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Impact of Agricultural Factors on Carbon Footprints for GHG 
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S.P. Jayasooriya1  
 
Abstract  
 

Climate change becomes one of the most severe problems in the World. Notably, 
carbon footprints are one of the key factors for the climate change. The important question is 
that how to mitigate the climate change by adapting the mitigation practices in the agricultural 
sector in Asia. The rationale for the study is to understand the determining factors for the 
emission of carbon dioxide in the agricultural sector with robust analysis. In terms of policy 
perspectives as the main emission gases are carbon dioxide, methane and nitrous oxide. This 
study is only considered the CO2 emissions from agricultural sector. The data was obtained 
from USDA website supplemented by the WDI of the World Bank in 46 Asian countries from 
1970 to 2016. The study applied random and fixed effect models in the panel data analysis to 
predict the factors affecting the CO2 emission in the agricultural sector. Furthermore, the 
generalized estimation of equations was also applied to avoid the endogeneity issue while 
obtaining robust estimates. The agricultural factors like feed, fertilizer, labour, livestock, 
irrigation and machinery were significant and positive predictors of the carbon footprints. Thus, 
the management of sustainable agricultural factors to control the CO2 emission can be 
proposed for the GHG emission policies in the Asian region.   
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1. Introduction 
 
Climate change is one of the most severe environmental issues in today’s world because of 
excessive emission of Green House Gases (GHG) into the atmosphere. Carbon dioxide is the 
most dominant GHG, which accounts for more than 60% of total contribution to the 
greenhouse effect (IPCC, 2000). Agricultural sector of the many developing countries also 
produces considerable amount of the carbon dioxide. Agriculture, forestry and other land use 
sector contributions to climate change data (IPCC, 2014). According to the distribution of 
Global GHG emissions by sector, Agriculture, Forestry and Other Land Use (AFOLU) 24%, 
35% Energy, 6% Building, 14% transport and 21% in industries are prominent (IPCC, 2014; 
FAOSTAT, 2016). 
 
A carbon footprint is a measure of the total amount of carbon dioxide emissions caused by an 
activity or accumulates both directly and indirectly in daily life (Geng, et. al., 2011). The 
concept of carbon footprint has been well known in recent decades as an indicator of 
greenhouse gas emissions originating from human activities (Salo et. al., 2019). The concept 
of carbon footprint is divided into two; primary carbon footprint and secondary carbon footprint. 
The primary carbon footprint is a measure of CO2 emissions resulting from direct use of fuel 
such as oil or LPG for cooking (Donglan et. al., 2010), and transportation fuel oil while the 
secondary carbon footprint is indirect carbon dioxide emissions. Secondary carbon footprint 
is generated from household electronic equipment where the electronic equipment can be 
used by using electrical power sourced from power plants with fossil fuels so that consumers 
of electric power users indirectly have burned fossil fuels to obtain electricity. This certainly 
shows that there is a relationship between the secondary carbon footprint and the primary 
carbon produced. The carbon footprint unit is tons of CO2 equivalent (tCO2e) or kg-equivalent-
CO2 (kgCO2e) (Han et. al., 2015). 
 

2. Literature Review 

According to the UN definition, the agriculural sector causes 10-15 percent of global 
anthropogenic GHG emissions (Baumert et al. 2005; Smith et al. 2007; Bellarby et al. 2008; 
EC 2010a). Including the indirect sources, this percentage increases to more than 30 percent 
(Bellarby et al. 2008). This makes agriculture the second largest emitter after fossil energy use 
(US-EPA 2006a). Agriculture is also the largest producer of both methane and nitrous oxide, 
which together make up about 22 percent of global emissions (Baumert et al. 2005). 

Agricultural practices are each associated with certain level of emissions. CO2 is directly 
released as a result of agricultural activities in addition to the methane and nitrous oxide. 
Counted as direct agricultural emissions under the IPCC categorization are only CO

2 

emissions from microbial decay or burning of plant litter and soil organic matter, and not the 
emissions from fossil fuel use in machinery and input production (IPCC 2006). Indirect 
emissions occur also in the form of methane, nitrous oxide and CO

2
. Besides from land use 

change, CO
2 is also released from fossil fuel use for irrigation, agricultural machinery and the 

heating of greenhouses. This corresponds to about 10 percent of direct agricultural emissions 
although not counted in the agricultural sector by the IPCC categorization (Bellarby et al. 
2008). Overall global agricultural emissions, for which are counting direct agricultural 
emissions plus input production and energy use (Bellarby et al., 2008).  

As a result of this increasing attention towards global carbon emissions, researchers have 
begun quantifying the carbon emissions (Liu and Liang, 2017). While some of these studies 
focused on quantifying the carbon emissions on a national scale, some studies have quantified 
the carbon emissions on a global scale. Wang et al. (2017) applied decomposition method to 
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decompose aggregate environmental indicators, while Voigt et al. (2014) studied the energy 
intensity. Moreover, Lan et. al. (2016) explored the energy footprint and Xu et al. (2012) 
investigated the industrial carbon emissions. Global scaled carbon emission quantification 
studies revealed China as the largest carbon emitter since 2008 (Zhao, 2014). According to 
Zhang and Da (2013), China accounts for 27% of the global carbon emissions and as indicated 
by Michaelowa and Michaelowa (2015), emission value of China has increased by 174% 
during 1990–2010, while it has been doubled during 2001–2010. Moreover, these carbon 
exploration studies identified countries such as the USA, UK, and Australia as significant 
contributors to global carbon emissions. Therefore, it is evident that all the countries are 
responsible for the global carbon emissions in different scales. Carbon emissions of a country 
are influenced not only by its development demand but also by the production demand of other 
countries (Jiang, 2019). Therefore, decision makers across the globe have relied on research 
outcomes to understand the current situation of carbon emissions and derive future plans to 
reduce GHG emissions.  

3. Data and Variable Definition  
 
The annual data was gathered for 46 Asian countries from 1970 to 2016. The data was 
gathered from https://www.ers.usda.gov/data-products/international-agricultural-productivity/. 
The agricultural total factor productivity index was also collected from this web. It was prepared 
by USDA economic research services. These data were supplemented by the WDI of the 
World Bank.  
 
Agricultural Land: 1000 hectares of rainfed-cropland-equivalents (rainfed cropland, irrigated 
Cropland and pasturement pasture, weighted by relative quality - Land Weights) 
Cropland: 1000 hectares of land 
Irrigation: 1000 hectares of irrigation land  
Labour: 1000 persons economically active in agriculture, 15+ yrs, male & female 
Livestock: 1000 head of cattle-equivalents 
Machinery: Number of 40-CV tractor-equivalents of farm machinery in use (includes tractors, 
harvester-threshers, milking machines, water pumps) 
Fertilizer: Metric tonnes of fertilizer  
Feed: 1000 Mcal of Metabolizable Energy (ME) 
Total greenhouse gas emissions (kt of CO2 equivalent): composed of CO2 totals excluding 
short-cycle biomass burning (such as agricultural waste burning and savanna burning) but 
including other biomass burning (such as forest fires, post-burn decay, peat fires and decay 
of drained peatlands), all anthropogenic CH4 sources, N2O sources and F-gases (HFCs, 
PFCs and SF6).  
 

4. Empirical method 
 
(i) Fixed and Random Effect Model 

In the fixed effects model, 𝜇! and 𝜆" are assumed to be fixed parameters and 𝑣!"~𝐼𝐼𝐷(0, 𝜎#
$). 

This model can be estimated by the least squares dummy variable (LSDV) method, by adding 
N-1 and T-1 country and time period dummy variables. The resulting estimated parameters 
would be consistent and unbiased.  

The model may also be estimated by “within” estimators, transforming the Y and X variables 
into deviations from individual and time period means. The model is then estimated by least 
squares on:  

𝑌!"
% = 𝑋!"

%𝛽 + 𝑢!"
%………………………………..……………………………………………………(1) 
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where the within-transformed variables and residuals are obtained: 	

𝑌!"
% = (𝑌!" − 𝑌4!. − 𝑌4." + 𝑌4..), 𝑋!"

% = (𝑋!" − 𝑋4!. − 𝑋4." + 𝑋4..), and 𝑢!"
% = (𝑢!" − 𝑢4!. − 𝑢4." + 𝑢4..). The 

slope coefficients would be consistent and unbiased. A disadvantage of the within estimation 
method is that the observable time-invariant and country-invariant effects are not estimated.  

In the random effect model, the unobservable country-specific and time-specific effects and 

the random error term are assumed randomly distributed,	 𝜇!~𝐼𝐼𝐷(0, 𝜎'
$), 𝜆!~𝐼𝐼𝐷(0, 𝜎(

$), and 

𝑣!"~𝐼𝐼𝐷(0, 𝜎#
$). and independent of x and of each other. The model can be estimated using 

the generalized least squares (GLS) estimation method. The model may be written as:  

𝑌!"
∗ = 𝛼 + 𝑋!"

∗ 𝛽 + 𝑢!"
∗ ………………………………………………………………………………....(2) 

where the within-transformed Y and X variables are obtained as:  

𝑌!"
∗ = (𝑌!" − 𝜃*𝑌4!. − 𝜃$𝑌4." + 𝜃+𝑌4..), 𝑋!"

∗ = (𝑋!" − 𝜃*	𝑋7 !. − 𝜃$𝑋4." + 𝜃+𝑋4..), and the parameters 

𝜃*, 𝜃$, 𝜃+ are transformation parameters. If they are equal to 0, the model is reduced to pooled 
OLS; if they are equal to 1, the model is a within model; and if they are between 0 and 1, it is 
a case of GLS. Four different feasible GLS (FGLS) have been developed following Wallace 
and Hussain (1969), Amemiya (1971), Nerlove (1971) and Swamy and Arora (1972). The 
methods differ by the way different unobservable effects’ variances are estimated.  

(ii) Generalized Estimating Equation Model  

 
The generalized estimating equations (GEEs) methodology, introduced by Liang and Zeger 
(1986), enables you to analyze correlated data that otherwise could be modeled as a 
generalized linear model. GEEs have become an important strategy in the analysis of 
correlated data. These data sets can arise from longitudinal studies, in which subjects are 
measured at different points in time, or from clustering, in which measurements are taken on 
subjects who share a common characteristic. 
 
To estimate the statistical relationship between carbon footprints and agricultural factors, we 
use the GEE approach. The GEE requires three components including mean response, 
variance, and a working correlation assumption [21]. Given the GLM estimation with 

conditional expectation, 𝐸(𝑌!"|𝑋!") = 	𝜇!", the link function G (·) (a non-linear function that links 
predicted values and independent variables) can be expressed as: 

 	𝜇!" = 𝐺(𝑋!"𝛽)……………………………………………………………………………………….(3) 

Then the conditional variance of the response variable 𝑌!", given the independent variables, 
is:  

𝑉𝑎𝑟(𝑌!") = 𝜙𝑣(𝜇!")…………………………………………………………………………………..(4) 

where 𝜙 is a known parameter that depends upon the distribution of the response variable; 
and 𝑣(𝜇!") is the variance function of mean 𝐸(𝑌!"|𝑋!") = 	𝜇!" . The GEE is defined by 
substituting the variance term in the GLM with the following variance-covariance matrix 
(Hardin, and Hilbe, 2012). 

𝑉(𝜇!") = [𝐷(𝑉(𝜇!"))
!

"𝑅(𝛼)(-!×-!)𝐷(𝑉(𝜇!"))
!

"]-!×-!………………………………………………...(5) 

a = the correlation parameter;  
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where:𝐷 = the diagonal matrix; 𝑉(𝜇!") = the variance of marginal mean 𝜇!" ; 𝑅(𝛼)(-!×-!) = the 

working correlation matrix.  

We define CO2 emission as a dependent variable which explains the variation of the GHG 
emission. As such, we adopt a non-linear factional response model in this study. The most 
often used fractional response models are fractional probit and fractional logit. Here, we use 
the fractional probit model because the probit function is computationally simple in the 
presence of unobserved heterogeneity. For the panel data form, which usually includes many 
cross-sectional units observed at a few time points, the GEE has an advantage over the GLM 
by separating the nuisance variation due to the population-wide behavior from the variation 
related to time trends (Gibbons, et al, 2010). The fractional probit model with unobserved effect 
can generally be written as: 

 𝐸(𝑦!"|𝑋!*𝑋!$……𝑋!1) = Φ(𝑋!"𝛽 + 𝑐!)………………………………………………………………..(6) 

where i = 1, 2, ..., N for cross-sectional units; t = 1, 2, ..., T for time; y = the response variable; 

X = the K ´1 vector of explanatory variables; b = the K ´1 vector of constants; 𝑐! = the 

unobserved effect which is defined as 𝑐!| (𝑋!*𝑋!$……𝑋!1)~Normal (𝜓 + 𝑋4!𝜉,	𝜎2
$). A simple way 

to express 𝑐! is that 𝑐! = 𝜓 + 𝑋4!𝜉 + 𝑎,𝑤ℎ𝑒𝑟𝑒	𝑎!|𝑋!~𝑁(0, 𝜎2
$). 

5. Results and Discussion 
 
This section provides the results of the empirical analysis on what agricultural factors 
determine the emission of CO2 (carbon footprints) in Asian countries. Initially the panel data 
model is estimated and then generalized estimation of equations-population averaged model 
was estimated to improve the robustness and consistency. The table 1 provides the summary 
statistics of the variables used in the analysis.   

                      Table 1: Summary Statistics of the Variables 

Variables Means 
Standard 
deviation 

Observations 

Carbon footprints 223981.20     734672.30 1806 

Cropland 8640.78     25078.94 1806 

Feed 1.88e+07     6.56e+07 1856 

Fertilizer 761643.60     3180886 1856 

Labour 18436.44     52001.95 1856 
Livestock 10304.45 31648.78 1856 

Machinery 188276.40     688166.30 1806 

Total Factor Productivity 94.21     38.72 1806 
Irrigation 1499.43   6122.79 1856 

Agricultural Land 11836.49     37101.28 1856 
Source: Author’s estimation  

 
The table 2 and 3 provide the results of the panel data analysis model which includes the 
random effect and fixed effect estimations.  

                                 Table 2: Results of the Random Effect  

Dependent variable: log of 
carbon footprints 

RE 1 RE 2 RE 3 

Log of crop land - - -0.399 (-0.47) 
Log of feed 0.008*** (51.63) 0.007*** (52.15) 0.006*** (50.34) 
Log of fertilizer 0.009*** (3.21) 0.006*** (2.26) 0.007*** (3.12) 
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Log of labour 0.623** (2.41) 0.492** (1.74) 0.542** (2.12) 
Log of livestock 0.061*** (3.01) 0.345*** (2.88) 0.426*** (2.99) 
Log of machinery 0.397*** (10.34) 0.334*** (30.34) 0.386*** (12.20) 
Log of Total Factor Productivity  - 80.496 (0.90) 33.47 (0.73) 
Log of irrigation - - 16.542***(-2.80) 
Log of agricultural land - - 4.025 (1.36) 
Constant  9112.32*** (0.48) -327.892 (-0.02) -420.21 (-0.01) 
No of observations 1856 1856 1856 
No of groups 46 46 46 
Wald chi2 28653.31*** 27764.46*** 22467.86*** 
R2 40.2 92.2 54.9 

Note: Panel data model – random effects GLS regression; z values are in the brackets 
Source: Author’s estimation   

 

The random effect model 1 (RE 1) shows that feed, fertilizer, labour, livestock and machinery 
are significant positive factors that affect the GHG emissions. All agricultural factors are 
positive implying that these factors are resulted the emission of the carbon dioxides. The 
second equation (RE 2) is inclusion of total factor productivity in to the panel data equation. 
Random effect model predicts that the total factor productivity is not an indicator of supporting 
the emission of carbon dioxides. The third equation (RE 3) consists of all factors that predicts 
the emission of carbon dioxides shows that feed, fertilizer, labour, livestock and machinery are 
significant positive factors while irrigation is a significant positive factor that increases the 
emission of carbon dioxides into the atmosphere. It also predicts that the total factor 
productivity is not a significant determinant for CO2 emissions. The coefficient of determinant 
for the final equation is around 55% means that the model predicts the 55 percentage of 
variability. Further, the coefficients are the elasticities of the model equation.      

Table 3: Results of the Fixed Effect 

Dependent variable: log of carbon 
footprints 

FE 1 FE 2 FE 3 

Log of crop land - - 0.287*** (6.20) 
Log of feed 0.008*** (7.23) 0.021*** (15.44) 0.010*** (5.09) 

Log of fertilizer 0.009*** (4.32) 0.009*** (5.11) 0.263**(3.75) 
Log of labour 0.623**(2.51) 0.597**(2.61) 2.071***(8.68) 

Log of livestock 2.061***(6.61) 2.009***(4.38) 0.300***(5.75) 
Log of machinery 0.397***(31.72) 0.359***(30.30) 0.278*** (5.21) 
Log of Total Factor Productivity  - -12.001*** (-10.63) -12.060***(-9.90) 
Log of irrigation - - 0.397***(31.72) 
Log of agricultural land - - 0.047*** (4.27) 
Constant  9112.32*** (106.48) 89633.24*** (109.33)    80234.21***(121.95)  

No of observations 1856 1856 1856 
No of groups 46 46 46 
R2 0.74 0.79 0.64 

Note: Panel data model – fixed effects regression; t values are in the brackets 
Source: Author’s estimation  

 

The table 3 above shows the results of fixed effect estimation of the panel data model. In 
equation 1 (FE 1), the results shows that the feed, fertilizer, labour, livestock, and machinery 
are significant predictors of the carbon footprint at 5 percentage of significant level. The 
equation 2 (FE 2) of the results shows that additionally new variable, total factor productivity, 
is also significant predictor of the carbon footprints at 5 percentage significant level. However, 
increase of total factor productivity reduces carbon dioxide emissions in the agricultural 
activities. In equation 3 (FE 3), which includes all variables predict that all the determinants of 
the model are significant factors in deciding the emission of carbon footprints in the agriculture. 
Notably, total factor productivity of the model is negatively significant indicating that increase 
of the productivity reduces the carbon footprints. These coefficients of the factors in the model 
shows the elasticities of each independent variables. 
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The table 4 shows the estimated results of the generalized estimation of equations. In order 
to achieve a higher robustness and consistency avoiding the endogeneity the generalized 
estimation equation is used in the following table 4.   

Table 4: Results of the Generalized Estimation of Equations  

Dependent variable: 
log of Carbon Footprints 

GEE 1 GEE 2 GEE 3 

Log of feed 0.008*** (55.46) 0.007***(56.72) 0.007***(54.04) 
Log of fertilizer 0.009** (1.98) 0.008***(2.72) 0.007***(2.62) 
Log of labour 0.623**(1.86) 0.574**(2.24) 0.531**(1.72) 
Log of livestock 2.061***(3.85) 1.667***(3.56) 1.640***(3.42)  
Log of machinery 0.397***(31.21) 0.343*** (32.70) 0.342***(31.79) 
Log of Total Factor Productivity - 78.476(0.92) 81.366 (0.95) 
Log of irrigation - 13.980***(-5.87) 15.381**(-2.51)   

Log of agricultural land - - 2.604**(2.84) 
Log of crop land - - -0.783 (-0.07) 
Constant  9112.32(0.48) 9318.346 (0.53) 9432.510 (0.54) 

No of observations 1856 1856 1856 
No of groups 46 46 46 
Wald chi2 28653.31*** 28805.32*** 28794.64*** 
Exchangeable  40.2 40.2 40.2 
    

GEE population-averaged model; t values are in the brackets 
Source: Author’s estimation  

 

The equation 1 (GEE 1) shows the feed, fertilizer, labour, livestock, and machinery are 
significant predictors of the carbon dioxide emissions at 5 percentage of significant level. 
Similarly, the GEE 2 equation also predicts the model and the variables feed, fertilizer, labour, 
livestock, and machinery are significant predictors of the model; irrigation included in the 
model is positively significant while total factor productivity is not significant. The GEE 3 
equation in the table shows that all variables included in the model is significant except the 
total factor productivity. The coefficients of the model present the elasticities of the 
independent variables that predict the changes of the carbon footprints. 
 

6. Conclusion  
 
GHG emission policies are mainly concerned with the emission reduction and mitigation for 
the climate change. Since agriculture is key sector that generate GHG emission, it is important 
to study how the agricultural factors affecting the CO2 emission in Asia. The study intends to 
understand the causal relationship between the agricultural determinant on the CO2 emission. 
The study applied fixed and random effect models followed by the generalized estimation of 
equation approaches. The results of the fixed and random effect models support the idea that 
GHG emission policies can be designed with understanding the factors affecting the carbon 
footprints in agricultural sector. Further, the application of generalized estimation of equation 
model shows that the factors like feed, fertilizer, labour, livestock, irrigation and machinery 
were significant and positive predictors of the carbon footprints. This implied that the GHG 
emission can be controlled with sustainable use of these factors in the agricultural sector.  
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