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Abstract 

The Covid-19 pandemic has affected energy demand and pricing globally due to different 
lockdown measures embarked on by governments in different economies. As a result, prices 
of oil and petroleum products dropped drastically at the peak of the pandemic period. The 
present paper, therefore, investigates the effect of the pandemic on energy markets and 
compared the levels of market efficiency, volatility, and volatility persistence. Two 5-monthly 
daily data windows are considered, each for the period before and during the pandemic, and an 
updated nonlinear fractional integration approach in time series analysis is employed. Having 
considered prices of Crude oil, Gasoline, Diesel, Heating oil, Kerosene, and Propane from US 
markets, we find that energy markets are less efficient during the Covid-19 pandemic period, 
even though with higher volatility but with lesser volatility persistence compared to the period 
before the pandemic. Thus, volatility shocks last for a shorter period during the 5-month 
pandemic period than in the 5-month period that precedes the pandemic. It is hoped that the 
findings of this work will be of interest to oil marketers and administrators in the international 
oil markets.  
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1. Introduction 

Fama (1965; 1970) efficient market theory is often used to explain market participation in 

stocks and other asset price markets. This does not exclude energy markets where energy 

sources such as crude oil and petroleum products are traded on daily basis. The entire crude oil 

market is a complex, turbulent, and opaque international financial market as noted in Norouzi 

and Fani (2020). Thus, the level of efficiency of such an energy market will be useful in 

evaluating energy investment in a bid to develop the energy market further. The 

efficiency/inefficiency in the energy market will render useful information to energy market 

players. As defined in Fama (1965) and as adapted to the case of the energy market, efficiency 

posits that own past information in the energy market is expected to predict the future dynamics 

of market prices. As quoted directly, the standard definition of an efficient market states that: 

“In an efficient market, at any point in time, the actual price of a security will be a good estimate 

of its intrinsic value”. A more refined definition by Fama (1970) on the Efficient Market 

Hypothesis (EMH) is that prices of assets have complete past information, and in the event of 

the arrival of new information, these prices re-adjust for the assets to be re-valued rightly. Thus, 

returns of asset prices at the market are expected to be predictable for EMH to hold (see Lim 

and Brooks, 2011), and in this case, investors cannot make abnormal returns. Asset prices 

follow a random walk movement since returns are deemed to be unpredictable.   

Quite several papers have investigated market efficiency in energy pricing markets 

using crude oil and petroleum products such as gasoline, diesel, kerosene, heating oil, and 

natural gas as sources of energy. Table 1 gives a cursory look at this literature. 

PUT TABLE 1 AROUND HERE 

On the volatility of energy prices, we have numerous pieces of literature as documented 

in Table 2. Efficiency and volatility of asset pricing are inseparable, as efficiency is a function 
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of price differences, that is, returns. This could also be price movement as it follows a random 

walk. Market volatility is a function of variation from price returns, and while volatility 

persistence tells us about the time such volatility lasts when triggered by external shocks, and 

in an efficient market, the time needed for the effect of price shocks on volatility to fizzle out 

is very short. Market volatility is often proxied by absolute or squared returns in daily 

frequency series. 

PUT TABLE 2 AROUND HERE 

 The analysis approach considered in the present paper is novel and scarcely applied in 

the analysis of energy pricing, as detailed in the literature. This is the fractional integration 

(unit root) method in time series econometrics. It is a more general method to classical unit 

root testing of Box et al. (2015) as it allows for fractional unit root testing in time series other 

than unit root 0 as in autoregressive moving average (ARMA) and its integrated ARMA version 

with unit roots 1,2, etc. These roots are too restrictive for any time series observations since in 

a real sense these may not be an exact integer number. Fractional integration is determined by 

parameter d which lies in the stationary interval as in -0.5 < d < 0.5, and nonstationary interval 

as in 0.5 ≤ d < 3. Most time series are integrated of order 1 as noted in Box et al. (2015), while 

others are nonstationarity of the higher order of d (see Shittu and Yaya, 2011; Yaya and Gil-

Alana, 2020). A subset of fractional integration is a long-range dependency which is more 

general, where 0 1d   and 0 0.5d   is the case of stationary mean reversion, while 

0.5 1d   is the case of nonstationary mean reversion. Mean reversion refers to the tendency 

of an asset time series to return to its original trend path after being induced by external shocks 

(Fama and French, 1992), while in the case of non-mean reversion ( 1d  ), the effects of 

shocks on assets series persist indefinitely. In the case of market efficiency of energy pricing, 

after being induced by the Covid-19 health crisis as a source of shocks, if the energy price 

series tends to drift away from its mean level, it is said to be persistent and non-mean reverting. 
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On the other way round, if after energy price series are induced by Covid-19 or any other 

external shocks, the series reverts to their mean level, they are said to be mean-reverting.  

The present paper, therefore, investigates the level of market efficiency and volatility 

persistence of energy pricing before and during the Covid-19 pandemic, using a 5-month daily 

data window in each case, by employing fractional integration test. Market efficiency of energy 

price series, in this case, means that prices series are I(d = 1) as in the case of random walk, 

which further implies that the first difference series of price series (i.e. the log-returns) are I(d 

= 0). Evidence of market inefficiency, thus means that I(d < 1) which is the case of long-range 

dependency of the series. The fractional integration approach is as well applied to absolute 

returns used as volatility persistence proxy. Due to the nonlinear nature of the time series, our 

analysis is based on an updated method in Gil-Alana and Yaya (2020) that allows for smooth 

nonlinear time trends based on Fourier functions. The classical fractional integration method 

is the Robinson (1994) linear model which is limited to the linear time trend context. The 

estimation of the model is based on the Lagrange Multiplier (LM) principle with the Whittle 

function. 

Fractional integration framework with linear and nonlinear regimes in the dynamics of 

oil and energy prices has been considered in recent papers. The persistence of prices and returns 

of crude oil at the WTI market across bull and bear phases were considered in Gil-Alana et al. 

(2016) in which the bear market of oil persisted longer than the bull market. The author further 

stated the implication this had for market efficiency. Olubusoye and Yaya (2016) also 

considered persistence, asymmetry, and jumps in oil and petroleum products’ returns and found 

crude oil to persist relatively differently from petroleum products prices. Other papers such as 

Gil-Alana, Yaya, and Awe (2017) used the fractional integration approach to investigate 

movement between oil and gold (Yaya, Tumala and Udomboso, 2016; Gil-Alana, Yaya and 

Awe (2017), natural gas pricing (Yaya, Gil-Alana and Carcel, 2015), oil price and US dollar 
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exchange rate returns (Yaya et al., 2017). These are very recent papers adopting a persistence 

approach in modeling oil and energy prices in the market, whereas the applied methodology in 

the present paper is an updated approach. Nonlinearity check is prominent in oil and energy 

modeling as noted in Kapetanios, Snell, and Shin (2003), therefore the property is 

recommended to be tested in the analysis of the time series. It is hoped that the investigation 

of efficiency and volatility persistence in energy pricing markets will interest readers.  

 The rest of the paper is structured as follows: Section 2 presents and describes the 

datasets, giving some initial pretests. Section 3 presents the statistical methodology via a 

fractional integration framework. Section 4 presents the main findings and section 5 renders 

the concluding remarks. 

 

2. Data presentation 

Daily spot prices of six oil and petroleum products, namely Crude oil (West Texas Intermediate 

market), Gasoline, Heating oil, Diesel (New York Harbour market), Kerosene (US Gulf Coast 

market), and Propane (Mont Belvieu Texas market) were analyzed. The datasets were retrieved 

from the website of the US Energy Information and Administration (EIA) at 

https://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm. The energy prices are quoted in US 

dollars per barrel while the natural gas (Propane) is quoted in US dollar per Million Btu. The 

time series spans from 1 October 2019 to 17 August 2020.  

            Following WHO (2020), the Covid-19 pandemic declaration was on 11 March 2020, 

and this date serves as a break date for our time series. We then have a subsample before and 

during the pandemic. In Figure 1, we present plots of each energy series with a vertical line 

dividing the series into two subsamples A and B. In the plots, energy price drops are observed, 

commencing around January 2020 and this was further triggered by the Covid-19 pandemic in 

February-March, 2020, with oil and petroleum prices hitting their lowest prices in March-April, 

https://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm
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2020. The transformed log-returns series of these energy prices showed obvious price 

fluctuations due to volatility during the pandemic phase in subsample B in all the six plots. 

This gingered further probing into the market efficiency level and volatility at energy markets 

before and during the pandemic. 

PUT FIGURE 1 AROUND HERE 

            As part of the data exploration, descriptive measurements are computed for energy 

prices, their log-returns, and absolute returns used as volatility proxy, for the two subsamples 

A and B. Results are presented for price level and log-returns in Table 3. Energy prices were 

found to be higher before the pandemic, as WTI oil traded at an average price of $48.89 per 

barrel as against $34.40 per barrel during the pandemic. Oil recorded a maximum price of 

$63.27 since October 2019, with a minimum price of $14.10 in the first 5 months since October 

2020. Minimum daily prices reported for all energy series are a result of a sharp decline in 

prices of oil and petroleum products before the WHO announcement of Covid-19 as a 

pandemic. The results of JB (Jarque-Bera) test statistics imply that the dynamics of oil and 

petroleum products’ pricing are asymmetric and possibly heteroscedastic since neither follow 

Gaussian distribution. During the pandemic (i.e. Subsample B), energy prices are lower except 

for propane with an average price of $0.46 per million Btu. This is expected since the plot of 

Propane pricing in Figure 1 has indicates that Propane gas has almost recovered completely 

from price drops. The maximum price before the pandemic was $0.56 per Million Btu as 

against $0.53 per Million Btu during the pandemic. In other petroleum products, there is still a 

wide margin in price differences before and during the pandemic. Since these energy sources 

are gaining back their price levels quickly, log-returns for these prices are positive indicating 

an increase in prices. By looking at estimates of standard deviations of returns, we found higher 

variation for prices of WTI oil, Heating oil, Diesel, and Kerosene during the pandemic implying 

the possibility of higher price volatility during the episode.  
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PUT TABLE 3 AROUND HERE 

 These prices differences serve as indications to investigate market price dynamics and 

behaviour of market participants for the possibility of abnormal gain or not. In what follows, 

we describe the fractional integration methodology used to investigate market efficiency and 

volatility persistence between the two trading phases.  

 

3. Fractional integration framework 

Long-range dependence and long memory are often used to describe time series persistence, 

often estimated under fractional integration setup. A time series has long memory if its spectral 

density function has a pole at frequency null, and its autocorrelation function
ty

  decays 

exponentially slowly as in, 

       2 1

t

d

y
k ck   as  k      (1) 

for fractional persistence parameter, d in the interval, 0 0.5d  , with k being the time lag and 

constant, c. Thus, the autocorrelation sums to infinity, i.e.  
ty

k

k




   (see Granger, 1980; 

Granger and Joyeux, 1980, Marinucci and Robinson (1999). 

As applied in this paper, the general fractional integration approach considers the 

model, 

    𝑦𝑡 = 𝜌(𝐿; 𝑑)𝑥𝑡 +  𝑢𝑡,           𝑡 = 1,2, … , 𝑁   (2) 

where 𝑦𝑡 is the observed energy price series of size N, 𝜌(𝐿; 𝑑)𝑥𝑡 is the backward shift 

operation, with lag 𝐿, (𝐿′𝑥𝑡 = 𝑥𝑡−1). The standard I(d) model is, 

     𝜌(𝐿; 𝑑) = (1 − 𝐿)𝑑     (3) 

where d is the fractional persistence parameter. By extending (2) above to include a nonlinear 

deterministic function that captures both nonlinear cycle and persistence in the time series, we 

have the model,   
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   𝑦𝑡 = 𝜙(𝑡) + 𝜌(𝐿; 𝑑)𝑥𝑡 +  𝑢𝑡,           𝑡 = 1,2, … , 𝑁   (4) 

where 𝜌(𝐿; 𝑑) is of the form in (3) and 𝜙(𝑡) is the Fourier function, capturing multiple 

structural breaks in the energy series as nonlinear cycles and smooth breaks. This model is 

proposed in Gil-Alana and Yaya (2020): 

     
1 1

sin 2 cos 2 ;        2;      1,2,...,
n n

k k

k k

t t kt T kt T n T t N      
 

        (5) 

where   and   are the intercept and linear, t trend slope, respectively; k
  and k

  are parameters 

driving the amplitude and displacement of the Fourier form which induces the nonlinearity, 

respectively; Fourier form expansion is determined by frequency n and k  is a particular 

frequency number set as equal to 1, 2, …. n, and N is the number of observations. Thus, k
  

and k
  (for all k) determine nonlinearity in the entire process and the significance of one or 

both parameter implies nonlinearity in the energy series, while for λk = γk = 0, the process is 

linear in time, and this becomes the fractional integration unit root test model of Robinson 

(1994) and Dolado et al. (2002). 

 By combining (3) with (5) and with further transformation, we have, 
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and log-likelihood estimates are obtained. Thus, model diagnostic criteria such as the Sum of 

Squares Residuals (SSR) and Akaike information criterion (AIC) are obtained. The major 

problem is how to obtain the optimal k value. A grid search experiment is set up where k takes 

values from 0 to 5 with increments of 0.1. Thus, with each k value, the model in (6) is estimated 

and information criteria are obtained. The optimal k value is such that gives minimum SSE and 

AIC among 50 sets of k values (see Gil-Alana and Yaya, 2020). 

 

4. Empirical Results 

From (7), by assuming the linear fractional integration framework of Robinson (1994) such 

that that the nonlinear Fourier form parameters λk and γk are insignificantly different from 0, 

then we have resulted in Tables 4-7 for price energy levels, log-returns and absolute squared 

returns, respectively. Both price levels and returns inform market efficiency since the random 

walk hypothesis is expected to be unpredictable in the returns, and prices are assumed to be 

I(1) processes. Robinson (1994) considers testing odd   for any real h-vector do value such 

that the I(d = 1) hypothesis is rejected if the lower bound of the confidence interval (CI) of 

obtained d value is above 1. Also, mean reversion in the stationary range (0.5 <d< 1) is 

decisively rejected once the upper bound of CI(d) is less than 1. Robinson's (1994) approach 

relies on three regression models, of no regressors, intercept only, and a linear trend as in the 

Augmented Dickey-Fuller (ADF) unit root set up (see Dickey and Fuller, 1979). This makes 

the approach robust to modeling intercept and linear trends. For the three deterministic terms, 

selected models are based on the significance of intercept and linear trend parameters. These 

results are in bold in the reporting tables. In Table 4 Subsample A, that is, the subsample of 

energy prices before the Covid-19 pandemic, none of the intercept and linear trends are 

significant in the deterministic terms, thus a model with no regressors is selected as observed 

in bold.  Here, the I(1) hypothesis of persistence estimate d is unrejected in the case of WTI 

Oil, Heating oil, Diesel, Kerosene, and Propane prices, while the I(1) hypothesis is rejected in 
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favour of I(d > 1) in the case of Gasoline prices. By looking at the results in the second 

subsample (B), that is during the Covid-19 period, in the selected results in bold, we found 

lower persistence of energy prices compared to corresponding values in Subsample A. Thus, 

price persistence is lowered during the Covid-19 pandemic. The fact that persistence levels 

during the Covid-19 pandemic deviate further away from d = 1 as in Subsample A means that 

energy markets are less efficient during this phase. The market efficiency is more pronounced 

in the case of WTI Oil as the persistence estimate is found to be about 0.29 during the pandemic 

as against 0.96 before the pandemic. So this triggers more fear in the crude oil market as the 

mean reversion tendency is high.  

PUT TABLE 4 AROUND HERE 

 By further probing into the market efficiency level of energy markets based on log-

returns, we present the results in Table 5. By looking at the results based on the selected 

deterministic terms in bold, we found more deviation from the I(d = 0) hypothesis in a negative 

direction in the results of Subsample A compared to the results for Subsample A?. Thus, energy 

markets are more efficient before Covid-19 pandemic compared to the current pandemic period 

that we are in. Based on the results in Tables 4 and 5, market participants in oil and petroleum 

products’ trading are likely to make an excessive profit during this period, which is a blessing 

in disguise.  

PUT TABLE 5 AROUND HERE 

 In Table 6, the results of volatility persistence are presented. Recall in the descriptive 

measurements that the Covid-19 period induces more price volatility compared to the period 

before the Covid-19 pandemic. We only found exceptions in the case of Gasoline and Propane. 

The results of fractional persistence on the persistence of such volatility imply that volatility 

shocks during the Covid-19 pandemic will last for a shorter period compared to the period 

before the pandemic. This is based on smaller persistence d values during the pandemic 
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compared to those estimates found before the pandemic. The WTI oil price indicates anti 

persistence value, thus persistence level cannot be ascertained, and this is the only exception.  

PUT TABLE 6 AROUND HERE 

 Further probe into the results of fractional persistence on the price level for market 

efficiency and absolute returns for volatility is based on a nonlinear approach proposed in Gil-

Alana and Yaya (2020). The results obtained are presented in Tables 7 and 8 for price level 

and absolute returns series, respectively. For the energy price series in Table 7, nonlinearity is 

pronounced as Fourier function parameters λk and γk are significant except in the case of 

Heating oil during pandemic subsample. Note, optimal k values in each case were determined 

by a grid search among k values from 0 to 5 with a step increase of 0.1. The optimal k values 

are as well reported in the results table.1 Time series persistence is found to be higher during 

the pandemic (Subsample B) compared to the period before the pandemic (Subsample A), as 

the fractional d value for WTI Oil was 0.7122 before the pandemic and this is about 0.1100 

implying that the WTI Oil market is less efficient during this period compared to the earlier 

period before the pandemic. Thus, the results also support evidence that market players are 

likely to make abnormal returns during the pandemic. Volatility persistence results in Table 8 

indicate the antipersistence of absolute returns, implying the inability to judge the persistence 

of volatility based on the nonlinear fractional integration framework.  

PUT TABLE 7 AROUND HERE 

PUT TABLE 8 AROUND HERE 

  

5. Concluding remarks 

The present paper investigates market efficiency and volatility persistence in energy pricing 

markets, by using price series of Crude oil, Gasoline, Diesel, Heating oil, Kerosene, and 

                                                             
1 Optimal values of k are determined with corresponding Log likelihood, SSE and AIC estimates. These estimates 
are not reported in this paper but are available on request. 
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Propane. In the analysis, the pricing of these energy sources in the period before, and during 

the Covid-19 pandemic are compared for market efficiency and volatility persistence, using a 

5-month daily data window, each, for the period before and during the pandemic. The analysis 

is based on a fractional integration approach in time series econometrics which allows the 

persistence parameter to be estimated on the price level series as well as on the returns and 

absolute returns used for volatility proxy. We also consider nonlinearity in the modeling of 

persistence, thus, an updated framework by Gil-Alana and Yaya (2020) that allows for a 

smooth nonlinear time trend with Fourier functions is employed. 

 We found that energy markets were less efficient during the Covid-19 pandemic, even 

though with higher volatility but with lesser volatility persistence compared to the period before 

the pandemic. Thus, volatility shocks lasted for a shorter period during the 5-month pandemic 

period than in the 5-month that preceded the pandemic. Thus, energy marketers were not prone 

to arbitrage profit-making during the Covid-19 pandemic period.  

 The findings of this paper have some implications. First, it shows that pandemics are 

likely to have an adverse impact on energy markets with its consequences on the prices of oil 

and petroleum products. For instance, higher volatility discourages investment in the market 

because existing and prospective investors become apprehensive for the fear of losing their 

capital or funds. Besides, declining investment forces market players (such as firms) to reduce 

employment of factors of production including labour leading to falling incomes and aggregate 

demand, all of which re-enforces the uncertainty in the business environment. Thus, 

policymakers are advised to devise a mechanism to reduce the negative effect of Covid-19 and 

future pandemics on the energy market. To achieve this, there is a need for international 

collaboration and cooperation to develop the global healthcare system via increased and 

sustained funding of healthcare facilities particularly in poor countries with dilapidated 

infrastructures. This will not only help in reducing the Covid-19 pandemic but also prepare 
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countries to tackle future health crises. Besides, there is a need for a continuous awareness 

campaign to enlighten people all over the world to embrace the ‘new normal’ and non-

pharmaceutical measures to check the spread of the Covid-19 virus.     

 Our analysis is subject to criticism but we have employed an up-to-date persistence 

approach based on nonlinearity. Meanwhile, due to the limitation of the short trading period 

for the time series of price movements of those energy markets, we recommend persistence 

analysis based on neural network nonlinearity as in Yaya et al. (2021) for testing for energy 

market efficiency and their volatility persistence.          
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Table 1: A Cursory Review of Literature on Market Efficiency of energy pricing 

Authors Objectives Methodology Data Structure  Findings 

Lean et al (2010) Market efficiency 
of oil spot and 
futures prices 

Mean-variance and 
stochastic 
dominance 
approaches 

From 1989 to 2008 No arbitrage returns at oil spot and futures 
prices while spot and futures oil markets 
rationally efficient 

Zhang (2013) Weak form 
efficiency of 
world-main crude 
oil markets. 

Generalized 
spectral method 

World crude oil price data from 
January 2 to 20 May 1987. 

Highest level of market efficiency is found 

for Brent and WTI oil, while anti-
synchronization is also found in the two 
markets 

Mensi et al. (2014) Time-varying 
levels of weak-
form efficiency 
and the presence 
of structural 
breaks in crude 
oil markets 

Hurst and Shannon 
entropy methods. 

Crude oil benchmarks over the 
period from January 1990 to 
September 2012 

The Hurst exponent produced more market 
efficient estimate than when Shannon 
entropy is used 

Sharma (2017) Explored how 
high-frequency 
data generating 
trading strategies 
using information 
flow direction 
between Indian 
and US crude oil 
future markets. 

Vector error 
correction 

Daily data from 2013 to 2015 Close relationship between the US and 
Indian market prices, while US markets are 
more efficient than Indian markets. 

Qiao et al (2019) Market efficiency 
of oil stocks 
under various 
types of oil price 
changes 

Quantile regression 
and interval-valued 
factor pricing 
models 

March 2018 to 2nd February 2019 Oil stocks tend to be overpriced due to 
negative shocks 

Ghazzani and Ebrahimi 
(2019) 

Adaptive market 
hypothesis to the 

Automatic 
portmanteau and 

Daily returns of crude oil from 
2003 to 2018 

Brent and WTI oil have high-efficiency 
levels. 

https://www.sciencedirect.com/topics/engineering/quantile
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efficient market 
hypothesis 

generalized spectral 
tests 

Kuruppuarachchi et al. 
(2019) 

Proposed novel 
futures market 
efficiency index 
in investigating  
efficiencies of 
four major energy 
commodities 

Heteroscedastic 
prices and time-
varying risk 
premiums 

1990-2016 significant delayed, contemporaneous, and 
potential information spillovers among term 
premiums of the energy commodities 

Tiwari et al. (2019) Measuring  oil 
price efficiency 
using long 
memory 
dependencies   

ARFIMA model Monthly data from 1990 to 2017. Time variation in the efficiency of oil returns 

     

Arshad et al. (2020) Investigating 
weak-form of 
market efficiency 
in crude oil 
markets during 
different 
economic cycles 
over multi-scales. 

 Crude oil prices from 1996 to 
2018 

Brent crude oil prices are weak-form 
efficient 

Apergis and 
Gangopadhyay (2020) 

Studying oil price 
for substitution 
effect on 
pollution in 
Vietnam 

 Data from 1982 to 2015 asymmetric interlinkages 

Lim and Lee (2020) Proposing a two-
stage method of 
portfolio theory 
and panel data 
analysis in 
analyzing oil 
refining industry 

Markowitz 
portfolio 
optimization 

2005 to 2016 the negative effect of Crude oil production 
and energy of the OECD on the efficiency of 
the oil refinery industry. 
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efficiency of 
OECD countries. 

David et al. (2020) Proposing 
detrended 
fluctuation 
analysis, Hurst 
exponent, and 
fractal dimension 
in investigating 
the dynamic 
behaviour of 
ethanol and 
gasoline prices in 
Brazil. 

Detrended 
fluctuation analysis 

Weekly prices from January 2011 
to December 2016. 

Subtle path toward market efficiency for 
ethanol with clear moving toward better 
efficiency for the gasoline market in Brazil  

Yang et al. (2020) Investigating 
pricing of crude 
oil features in 
Shanghai 
International 
Exchange (INE) 

Cointegration and 
Granger causality 

Data on crude oil spot prices from 
26th March 2018 to 2nd February 
2019 

The evidence of Granger causality is mixed 
but supports the efficiency of the Shanghai 
International Exchange (INE) in the Asia-
pacific region 

Compiled by the Authors 
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Table 2: A Cursory Review of Literature on Volatility Persistence of Energy pricing 

Authors Objectives Methodology Data Structure  Findings 

     

Narayan and Narayan 
(2007) 

The volatility of 
crude oil price 

GARCH model Daily data for the period 1991 to 
2006. 

Inconsistent evidence of asymmetry 
and persistence of shocks with the 
possibility that oil prices would change 
over short periods 

Golpe, et al. (2012) Persistence in the 
consumption of 
natural gas 

State-space model Quarterly data from January 1973 to 
March 2010. 

Positive policy shocks in natural gas 
consumption having permanent effects. 

Ozdemir, et al. (2013) Persistence in Brent 
crude oil spot and 
futures prices 

ARIMA model Monthly data between October 1993 
and December 2011 

Brent crude oil spot and futures are 
persistent 

Charles and Darne 
(2013) 

Impact of outliers 
and structural 
changes on the 
volatility persistence 
of crude oil markets. 

GARCH-type 
models 

Daily data from 2nd January 1985 
and 17th June 2011 

With outliers in the volatility modeling 
improving the understanding of volatility in 
crude oil markets 

Bastianin et al (2016) Effects of oil prices 
shocks on the stock 
market volatility of 
the G7 countries 

Structural VAR 
model 

Daily data for G7 countries between 
February 1973, and January 2015. 

The irresponsibility of stock market 
volatility to oil supply shocks while 
demand shocks impact significantly on the 
stock market volatility of G7 countries. 

Olubusoye and Yaya 
(2016) 

Persistence and 
volatility of oil and 
petroleum products’ 
prices 

Fractional 
integration and 
Generalized 
Autoregressive 
(GAS) model 
variants 

Different daily sample sizes, far 
back 1986 to 2014 

Crude oil persist relatively differently 
from petroleum products prices 

Gil-Alana et al. (2016) Persistence in price 
and volatility of 
WTI oil price and 
also identify bull 
and bears market 
prices 

Fractional 
integration 

Monthly data between September 
1859 and July 2015. 

Oil price was found to be non-stationary 
and volatility exhibits long-memory while 
the degree of persistence increases when 
market phases are identified. 



22 

 

Ewig and Malik (2017) Endogenously 
determined 
structural breaks 
within asymmetric 
GARCH models in 
reducing reduce 
volatility persistence 
in oil 

Asymmetric 
GARCH model 

Crude oil prices from 1st January 
2000 to 31st December 2015 

Good and bad news has significantly more 
impact on volatility if structural breaks are 
incorporated 

Andriosopoulos et al. 
(2017) 

in the extent to 
which the 
financially troubled 
EU markets affected 
energy prices during 
financial crises. 

GARCH model March 2004 and March 2014 Significant contagion effects like energy 
volatility during the EU financial crisis. 

Chun, et al. (2019) 
 

Performance of 
crude oil hedge 
portfolios in five 
periods 

Stochastic 
Volatility (SV), 
GARCH, and 
diagonal BEKK 
model were used 

Daily closing prices of the UK 
between 6/23/1988 and 9/29/2017. 

Hedging strategies based on the SV model 
outperformed both the GARCH and BEKK 
models in terms of variance reduction. 

Mokni and Youssef 
(2019) 

Persistence between 
crude oil prices and 
GGC countries 
stock markets 

Copula functions Daily data from 2010 to 2017. Strong persistence of the upper tail 
compared to the lower tail while the 
persistence of dependence is affected by 
the oil crises and not affected by the 
asymmetric variation of oil prices. 

Okorie and Lin (2020) Volatility 
connectedness and 
hedging strategy 
possibilities between 
both 10 
cryptocurrency and 
crude oil markets 

Adopted 
MGARCH-DCC 
and VAR-
MGARCH-BEKK 
approaches 

Daily data from 29/04/2013 to 
17/09/2019 

Significant volatility spillovers in both 
hedging and market possibilities. 

Maitra et al. (2020) Volatility spillover 
and connectedness 
between liner 

Dynamic 
conditional 
equicorrelations 

Daily data from 3rd January 2000 to 
14th January 2019. 

The volatility co-movement between liner 
shipping and oil companies ‘stock returns 
increased during the global financial crisis 
and European debt crisis. 
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shipping and oil 
markets 

and spillover index 
was utilized 

Sarwar et al. (2020) Volatility spillover 
of oil and stock 
market returns.  

BEKK-GARCH 
model 

Multi-frequency data, over the 
period 1st July 1997 to 31st 
December 2015. 

Spillover between oil and stock markets. 

Zavadska. et al. (2020) Volatility patterns in 
Brent crude oil spot 
and futures prices 
during four major 
crises as it affected 
oil markets. 

GARCH type 
models 

The data sample spans from 7th 
December 1988 to 31st December 
2013. 

Higher level of volatility during crises that 
was directly associated with oil 
supply/demand disruptions and higher 
volatility persistence during financial crises 

Compiled by the Authors 
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Table 3: Descriptive measurements 

 

*** denotes the significance of the Jarque-Bera (JB) normality test at a 5% level. 

  

  

Subsample A: Before the Covid-19 pandemic 

 Prices Log-returns 

  Mean  Max.  Min. Std. dev. JB  Mean  Max.  Min. Std. Dev. JB 

WTI Oil 49.89 63.27 14.10 12.72 52.82*** -0.0063 0.3747 -0.2814 0.0705 631.91*** 

Gasoline 1.49 1.80 0.43 0.41 63.37*** -0.0080 0.2222 -0.2999 0.0582 782.20*** 

Heating oil 1.68 2.04 0.92 0.34 24.16*** -0.0051 0.1001 -0.1774 0.0310 432.36*** 

Diesel 1.71 2.05 0.95 0.34 24.83*** -0.0050 0.0976 -0.1728 0.0306 397.50*** 

Kerosene 1.58 1.98 0.65 0.41 32.02*** -0.0076 0.1364 -0.2047 0.0399 292.57*** 

Propane 0.43 0.56 0.20 0.09 11.37*** -0.0024 0.1565 -0.1696 0.0438 93.56*** 

Subsample B: During the Covid-19 pandemic 

Prices Prices Log-returns 

  Mean  Max.  Min. Std. dev. JB  Mean  Max.  Min. Std. Dev. JB 

WTI Oil 34.40 42.89 12.17 8.83 19.70*** 0.0158 0.4258 -0.2730 0.0735 688.46*** 

Gasoline 1.02 1.26 0.47 0.23 11.84*** 0.0082 0.2168 -0.1960 0.0496 108.80*** 

Heating oil 1.02 1.23 0.56 0.18 8.99*** 0.0020 0.1119 -0.1846 0.0500 35.33*** 

Diesel 1.06 1.28 0.60 0.19 8.61*** 0.0022 0.1054 -0.1783 0.0442 37.75*** 

Kerosene 0.89 1.13 0.41 0.23 10.99*** 0.0051 0.1535 -0.2810 0.0599 117.42*** 

Propane 0.46 0.53 0.32 0.06 14.78*** 0.0043 0.1195 -0.1473 0.0352 81.31*** 
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Table 4: Robinson (1994) Fractional integration results on Energy Prices 

 
Subsample A: Before the Covid-19 pandemic 

 No regressors An intercept A linear time trend 

 WTI Oil [0.9574 (1.1072) 1.2570] [0.9555 (1.1054) 1.2552] [0.9316 (1.0860) 1.2404] 

Gasoline [1.0008 (1.1719) 1.3429] [1.0008 (1.1720) 1.3431] [0.9710 (1.1492) 1.3274] 

Heating oil [0.9497 (1.0971) 1.2445] [0.9543 (1.1065) 1.2586] [0.9030 (1.0676) 1.2322] 

Diesel [0.9419 (1.0881) 1.2343] [0.9458 (1.0962) 1.2465] [0.8941 (1.0566) 1.2191] 

Kerosene [0.9703 (1.1126) 1.2548] [0.9782 (1.1274) 1.2766] [0.9281 (1.0888) 1.2495] 

Propane [0.9457 (1.1143) 1.2830] [0.9457 (1.1143) 1.2830] [0.9225 (1.0992) 1.2759] 

Subsample B: During the Covid-19 pandemic 

 No regressors An intercept A linear time trend 

WTI Oil [0.4311 (0.5564) 0.6817] [0.4324 (0.5564) 0.6805] [0.2897 (0.4360) 0.5823] 

Gasoline [0.8427 (0.9787) 1.1147] [0.8141 (0.9453) 1.0764] [0.6780 (0.8362) 0.9943] 

Heating oil [0.7998 (0.9540) 1.1082] [0.8025 (0.9576) 1.1127] [0.7845 (0.9447) 1.1049] 

Diesel [0.8216 (0.9738) 1.1260] [0.8236 (0.9762) 1.1288] [0.8051 (0.9631) 1.1211] 

Kerosene [0.8283 (0.9608) 1.0932] [0.8249 (0.9560) 1.0871] [0.7785 (0.9202) 1.0619] 

Propane [0.8872 (1.0007) 1.1142] [0.8567 (0.9899) 1.1231] [0.7492 (0.9064) 1.0635] 

In bold are selected estimates of d based on significant parameters of the deterministic function.Estimates of d 

are in the curved bracket, enclosed within the squared brackets for lower and upper confidence bands for d.   
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Table 5: Fractional integration results on Log-returns series  

 

Subsample A: Before the Covid-19 pandemic 

 No regressors An intercept A linear time trend 

WTI Oil [-0.1137 (0.0351) 0.1839] [-0.1137 (0.0356) 0.1848] [-0.2403 (-0.0736) 0.0930] 

Gasoline [-0.0295 (0.1422) 0.3140] [-0.0283 (0.1427) 0.3137] [-0.0950 (0.0846) 0.2643] 

Heating oil [-0.1183 (0.0412) 0.2007] [-0.1181 (0.0415) 0.2010] [-0.2593 (-0.0765) 0.1062] 

Diesel [0.1292 (0.2863)0.4435] [-0.1284 (0.0289) 0.1862] [-0.2669 (-0.0876) 0.0918] 

Kerosene [-0.0837 (0.0737) 0.2311] [-0.0831 (0.0743) 0.2316] [-0.1919 (-0.0185) 0.1549] 

Propane [-0.0824 (0.0895) 0.2615] [-0.0824 (0.0895) 0.2614] [-0.1722 (0.0164) 0.2051] 

Subsample B: During the Covid-19 pandemic 

 No regressors An intercept A linear time trend 

WTI Oil [-0.6844 (-0.2913) 0.1019] [-0.5861 (-0.2327) 0.1207] [-0.6844 (-0.2913) 0.1019] 

Gasoline [-0.2326 (-0.0857) 0.0612] [-0.2249 (-0.0791) 0.0667] [-0.2326 (-0.0857) 0.0612] 

Heating oil [-0.1892 (-0.0169) 0.1553] [-0.1620 (0.0036) 0.1693] [-0.1892 (-0.0169) 0.1550] 

Diesel [-0.1572 (0.0119) 0.1810] [-0.1347 (0.0289) 0.1925] [-0.1572  (0.0119) 0.1810] 

Kerosene [-0.2000 (-0.0572) 0.0856] [-0.1727 (-0.0342) 0.1044] [-0.2000 (-0.0572) 0.0856] 

Propane [-0.2750 (-0.1172) 0.0406] [-0.2546 (-0.1018) 0.0510] [-0.2750 (-0.1172) 0.0406] 

In bold are selected estimates of d based on significant parameters of the deterministic function. Estimates of d 

are in the curved bracket, enclosed within the squared brackets for lower and upper confidence bands for d.   
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Table 6: Fractional integration results on Absolute returns series  

 

Subsample A: Before the Covid-19 pandemic 

 No regressors An intercept A linear time trend 

WTI Oil [0.2669 (0.4387) 0.6106] [0.2655 (0.4375) 0.6096] [0.2133 (0.3919) 0.5706] 

Gasoline [0.1660 (0.3187) 0.4715] [0.165  (0.3178) 0.4701] [0.0916 (0.2522) 0.4127] 

Heating oil [0.2001 (0.3647) 0.5294] [0.1992 (0.3639) 0.5286] [0.1047 (0.2847) 0.4646] 

Diesel [0.2145 (0.3805) 0.5466] [0.2135 (0.3797) 0.5460] [0.1189 (0.3006) 0.4824] 

Kerosene [0.2303 (0.3922) 0.5541] [0.2293 (0.3913) 0.5534] [0.1470 (0.3218) 0.4966] 

Propane [-0.0105 (0.1606) 0.3318] [-0.0092 (0.1615) 0.3323] [-0.0973 (0.0937) 0.2847] 

Subsample B: During the Covid-19 pandemic 

 No regressors An intercept A linear time trend 

WTI Oil [-0.2761 (0.0665) 0.4091] [-0.2847 (0.0636) 0.4119] [-0.8728 (-0.5192) -0.1657] 

Gasoline [0.0477 (0.1840) 0.3203] [0.0490 (0.1876) 0.3262] [-0.2874 (-0.1054) 0.0766] 

Heating oil [0.0928 (0.2171) 0.3413] [0.0928 (0.2174) 0.3421] [-0.0213 (0.1146) 0.2505] 

Diesel [0.0723 (0.1973) 0.3224] [0.0723 (0.1979) 0.3235] [-0.0806 (0.0608) 0.2022] 

Kerosene [0.1178 (0.2418) 0.3659] [0.1183 (0.2435) 0.3686] [-0.0629 (0.0811) 0.2251] 

Propane [0.1425 (0.2842) 0.4258] [0.1438 (0.2879) 0.4320] [-0.1028 (0.0716) 0.2460] 

In bold are selected estimates of d based on significant parameters of the deterministic function. Estimates of d 

are in the curved bracket, enclosed within the squared brackets for lower and upper confidence bands for d.   
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Table 7: Gil-Alana and Yaya (2020) Fractional integration results on Energy Prices  

 

Subsample A: Before the Covid-19 pandemic 

 kopt d α β λk γk 

WTI Oil 
0.1 [0.7122(0.8951)1.0780] 467.10 

(1.72) 

-14.48  

(-3.61) 

2648.74 

(3.78) 

-474.12    

(-1.78) 

Gasoline 
0.3 [0.8723(1.0609)1.2495] 2.51 

(1.17) 
-0.07      

(-1.68) 

3.43 

(2.08) 

-2.80      
(-1.21) 

Heating 
oil 

0.1 [0.7476(0.9363)1.1250] 1.82 
(0.12) 

-0.21    
(-0.83) 

40.06 
(0.87) 

-2.06  
(-0.13) 

Diesel 
0.8 [0.7582(0.9456)1.1330] 0.32 

(0.49) 
-0.008  

(-1.97) 
0.04 

(0.32) 
-0.26 
(0.11) 

Kerosene 
0.4 [0.7823(0.9640)1.1457] 0.88 

(0.48) 
-0.029  

(-1.72) 

1.11 

(3.00) 

-0.95  
(-1.05) 

Propane 
0.3 [0.7168(0.9005)1.0842] 52.96 

(0.95) 
-1.63  

(-2.01) 

96.81 

(3.05) 

-59.51  
(-1.26) 

Subsample B: During the Covid-19 pandemic 

 kopt d α β λk γk 

WTI Oil 1.6 [0.1100 (0.2782) 0.4464] 
-15.84  

(-5.30) 

0.30 

(6.89) 

-1.89  
(-1.11) 

6.12 

(3.94) 

Gasoline 1.3 [0.4927 (0.6818) 0.8709] 
-0.45  

(-4.21) 

0.008 

(5.74) 

-0.13  

(-3.45) 

0.04 
(1.09) 

Heating 
oil 

1.3 [0.6416 (0.8278) 1.0140] 
-0.25  

(-1.22) 
0.003 
(1.53) 

-0.02  
(-0.43) 

0.14 

(2.80) 

Diesel 1.4 [0.6651 (0.8466) 1.0281] 
-0.32  

(-1.32) 
0.004 

(1.81) 

0.008 
(0.15) 

0.14 

(2.93) 

Kerosene 0.1 [0.6428 (0.8021) 0.9614] 
38.70 

(3.44) 

-0.62  

(-3.28) 

103.95 

(3.27) 

-38.62  

(-3.47) 

Propane 1.0 [0.6187 (0.8012) 0.9837] 
-0.17  

(-2.59) 

0.002 

(3.46) 

-0.02  
(-0.77) 

-0.05  

(-2.53) 
Note, in the first column are the kopt values i.e. optimal value of frequency k that gives minimum SSE and AIC 

values. In the second column of the results table, estimates of d are in a curved bracket, enclosed within the 

squared brackets for lower and upper confidence bands for d. In the third to sixth columns are parameters of the 

nonlinear fractional integration with t statistics in parentheses.In bold indicates significant estimates at a 5% level. 

The critical values of the t-tests at this level of significance are based on a one-sided hypothesis with t = 1.64. 
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Table 8: Gil-Alana and Yaya (2020) Fractional integration results on Absolute returns 

 

Subsample A: Before the Covid-19 pandemic 

 kopt d α β λk γk 

WTI Oil 0.1 [-0.0287(0.1716)0.3719] 
-3.51 

(-12.1) 

0.07 

(28.5) 

13.0 

(29.0) 

3.49 

(12.4) 

Gasoline 0.1 [-0.1847 (0.0003) 0.1853] 
-2.81  

(-19.9) 

0.06 

(281.0) 

-10.71 

(193.0) 

2.79 

(20.4) 

Heating 
oil 

0.1 [-0.1093 (0.0932) 0.2957] 
-1.71  

(-10.8) 

0.04 

(92.4) 

-6.99  

(-81.5) 

1.70 

(11.0) 

Diesel 0.1 [-0.0885 (0.1149) 0.3183] 
-1.68  

(-10.4) 

0.04 

(79.3) 

-6.85  

(-72.2) 

1.67 

(10.6) 

Kerosene 0.1 [-0.0407 (0.1526) 0.3459] 
-2.55 

(12.0) 

0.06 

(50.1) 

-9.86  

(-49.5) 

2.54 

(12.3)  

Propane 0.1 [-0.1460 (0.0475) 0.2410] 
0.19 

(1.01) 
0.003 

(4.68) 

-0.51  

(-4.82) 

-0.19  
(-1.03) 

Subsample B: During the Covid-19 pandemic 

 
kopt d α β λk γk 

WTI Oil 0.1 [-1.0783 (-0.5924) -0.1065] 
-1.87  

(-7.84) 

0.11 

(6.37) 

-1.14  

(-4.91) 

1.76 

(7.88) 

Gasoline 0.1 [-0.4434 (-0.2276) -0.0118] 
0.05  

(6.82) 
-0.0008 

 (-6.26) 
-0.002 
 (-0.36) 

0.01 

(2.76) 

Heating 
oil 

0.1 [-0.2766 (-0.1043) 0.0680] 
0.006 
(0.92) 

-9.9E-05 
(-0.86) 

0.02 

(3.96) 

-0.01  

(-3.94) 

Diesel 0.1 [-0.3015 (-0.1282) 0.0451] 
0.007 
(1.41) 

-0.0001  
(-1.26) 

0.02 

(4.26) 

-0.007  

(-2.75) 

Kerosene 0.1 [-0.2337 (-0.0620) 0.1097] 
0.01  

(1.57) 
-0.0003  
(-1.54) 

0.02 

(3.35) 

-0.006  
(-1.32) 

Propane 0.1 [-0.2592 (-0.0542) 0.1508] 
0.03  

(4.62) 

-0.0006  

(-4.46) 

-0.0005  
(-0.09) 

0.10 

(2.83) 

Note, in the first column are the kopt values i.e. optimal value of frequency k that gives minimum SSE and AIC 

values. In the second column of the results table, estimates of d are in a curved bracket, enclosed within the 

squared brackets for lower and upper confidence bands for d. In the third to sixth columns are parameters of the 

nonlinear fractional integration with t statistics in parentheses. In bold indicates significant estimates at a 5% level. 

The critical values of the t-tests at this level of significance are based on a one-sided hypothesis with t = 1.64.    


