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Abstract 

 

The study investigates the impact of uncertainties on energy pricing during the COVID-19 

pandemic using five uncertainty measures that include the COVID-Induced Uncertainty (CIU), 

Economic Policy Uncertainty (EPU), Global Fear Index (GFI); Volatility Index (VIX), and the 

Misinformation Index of Uncertainty (MIU). The data, which span between 2-January, 2020 

and 19-January, 2021, corresponding to the period of the COVID-19 pandemic. The study finds 

energy prices to respond significantly to the examined uncertainty measures, with EPU seen to 

affect the prices of most energy types during the pandemic. We also find predictive potentials 

inherent in VIX, CIU, and MIU for global energy sources. 

 

Keywords: Coronavirus pandemic; Energy market; Machine Learning; Uncertainty 

 

  

1. INTRODUCTION 

 

The SARS-CoV-2 (also known as Coronavirus of 2019 or COVID-19) disease, detected as 

viral pneumonia in a restaurant in Wuhan city, China; December 2019, transited from an 

epidemic to a pandemic following the World Health Organization (WHO) declaration on 11-

March, 2020.1 The pandemic caused global economic uncertainty given the rapid rate of spread 

and death records in most countries of the world (Hallack & Weiss, 2020). Its impact on the 

energy sector was quite severe, especially on the global prices of oil and petroleum products 

(Olubusoye et al., 2021). In the early days of COVID-19, when most economic activities were 

either partially or completely shut down, and various forms of social distancing and isolation 

measures were put in place, there was a high level of uncertainty that affected both economic 

production and energy consumption patterns (Hallack & Weiss, 2020).   

 

The restriction of movement during the peak of the pandemic affected the global energy prices, 

thus modelling energy price dynamics is primary to improving the economic prospects of 

global energy and ascertaining the predictive potentials of the uncertainty index proxies for 

energy prices during the global crisis. Fortunately, this study is not in the vacuum of this 

procedure. Several studies have researched the impact of COVID-19 on the commodity market, 

(see for instance; Salisu et al., 2020a, and Olubusoye et al, (2021) among others) and other 

related areas such as misinformation (e.g., Akintande & Olubusoye (2020), Galvão (2020), 

                                                           
1 https://www.who.int/news/item/29-06-2020-covidtimeline . Accessed 07/02/2021 

https://www.who.int/news/item/29-06-2020-covidtimeline
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among others). Therefore, several extant pieces of literature are detailing different 

methodological procedures on the subject and COVID-19 related impact on the commodity 

prices (see Sharif et al., 2020; Salisu et al., 2020; Salisu & Ogbonna, 2019; Yaya et al., 2017; 

among many others). 

 

In the era of Machine Learning2 (ML) which is characterized by huge datasets handling with 

great computational speed, we explore the power of an ML algorithm to examine the volatility 

of energy prices during the pandemic using the COVID induced uncertainty (CIU) and 

misinformation induced uncertainty (MIU) indexes as well as other uncertainty proxies such 

as the global volatility index (VIX), economic uncertainty index (EPU) and the global fear 

index (GFI). This is premised on the study of Herrera et al. (2019) that empirically showed the 

outperformance of ML over extant econometric models in the generation of accurate forecasts. 

The choice of energy variables for this study is informed by its wide usage (residential, 

commercial/industrial, among others) and the role that energy prices play in economic 

development since energy adoption cuts across different socioeconomic levels.  

 

By using the power of Google, information searches on the web are harnessed via Google 

trends. Google trends provide relevant subject-based information from web sources such as 

web searches. The present study, therefore, harnesses this wealth of information reservoir in 

Google on the COVID-19 pandemic uncertainty, and subsequently adopts Olubusoye et al., 

(2021) information-based index of uncertainty (the CIU); and also develops a different variant 

of MIU. The relevance of these Google trends features (the CIU and MIU) are synonymous 

with deriving market information on the choice of investment to catalyze decisions making on 

investment, and related ventures. The MIU could promote disobedience of government 

guidelines towards controlling or limiting the spreads of COVID-19 leading to continuous 

lockdown or economic inactivity as evident in the case of the US. The CIU and GFI are 

considered similar to the VIX and the EPU.  

 

This study employs the aforementioned indexes (the CIU, MIU, VIX, EPU, and the GFI) to 

examine the vulnerability of energy pricing for different energy proxies (Brent oil, diesel, 

gasoline, heating oil, kerosene, natural gas, propane, and WTI oil) to COVID-19 pandemic. In 

                                                           
2 Several studies (see Herrera et al., 2019; Graf et al., 2020) have adopted different Machine Learning algorithms 
to model and forecast energy commodity prices, as well as energy systems (see Esen et al. (2017) for a detailed 
review of ML application to heat pump systems.).    
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other words, it ascertains whether the adopted and developed uncertainty measures have 

predictive capabilities for modelling energy prices amidst the COVID-19 pandemic and to what 

extent they do, as well as the nature of the plausible nexuses between energy prices and 

uncertainty measures. To achieve this, the study employs the Multivariate Adaptive Regression 

Spline (MARS) algorithm. This is an ML method that is often used when the relationship of 

one or more predictor variables to the dependent variable is thought to vary over time. The 

algorithm accounts for both linear and non-linear relationships of the data features as it 

provides more predictive power due to its asymmetric structure which induces nonlinearities. 

Essentially, the adoption of the MARS algorithm is hinged on its characteristic ability to 

simultaneously account for linearity and non-linearity characteristics of the examined 

observations, as well as the proven forecast accuracy over econometric models (see Herrera et 

al., 2019). While it is robust to the presence of outliers, it also incorporates plausible 

interactions between variables and accounts for important features of the selected best terms. 

Our study, to the best of our knowledge, is the first study that considers this approach for energy 

price modelling.  

 

The rest of the paper is sectioned as follows. Section 2 discusses the global energy uncertainty 

as it is affected by the pandemic. Section 3 describes the MARS algorithm ML method and its 

application. Section 4 presents the data analysis and the empirical results. Section 5 concludes 

the paper with some policy recommendations. 

 
 

2. ENERGY UNCERTAINTY AND COVID-19 

Our concern in this paper is the Oil-energy of which prices are subject to the economic forces 

of supply and demand.3 Before the COVID-19 outbreak, shale oil and gas has had significant 

effects on the global oil markets. The rising popularity of renewable energy as alternatives to 

oil-based energy sources is also putting pressure on the global oil market (Akintande et al., 

2020, Olanrewaju et al., 2019, etc.). Thus, the already weakened oil-based energy (oil and gas) 

was significantly affected by the pandemic and the attendant measures put in place to contain 

it.  

 

                                                           
3 Crude oil distilled into gas, diesel oil, heating oil, kerosene, propane and other fewer hydrocarbons. These are 
different oil-based energy sources obtained from crude oil markets. 
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The pricing of each oil-energy source varies depending on fluctuations in the cost of taking the 

energy source to the market (Plymouth Rock Energy, 2021). During the COVID-19 pandemic, 

transportation and industrial energy demand declined to almost zero, although, household 

energy (especially electricity and) demand increased due to stay-at-home advice. The fall in 

aggregate energy demand due to movement restrictions and total closure of businesses, 

international travels, and public & private transportation activities, among many others 

impacted the environment positively as a result of the reduction in vehicular and industrial 

emissions of carbon dioxide (CO2) and other poisonous gases. This led to the improvement of 

air quality in major cities across the world (Chowdhuri et al., 2020; Keremray et al., 2020; 

Xuelin et al., 2021; and Dang & Trinh, 2021). While quality air is desirable, economic activities 

and progress are equally important in many countries, essentially for oil-dependent nations like 

Nigeria, where the falling oil price imposed significant social and economic costs.  There are 

expectations of global economic recovery in 2021, pushing up oil demand and oil prices.  

However, the downside risks to the global economic recovery and sustained oil price rally is a 

resurgence of the pandemic that may result in more lockdowns and less oil demand, low access 

to vaccines, especially in poorer countries, vaccines hesitancy, and spread of variants of 

COVID-19. Consequently, some experts suggest that there could be an 8% decline in overall 

energy demand up to the year 2050, as structural changes, occasioned by COVID-19, impact 

consumption (Olney, 2021).  

 

From the supply perspective, oil and gas supplies were also affected as the number of oil and 

gas rigs reduced drastically, with the US experiencing a drop from 805 rigs to 265 rigs between 

December 2019 and June 2020 (Statista, 2020). The pandemic also affected the major supply 

chain of both oil and gas (IEA 2020); since twenty-two (22) of the twenty-eight (28) global 

floating production, storage, and offloading vessels under construction in early 2020 were built 

at shipyards in China, Korea, and Singapore (Nyga-Lukaszewska and Aruga, 2020). However, 

natural gas prices only dropped mildly, and IEA (2020) reports that the Henry Hub spot price 

changed from 1.95 USD/million Btu to 1.65 USD/million Btu between 23-January, 2020 and 

30-March, 2020.    

 
The collapse of oil prices amid the pandemic and the economic slowdown forced the 

Organization of Petroleum Exporting Countries (OPEC),4 and a group of non-OPEC member 

                                                           
4 Other crude oil markets are the Brent market in the North sea, in Europe, and the West Texas intermediate market 
in the US. 
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countries, led by Russia to agree on historic production cuts, as a way to stabilize prices and 

cause a reversal in the significant drop in the price of oil to a 20-year low (OPEC, 2020). 

Between February and March 2020, oil prices hit the lowest price of $10 per barrel in reaction 

to the COVID-19 pandemic5. Energy prices changed quickly in response to news cycles, policy 

changes, and fluctuations in the world's markets during the pandemic (Bajpai, 2021). 

According to Heckman (2017), markets for electricity, natural gas, oil, and renewable energy 

are complicated and characterized by uncertainties in the global economy. Fundamental 

economic factors such as supply and demand are relatively predictable; however, energy 

uncertainties, driven by political and regulatory factors, cum financial speculation, make 

forecasting energy prices more challenging.6 Other important factors that affect energy pricing 

include transportation (both commercial and personal), population growth, and seasonal 

changes (Bajpai, 2021).  

 

Previous studies on energy have affirmed that energy prices are affected by market forces, gas 

storage, weather forecasts, generation changes, global markets, imports & exports, government 

regulation, and financial speculation (Heckman, 2017). The literature on the determinants of 

energy prices and fluctuation are considerably numerous, but the novel coronavirus has opened 

the field up for more debates on energy price uncertainty. The introduction of indexes in 

monitoring global economic activities could be a tool to understanding the new trend of 

research on energy prices due to the structural changes caused by COVID-19. Interestingly, 

there are various indexes for monitoring global uncertainty. We are in an era of unprecedented 

economic uncertainty, and particularly, with the energy sector. Performances of the global 

economy have been influenced by oil price shocks, health crises such as the Spanish flu and 

COVID-19, war, and political issues, among others this, therefore, necessitated developing 

global indices of uncertainty. Salisu & Akanni (2020) developed the GFI by leveraging the 

ongoing pandemic. They computed the index as a ratio of the number of confirmed COVID-

19 cases and the number of recorded deaths. Olubusoye, et al. (2021) developed the CIU index 

and applied it to examine the vulnerability of energy prices during the pandemic period. In 

comparison with EPU, GFI, and VIX index, their results showed that energy prices lack 

hedging potentials against the uncertainty occasioned by the COVID-19 pandemic and the 

sensitivity of CIU to energy prices. 

 

                                                           
5 In fact, at some point the price of WTI crude oil went into negative territory. 
6 The previous similar case of a global pandemic was the Spanish Flu of 1918. 
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The importance of energy prices and the decline in demands due to pandemic-associated 

uncertainties serves as a motivation to investigate how uncertainty indexes impact energy 

prices. This study develops similar indexes to Salisu & Akanni (2020) but differs in the 

computational method and the variables under consideration. Many existing indexes (leveraged 

on the COVID-19) are computed based on reported infection and mortality figures. These 

indexes are limited. Since access to quality information (Akintande & Olubusoye, 2020) is 

most likely to affect an individual’s perception and decision more than the infection and 

mortality figures. Thus, misinformation may catalyze the understanding of investment risks 

(Norouzi et al., 2020). Consequently, the yearnings for quality information about the pandemic 

forms an essential level of uncertainty.  

 
 

3. METHODOLOGY 

 

Multivariate Adaptive Regression Spline (MARS) is a form of the regression model (Friedman, 

1991) used in Machine Learning. In contrast to other linear techniques, the MARS model is an 

extension of the linear model technique that explicitly and simultaneously incorporates 

linearity as well as nonlinearities and interactions between variables. Also, the MARS model 

is well suited to handle both continuous and categorical observations; that is, categorized output 

{𝑌𝑐𝑎𝑡} as well as continuous output {𝑌𝑚𝑒𝑡}; and is more flexible and quite easy to interpret. It 

provides interactive plots for model performances and performs important variables selection. 

Thus, it automatically discards or excludes unimportant variables in the final model. Due to its 

forward and backward process, it tends to provide a better bias-variance trade-off compared to 

other linear techniques. Like some methods (e.g., BMA), it can handle fairly large datasets 

(e.g., 100 predictors and 105 observations). Lastly, the presence of outliers in a dataset does not 

affect the MARS model since it typically partitions the data into disjoint regions. 

3.1 MARS Mathematical procedure: 

Given X and Y; independent and dependent variables, respectively; MARS relies on a 

hypothesis of the form: �̂�(𝑋) =  ∑ 𝑘𝑖𝛾𝑖(𝑋)𝑚𝑖=1         (1) 

where 𝛾𝑖 is the basis function weighted sum, and 𝑘𝑖’s are constant coefficients. The basis 

function 𝛾𝑖 has one of the following forms; (1) a constant, (2) a hinge function, (3) and a product 

of two or more hinge functions. The hinge function has the form;  
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max(0, X-constant) or max(0, constant –X).      (2) 

MARS swiftly picks variables and values of those variables for knots of the hinge function, 

while the ‘basis’ functions can model the interactions between two or more variables of interest. 

Hinge functions are the main component of the MARS models. Thus, the number of hinges is 

formed to determine the number of linear models for the MARS algorithm. Essentially, if we 

say we have Y = f(X), then the hinge function is h(X-a), where “a” is the cut-off point value; 

and for a single knot, the hinge function will result in two linear models for Y, that is, 

Y = {𝛾0 +  𝛾1 (𝑎 − 𝑋) 𝑋 < 𝑎𝛾0 +  𝛾1 (𝑋 − 𝑎) 𝑋 >  𝑎       (3) 

Once the first knot has been obtained, the search continues for a second knot that is obtained 

at X = a2. This results in three linear models for Y as in (4). This process continues until a 

potential and highly non-linear prediction equation is achieved. While obtaining several knots 

is possible, the MARS algorithm introduces pruning, to find the optimal number of knots and 

removes the insignificant knots to arrive at the best predictive accuracy. 

Y = { 𝛾0 +  𝛾1 (𝑎 − 𝑋) 𝑋 < 𝑎𝛾0 +  𝛾1 (𝑋 − 𝑎) 𝑋 >  𝑎  𝑎𝑛𝑑  𝑋 <  𝑎2𝛾0 + 𝛾1 (𝑎2 − 𝑋) 𝑋 >  𝑎2     (4) 

3.2 MARS model building process 

MARS builds a model in two phases namely; the forward and the backward pass. These two 

stages bear some semblances in recursive partitioning trees (Friedman, 1991). The forward 

MARS model starts with the intercept term (i.e., the mean of the response values). It then 

repeatedly sums the basic functions in pairs to the model. In each step, it computes the pair of 

basic functions (𝛾𝑖), which provides the maximum reduction in the sum of squares residual 

error (sort of greedy algorithm – see Black (2005)). The two basic functions are expected to be 

identical except that each is on a different part of the mirrored hinge function. Thus, a hinge 

function is defined by a variable and a knot. MARS searches parent terms, all variables (to pick 

one for the new, 𝛾𝑖), and all values of each variable (for the knot of the new hinge function) to 

compute the coefficient of each term by applying a linear regression over the parents. This 

term's summation iterates until the change in residual error are reduced. In other words, the 

process terminates when the maximum number of terms (parents) is reached. Note that the 

maximum possible terms are usually specified by the users before the MARS iteration starts. 
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This task is faster if a more rational procedure is adopted (Friedman, 1993). Figure 1 presents 

an illustration of MARS predictive strength at different knots level. 

7 

Figure 1: (A) Traditional linear regression approach which captures the little or no 
nonlinearity content of the distribution. (B) Degree-2 polynomial, (C) Degree-3 

polynomial, (D) Step function cutting x into six categorical levels8 
 

The backward process proposes to solve the over-fitting problem of the forward process. 

Hence, the backward process prunes the hypothesis. It removes the terms one after the other, 

by deleting the least efficient term at each step until it reaches the best sub-hypothesis. The 

hypothesis subsets are assessed with the generalized cross-validation (GCV) criterion (Craven 

& Wahba, 1978). Thus, the algorithm for the GCV is given as: 𝐺𝐶𝑉 =  𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 (𝑅𝑆𝑆)(𝑀 (1−(𝐸)/𝑀)2)       (5) 

where E - efficient number of parameters, and M – number of observations. 

and 𝐸 =  𝑁𝑚 + 𝑃 (𝑁𝑚−1)2 , where 𝑁𝑚 – number of MARS terms, and P – penalty. The  
(𝑁𝑚−1)2   

is the number of hinge–function knots. Note that for the penalty, about 2 or 3 is allowable. 

 

4. DATA AND RESULTS 

                                                           
7 The bend in the graph represents the hinge which accounts for the nonlinearity in the observation. As shown, the predicted line accounts 
for all the data points, unlike the pure linear trend. 
8
 https://bradleyboehmke.github.io/HOML/mars.html 
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The data employed in this study are daily energy (Brent, Diesel, Gasoline, Heating Oil, 

Kerosene, Natural Gas, Propane and WTI) prices and uncertainty measures (COVID-Induced 

Uncertainty – CIU; Economic Policy Uncertainty – EPU; Global Fear Index – GFI; Volatility 

Index – VIX; and Misinformation Index of Uncertainty-MIU). The dataset spans 2-January, 

2020 to January 19, 2021, which corresponds to the period of the COVID-19 pandemic. We 

extract the energy prices from www.investing.com. The EPU (based on the frequency of usage 

of economic, policy, and uncertainty-related keywords in major newspapers in the United 

States) and VIX (measures the global market expectation of near-term volatility conveyed by 

stock index option prices). We obtained both indices from the Federal Reserve Bank of StLouis 

Economic Database (FRED) website. The GFI (health news-related index) from Salisu & 

Akanni (2020) and CIU (based on Google trends search volume) from the procedure described 

in Olubusoye et al. (2021). It is informed by the perceived connectedness and possible 

bidirectional causality of uncertainty and misinformation, as the latter is likely to spur the 

former, while the uncertainty could breed an opportunity for misinformation (see Akintande & 

Olubusoye, 2020). Hence, we consider search volumes on the Google Trends database relating 

to misinformation around the COVID-19 pandemic, using keywords such as "COVID-19 Fake 

news", "Fake news", "COVID-19 Myth", "COVID and Age", "COVID and Race" and "COVID 

and Bleach". Following Olubusoye et al. (2021) and Salisu et al. (2021), we generate a single 

factor from the principal component analysis of these search volumes. This factor is re-scaled 

to range between “a” and “b”, using 𝑀𝐼𝑈𝑠𝑐𝑎𝑙𝑒𝑑 = (𝑏 − 𝑎) [ 𝑀𝐼𝑈𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑−min(𝑀𝐼𝑈𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑)max(𝑀𝐼𝑈𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑)−min (𝑀𝐼𝑈𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑)] + 𝑎   (6) 

such that a = 0 and b = 100 correspond extreme cases of no misinformation and the highest 

level of misinformation, respectively. 

4.1 Exploratory Data Analysis on Energy Prices 

Between January 2, 2020, and January 19, 2021, the price of Brent fluctuates between 9.12 and 

70.25 USD per barrel. The price resonates around 50.88 USD and is valued averagely between 

42.34±0.73 and 42.72±0.73 USD per barrel. The WTI price fluctuates between -36.98 

(reaching zero USD) and 63.27 USD per barrel. The price around this period resonates at 49.59 

USD and is valued between 39.85±0.697 and 40.785±0.697 per barrel. While the lowest price 

of Brent hit 9.12 USD per barrel, the price of a barrel of WTI during this period cost less than 

1 USD. 

http://www.investing.com/
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Also, the diesel price fluctuates between 0.54 USD and 1.97 USD per litre. The price resonates 

around 1.436 USD per litre and is valued averagely between 1.25±0.017 and 1.178±0.017 USD 

per litre. The gasoline price fluctuates between 0.364 and 1.729 USD per litre. The price 

resonates around 1.1145 USD per litre and is valued averagely between 1.1419±0.0183 and 

1.1738±0.0183 USD per litre. Table 1 presents the detailed statistics of the energy prices.  

 

Table 1: Statistics on energy prices 

Statistics BRENT DIESEL GASOLINE HEATING_OIL KEROSENE NGAS PROPANE WTI 

Mean 42.3371 1.2125 1.1419 1.2141 1.1167 2.0696 0.4834 39.8560 

Stand Error 0.7297 0.0168 0.0183 0.0171 0.0195 0.0252 0.0078 0.6974 

Median 42.7200 1.1775 1.1738 1.1585 1.0810 1.9300 0.4930 40.7850 

Mode 50.8800 1.4360 1.1140 1.1840 1.4380 1.9300 0.5130 49.5900 

Kurtosis 0.0773 0.1071 0.0858 0.4725 0.0637 -0.5078 2.1658 6.6701 

Skewness -0.3247 0.3906 -0.6752 0.7050 0.2869 0.7396 0.9106 -1.4691 

Minimum 9.1200 0.5400 0.3640 0.5620 0.4070 1.3300 0.2030 -36.9800 

Maximum 70.2500 1.9740 1.7290 2.0390 1.9720 3.1400 0.9580 63.2700 

 

Figure 2 shows the energy price trends during the period under consideration. All the energy 

sources experience a significant downward trend, falling from their various top prices to the 

new lowest prices within the study period. Meanwhile, all the energy sources likewise 

experience peaks from the low trend, trending upward and regaining the previous highs. While 

(during the study period), the upward trends are evident, and no energy (sources) price has 

rebound to its initial high as when writing this paper. 

 

 

Brent & WTI 

 

Diesel & Gasoline 
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Heating Oil & Kerosene 

 

NGAS & Propane 

 
Figure 2: Time plot of the outputs 

 

The crux of this study is to obtain a predictive accuracy of the impact of the uncertainties on 

various energy prices. We present the predictive hypothesis of the MARS algorithm in Section 

3.2. We modelled the algorithm using the K-fold CV scheme, and the best folds are reported 

based on the RMSE and MAE values. Most importantly, the 10-folds CV is more favorable 

except for NGAS and Propane, where we adopt the 5-folds CV for the best predictive model. 

Similarly, this approach facilitated picking the most appropriate prune and degree for the final 

predictive hypotheses by setting the degree between 1 and 3 and the prune between 2 and 100. 

Essentially, the best MARS algorithm pruning and degree (to find the optimal number of knots) 

follows standard algorithmic procedures. And free from authors' bias and influence. 

 

4.2 Results & Discussion 

 

On the resulting figures on the tables (Tables 2 – 9), we obtain the impact of a given uncertainty 

measure on the considered energy price by taking the product of the knot/hinges (main and 

interactions) value and the estimated coefficients. It is noteworthy to state that the positively 

(negatively) signed coefficients will imply that a corresponding uncertainty measure would 

increase (decrease) in the energy price. We highlighted the model adequacy (GRSq., RSq., 

RMSE and MAE); and the order of importance for each uncertainty measure. The GRSq. and 

RSq. Values should be closer to one, and the RMSE and MAE values close to zero for a model 

are adequate. The order of importance shows the most preferred uncertainty measures among 

the contending measures. In tandem with the design framework of the algorithm, estimations 

occur on the relevant variables, and redundant variables are automatically suppressed. 
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Recall that the number of hinges formed; determine the number of optimal linear hypotheses 

for the MARS algorithms. Consequently, the optimal hinges for the predictive model in Brent 

price give fourteen optimal linear models (from seven single feature effects and seven bi-

feature interactions). Essentially, the CIU, MIU, and VIX directly influence the price of Brent. 

In other words, CIU, MIU, and VIX cause a bidirectional effect on the Brent price. In actual 

term, when the Brent price is bullish, a unit increase in CIU, MIU and VIX lead to a 10.76 

increase (i.e., 2.2*4.58, see eq. (1)), 5.70 and 21.52 USD respectively/individually, price 

recovery of Brent holding “k-1” features constant at every reference. And when the price of 

Brent is bearish, a unit increase in CIU, MIU and VIX gives 0.704, 1.404, and 44.97USD, 

respectively/individually, decrease in Brent price holding “k-1” features constant at every 

reference. Essentially, the effect of these uncertainties (CIU, MIU, and VIX) on Brent price is 

bidirectional. 

 

Note that the shock (knot) effect gives the true impact of the features (inputs) on the outcome. 

The higher the knot, the higher the influence of the uncertainty (negative or positive values) 

given the coefficient value. The result shows that EPU causes the most significant shock 

leading to a consistent 7.60USD (i.e., 172.45*0.044061) decline in Brent price. Similarly, the 

shock effect of VIX follows that of EPU, leading to a 44.97USD decrease in Brent price and a 

21.80USD increase in Brent price. As observed, unlike the EPU, the VIX has a bidirectional 

effect. Again, the GFI and EPU jointly have a shock of 66.28. That is, a (7.60 + 0.096) USD 

consistent decline in Brent price. The effect of both EPU and GFI indices are unidirectional; 

see Table 2. 

 

Table 2: Brent result 

Knot/hinges – nonlinear Coefficients 

 

(Intercept) 51.002883 
h(2.2-CIU) 4.583367 
h(CIU-2.2) -0.323164 
h(16.61-MIU) 0.343269 
h(MIU-16.61) -0.084455 
h(EPU-172.45) -0.044061 
h(41.38-VIX) 0.526807 

h(VIX-41.38) -1.086791 

Interactions  

h(69.08-CIU) * h(EPU-172.45) 0.001151 

h(CIU-2.2) * h(VIX-26.87) 0.012514 

h(53.68-CIU) * h(41.38-VIX) -0.007875 

h(CIU-53.68) * h(41.38-VIX) 0.040351 

h(MIU-16.61) * h(EPU-498.71) 0.001507 

h(EPU-172.45) * h(66.28-GFI) -0.001450 
h(EPU-172.45) * h(37.19-VIX) 0.003116 

GCV (degree)  14.7747 (2) 
GRSq [RSq] 0.8991 [0.9233] 
Importance (ordered): EPU, VIX, GFI, CIU, MIU 

CV - RMSE [RSq.]MAE 0.0383[0.9253]0.0284 
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As observed, CIU and EPU result in 78.41 and 596.78 shock effects, respectively, leading to a 

0.2346 and 1.7856 USD decline in WTI price. The impact of CIU and VIX leads to a 3.28USD 

and 1.886USD decrease in WTI price. Similarly, the effect of EPU and VIX leads to a 2.462 

and 0.162 USD decline in WTI price. The associative impact of CIU & EPU and EPU & VIX 

jointly have a bidirectional effect on the price of WTI. The GFI has no significant direct or 

joint effect on WTI price. Thus, CIU accounts for a 7.76USD increase in WTI price, and MIU 

accounts for a 5.955USD increase in WTI price. Also, EPU accounts for 23.149USD, and VIX 

accounts for a 46.140USD increase in the price of WTI. The decline and recovery plot (in 

Figure 1) and the results (in Table 3). 
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Table 3: WTI result 

Knot/hinges – nonlinear Coefficients 
 

 

(Intercept) -246.474610 
h(CIU-2.2) 3.525026 
h(69.75-CIU) 3.500012 
h(CIU-69.75) -2.220389 
h(66.48-MIU) 0.089574 
h(596.78-EPU) 0.067391 
h(EPU-596.78) 0.038789 
h(43.35-VIX) 1.886762 

h(VIX-43.35) 1.064365 

Interactions  

h(69.75-CIU) * h(EPU-251.39) 0.002992 

h(CIU-78.41) * h(596.78-EPU) -0.004242 

h(CIU-69.75) * h(VIX-40.11) -0.047026 

h(CIU-69.75) * h(40.11-VIX) -0.029630 

h(596.78-EPU) * h(VIX-39.16) -0.004125 
h(596.78-EPU) * h(39.16-VIX) -0.002490 
h(596.78-EPU) * h(VIX-26.87) 0.002657 

GCV [degree] 21.1781 [2] 
GRSq [RSq] 0.84164 [0.8822] 
Importance (ordered): EPU, VIX, CIU, MIU, GFI-unused 

CV - RMSE [RSq.]MAE 0.0264 [0.9462] 0.0215 

 

The best predictive algorithm for NGAS price is degree 1 (Brent and WTI are of degree 2). It 

implies that the effect of the features is insignificant. Thus, CIU has a shock of 62.45, which 

leads to a 4.1037 USD decline in NGAS and 4.2775USD in NGAS recovery price. The MIU 

effect leads to 0.3379USD in NGAS recovery. Similarly, the EPU effect leads to a 0.399USD 

decrease in NGAS price and 0.6806USD NGAS recovery price.  

 

Table 4: NGAS result 

Knot/hinges –nonlinear Coefficients 

 

(Intercept) 2.54709738 
h(62.45-CIU) -0.02064713 
h(CIU-62.45) -0.06571141 
h(CIU-66) 0.06481052 
h(42.44-MIU) 0.00796101 
h(EPU-157.55) -0.00253430 
h(EPU-329.62) 0.00206467 
h(VIX-25.07) -0.31606312 
h(VIX-26.87) 0.80574047 
h(27.51-VIX) 0.02801732 
h(VIX-27.51)  -0.46427120 
h(VIX-38.02) -0.02823369 

GCV [degree] 0.0926 [1] 
GRSq [RSq] 0.4692 [0.5513] 
Importance (ordered): EPU, CIU, VIX, MIU, GFI-unused 

CV - RMSE [RSq.]MAE 0.00297 [0.4962] 0.0022 

 

The effect of VIX leads to a 1.0734 USD decline in NGAS price and a 0.7708USD increase or 

price recovery of NGAS. The GFI has no significant direct influence on NGAS price. The 

effects of all the uncertainty proxies except MIU are bidirectional (see Table 4). 

 

Diesel price is most affected by VIX, EPU, and MIU, respectively. The EPU index has the 

most significant (knot) effect of 511.42, causing a 0.5762USD increase/recovery. The CIU has 

a direct and bidirectional effect on diesel price, causing a 0.2976USD and 0.00601 increase 
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and decline in diesel price, respectively. The MIU (0.1706 USD) and VIX (2.1288 USD) also 

have a direct price recovery effect on diesel prices. Similarly, CIU and GFI indices have a price 

recovery effect on diesel price, and the pairs [CIU & VIX], [MIU & GFI], and [EPU & VIX] 

have a price decline effect on diesel price. We present the detailed results on the diesel price in 

Table 5. 

 

Table 5: Diesel result 

Knot/hinges - nonlinear Coefficients  

 

(Intercept) 1.03277020 

h(2.2-CIU) 0.13529324 

h(CIU-2.2) -0.00273221 

h(16.61-MIU) 0.01027168 

h(511.42-EPU) 0.00112658 

h(29.35-VIX) 0.07253306 

Interactions  

h(CIU-2.2) * h(GFI-52.14) 0.00005672 

h(44.57-CIU) * h(29.35-VIX) -0.00154725 

h(CIU-44.57) * h(29.35-VIX) -0.00163514 

h(MIU-16.61) * h(54.28-GFI) -0.00058452 

h(511.42-EPU) * h(VIX-34.4) -0.00002310 

h(511.42-EPU) * h(34.4-VIX) -0.00014700 

h(CIU-44.57) * h(EPU-348.4) * h(29.35-VIX) 0.00001274 

h(48.79-CIU) * h(511.42-EPU) * h(34.4-VIX) 0.00000288 

h(CIU-48.79) * h(511.42-EPU) * h(34.4-VIX) 0.00000656 

GCV [degree]  0.00961 (3) 

GRSq [RSq] 0.8756 [0.9055] 

Importance (ordered): VIX,EPU,MIU,GFI,CIU 

CV - RMSE [RSq.]MAE 0.00079[0.9256]0.0005 

 

EPU, VIX, CIU, MIU, and GFI, respectively, affect the price of gasoline. Only the CIU index 

has a bidirectional effect. The CIU & GFI, MIU & VIX jointly cause the decline in gasoline 

price, and CIU & VIX, EPU & GFI, and EPU & VIX jointly cause the gasoline price recovery. 

In some senses, CIU leads to a 0.1989USD increase and causes a 0.0199 decline in gasoline 

price. MIU and EPU cause 0.3824USD and 0.4963USD, respectively, gasoline price recovery. 

Similarly, the GFI index causes a 0.5285USD decrease in gasoline price. Meanwhile, the pairs 

[CIU & GFI] and [MIU & VIX] jointly caused 0.02460USD and 0.1034USD, respectively, a 

decline in gasoline price (see Table 6). 

Table 6: Gasoline result 

Knot/hinges - nonlinear Coefficients 

(Intercept) 0.88001332 
h(3.94-CIU) 0.05047976 
h(CIU-3.94) -0.00505902 
h(27.85-MIU) 0.01373142 
h(596.78-EPU) 0.00083164 
h(88.32-GFI) -0.00598417 
h(54.46-VIX) 0.01534076 

Interactions  

h(CIU-50.74) * h(88.32-GFI) -0.00017693 
h(CIU-49.97) * h(54.46-VIX) 0.00051548 
h(33.94-MIU) * h(54.46-VIX) -0.00030487 
h(MIU-33.94) * h(54.46-VIX) -0.00011699 
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h(440.07-EPU) * h(88.32-GFI) 0.00001830 

 

h(341.68-EPU) * h(54.46-VIX) 0.00004126 
GCV [degree]  0.0114 [2] 
GRSq [RSq] 0.8759 [0.9017] 
Importance (ordered): EPU, VIX, CIU, MIU, GFI 

CV - RMSE [RSq.]MAE 0.00086[0.9319]0.00067 

 

 

VIX, EPU, MIU, GFI, and CIU respectively affect the heating oil price. Both the CIU and VIX 

indices have a bidirectional effect. Other uncertainty proxies with direct effects have a 

unidirectional impact on the heating oil price. Thus, [CIU & VIX], [MIU & GFI], and [EPU & 

VIX] jointly cause the decline in heating oil price, and the pairs [CIU & GFI] and [CIU, EPU 

& VIX] impact heating oil price recovery. In actuality, CIU leads to a 0.2501USD heating oil 

recovery price. VIX leads to a 2.018USD price recovery and 0.1825USD decline in heating oil 

price. Similarly, EPU causes 0.4495USD in heating oil recovery price. More so, in actual sense, 

the pairs [CIU & VIX], [MIU & GFI], and [EPU & VIX] jointly cause 0.1013USD, 0.0409USD 

and 0.1062USD, respectively, decline in heating oil price. Similarly, [CIU & GFI] and [CIU, 

EPU & VIX] jointly cause 0.00350USD and 0.00253USD, respectively (see Table 7). 

Table 7: Heating oil result 

Knot/hinges – nonlinear Coefficients 

 

(Intercept) -5.2837403 
h(CIU-2.2) 0.1136647 
h(56.66-CIU) 0.1213670 
h(CIU-56.66) -0.1108185 
h(511.42-EPU) 0.0008789 
h(28.23-VIX) 0.0714791 
h(VIX-28.23) -0.0064665 

Interactions  

h(CIU-2.2) * h(GFI-52.14) 0.0000644 
h(53.68-CIU) * h(28.23-VIX) -0.0012367 
h(CIU-53.68) * h(28.23-VIX) -0.0017166 
h(MIU-17.73) * h(54.88-GFI) -0.0005639 
h(511.42-EPU) * h(31.46-VIX) -0.0001956 
h(44.57-CIU) * h(511.42-EPU) * 
h(31.46-VIX) 

0.0000043 

h(CIU-44.57) * h(511.42-EPU) * 
h(31.46-VIX) 

0.0000060 

GCV [degree]  0.0114 [2] 
GRSq [RSq] 0.8759 [0.9017] 
Importance (ordered): VIX, EPU, MIU, GFI, CIU 

CV - RMSE [RSq.]MAE 0.00084[0.9246]0.00067 
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The price of kerosene is affected by EPU, VIX, CIU, MIU, and GFI, with CIU, MIU, and EPU 

having direct bidirectional effects on kerosene price. Similarly, EPU and GFI jointly have a 

bidirectional effect on kerosene prices. Other uncertainties have a unidirectional impact on 

kerosene prices. Thus, while CIU causes a 0.3132USD increase and a 0.016323USD decline 

in kerosene price, MIU causes a 0.2278USD increase and a 0.03056USD decline in kerosene 

price, and the EPU causes a 0.3414USD increase (recovery) and 0.6947USD decrease in 

kerosene price. The impact shows that EPU and GFI indices cause a 0.0458USD decline and a 

0.0463USD recovery in kerosene price. The pairs (CIU & VIX) and (EPU & VIX) cause 

0.1055USD and 0.01569USD recovery in kerosene price, respectively (see Table 8). 
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Table 8: Kerosene result 

Knot/hinges - nonlinear Coefficients 

 

(Intercept) 1.44502826 
h(2.2-CIU) 0.14236327 
h(CIU-2.2) -0.00741944 
h(CIU-48.94) 0.00789137 
h(15.17-MIU) 0.01501323 
h(MIU-15.17) -0.00201441 
h(EPU-184.25) -0.00185308 
h(EPU-498.71) 0.00139297 

Interactions  

h(CIU-44.57) * h(28.23-VIX) 0.00144977 
h(EPU-184.25) * h(GFI-52.33) -0.00019361 
h(EPU-184.25) * h(GFI-49.25) 0.00019840 
h(EPU-184.25) * h(37.13-VIX) 0.00007088 

GCV [degree]  0.01097 [2] 
GRSq [RSq] 0.8952 [0.9153] 
Importance (ordered): EPU,VIX,CIU,MIU,GFI 

CV - RMSE [RSq.]MAE 0.00069[0.9581]0.00057 

 

VIX, CIU, EPU, MIU, and GFI, respectively, impact propane price. CIU, EPU, GFI, and VIX 

have unidirectional and inverse effects on propane prices. On the other hand, the impact of the 

uncertainty proxies has direct relationships with propane prices. In short, CIU, EPU, GFI, and 

VIX directly and individually cause 0.3348USD, 0.0892USD, 0.2870USD, and 0.1359USD 

decline in the propane price.  

Table 9: Propane result 

Knot/hinges – nonlinear Coefficients 

 

(Intercept) 0.72536789 
h(76.6-CIU) -0.00437080 
h(CIU-76.6) -0.00478426 
h(EPU-161.46) -0.00055270 
h(74.12-GFI) -0.00387226 
h(VIX-21.53) -0.00631406 

Interactions  

h(CIU-66.54) * h(29.11-MIU) 0.00077857 
h(76.6-CIU) * h(EPU-108.1) 0.00001626 
h(26.15-MIU) * h(74.12-GFI) 0.00019600 
h(EPU-498.71) * h(VIX-21.53) 0.00002148 

GCV [degree]  0.00584 [2] 
GRSq [RSq] 0.6463 [0.7022] 
Importance (ordered): VIX, CIU, EPU, MIU, GFI 

CV - RMSE [RSq.]MAE 0.00058[0.810]0.00044 

 

 

5. CONCLUSION AND POLICY IMPLICATION 

 

The study investigates the effect of uncertainty on energy prices using eight energy prices - 

Brent oil, Diesel, Gasoline, Heating Oil, Kerosene, Natural Gas, Propane, and WTI oil; and 

with five different uncertainty measures - COVID Induced Uncertainty (CIU), Economic 

Policy Uncertainty (EPU), Global Fear Index (GFI), Volatility Index (VIX), and 

Misinformation Index of Uncertainty (MIU). Given that misinformation spread during the 

pandemic, we develop the MIU. We formulated the hypothesis using all the uncertainty proxies 

as input and the energy prices as output. The descriptive statistics of the energy prices reveals 
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that the trend throughout the study is bidirectional. Imperatively, each energy price has unique 

characteristics of downward (price decline) and upward (price recovery) movement. 

Essentially, the hypotheses on the energy prices reveal that uncertainty affects energy prices in 

both ways. 

 

More formally, we examined the nexus between the energy prices and uncertainty proxies 

under the ML algorithm. In addition, it reveals the impact of each uncertainty proxy and 

indicates an ordering of their importance in the predictive model for energy prices. While we 

find most of the uncertainty measures to have the predictive potential for the energy prices, this 

is not true for GFI. It may not be unconnected with its health inclination that limits its predictive 

potential for energy prices. Hence, it should be employed when dealing with health-related 

phenomena. The order of inherent predictive power in the included uncertainty proxies appears 

to be sensitive to the energy price under study. As observed, the EPU influences the predictive 

fluctuations in most of the energy price uncertainty during the pandemic. The VIX, CIU, MIU, 

and GFI follow the EPU in that order. The contributing influence of the EPU is not surprising 

because many policies are proffer quickly to arrest the spread of the disease, which may have 

heightened the uncertainty around economic activities - a characteristic feature that informed 

the development of the EPU. The other uncertainty proxies are not specific to the energy sector 

as much as the EPU. Hence their observed position in the ordering of their relevance. Generally, 

energy prices’ responses to economic uncertainties are mostly bi-directional. 

 

In contrast to the findings of Olubusoye et al. (2021) and Salisu et al. (2020) that assume linear 

nexus between energy prices and economic uncertainty measures; and respectively found 

negative and positive responses of energy commodity prices to uncertainty measures, ML 

further beams the light on the non-linear nature of the nexus, as well as the existence of time-

varying parameter. Hence, the plausibility of both positive and negative responses that depict 

a bullish and bearish period in the energy price series. Therefore, given the reaction of energy 

prices on uncertainty and (more prominently) economic policy uncertainty, our findings bear 

some implications for policymakers. Policies that affect economic productivity are most likely 

to affect energy pricing since most products are; either energy-dependent or energy-related. 

Hence, while attempting to curtail a crisis (epidemic or pandemic), the economic activities 

should inescapably remain active but not be halted. Efforts such as a virtual working 

environment and adoption should (from now) remain a viable option. 

 



21 

 

 

Reference 

 

Akintande, O.J., and Olubusoye, O.E. (2020). Datasets on how misinformation promotes 

Immune perception of COVID-19 pandemic in Africa. Data in Brief, 31, 106031. 

Akintande, O.J., Olubusoye, O.E., Adenikinju, A.F., and Olanrewaju, B.T. (2020). Modelling 

the determinants of renewable energy consumption: Evidence from the five most 

populous nations in Africa. Energy, 206, 117992. 

Bajpai, P. (2021). Top factors that affect the price of oil. Available at 

https://www.investopedia.com/articles/investing/072515/top-factors-reports-affect-

price-oil.asp, accessed January 15, 2021. 

Chowdhuri, I., Pal, S. C., Saha, A., Chakrabortty, R., Ghosh, M. and Roy, P. (2020). Significant 

decrease of lightning activities during COVID-19 lockdown period over 

Kolkata megacity in India. Science of the Total Environment. December 10; 

747: 141321. 

Dang, H. and Trinh, T. (2021). Does the COVID-19 lockdown improve global air quality? 

Newcross-national evidence on its unintended consequences. Journal of Environmental 

Economics and Management, 105, 102401. 

Esen, H., Esen, M. and Ozsolak, O. (2017). Modelling and experimental performance analysis 

of solar-assisted ground source heat pump system, Journal of Experimental and 

Theoretical Artificial Intelligence, 29(1), 1-17. 

Galvão, J. (2020). COVID-19: the deadly threat of misinformation. Lancet Infect Dis 2020. 

Graf, C., Quaglia, F., & Wolak, F. A. (2020). (Machine) learning from the COVID-19 

lockdown about electricity market performance with a large share of renewables. 

Journal of Environmental Economics and Management, 

102398. doi:10.1016/j.jeem.2020.102398  

Hallack, M. and Weiss, M (2020). Electricity prices: the heterogeneous impact of COVID-19 

on LAC markets. Available at https://blogs.iadb.org/energia/en/electricity-prices-

heterogeneous-impact-of-covid-19-in-lac-markets/, accessed January 16, 2021. 

Heckman, R. (2017). 10 factors that affect the cost of energy. Available at 

https://www.appenergy.com/2017/01/23/10-factors-that-affect-the-cost-of-energy/, 

accessed January 15, 2021. 

Herrera, G. P., Constantino, M., Tabak, B. M., Pistori, H., Su, J.-J., & Naranpanawa, A. 

(2019). Long-term forecast of energy commodities price using machine learning. 

Energy. doi:10.1016/j.energy.2019.04.077 

IEA (2020). Oil Market Report—April 2020; International Energy Agency: Paris, France, 

2020; Available online: https://www.iea.org/reports/oil-market-report-april-2020. 

Kerimray, A., Baimatova, N., Ibragimova, O. P., Bukenov, B., Kenessov, B., Plotitsyn, P. and 

Karaca, F. (2020). Assessing air quality changes in large cities during COVID-19 

lockdowns: The impacts of traffic-free urban conditions in Almaty, Kazakhstan. 

Science of the Total Environment, Volume 730, 2020, 139179. 

Norouzi, N, Zarazua de Rubens, GZ, Enevoldsen, P, Behzadi Forough, A. (2020). The impact 

of COVID‐ 19 on the electricity sector in Spain: An econometric approach based on 

prices. Int. J Energy Res., 1– 13. 

https://www.investopedia.com/articles/investing/072515/top-factors-reports-affect-price-oil.asp
https://www.investopedia.com/articles/investing/072515/top-factors-reports-affect-price-oil.asp
https://blogs.iadb.org/energia/en/electricity-prices-heterogeneous-impact-of-covid-19-in-lac-markets/
https://blogs.iadb.org/energia/en/electricity-prices-heterogeneous-impact-of-covid-19-in-lac-markets/
https://www.appenergy.com/2017/01/23/10-factors-that-affect-the-cost-of-energy/


22 

 

Nyga-Lukaszewska, H. and Aruga, K. (2020). Energy prices and COVID-immunity: The case 

of Crude Oil and Natural Gas prices in the US and Japan. Energies 2020, 13, 6300; 

doi:10.3390/en13236300. 

Olanrewaju, B.T., Olubusoye, O.E., Adenikinju, A.F., and Akintande, O.J. (2019). A panel 

data analysis of renewable energy consumption in Africa. Renewable energy 140, 668-

679. 

Olney, M. (2021). Energy price forecast 2021: Covid-19, Brexit, and much more. Available at 

https://energycentral.com/c/pip/energy-price-forecast-2021-covid-19-brexit-and-

much-more, accessed January 16, 2021. 

Olubusoye, O. E., Ogbonna, A. E., Yaya, O. S. and Umolo, D. (2021). An Information-Based 

Index of Uncertainty and the predictability of Energy Prices. International Journal of 

Energy Research. https://doi.org/10.1002/er.6512. 

OPEC (2020). OPEC President calls for full implementation of production adjustment 

agreement reached in April. Available at 

https://www.opec.org/opec_web/en/press_room/5916.htm, accessed January 15, 2021. 

Plymouth Rock Energy (2021). How are natural Gas and Electricity Prices determined? 

Available at https://www.plymouthenergy.com/natural-gas-electricity-prices-

determined/, accessed January 16, 2021. 

Salisu, A. A. and Akanni, L. O. (2020). Constructing a Global Fear Index for the  COVID-19 

Pandemic. Emerging Markets Finance and Trade. 

Salisu, A. A., Akanni, L. and Raheem, I. (2020). The COVID-19 global fear index and the 

predictability of commodity price returns. Journal of Behavioral and Experimental 

Finance, 100383. doi:10.1016/j.jbef.2020.100383  

Salisu, A.A.  Ogbonna, A.E., Oloko, T.F. and Adediran, I.A. (2021). A New Index for 

Measuring Uncertainty Due to the COVID-19 Pandemic. Sustainability 13 (6), 3212 

Salisu, A.A. and Ogbonna, A.E. (2019). Another look at the energy-growth nexus: New 

insights from MIDAS regressions. Energy 174, 69-84 

Statista (2020). Forecasted Global Oil Demand Due to the Coronavirus Pandemic in Each 

Month from 2020 to 2021, by Region. Available online: 

https://www.statista.com/statistics/561888/global-daily-oil-demand-by-regiondue-to-

covid-19/ 

The World Bank (2020). Impact of COVID-19 on commodity markets heaviest on Energy 

Prices; lower oil demand likely to persist beyond 2021. Available at 

https://www.worldbank.org/en/news/press-release/2020/10/22/impact-of-covid-19-on-

commodity-markets-heaviest-on-energy-prices-lower-oil-demand-likely-to-persist-

beyond-2021, accessed January 16, 2021. 

Xuelin, T., Chunjiang, A., Zhikun, C. and Zhiqiang, T. (2021). Assessing the impact of 

COVID-19 pandemic on urban transportation and air quality in Canada, Science of the 

Total Environment, Volume 765, 144270, ISSN 0048-9697. 

Yaya, O.S, Luqman, S., Akinlana, D.M., Tumala, M.M. and Ogbonna, A.E. (2017). Oil Price-

US Dollars Exchange Returns and Volatility Spillovers in OPEC Member Countries: 

Post Global Crisis Period's Analysis African Journal of Applied Statistics 4 (1), 165-

182 

 

https://energycentral.com/c/pip/energy-price-forecast-2021-covid-19-brexit-and-much-more
https://energycentral.com/c/pip/energy-price-forecast-2021-covid-19-brexit-and-much-more
https://doi.org/10.1002/er.6512
https://www.opec.org/opec_web/en/press_room/5916.htm
https://www.plymouthenergy.com/natural-gas-electricity-prices-determined/
https://www.plymouthenergy.com/natural-gas-electricity-prices-determined/
https://www.worldbank.org/en/news/press-release/2020/10/22/impact-of-covid-19-on-commodity-markets-heaviest-on-energy-prices-lower-oil-demand-likely-to-persist-beyond-2021
https://www.worldbank.org/en/news/press-release/2020/10/22/impact-of-covid-19-on-commodity-markets-heaviest-on-energy-prices-lower-oil-demand-likely-to-persist-beyond-2021
https://www.worldbank.org/en/news/press-release/2020/10/22/impact-of-covid-19-on-commodity-markets-heaviest-on-energy-prices-lower-oil-demand-likely-to-persist-beyond-2021

