split and concede-and-divide) via two

natural operators: the zero operator and the leg operator. The former assigns to cancelled

games a zero audience. The latter assigns to cancelled games the audience of the corresponding

game in the �rst leg of the tournament. Other operators could also be considered. For instance,

to associate each cancelled game the audience of the (non-cancelled) game with highest or

lowest audience. Or the average audience of all the (non-cancelled) games in the tournament.

Exploring those operators is left for further research.

The two rules we have extended are not only focal but also somewhat extreme in the

benchmark setting of complete sports leagues. Compromises among them have been considered

(e.g., Bergantiños and Moreno-Ternero, 2021a, 2021, 2021c). It is also left for further research

to extend those compromises to the case of cancelled competitions introduced in this paper.

There exist notable di¤erences between the benchmark case and the extended one we have

explored here. For instance, additivity, a property crucial in the benchmark case to characterize

the focal rules, cannot be formalized in this setting. Alternative properties referring to how to

allocate extra resources (e.g., Bergantiños and Moreno-Ternero, 2020b), which can also char-

acterize them (dismissing additivity), cannot be formalized in this setting either. Conversely,

some of the axioms considered here (such as those referring to non-cancelled games) cannot

be mimicked for the benchmark setting. On the other hand, the baseline monotonicity axioms

considered here are natural generalizations of monotonicity axioms considered in the benchmark

setting, as mentioned above.
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5 Appendix

5.1 Proof of Theorem 1

It is not di¢cult to show that ESz satis�es the two axioms in the statement. Conversely, let R

be a rule satisfying the two axioms. Let (A;E) 2 P be such that jjAjj > 0.12 Let i 2 N: Notice

that jjAjj � �i (A) is the aggregate audience of all games not played by team i: We then de�ne

the matrix A� as follows. Let i0; i1; i2 2 Nn fig : Then,

a�jk =

8
>>><

>>>:

�i(A)
2

if (j; k) 2 f(i; i0) ; (i0; i)g

jjAjj � �i (A) if (j; k) = (i1; i2)

? otherwise.

Notice that jjA�jj = jjAjj > 0 and �i (A
�) = �i (A) : Therefore, by reallocation proofness,

Ri (A;E) = Ri (A
�; E) :

Let N1 = fi; i
0g and N2 = NnN1: By zero-single-conference,

Ri (A
�; E) = Ri

�
(A�)N1 ;

jj(A�)z (N1)jj

jj(A�)z (N1)jj+ jj(A�)
z (N2)jj

E

�

= Ri

�
(A�)N1 ;

�i (A)

jjAjj
E

�
:

As

Ri

�
(A�)N1 ;

�i (A)

jjAjj
E

�
+Ri0

�
(A�)N1 ;

�i (A)

jjAjj
E

�
=
�i (A)

jjAjj
E;

it follows that there exists p(i;i0) 2 R such that

Ri

�
(A�)N1 ;

�i (A)

jjAjj
E

�
= p(i;i0)

�i (A)

jjAjj
E and

Ri0

�
(A�)N1 ;

�i (A)

jjAjj
E

�
=

�
1� p(i;i0)

� �i (A)
jjAjj

E:

As Ri (A;E) = Ri

�
(A�)N1 ; �i(A)

jjAjj
E
�
= p(i;i0)

�i(A)
jjAjj

E, for each i0 2 Nn fig ; we deduce that

p(i;i0) is indeed independent of i0. Thus, we can just refer to it as pi.

If �i (A) = 0; Ri (A;E) = 0 = ESi (A;E) :

Therefore, assume now that �i (A) > 0: Let i
0 2 Nn fig and construct the problem (A0; E)

such that �i0 (A
0) = �i (A) and jjA

0jj = jjAjj :

12Otherwise, the proof is trivial as Ri (A;E) =
E

n
, for each i 2 N .
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We then construct the matrix A0�, analogously to how we constructed A� from A, but now

assigning the former role of i to i0, and the former role of i0 to i. That is,

a0�jk =

8
>>><

>>>:

�i(A
0)

2
if (j; k) 2 f(i0; i) ; (i; i0)g

jjA0jj � �i (A
0) if (j; k) = (i1; i2)

? otherwise.

Then,

pi
�i (A)

jjAjj
E = Ri

�
(A�)N1 ;

�i (A)

jjAjj
E

�
= Ri

�
(A0�)

N1 ;
�i0 (A

0)

jjA0jj
E

�
= (1� pi0)

�i0 (A
0)

jjA0jj
E;

from where it follows that pi = 1� pi0 :

As i and i0 were arbitrary members of N , it follows that pj =
1
2
for all j 2 N . Hence,

Ri (A;E) = Ri

��
A1
�N1

;
�i (A)

jjAjj
E

�
= pi

�i (A)

jjAjj
E =

1

2

�i (A)

jjAjj
E = ESzi (A;E) : �

5.2 Remark from Theorem 1

We now explain how to obtain the alternative characterization at Theorem 1 by replacing

zero-single-conference by zero-multi-conference and null team on non-cancelled games.

It is straightforward to prove that ESz also satis�es zero-multi-conference and null team on

non-cancelled games. As for the converse implication, note that zero-multi-conference is used

only once in the previous proof. We explain now how to derive the same conclusion therein

with zero-multi-conference and null team on non-cancelled games.

By zero-multi-conference,

Ri (A
�; E) = Ri

�
(A�)N1;? ;

�i (A)

jjAjj
E

�
+Ri

�
(A�)N2;? ;

jjAjj � �i (A)

jjAjj
E

�
:

By null team on non-cancelled games, Ri

�
(A�)N2;? ; jjAjj��i(A)

jjAjj
E
�
= 0: Hence, Ri (A

�; E) =

Ri

�
(A�)N1;? ; �i(A)

jjAjj
E
�
.

By null team on non-cancelled games, Rj

�
(A�)N1;? ; �i(A)

jjAjj
E
�
= 0 for all j 2 N2: Using argu-

ments similar to those used above for
�
(A�)N1 ; �i(A)

jjAjj
E
�
we can prove thatRi

�
(A�)N1;? ; �i(A)

jjAjj
E
�
=

�i(A)
2jjAjj

E = ESzi (A;E) :

5.3 Proof of Theorem 2

It is straightforward to show that ESl satis�es weak reallocation proofness and leg-single-

conference. Regarding leg-baseline monotonicity, let (A;E) ; (A0; E) 2 P and i; j 2 N be
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as in the de�nition of this axiom. We consider several cases.

1. aij = ? 6= aji:

In this case, bli ((i; j) ; A;A
0; E) = blj ((i; j) ; A;A

0; E) = aji: Thus,

�i
�
A0l
�
= �i

�
Al
�
+ a0ij � aji

�j
�
A0l
�
= �j

�
Al
�
+ a0ij � aji

�k
�
A0l
�
= �k

�
Al
�
for all k 2 Nn fi; jg and

����A0l
���� =

����Al
����+ a0ij � aji:

We consider two sub-cases.

(a) a0ij � aji:

In this case, ESk
�
A0l; E

�
� ESk

�
Al; E

�
, for each k 2 fi; jg : Besides,

a0ij � aji = max
�
bli ((i; j) ; A;A

0; E) ; blj ((i; j) ; A;A
0; E)

	

and ESk
�
A0l; E

�
� ESk

�
Al; E

�
for each k 2 Nn fi; jg :

(b) a0ij � aji:

In this case, ESk
�
A0l; E

�
� ESk

�
Al; E

�
, for each k 2 fi; jg : Besides,

a0ij � aji = min
�
bli ((i; j) ; A;A

0; E) ; blj ((i; j) ; A;A
0; E)

	

and ESk
�
A0l; E

�
� ESk

�
Al; E

�
for each k 2 Nn fi; jg :

2. aij = ? = aji.

In this case, bli ((i; j) ; A;A
0; E) = blj ((i; j) ; A;A

0; E) = 0: Thus,

�i
�
A0l
�
= �i

�
Al
�
+ 2a0ij

�j
�
A0l
�
= �j

�
Al
�
+ 2a0ij

�k
�
A0l
�
= �k

�
Al
�
for all k 2 Nn fi; jg and

����A0l
���� =

����Al
����+ 2a0ij:

Therefore, ESk
�
A0l; E

�
� ESk

�
Al; E

�
for each k 2 fi; jg : Besides,

a0ij � 0 = max
�
bli ((i; j) ; A;A

0; E) ; blj ((i; j) ; A;A
0; E)

	

and ESk
�
A0l; E

�
� ESk

�
Al; E

�
for each k 2 Nn fi; jg :
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3. aij 6= ? 6= aji.

In this case, bli ((i; j) ; A;A
0; E) = blj ((i; j) ; A;A

0; E) = aij: Thus,

�i
�
A0l
�
= �i

�
Al
�
+ a0ij � aij

�j
�
A0l
�
= �j

�
Al
�
+ a0ij � aij

�k
�
A0l
�
= �k

�
Al
�
for all k 2 Nn fi; jg and

����A0l
���� =

����Al
����+ a0ij � aij:

The rest of the proof is similar to that of Case 1.

4. aij 6= ? and aji = ?:

In this case, bli ((i; j) ; A;A
0; E) = blj ((i; j) ; A;A

0; E) = aij: Thus,

�i
�
A0l
�
= �i

�
Al
�
+ 2

�
a0ij � aij

�

�j
�
A0l
�
= �j

�
Al
�
+ 2

�
a0ij � aij

�

�k
�
A0l
�
= �k

�
Al
�
for all k 2 Nn fi; jg and

����A0l
���� =

����Al
����+ 2

�
a0ij � aij

�
:

The rest of the proof is similar to that of Case 1.

Conversely, let R be a rule satisfying all the properties in the statement. Let (A;E) 2 P

be such that jjAjj > 0.13 Let i 2 N:

Let m (A) be the number of cancelled games in tournament A: We prove that R (A;E) =

ESl (A;E) by induction on m (A) : Assume �rst that m (A) = 0. Thus, aij 6= ? for all i; j 2 N

with i 6= j:

Let i0; i1; i2 2 Nn fig : We de�ne A� as follows.

a�jk =

8
>>><

>>>:

�i(A)
2

if (j; k) 2 f(i; i0) ; (i0; i)g

jjAjj � �i (A) if (j; k) = (i1; i2)

0 otherwise.

Notice that jjA�jj = jjAjj > 0 and �i (A
�) = �i (A) : Therefore, by weak reallocation proof-

ness, Ri (A
�; E) = Ri (A;E) :

13Otherwise, the proof is trivial as Ri (A;E) =
E

n
, for each i 2 N .
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Let N1 = fi; i0g and N2 = NnN1: As m (A
�) = 0, we deduce that A�l = A�: Besides,

jjAjj = jjA� (N1)jj+ jjA
� (N2)jj and jjA

� (N1)jj = �i (A) : By leg-single-conference,

Ri (A
�; E) = Ri

�
(A�)N1 ;

�i (A)

jjAjj
E

�
:

Now, using arguments similar to those used in the proof of Theorem 1 we can deduce that

Ri

�
(A�)N1 ;

�i (A)

jjAjj
E

�
=
�i (A)

2 jjAjj
E = ESi (A;E) = ES

l
i (A;E) :

Therefore, R (A;E) = ESl (A;E) for m (A) = 0: Assume then that R (A;E) = ESl (A;E)

for m (A) = p. Let (A;E) be such that m (A) = p + 1: Then, there exists a pair i; j 2 N such

that aij = ?: We consider two cases.

1. aji 6= ?:

In this case, let A0 be such that

a0kl =

8
<

:
aji if (k; l) = (i; j)

akl otherwise.

Thus, m (A0) = p. By the induction hypothesis,

R (A0; E) = ESl (A0; E) = ES
�
A0l; E

�
= ES

�
Al; E

�
= ESl (A;E) :

As bli ((i; j) ; A;A
0; E) = aji; and R satis�es leg-baseline monotonicity, we deduce that

Ri (A;E) = Ri (A
0; E) : Similarly, we can argue that Rj (A;E) = Rj (A

0; E) :

As bli ((i; j) ; A;A
0; E) = blj ((i; j) ; A;A

0; E) = aji and a
0
ij = aji, we deduce that

max
�
bli ((i; j) ; A;A

0; E) ; blj ((i; j) ; A;A
0; E)

	
� a0ij � min

�
bli ((i; j) ; A;A

0; E) ; blj ((i; j) ; A;A
0; E)

	
:

By leg-baseline monotonicity, for each k 2 Nn fi; jg,

Rk (A
0; E) � Rk (A;E) � Rk (A

0; E) ;

Thus, R (A;E) = R (A0; E) = ESl (A;E) :

2. aji = ?:

In this case, let A0 be such that

a0kl =

8
<

:
0 if (k; l) = (i; j)

akl otherwise.

Replicating the arguments used in Case 1, we can argue that R (A;E) = R (A0; E) =

ESl (A;E) : �
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5.4 Remark from Theorem 2

We now explain how to obtain the alternative characterization at Theorem 2 by replacing

leg-single-conference by leg-multi-conference and null team on non-cancelled games.

It is straightforward to prove that ESl also satis�es leg-multi-conference and null team on

non-cancelled games. As for the converse implication, note that leg-single-conference is used

only once in the previous proof. We explain now how to derive the same conclusion therein

with leg-multi-conference and null team on non-cancelled games.

By leg-multi-conference,

Ri (A
�; E) = Ri

�
(A�)N1;? ;

�i (A)

jjAjj
E

�
+Ri

�
(A�)N2;? ;

jjAjj � �i (A)

jjAjj
E

�
:

By null team on non-cancelled games, Ri

�
(A�)N2;? ; jjAjj��i(A)

jjAjj
E
�
= 0: Hence, Ri (A

�; E) =

Ri

�
(A�)N1;? ; �i(A)

jjAjj
E
�
.

By null team on non-cancelled games, Rj

�
(A�)N1;? ; �i(A)

jjAjj
E
�
= 0 for all j 2 N2: Using argu-

ments similar to those used above for
�
(A�)N1 ; �i(A)

jjAjj
E
�
we can prove thatRi

�
(A�)N1;? ; �i(A)

jjAjj
E
�
=

�i(A)
2jjAjj

E = ESli (A;E) :

5.5 Proof of Theorem 3

It is straightforward to show that CDz satis�es reallocation proofness and essential on non-

cancelled games. Regarding zero-multi-conference, let (A;E) 2 P and fN1; :::; Npg be as in its

de�nition. Given i 2 Ni0 ;

pX

k=1

CDz
i

0

BB
@A

Nk;?;
jjAz (Nk)jj
pP

k=1

jjAz (Nk)jj

E

1

CC
A =

pX

k=1

(n� 1)�i
��
ANk;?

�z�
�
�����ANk;?

�z����

n� 2

jjAz(Nk)jj
pP

k=1

jjAz(Nk)jj
E

jj(ANk;?)zjj

As

�i
��
ANk;?

�z�
=

8
<

:
�i (A

z) if i 2 Nk

0 otherwise,

jjAz (Nk)jj =
�����ANk;?

�z���� ; and

jjAzjj =

pX

k=1

jjAz (Nk)jj
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it follows that

pX

k=1

CDz
i

0

BB
@A

Nk;?;
jjAz (Nk)jj
pP

k=1

jjAz (Nk)jj

E

1

CC
A =

(n� 1)�i (A
z)� jjAz (Ni0)jj

n� 2

E

jjAzjj
�
X

k 6=i0

jjAz (Nk)jj

n� 2

E

jjAzjj

=

(n� 1)�i (A
z)�

mP

k=1

jjAz (Nk)jj

n� 2

E

jjAzjj

=
(n� 1)�i (A

z)� jjAzjj

n� 2

E

jjAzjj

= CDi (A
z; E) = CDz

i (A;E) :

Conversely, let R be a rule satisfying all the axioms in the statement. Let (A;E) 2 P be

such that jjAjj > 0.14 Let i 2 N:

Let A�; i0; i1; i2; N1 and N2 be de�ned as in the proof of Theorem 1. By reallocation

proofness Ri (A;E) = Ri (A
�; E). By zero-multi-conference,

Ri (A
�; E) = Ri

�
(A�)N1;? ;

jjA� (N1)jj

jjAjj
E

�
+Ri

�
(A�)N2;? ;

jjA� (N2)jj

jjAjj
E

�
:

We �rst analyze the problem induced by conference N1: We consider two cases.

Case 1.1. �i (A) = 0: Then jjA
� (N1)jj = 0 and hence

Ri

�
(A�)N1;? ;

jjA� (N1)jj

jjAjj
E

�
= 0:

Case 1.2. �i (A) > 0: Then jjA� (N1)jj = �i (A) > 0: By essential team on non-cancelled

games,

Ri

�
(A�)N1;? ;

jjA� (N1)jj

jjAjj
E

�
=
jjA� (N1)jj

jjAjj
E =

�i (A)

jjAjj
E:

We now analyze the problem induced by conference N2: We also consider two cases.

Case 2.1. �i (A) = jjAjj : Then jjA
� (N2)jj = 0 and hence

Ri

�
(A�)N2;? ;

jjA� (N2)jj

jjAjj
E

�
= 0:

Case 2.2. �i (A) < jjAjj : Then jjA
� (N2)jj = jjAjj � �i (A) > 0:

For each j; k 2 N and x 2 R+; we de�ne A
jk;x where

a
jk;x
lm =

8
<

:
x if (l;m) = (j; k)

? otherwise.

14Otherwise, the proof is trivial as Ri (A;E) =
E

n
, for each i 2 N .
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By essential team on non-cancelled games,

Rj
�
Ajk;x; E

�
= Rk

�
Ajk;x; E

�
= E:

Thus,
X

l2Nnfj;kg

Rl
�
Ajk;x; E

�
= �E: (1)

Let l 2 N: Consider j; k 2 Nn flg and j0; k0 2 Nn flg : By reallocation proofness,

Rl
�
Ajk;x; E

�
= Rl

�
Aj

0k0;x; E
�
:

As Rl
�
Ajk;x; E

�
does not depend on j and k;we can de�ne f (l; x; E) = Rl

�
Ajk;x; E

�
for

each l 2 N and x;E 2 R.

Let j; k 2 N and m 2 Nn fj; kg : By (1)

�E =
X

l2Nnfj;k;mg

Rl
�
Ajk;x; E

�
+Rm

�
Ajk;x; E

�
and

�E =
X

l2Nnfj;k;mg

Rl
�
Ajm;x; E

�
+Rk

�
Ajm;x; E

�
:

Then, Rm
�
Ajk;x; E

�
= Rk (A

jm;x; E). Hence f (m;x;E) = f (k; x; E) :We then denote it as

f (x;E) :

By (1),

f (x;E) =
�E

n� 2
:

Notice that
�
(A�)N2;? ;

jjA� (N2)jj

jjAjj
E

�
=

�
Ai

1i2;jjAjj��i(A);
jjAjj � �i (A)

jjAjj
E

�
:

Thus, for each k 2 Nn fi1; i2g

Rk

�
(A�)N2;? ;

jjA� (N2)jj

jjAjj
E

�
= �

jjAjj � �i (A)

(n� 2) jjAjj
E:

By essential team on non-cancelled games,

Ri1

�
(A�)N2;? ;

jjA1 (N2)jj

jjAjj
E

�
= Ri2

�
(A�)N2;? ;

jjA1 (N2)jj

jjAjj
E

�
=
jjAjj � �i (A)

jjAjj
E

We now conclude as follows.

�i (A) = 0: By cases 1.1 and 2.2,

Ri (A;E) = �
jjAjj

(n� 2) jjAjj
E = CDz

i (A;E) :
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0 < �i (A) < jjAjj : By cases 1.2 and 2.2,

Ri (A;E) =
�i (A)

jjAjj
E �

jjAjj � �i (A)

(n� 2) jjAjj
E

=
(n� 1)�i (A)� jjAjj

(n� 2) jjAjj
E = CDz

i (A;E) :

�i (A) = jjAjj : By cases 1.2 and 2.1,

Ri (A;E) =
�i (A)

jjAjj
E = E = CDz

i (A;E) : �

5.6 Proof of Theorem 4

We can prove that CDl satis�es leg-baseline monotonicity similarly to the case of ESl in the

proof of Theorem 2. It is straightforward to show that CDl satis�es the rest of the axioms in

the statement.

Conversely, let R be a rule satisfying those axioms. Let (A;E) 2 P be such that jjAjj > 0.15

Let m (A) be the number of cancelled games in tournament A: We prove that R (A;E) =

CDl (A;E) by induction on m (A) : Assume �rst that m (A) = 0.

Let i 2 N . Let A�; i0; i1; i2; N1 and N2 be de�ned as in the proof of Theorem 2. By weak

reallocation proofness, replicating the argument therein, we obtain that Ri (A;E) = Ri (A
�; E).

Now, as m (A�) = 0, A� = (A�)z = (A�)l : This implies that leg-multi-conference is equiv-

alent to zero-multi-conference for A�. Besides, reallocation proofness is equivalent to weak

reallocation proofness for A�:

Thus, similarly to the proof of Theorem 3, we can show Ri (A
�; E) = CDz

i (A;E) : As

m (A) = 0, Az = Al. Hence, Ri (A
�; E) = CDl

i (A;E) :

Assume then that R (A;E) = CDl (A;E) for m (A) = p. Let (A;E) be such that m (A) =

p + 1: Then, using similar arguments to those used in the proof of Theorem 2, we can deduce

that R (A;E) = CDl (A;E) : �

5.7 Proof of Theorem 5

It is similar to the proofs of Theorem 1 and Theorem 3 and, thus, we omit it.

15Otherwise, the proof is trivial as Ri (A;E) =
E

n
, for each i 2 N .
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