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Abstract：This paper finds that the steady-state direction of technological 

progress is determined by the relative size of factor supply elasticities and the returns 

to scale of the production function, which have so far been ignored. However, the 

relative price (Hicks, 1932) and relative market size (Acemoglu, 2002) emphasized in 

the existing literature have only short-term effects. This conclusion is obtained by 

introducing generalized factor accumulation processes that do not restrict factor 

supply elasticities, and a generalized production function that does not restrict the 

returns to scale. It emanates solely from the characterizations of production function, 

steady-state growth, direction of technological progress and factor supply elasticities. 

The paper also analyzes a particular micro-founded growth model and uses it to 

exemplify the conclusions. The findings of this paper provide new explanations to the 

Uzawa (1961) steady-state theorem puzzle as well as to the Kaldor facts 

characterization of modern economic growth. It also suggests a way to reconcile 

falling investment good prices with the Kaldor facts. In addition, it may help explain 

why technological progress did not increase per capita income before the industrial 

revolution and what might have led to the modern pattern of economic growth. 
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Factor Supply Elasticities, Returns to Scale, and the Direction of Technological Progress 

I. Introduction 

Technological progress relates not only to its rate but also to its direction. While 

there is a large and influential body of literature concerning the determinants of the 

rate element (see, e.g., Romer, 1990; Grossman and Helpman, 1991; Aghion and 

Howitt, 1992), the direction is not as well understood.1 However, for many important 

questions of economic growth, the direction may be more important than the rate of 

technological progress. In particular, understanding what determines the direction of 

technological progress may be key to resolving some salient problems associated with 

prevalent growth theory.  

The first problem relates to the Kaldor (1961) facts which underlie much of the 

neoclassical growth theory. Specifically, post-industrial-revolution economic growth 

in developed countries has been characterized by increasing per-capita output and 

physical capital, whereas the capital/output ratio, the real return to capital, and factor 

income shares have remained basically constant (See Figure 1 and Jones, 2016, p.5). 

As post-industrial-revolution technological progress has been very rapid and 

extensive, this gives rise to the question of what economic factors might have caused 

only the productivity of labor to improve and not that of capital?2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 About 20 years ago, Acemoglu (2002) has already made this point. Although Acemoglu 

and many other authors have done significant work on the direction of technological progress, 

fundamentally the basic question remains unresolved.   
2 Some authors think that by assuming purely labor-augmenting technological progress the 

neoclassical growth model is successful in explaining Kaldor's facts (Jones and Romer, 2010; 

Grossman et al., 2017). However, making the direction of technological progress exogenous is as 

unsatisfactory as modeling per-capita output growth as a consequence of an exogenous rate of 

technological progress. 

Figure 1: Kaldor (1961) facts in the USA (1950-2014) 

Note: Panel A represents the output and capital per worker, and Panel B represents the capital/output 

and labor share in the USA from 1950-2014. Source: Feenstra, Inklaar and Timmer (2015), PWT 9.0. 

Panel B.  Panel A.  
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The second issue concerns the Uzawa (1961) steady-state theorem. It is this 

theorem that implies that the neoclassical growth models can attain a steady-state 

equilibrium only if technological progress is purely labor-augmenting.3 In particular, 

if investment-specific technological progress takes place and the production function 

is not Cobb-Douglas, these models do not possess steady states. This knife-edge result 

has puzzled growth theorists for a long time, yet the implicit assumptions generating it 

have not been clarified.  

Moreover, ongoing investment-specific technological progress seems to be 

empirically evidenced by the long trend of falling investment goods prices (Gordon, 

1990; Greenwood et al., 1997; Jones, 2016; Grossman et al., 2017, see Figure 2). In 

addition, there is mounting evidence that the (aggregate) substitution elasticity of 

capital and labor is not unitary, making the Cobb-Douglas specification unrealistic 

(see, e.g., Karabarbounis and Neiman, 2014; Oberfield and Raval, 2014; Chirinko and 

Mallick, 2014; Lawrence, 2015; Knoblach, Roessler and Zwerschke, 2020). These 

observations contradict the implications of the Uzawa theorem. In order to include 

investment-specific technological progress, some authors (Grossman et al. 2017; 

Casey and Horii, 2019) introduce capital-augmenting technological progress into the 

production of final goods, but the Kaldor facts are consistent only with pure labor-

augmentation. This raises the question whether investment-specific technological 

progress can coexist with pure labor-augmentation in steady state? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A closely related question that has been largely ignored concerns the huge 

 
3  Acemoglu (2003) pointed out that the neoclassical growth model does not require 

technological progress to be purely labor-augmenting all the time and can include capital-

augmentation in the transitional phase. It is only in the steady state where it must be purely labor-

augmenting. 

Figure 2 US Relative Price of Equipment and Investment goods, 1947–2019. 

Source: Federal Reserve Bank Economic Data (FRED), series PIRIC and PERIC 
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difference in the direction of technological progress before and after the industrial 

revolution, and the reasons for the transition. According to Ashraf and Galor (2011), 

before the industrial revolution technological progress only improved the productivity 

of land but not that of labor and for an extended period of time generated population 

growth and higher density, but not higher per-capita income (the “Malthusian trap”). 

Therefore, it is not only necessary to explain why modern economic growth is driven 

by purely labor-augmenting technological progress, but also to explain why 

technological progress before the industrial revolution did not encompass labor 

augmentation and what caused the transition. 

To answer these questions, we introduce generalized factor accumulation 

processes that do not restrict the factor supply elasticities, and a generalized 

production function without constraining its returns to scale. This enables us to 

investigate the role played by factor supply elasticities and returns to scale, which so 

far has been ignored, on the direction of technological progress. The key finding is 

that if production is governed by constant returns to scale, the steady-state direction of 

technological progress depends on the relative size of the factor supply elasticities, 

and is biased towards the factor with the lower elasticity. The economic intuition 

behind this conclusion is that, in the long run, a higher factor price may encourage not 

only inventions to economize that factor’s use, but also its accumulation. If the supply 

elasticity of the factor is very large, the invention incentive may be reversed. 

Furthermore, to offset that factor’s abundance, balanced growth requires the presence 

of increased investment in technologies that augment the efficiency of the factor with 

the smaller supply elasticity. We obtain these core conclusions solely from the 

production function and the definitions of the direction of technological progress, 

steady-state growth, and factor supply elasticities. 

Following this general characterization, the paper provides a specific micro-

founded growth framework by extending Acemoglu's (2002) model. In particular, it 

introduces investment adjustment costs and investment-specific technological 

progress into the capital accumulation function to relax the restrictions on the 

elasticity of the capital supply. In addition, it introduces diminishing returns to scale 

into the production function. Beyond exemplifying the above results, the specific 

model also shows that changing relative factor prices (as suggested by Hicks 1932) 

and the relative market size (as argued by Acemoglu 2002) do affect the direction of 

technological progress in the short run, but have no impact on that direction in steady 

state. Furthermore, the model identifies the underlying features that determine the 

supply elasticities.  

Based on these findings, the current paper argues that the answer to the above 

questions all hinge on the factor supply elasticities. Specifically, modern economic 

growth and the associated Kaldor facts result if the supply elasticity of capital is 
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infinite while that of labor is finite. The Uzawa theorem too is the consequence of this 

elasticity configuration as implicitly set by the neoclassical growth model. In 

particular, if the capital supply elasticity is finite, then it is possible to generate any 

combination of capital- and labor-augmenting technologies in steady state. If capital 

has a finite supply elasticity while labor supply is infinitely elastic, the resulting 

steady state will be characterized by purely capital-augmenting technological progress 

and per-capita income will not grow. This is consistent with the aforementioned 

characterization of the economic growth path before the industrial revolution. 4 

Accordingly, the transition to the modern growth path may be a consequence of the 

changing supply elasticities: that of capital increased while that of labor decreased. 

The plan of the paper is as follows. Section II discusses the related literature; 

Section III introduces a generalized production function and generalized factor 

accumulation processes; Section IV derives the determinants of technological change; 

Section V develops a specific growth model in which the direction of technological 

progress is endogenized; Section VI focuses on some applications; Section Ⅶ 

contains concluding remarks. 

II. Related Literature 

Although the existing literature on the rate of technological progress is more in-

depth than on its direction, the literature on the direction preceded that on the rate. 

Early in 1932, Hicks (1932) pointed out that changing relative factor prices may affect 

that direction. Brozen (1953) too pointed out that the direction was endogenously 

determined by economic forces. Lacking a dynamic growth framework (to be 

developed by Solow a few years later), these early contributions could not distinguish 

between short-term and long-term effects.  

The neoclassical growth models (Solow, 1956; Swan, 1956; Cass, 1965; 

Koopmans,1965) provided this perspective and pointed out that technological 

progress was the key factor of economic growth in the long run. However, not only 

the rate but also the direction of technological progress is exogenous in these models. 

Although the models can attain steady-state growth consistent with Kaldor’s facts, the 

direction of technological progress turned out to be a cumbersome issue. That 

direction was exogenously set and restricted to be purely labor-augmenting. 

Otherwise, unless the production function is Cobb-Douglas, no steady state exists. 

However, these models do not provide compelling intuitive reasons as to why 

technological progress should take this specific form. This is the famous puzzle of 

Uzawa’s theorem (elegantly and intuitively re-proven by Schlicht 2006). 

The introduction of an innovation possibilities frontier (von Weizsäcker, 1962; 

 
4 This interpretation requires identifying “capital” with land before the industrial revolution. 
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Kennedy, 1964), coupled with cost reduction maximization, has seemingly enabled 

the induced innovation literature of the 1960s (Samuelson, 1965; Drandakis and 

Phelps, 1966) to resolve this issue. However, Nordhaus (1973) questioned the validity 

of this resolution for its lack of micro-mechanisms generating technological progress. 

The assumption that enterprises maximize the current rate of cost reduction rather 

than profits was also criticized (Acemoglu, 2001).  

Although the rate of technological progress has been endogenized, its direction is 

still exogenous also in the endogenous growth models (Romer, 1990; Aghion and 

Howitt, 1992). By extending the technological progress from one dimension to two, 

Acemoglu (2002) provided a framework in which that direction can be endogenized. 

Within the extended framework, Acemoglu (2002) proposed a market size effect as 

another key factor affecting the direction of technological progress besides the price 

effect of Hicks (1932). However, the two production factors are assumed to be 

inelastically supplied and the production function has constant returns to scale. 

Therefore, this framework ignores the influence of the relative size of factor supply 

elasticities and the returns to scale on the direction of technological progress. As a 

result, it provides just the determinants of the relative technological level which, in 

turn, can be obtained only when technological progress is Hicks neutral in steady state. 

Acemoglu (2003) incorporated the framework into a neoclassical growth model, 

which yielded a balanced growth path with purely labor-augmenting technological 

progress. However, there is no explanation as to why firms would choose only this 

direction of progress.  

Some additional authors (Funk, 2002; Irmen and Tabakovic, 2017) have 

constructed growth models based on perfect, rather than monopolistic, competition, 

which endogenize the direction of technological progress. These contributions also 

ignore the role played by factor supply elasticities and the returns to scale of the 

production function, thereby failing to identify the factors that determine the direction 

of technological progress. 

Another issue concerns the specification of the production function. As 

mentioned above, according to Uzawa's theorem the direction of technological 

progress is not restricted if the production function is Cobb-Douglas. For that reason, 

some authors (Jones, 2005; León-Ledesma and Satchi, 2018) tried to prove that the 

production function takes this form, at least in the steady state. However, empirical 

evidence indicating that the substitution elasticity between capital and labor is not 

unitary casts doubt on this approach. 

Uzawa's theorem does not point out which underlying premise is responsible for 

the requirement that at the steady state technological progress must be purely labor-

augmenting. Nevertheless, some authors have noticed that the factor accumulation 

processes and production function are the key factors affecting that result, and tried to 
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extend these functions to adjust the result.5 Sato (1996) showed that a non-linear 

capital accumulation process, which allows for diminishing returns to investment, is 

necessary if the steady state is to include also capital-augmenting technological 

progress. Sato et al. (1999, 2000) proposed specific models of that nature where 

steady states encompass capital-augmenting technological progress. Irmen (2013) 

proved that technological progress could include capital-augmentation, provided that 

the capital accumulation process is affected by adjustment costs. None of the 

aforementioned papers has pointed out the important influence of the supply 

elasticities as determined by the factor accumulation processes on the direction of 

technological progress. Nor have they recognized that the infinite capital supply 

elasticity implied by the “standard” capital accumulation process is one of the 

premises underlying the Uzawa theorem.  

Suggesting a different approach, Grossman et al. (2017) introduced a schooling 

variable into the production function in addition to labor and capital. They showed 

that, in steady state, not only the production technology can admit capital-augmenting 

progress, but also the capital accumulation process can include investment-specific 

technological progress. Casey and Horii (2019) built a model which allows for a 

steady state to encompass capital-augmenting technological progress. They obtained 

this result by introducing new factors (such as land) into the production function and 

decreasing returns to scale for capital and labor. However, they have not uncovered 

the relationship between the returns to scale of the production function and the 

direction of technological progress.  

In a word, the puzzle of Uzawa's theorem is one of the most important 

motivations for the existing literature to focus on the direction of technological 

progress. However, two defects of the existing literature, which this paper tries to 

alleviate, hinder the discovery of the direction’s determinants and the resolution of 

that puzzle.   

First, the existing literature usually tries to answer why in steady state 

technological progress must be purely labor-augmenting. However, posing the 

question in this fashion is misleading, as it subsumes that Uzawa’s proposition is 

unconditionally true despite the missing economic intuition (Acemoglu, 2003; Jones, 

2005). As a matter of fact, not all growth models require the steady-state 

technological progress to be purely labor-augmenting. Specifically, the Malthusian 

model cannot admit labor-augmentation at all in steady state (Li and Huang, 2016). 

Therefore, Uzawa’s theorem is only a conditional proposition. In this vein, and unlike 
 

5 Already in the 1960s, in an argument akin to the one presented below, Samuelson (1965) 

pointed out that if factor supplies remain in balance, then technological progress will be Hicks-

neutral in steady-state, otherwise it would be tilted towards labor- or capital-augmentation. 
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the existing literature, this paper asks a more general question, namely, what 

determines the steady-state direction of technological progress? Accordingly, the 

puzzle of Uzawa’s theorem becomes a subproblem of this question, that is, under 

what conditions does technological progress have to be purely labor-augmenting?  

Second, the existing literature discusses Uzawa’s theorem under the same implicit 

assumptions as those of the neoclassical growth model. As a result, it is impossible to 

identify which of these implicit assumptions lead to Uzawa's theorem. Here we 

introduce two generalized functions that embed the neoclassical growth model as a 

special case. It is through these extensions that the role of the factor supply elasticities 

and the returns to scale as the determinants of the direction of technological progress 

are exposed. Moreover, it is precisely because the neoclassical growth model 

implicitly assumes that the capital supply elasticity is infinite while that of labor is 

finite that the steady-state technological progress must be purely labor-augmenting. 

III. A generalized production function and generalized factor accumulation 

processes 

The returns to scale of the production function and factor supply elasticities 

constrain economic agents when choosing the direction of technological progress. 

However, in the existing literature, the returns to scale and the elasticities are 

implicitly set by a particular formulation of the production function and factor 

accumulation processes, causing their influence on the direction of technological 

progress to have inadvertently been ignored. In order to overcome this defect, in this 

section we construct a generalized production function with constant or diminishing 

returns to scale that depend on parameter values. We also introduce investment 

adjustment costs into factor accumulation processes to allow expanding the range of 

factor supply elasticities from zero to infinity. Later, we will show that the 

generalization exposes the key influence of the returns to scale and factor supply 

elasticities on the direction of technological progress.  

1. A generalized production function 

The returns to scale of the production function may be constant, decreasing or 

increasing. However, when discussing the direction of technological progress, it is 

usually assumed that the returns to scale are constant, rather than making them depend 

on parameter values. For our purpose, we construct a production function that is 

potentially compatible with different returns to scale for capital, K, and labor, L, as 

follows:  Y(t) = F[B(𝑡)K(𝑡)𝜙, 𝐴(𝑡)L(t)𝜑] , 0 < ϕ ≤ 1, 0 < φ ≤ 1                    (1) 
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Here, B  and 𝐴  denote capital-augmenting and labor-augmenting technologies 

respectively. Accordingly, assuming that the production function has constant returns 

to scale for Kϕ  and Lφ , that is, F[Bλ(Kϕ), 𝐴λ(Lφ)] = λF[BK𝜙, 𝐴L𝜑] , then F[B(λK)ϕ, 𝐴(λL)φ)] ≤ λF[BK𝜙, 𝐴L𝜑]. If 𝜙 = 𝜑 = 1, the production function takes 

the usual neoclassical form with constant returns to scale for K and L; when 𝜙 < 1 or 𝜑 < 1, it has diminishing returns to scale for K and L.6 Clearly, whether in reality the 

returns to scale of K and L are constant or decreasing, is an empirical issue. As the 

goal of this paper is to theoretically expose the impact of the returns to scale upon the 

direction of technological progress, its conclusions do not hinge on the empirical 

outcomes. 

Define �̂� ≡ [BK𝜙]  as representing effective capital ， and �̂� ≡ [𝐴L𝜑]  as 

representing effective labor. Output per effective labor is expressed by 𝑦 ≡ Y𝐴L𝜑 and 

the effective capital to effective labor ratio is expressed by 𝑘 ≡ BK𝜙𝐴L𝜑 . Accordingly, the 

production function in the intensive form takes the form: 

y(t) = F [B(𝑡)K(𝑡)𝜙𝐴(𝑡)L(t)𝜑 , 1] = 𝑓(𝑘(𝑡))                                            (2) 
If the market is not completely competitive, then factor prices will be smaller 

than their marginal products. Therefore, we assume only that the factor prices are 

proportional to their marginal products. Specifically, by equation (2) the 

corresponding prices of K and L can be written as: 

{𝑤(𝑡) = 𝜉𝐿𝜑𝐴(𝑡)𝐿(𝑡)𝜑−1[𝑓(𝑘(𝑡)) − 𝑘𝑓′(𝑘(𝑡))]r(t) = 𝜉𝐾𝜙𝐵(𝑡)𝐾(𝑡)𝜙−1𝑓′(𝑘(𝑡))                                            (3) 
where 𝜉𝐿 ≤ 1 and 𝜉𝐾 ≤ 1. When the market is completely competitive 𝜉𝐿 = 𝜉𝐾 = 1，
otherwise, 𝜉𝐿 < 1 and 𝜉𝐾 < 1. 

Equations (3) show that the returns to scale parameters 𝜑 and 𝜙 have important 

influence on factor prices. When they are smaller than 1, even if 𝑘 is constant, factor 

prices decrease with their quantities. Therefore, in this case, only factor-augmenting 

technological progress can keep factor prices constant or make them increase. 

2. Generalized factor accumulation processes 

The introduction of generalized factor accumulation processes and the presence 

 
6 If 𝜙 > 1 or 𝜑 > 1, the returns to scale with respect to K and L are increasing, which may 

lead to negative technological progress in steady state. 
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of investment adjustment cost are additional important features needed to analyze the 

direction of technological progress through their impact on the factor supply 

elasticities. As it turns out, the factor accumulation processes used in the existing 

literature usually take specific forms which often implicitly limit the size of the 

ensuing factor supply elasticities, whereas the generalized factor accumulation 

processes entail no such restrictions. 

(1) Factor supply elasticities  

The supply elasticities of capital (𝜀𝐾) and labor (𝜀𝐿) are a key property of the 

factor supply functions and follow the standard definition:7 

{  
  𝜀𝐾 ≡ K̇(t)/𝐾(𝑡)�̇�(t)/𝑟(𝑡)𝜀𝐿 ≡ L̇(t)/𝐿(𝑡)�̇�(t)/𝑤(𝑡)                                                                      (4) 

Equations (4) clearly imply that the factor accumulation processes K̇(t) and L̇(t) 
are key determinants of the factor supply elasticities. The existing literature, 

especially the literature on the direction of technological progress, has completely 

ignored their impact. Acemoglu (2002) assumes that both factors are inelastically 

supplied. As is well known, the core assumption of the Malthusian model is that the 

labor supply elasticity is infinite. In the Solow (1956) model, K̇(t)/𝐾(𝑡) is a positive 

constant at the steady state while the interest rate is unchanging, rendering 𝜀𝐾 = ∞. 

Clearly, zero or infinity are both only possible specific elasticities, while an elasticity 

between zero and infinity may be more realistic. Moreover, a given economy in 

different periods, or different economies at the same period, may have different factor 

supply elasticities. As shown below, setting the factor supply elasticities to specific 

values implicitly restricts technological progress to follow a particular direction in 

steady state. For this reason, the factor accumulation processes should be allowed to 

generate factor supply elasticities that range from zero to infinity. 

(2) Generalized factor accumulation processes with investment adjustment 

cost 

Although the inclusion of investment adjustment cost has become a basic 

ingredient of macroeconomic models and economic growth (Barro and Sala-i-Martin, 

2004, Ch3; Acemoglu, 2009, Ch8), its impact on the factor supply elasticities has not 

 

7 The elasticity of factor supplies is usually defined as 𝜀 = ∆𝑋(𝑡)/𝑋(𝑡)∆𝑝(𝑡)/𝑝(𝑡). Technically, this is 

equivalent to equations (4), noting that the numerator and denominator are multiplied by ∆𝑡 at the 

same time. Because the factor price and quantity in the growth model are both functions of time, 

we think that the definition as presented here is more appropriate. 
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been considered. 8 However, by admitting investment adjustment costs, we can obtain 

generalized factor accumulation processes that imply factor supply elasticities ranging 

from 0 to infinity. 

The adjustment cost may capture both internal factors and external ones. In the 

case of material capital, the internal costs may reflect the costs of installing new 

capital and training workers to operate the new machines, and the external costs may 

be due to increasing production costs. For labor, the internal adjustment costs may 

arise from the training of new workers while the external costs may reflect the cost 

associated with increasing the labor force. Accordingly, it is assumed that both 

physical capital and labor are the result of investment, and both have adjustment cost 

of the same form. However, the adjustment cost parameters may be different, 

implying different supply elasticities. To see this, consider the following standard 

specification of the factor accumulation process: �̇�(𝑡) = 𝐼𝑋(𝑡) − 𝛿𝑋𝑋(𝑡)                                                                 (5) 
Where X represents K or L, IX(t) represents investment in K or L, δ𝑋 is depreciation 

rate or mortality.  

The presence of the investment adjustment costs is specified as follows:  𝐼(t) = IX(t) (1 + h(IX(t)))                                                       (6) 
That is, investing a total of 𝐼(t) units in factor X enhances the amount of the factor 

only by IX(𝑡)  units, whereby a proportional addition of h(IX(𝑡)) units is spent as 

adjustment costs. 9  We assume h(0) = 0 , ∂h ∂IX⁄ > 0 , ∂2h ∂IX2⁄ ≥ 0 , that is, the 

adjustment costs are non-decreasing also at the margin. Monotonicity allows us to 

obtain the inverse function IX(t) = G[I(t)]. Substituting it into equation (5) yields the 

general factor accumulation process that incorporates the investment adjustment costs: Ẋ(t) = G[I(t)] − δ𝑋X(t)                                                               (7) 
with 

∂G∂I(t) > 0  and 
∂2G∂I(t)2 ≤ 0 . Equation (7) shows that with adjustment costs, the 

marginal efficiency of turning investment into a factor is (weakly) decreasing. 

 
8  Investment adjustment costs were introduced in order to overcome defects of the 

neoclassical investment theory (Eisner and Strotz, 1963; Lucas, 1967; Foley and Sidrauski, 1970), 

specifically the extremely high investment sensitivity to small changes in economic conditions 

implied by that theory. Hayashi (1982) has introduced investment adjustment costs into a firm’s 
optimal investment program in order to analyze the dynamics of Tobin’s Q. The presence of these 
costs has also been invoked to improve the performance of DSGE models (see, e.g., Cristiano et 

al., 2005). 
9 Equations (5) and (6) are equations (3.25) and (3.26) in Barro and Sala-i-Martin (2004), 

Chapter 3, page 152, except that their adjustment cost function is specified as h(IK/K).  
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Equation (7) implies that the function G[I(t)] has a decisive influence on the factor 

supply elasticity since Ẋ(t)/X(t) = G[I(t)]/X(t) − δ𝑋.  

As a special case, consider the following adjustment cost function:  h[IX(t)] = [IX(t)(1−𝛼)/𝛼 − 1], 0 < 𝛼 ≤ 1                                 (8) 
Equation (8) shows that the adjustment costs not only depend on the investment IX(t) , 
but also on the parameter 𝛼. When 𝛼 = 1, equation (8) implies no adjustment cost, 

and when 𝛼  is close to zero, equation (8) implies infinite adjustment cost. Using 

equation (8) in equations (5) and (6) yields the specific factor accumulation function: Ẋ(t) = 𝐼(𝑡)𝛼 − δ𝑋X(t)                                                                 (9) 
For 𝛼 = 1, if X represents capital K, equation (9) reduces to the capital accumulation 

process of the existing neoclassical model, implying a capital supply elasticity of 

infinity; if X represents labor L, equation (9) reduces to the labor accumulation 

process of the existing Malthusian model and the labor supply elasticity is infinite.10 

When 𝛼 approaches 0, the elasticity of the factor supply tends to 0, as in Acemoglu 

(2002); When 0 < 𝛼 < 1, the factor supply has a finite elasticity. Accordingly, the 

adjustment costs have an important impact on the factor supply elasticities, which, 

depending on the values of 𝛼 in equation (9), can take any value between zero to 

infinity.11 While the core conclusion does not depend on the specific form of the 

capital accumulation process, equation (9) will be used in Section Ⅴ, where a 
particular model is analyzed. 

IV.  The Determinants of Technological Progress  

For the economy described by the generalized production function (1), this 

section shows that the model-free definitions of steady-state growth, direction of 

technological progress and factor supply elasticities suffice to draw the core 

conclusion and its important corollaries concerning the direction of technological 

progress. 

1. Definitions 

Definition 1: A steady-state growth path obtains when the growth rates of Y(t), B(𝑡), K(𝑡), 𝐴(𝑡) , L(t) and factor income shares are constant. 

 
10 When �̇� = 0 we obtain 𝐿∗ = 1/𝛿𝐿. For the special case with 𝐼𝐿 ≡ 𝑠𝐿𝑌， �̇� = 𝐼𝐿 − 𝛿𝐿𝐿 =𝑠𝐿𝑌 − 𝛿𝐿𝐿 . This is the labor supply assumption of the Malthusian model, where 𝑠𝐿  is 

endogenously determined by the household's intertemporal optimization. 
11 Irmen (2013) pointed out that equation (9) incorporates adjustment costs in the capital 

accumulation process. However, he did not provide the underlying adjustment costs function, nor 

did he discuss the capital supply elasticity implied by this function. 
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Remark 1: Since 𝑘(t) ≡ B(𝑡)K(𝑡)𝜙𝐴(𝑡)L(t)𝜑  is constant at the steady-state growth path, the 

growth rates of B(𝑡)K(𝑡)𝜙 and 𝐴(𝑡)L(t)𝜑 are identical and given by:  

𝜙 K̇(t)K(t) + Ḃ(t)B(t) = 𝜑 L̇(t)L(t) + Ȧ(t)A(t)                                               (10) 
Definition 2: The direction of technological progress, DTP, is the ratio between 

the augmentation rates of capital and labor, i.e. 

𝐷𝑇𝑃 ≡ Ḃ(t)/B(t)Ȧ(t)/𝐴(𝑡)                                                                        (11) 
Remark 2: DTP can take any value in [0,∞]. When �̇�/𝐵 = 0 and �̇�/𝐴 > 0 then 𝐷𝑇𝑃 = 0, and technological progress is purely labor-augmenting (i.e. Harrod-neutral); 

when �̇�/𝐵 > 0 and �̇�/𝐴 = 0 then 𝐷𝑇𝑃 → +∞, and technological progress is purely 

capital-augmenting (i.e. Solow-neutral); when �̇�/𝐵 = �̇�/𝐴 > 0 then 𝐷𝑇𝑃 = 1, and 

technological progress is Hicks-neutral. Figure 3 shows different directions of 

technological progress. 

 

 

 

 

 

 

 

 

 

 

Clearly, the axes represent Harrod-neutral (horizontal) and Solow-neutral 

(vertical) technological changes. The diagonal �̇�/𝐻 represents the location of Hicks-

neutral technological changes. The ray �̇�1/𝑇1 indicates technological progress which 

tends to be more labor augmenting, while �̇�2/𝑇2 is more capital augmenting.  

Note, that the direction of technological progress is related to the direction of 

technology (DT), given by 𝐷𝑇 ≡ B(t)/𝐴(𝑡). Obviously, the direction of technological 

progress determines the direction of technology, but the two terms are fundamentally 

different. Specifically, when the direction of technological progress is Hicks neutral, 

the direction of technology remains unchanged. Otherwise, the direction of 

technology will continuously rise or fall.  

Figure 3: Direction of technological progress 

�̇�1/𝑇1 

�̇�/𝐻 

�̇�2/𝑇2 �̇�/𝐵 Ḃ/B

�̇�/𝐴 5° 

45° 
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2. The Determinants of DTP  

In Appendix A we prove the following proposition. 

Proposition 1: If the production function takes the form of equation (1) and 

factor prices are proportional to their respective marginal products, then the steady-

state direction of technological progress is given by: 𝐷𝑇𝑃 = (1 + 𝜀𝐿)/[1 + (1 − 𝜑)𝜀𝐿](1 + 𝜀𝐾)/[1 + (1 − 𝜙)𝜀𝐾]                                       (12) 
Proposition 1 is the core result of this paper. There are three remarkable features 

of this proposition:  

First, according to the proposition, the crucial determinants of the direction of 

technological progress are the elasticities of the factor supplies (𝜀𝐿 and 𝜀𝐾) and the 

parameters governing the returns to scale of the production function (𝜙 and 𝜑), which 

have so far been missing in the existing literature. The former reflects the factor 

accumulation processes, and the latter reflect the production function. Given 𝜙 and 𝜑, 

technological progress tends towards the factor with the smaller supply elasticity. 

Similarly, given the supply elasticities, it tends to the factor with the smaller return to 

scale parameter.  

Second, in contrast to Hicks (1932) and Acemoglu (2002), neither the relative 

price nor the relative market size affect the steady-state direction of technological 

progress.  

Finally, this result is driven only by the generalized production function and the 

definitions of steady-state growth, direction of technological progress and factor 

supply elasticities, and does not depend on specific forms of the factor accumulation 

processes or the production function. 

 

Proposition 1 has an immediate corollary for the constant returns to scale case 

(CRS, i.e. 𝜙 = 𝜑 = 1). 

Corollary 1: In the CRS case the direction of technological progress is given by: 𝐷𝑇𝑃 = 1 + 𝜀𝐿1 + 𝜀𝐾                                                                   (13) 
Corollary 1 shows that for the CRS case, the steady-state direction of 

technological progress is determined solely by the relative size of the factor supply 

elasticities and is biased towards the one with the relatively smaller elasticity.  

A further implication, proven in Appendix B, is stated by Corollary 2. 
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Corollary 2: Let the production function of a growth model be characterized by 

equation (1). Then, along the steady-state growth path, capital-augmenting 

technological progress is ruled out (i. e. Ḃ(t)B(t) = 0) if and only if capital has an infinite 

supply elasticity (i. e. 𝜀𝐾 = ∞) and the capital returns to scale parameter equals 1 

(i. e. 𝜙 = 1). 

As mentioned above, Uzawa's theorem states that the steady-state technological 

progress of the neoclassical growth model must be purely labor-augmenting. That 

result is unexplained and lacks economic intuition, and has puzzled economic growth 

theorists for decades. Corollary 2 exposes the necessary and sufficient conditions for 

the steady-state technological progress, if it exists, to admit only labor-augmentation. 

We will use this corollary in the sequel to further analyze the puzzle of the Uzawa 

theorem. 

 

Using the symmetry principle, the following holds as well: 

Corollary 3: Let the production function of a growth model be characterized by 

equation (1). Then, along the steady-state growth path, labor augmenting 

technological progress is ruled out (i. e. Ȧ(t)A(t) = 0) if and only if labor has an infinite 

supply elasticity (i. e. 𝜀𝐿 = ∞) and the labor returns to scale parameter is 1 (i. e. φ =1). 

Li and Huang (2016) proved that there is an analogous “Uzawa theorem” in the 

Malthusian environment. That is, in the steady state, technological progress can only 

be purely land-augmenting, and cannot include labor-augmentation. Corollary 3 

clarifies that the Uzawa theorem is not an unconditional proposition. 

 

Finally, combining corollaries 2 and 3, we obtain:12 

Corollary 4: In the CRS case  (i. e. 𝜙 = 1;  φ = 1), along the steady-state growth 

path, technological progress is Hicks neutral (i. e. Ȧ(t)A(t) = Ḃ(t)B(t))  if and only if both 

capital and labor have the same finite supply elasticities ( i. e. 𝜀𝐿 = 𝜀𝐾 < ∞ ); in 

 
12 To see this, notice that from Corollary 1 we obtain that, if 𝜙 = φ = 1 and 𝜀𝐿 = 𝜀𝐾，then Ȧ(t)A(t) = Ḃ(t)B(t)；from Corollary 2, if 𝜙 = 1 and 𝜀𝐾 = ∞, then 

Ḃ(t)B(t) = 0；from Corollary 3, if φ = 1 

and 𝜀𝐿 = ∞, then 
Ȧ(t)A(t) = 0. Therefore, when 𝜙 = φ = 1 and 𝜀𝐿 = 𝜀𝐾 = ∞, it must be that 

Ȧ(t)A(t) =Ḃ(t)B(t) = 0. 



16 

 

particular, if  𝜀𝐿 = 𝜀𝐾 = ∞, there is no technological progress (i. e. Ȧ(t)A(t) = Ḃ(t)B(t) = 0). 
A remark is in order. Acemoglu (2002), when addressing the determinants of the 

direction of technological progress, assumed that the two factors are inelastically 

supplied, that is, 𝜀𝐿 = 𝜀𝐾 = 0. According to corollary 4, the steady-state technological 

progress must then be Hicks neutral. Consequently, Acemoglu (2002) can just discuss 

the determinants of the steady-state relative level of technology (DT) but not those of 

the direction of technological progress (DTP).  

 

The CRS case is summarized in Table 1. 

Table 1：the DTP with different relative elasticities of factor supplies under CRS  

Capit

al  

Labor 

0 ≤ 𝜀𝐾 < ∞ 𝜀𝐾 = ∞ 

0 ≤ 𝜀𝐿 < ∞ 

𝜀𝐿 < 𝜀𝐾 𝜀𝐿 = 𝜀𝐾 𝜀𝐿 > 𝜀𝐾 Ȧ(t)A(t) > Ḃ(t)B(t) = 0 Ȧ(t)A(t) > Ḃ(t)B(t) > 0 
Ȧ(t)A(t) = Ḃ(t)B(t) > 0 0 < Ȧ(t)A(t) < Ḃ(t)B(t) 

𝜀𝐿 = ∞ 
Ḃ(t)B(t) > Ȧ(t)A(t) = 0 

Ȧ(t)A(t) = Ḃ(t)B(t) = 0 

 

Table 1 shows that the steady state does not require technological progress to be 

purely labor-augmenting. In fact, there is no restriction and the steady state can be 

compatible with any direction of technological progress, which is determined by the 

relative size of the factor supply elasticities. 

V． A Specific Growth Model 

We derived Proposition 1 without specifying the micro-structure of households 

and enterprises. Next, we provide a well-founded model, verify that it possesses a 

steady state and determine the corresponding direction of technological progress. 

We use for this purpose the Acemoglu (2002) growth model. That model expands 

the Romer (1990) technology from one dimension to two, making it appropriate for 

the analysis of potential directions of technological progress. However, as commented 

above, the production function in the Acemoglu model was assumed to possess 

constant returns to scale and the two input factors to be inelastically supplied, thereby 

ignoring the two aforementioned factors that determine the steady-state direction of 

technological progress. Therefore, the framework needs two fundamental extensions: 

first, the returns to scale for the two input factors in the production function cannot be 
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assumed to be constant, but rather follow the specification of equation (1); second, the 

factor accumulation processes should admit supply elasticities ranging from zero to 

infinity, as in equation (9). 

1. The Model 

Following Acemoglu (2002), there are two material factors and three production 

sectors: final goods, intermediate goods, and research and development (R&D). The 

symbols K, L, S represent the two kinds of material production factors and “scientists” 

who specialize in research and development of new intermediate products, 

respectively. 

(1) The production function 

The final goods sector is competitive, using the following CRS production 

function: 

𝑌 = [𝛾𝑌𝐿(𝜀−1)/𝜀 + (1 − 𝛾)𝑌𝐾(𝜀−1)/𝜀]𝜀/(𝜀−1),     0 ≤ 𝜀 < ∞              (14) 
where Y is output and YL and YK are the two inputs, with the factor-elasticity of 

substitution given by ε. 

The inputs 𝑌𝐿 and 𝑌𝐾 are also produced competitively by constant elasticity of 

substitution (CES) production functions using a continuum of intermediate inputs, 𝑋(𝑖) and 𝑍(𝑗): 
𝑌𝐿 = [∫ 𝑋(𝑖)𝜑𝛽𝑑𝑖𝑁

0 ]1/𝛽  𝑎𝑛𝑑  𝑌𝐾 = [∫ 𝑍(𝑗)𝜙𝛽𝑑𝑗𝑀
0 ]1/𝛽                      (15) 

where the elasticity of substitution is given by 𝑣 =  1/(1– 𝛽) and N and M represent 

the measure of the two types of the intermediate inputs, respectively. The 

specification of the production functions extends that of Acemoglu’s by introducing 
the parameters 𝜑  and 𝜙  which are assumed to satisfy 0 < 𝜑 ≤ 1  and 0 < 𝜙 ≤ 1 . 

When 𝜑 = 𝜙 = 1, equations (14) and (15) degenerate to the form used in Acemoglu 

(2002). When 𝜑 < 1  or 𝜙 < 1 , then production of the inputs is characterized by 

diminishing returns to scale. 

The intermediate factors 𝑋(𝑖) are produced by labor, whereas 𝑍(𝑗) are produced 

by capital, where the respective production functions are linear:  𝑋(𝑖) = 𝐿(𝑖) and 𝑍(𝑗) = 𝐾(𝑗)                                                          (16) 
Accordingly, 𝑌𝐿  and 𝑌𝐾  represent labor-intensive and capital-intensive inputs 

respectively. 

(2) Factor accumulation processes 
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Repeating equation (9), the factor accumulation processes are given by: 

{�̇� = 𝑞(𝑡)𝐼𝐾𝛼𝐾 − 𝛿𝐾𝐾,    �̇�(𝑡)/𝑞(𝑡) = 𝑔𝑞 ≥ 0，0 ≤ 𝛼𝐾 ≤ 1, 𝛿𝐾 > 0  �̇� = 𝑏𝐿𝐼𝐿𝛼𝐿 − 𝛿𝐿𝐿,               𝑏𝐿 > 0，0 ≤ 𝛼𝐿 ≤ 1 , 𝛿𝐿 > 0                         (17) 
where 𝐼𝐾 and 𝐼𝐿 are investment into capital and labor accumulation. 

Moreover, the capital accumulation process further allows an exogenous 

investment-specific technological progress, �̇�(𝑡)/𝑞(𝑡) = 𝑔𝑞 13 . The latter feature 

follows Grossman et al. (2017) and enables the model to generate falling investment 

goods prices.  

(3) Other assumptions 

Other assumptions are inherited from Acemoglu (2002). The household’s goal is 

to maximize the discounted flow of utility, given by: 

U = ∫ 𝐶(𝑡)1−𝜃 − 11 − 𝜃 𝑒−𝜌𝑡𝑑𝑡∞
0                                                             (18) 

where 𝐶(𝑡) is consumption at time t, 𝜌 > 0 is the discount rate, and 𝜃 > 0 is a utility 

curvature coefficient of the household. 

The household’s periodic budget constraint is given by: 𝐶 + 𝐼𝐾 + 𝐼𝐿 ≤ 𝑌 = 𝑤𝐿 + 𝑟𝐾 + w𝑆𝑆 + Π                                        (19) 
where the LHS stands for expenditures consisting of consumption and investments, 𝐼𝐾 

and 𝐼𝐿, into capital and labor, and the RHS is income, obtained from renting out labor 

at the rate 𝑤, capital at the rate 𝑟, scientists at the rate w𝑆. Π is total profits, which are 

positive when the returns to scale of the final good production function are decreasing.  

New intermediate inputs are developed by an R&D sector. The innovation 

possibilities frontier functions are specified as follows:14 

{�̇� = 𝑑𝑁𝑁𝑆𝑁 − 𝛿𝑁   �̇� = 𝑑𝑀𝑀𝑆𝑀 − 𝛿𝑀                                                                          (20) 
where 𝑆𝑁  and 𝑆𝑀  represent respectively the number of scientists engaged in 

innovation of the two kinds of intermediate inputs. The total number of scientists is 

exogenously set at S, so 𝑆�̅� + 𝑆�̅� ≤ 𝑆, where 𝑆�̅� = 𝛿/𝑑𝑁  and 𝑆�̅� = 𝛿/𝑑𝑀 . Once a 

 
13 Note that when the embodied technological progress is not taken into account, q(t) is a 

constant, �̅�. Therefore, if 𝛼𝐾 = 0, then at the steady-state value of �̇� = 0 we obtain 𝐾∗ = �̅�/𝛿𝐾. 
14 The extended lab equipment model (Rivera-Natiz and Romer, 1991) can also be used to 

construct the frontier of innovation possibilities. It does not change the conclusion but adds some 

intricate knife-edge conditions. The model is available upon request. 
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new intermediate input is invented, the inventor obtains a permanent patent, as in 

Romer's (1990) model. 

2. The market equilibrium  

Given the setting of the model, the final good sector and the intermediate goods 

sector will be in equilibrium when both the final good firms and the intermediate 

goods firms maximize their profits and the markets of capital and labor clear. Given 

the goods market equilibrium, the following two propositions hold:  

Proposition 2: In the market equilibrium, the final output production function 

takes the form: 

𝑌 = [𝛾(𝐴𝐿𝜑)(𝜀−1)/𝜀 + (1 − 𝛾)(𝐵𝐾𝜙)(𝜀−1)/𝜀]𝜀/(𝜀−1)                        (21) 
where 𝐴 ≡ 𝑁(1−𝜑𝛽)/𝛽and 𝐵 ≡ 𝑀(1−𝜙𝛽)/𝛽.  

Proof：See Appendix C. 

The CES production function shown in equation (21) is a specific form of the 

production function (1), with constant returns to scale to 𝐴𝐿𝜑 and 𝐵𝐾𝜙. With respect 

to 𝐿  and 𝐾 , it has constant returns to scale if 𝜑 = 1  and 𝜙 = 1  and diminishing 

returns to scale when 𝜑 < 1 or 𝜙 < 1. 

Proposition 3： In the intermediate goods market equilibrium, the relative 

benefits of innovation of capital-intensive and labor-intensive intermediate goods are 

determined by: 𝜋𝑍𝜋𝑋 = (1 − 𝜙𝛽)/𝜙(1 − 𝜑𝛽)/𝜑 . 𝑟𝑤 . 𝐾𝐿 . 𝑁𝑀                                                              (22) 
where 𝜋𝑍  and 𝜋𝑋  represent the monopoly profits of capital-intensive and labor-

intensive intermediate goods producers.  

Proof：See Appendix D. 

Equation (22) shows that, for a given 𝜙/𝜑 and a ratio of the technology levels, 

represented here by M/N, relative invention profits are positively related to the 

relative factor prices (r/w) and the relative factor supplies (K/L). Accordingly, a 

change of the relative price encourages innovations directed towards the scarce factor 

whose price has increased, as suggested by Hicks (1932). Acemoglu (2002) noted that 

the relative amount of the two factors, (K/L), has two countervailing effects on 𝜋𝑍/𝜋𝑋. 

On the one hand, a higher K/L causes an increase in 𝜋𝑍/𝜋𝑋, which in turn leads to a 

technological change favoring the abundant factor (“the market size effect”). On the 
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other hand, a higher K/L decreases 𝑟/𝑤 and 𝜋𝑍/𝜋𝑋 , which is the price effect of a 

change in K/L. The total effect of a change in K/L is regulated by the elasticity of 

substitution 𝜀 between the two factors. If 𝜀 > 1, the market size effect dominates the 

price effect, and increasing K/L will encourage favoring improvements of the 

abundant factor. Otherwise, when 𝜀 < 1, improvements of the scarce factor will be 

favored. Based on the above, Acemoglu (2002) proposed that the relative price and 

market size are the two key factors affecting the direction of technological progress.15 

Unlike Acemoglu (2002), equation (22) also exposes the impact the return to 

scale has on the direction of technological progress. It shows that, other things being 

equal, relative invention profits 𝜋𝑍/𝜋𝑋 are negatively related to 𝜙/𝜑. Thus, under the 

stated condition, a decreased values of  𝜙/𝜑 induces a relatively higher profit of R&D 

in the capital-intensive intermediate input, tilting technological progress in that 

direction.  

However, equation (22) represents only the demand side of technological 

change. To get the long-run effects, it is necessary to consider also factors affecting 

the supply of innovations and material factors, in particular that of 𝑟/𝑤 on K/L and of 𝜋𝑍/𝜋𝑋 on 𝑀/𝑁, within a dynamic general equilibrium framework. As will be shown 

below, in such a context, the “relative price effect” and the “market size effect” will 

disappear, while the return to scale parameters will still affect the steady state growth 

path. 

3. The Steady State 

When the goods market and the scientists market are in equilibrium and 

households maximize their utility, the economy arrives at a steady-state growth 

equilibrium in which each endogenous variable grows at a constant rate. The 

following proposition shows that the model has a unique steady-state growth 

equilibrium. 

Proposition 4: An economy characterized by equations (14) - (20) possesses a 

unique steady-state growth path. 

Proof: See Appendix E. 

While Proposition 1 assumes that the steady-state equilibrium of the growth 

model exists, Proposition 4 shows that in the specific model it is in fact the case. 

Moreover, the steady-state equilibrium is unique. 

 
15  However, when 𝜀 > 1 , favoring innovation in the capital-intensive intermediate factor will 

cause M/N to increase. Equation (22) then shows that as a result 𝜋𝑍/𝜋𝑋  will decrease, 

discouraging further inverstment into innovations in the capital-intensive sector. Therefore, the 

relative price and market size turn out to be irrelevant in the long-run. 
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The previous section proves that the factor supply elasticities determine the 

direction of technological progress, but it does not provide the determinants of these 

elasticities. Here this lacuna can be filled. 

Corollary 5: In the specific growth model, the factor supply elasticities are 

given by:  

{ 
 𝜀𝐾 = α𝐾 + 𝑔𝑞/𝑔(1 − 𝛼𝐾) − 𝑔𝑞/𝑔 𝜀𝐿 = 𝛼𝐿1 − 𝛼𝐿                                                                      (23) 

where g denotes the endogenously determined economy’s growth rate. 
Proof: See Appendix F. 

Equation (23) shows that the factor supply elasticities are determined by  𝛼𝐾 

and 𝛼𝐿 reflecting the investment adjustment costs. The labor supply elasticity depends 

only on 𝛼𝐿 , whereas the capital supply elasticity is determined by 𝛼𝐾 , the rate of 

investment-specific technological progress 𝑔𝑞, and all other parameters of the model 

through their impact on g. However, if there is no investment-specific technological 

progress, the capital supply elasticity is also determined only by 𝛼𝐾.  

By corollary 5, if 0 ≤ 𝛼𝐿 ≤ 1, the range of the labor supply elasticity is 0 ≤𝜀𝐿 ≤∞. If 0 ≤ 𝛼𝐾 ≤ 1 − 𝑔𝑞𝑔 , the range of the capital supply elasticity is 0 ≤ 𝑔𝑞𝑔−𝑔𝑞 ≤𝜀𝐾 ≤∞. It is worth noting that if 𝛼𝐾 = 1 − 𝑔𝑞𝑔 , that is, the adjustment cost just offsets 

the investment-specific technological progress, capital supply will be infinitely elastic 

with 𝜀𝐾 =∞. Hence, under a constant returns to scale production function, Uzawa’s 

steady-state theorem still holds and technical progress of the final good production is 

still purely labor augmenting, despite the presence of investment-specific 

technological progress. However, if 𝛼𝐾 > 1 − 𝑔𝑞𝑔 , then the supply elasticity of capital 

will be negative, that is,  𝜀𝐾 < 0 . In other words, the capital supply curve is 

downwards sloping.  

Finally, substituting equations (23) into equation (12), we obtain: 𝐷𝑇𝑃 = (1 − 𝜙𝛼𝐾) − 𝜙𝑔𝑞/𝑔(1 − 𝜑𝛼𝐿)                                                      (24) 
Equation (24) provides the determinants of the direction of technological 

progress in the specific growth model. Absent investment-specific technological 
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progress, i.e. 𝑔𝑞 = 0, it is reduced to 𝐷𝑇𝑃 = 1−𝜙𝛼𝐾1−𝜑𝛼𝐿 . When the returns to scale are 

constant, i.e. 𝜙 = 𝜑 = 1 , then 𝐷𝑇𝑃 = 1−𝛼𝐾1−𝛼𝐿 . It shows that the direction of 

technological progress depends on the parameters reflecting the size of the investment 

adjustment cost, and technological progress tends to the factor with higher adjustment 

cost. Because equation (23) shows that a greater adjustment cost generates a smaller 

factor supply elasticity, there must be faster technological progress to maintain the 

balanced growth of the two effective factors. When there is no investment adjustment 

cost, i.e 𝛼𝐾 = 𝛼𝐿 = 1 , then 𝐷𝑇𝑃 = 1−𝜙1−𝜑 . This shows that the direction of 

technological progress depends on the returns to scale parameters ϕ and φ, and tends 

to the smaller one. This obtains because steady-state growth requires the growth rate 

of the effective factors (BK𝜙  and 𝐴L𝜑 ) to be balanced. Accordingly, since at the 

steady state K and L grow at the same rate when 𝛼𝐾 = 𝛼𝐿 = 1  and 𝑔𝑞 = 0 , 

technological progress must be biased towards the factor with the smaller exponent.  

Furthermore, the crucial role equation (24) plays in exposing the factors that 

determine the direction of technological progress can be exemplified by confronting it 

with results obtained by Acemoglu (2002, 2003). Specifically, in both papers the 

returns to scale of the production function are constant (i.e. 𝜙 = 𝜑 = 1), and the size 

of the factor supply elasticities are explicitly or implicitly set, thereby fixing the 

direction of the steady-state technological progress. Acemoglu (2002) explicitly 

assumes that the two material factors are inelastically supplied and does not consider 

investment-specific technological progress, that is, 𝛼𝐾 = 𝛼𝐿 = 𝑔𝑞 = 0, yielding by 

equation (24) 𝐷𝑇𝑃 = 1  (i.e. Hicks neutral in steady-state). Consequently, while 

attempting to expose the determinants of the direction of technological progress, 

Acemoglu (2002) in fact provides only the determinants of the relative technological 

level (DT=B/A)16. Acemoglu (2003) tries to address the puzzle of Uzawa's theorem 

using the framework of Acemoglu (2002), but only implicitly replaces 𝛼𝐾 = 0 with 𝛼𝐾 = 1 . Consequently, equation (24) implies 𝐷𝑇𝑃 = 0 . Accordingly, while the 

steady-state technological progress is purely labor-augmenting endogenously 

determined in Acemoglu (2003), the fact that setting 𝛼𝐾 = 1  implies an infinite 

capital supply elasticity is not exposed. Consequently, the model fails to provide a 

satisfactory explanation for the Uzawa theorem puzzle. In contrast, the relative price 

and relative market size do not play a role in equation (24). Accordingly, these factors 

have no impact on the direction of technological progress in the steady states of the 

 
16  Moreover, the result is only valid when technological progress is Hicks neutral. 

Otherwise, the relative technological level (DT) will be a function of time, continuously rising or 

falling.  
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Acemoglu (2002, 2003) models. 

Notice that by applying 𝐴 ≡ 𝑁(1−𝜑𝛽)/𝛽 and 𝐵 ≡ 𝑀(1−𝜙𝛽)/𝛽 to equations (E17) 

of Appendix E we get: 

{(�̇�/𝐵)∗ = (1 − 𝜙𝛼𝐾)𝑔 − 𝜙𝑔𝑞(�̇�/𝐴)∗ = (1 − 𝜑𝛼𝐿)𝑔                                                           (25) 
Accordingly, equation (24) can also be obtained by substituting equations (25) 

into definition (11) of the DTP. It is in this sense that equation (24) confirms that 

Proposition 1 holds in the specific growth model. Moreover, equation (25) shows that, 

when (1 − 𝜙𝛼𝐾)𝑔 − 𝜙𝑔𝑞 > 0 , then there can be both capital-augmenting and 

investment-specific technological progress in steady state. Absent investment-specific 

technological progress, that is when 𝑔𝑞 = 0 , there can be capital-augmenting 

technological progress as long as 𝜙𝛼𝐾 < 1.17  

VI．Applications  

As shown above, the elasticities of the factor supplies and the returns to scale of 

the production function are the key determinants of the direction of technological 

progress. As argued above, these features have been ignored by the existing literature, 

leaving some important questions of economic growth open. Below we use the 

findings of the current paper to give our answers to these questions. 

1. The puzzle of Uzawa’s (1961) steady-state theorem 

Acemoglu (2009, pp.59) has already questioned why it is that all forms of 

technological progress seem equally plausible ex ante, but, in accordance with the 

Uzawa theorem, only purely labor-augmenting technological progress is compatible 

with steady-state growth? Schlicht (2006) argues that the theorem looks like an 

extremely restrictive, and, consequently, extremely decisive requirement, making 

steady-state growth highly singular and therefore highly improbable. Aghion and 

Howitt (1998) argue that there is no good reason to think that technological change 

takes this form, it just leads to tractable steady-state results. Therefore, Jones and 

Scrimgeour (2008) call the entire issue “a puzzle”.  

We argue that the problem of Uzawa's theorem is that it does not clearly identify 

what premise of the neoclassical model implies that technological progress must be 

purely labor-augmenting, a feature that is therefore mistakenly regarded as a 

requirement for the existence of steady-state growth. Proposition 1 indicates that 

steady-state growth does not restrict the direction of technological progress per-se, but 

 
17 Irmen (2013) discussed the adjustment costs case, namely, 𝜙 = 1 but with 𝛼𝐾 < 1, while 

Casey and Horii (2019) analyzed the diminishing returns to scale case, that is, 𝛼𝐾 = 1, but with 𝜙 < 1. 
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the returns to scale of the production function and the relative size of the factor supply 

elasticities do. According to Table 1, the necessary and sufficient condition for the 

steady-state technological progress to be purely labor-augmenting is that the capital 

supply elasticity be infinite while that of labor finite, i.e. (𝜀𝐾 = ∞, 𝜀𝐿 < ∞). This 

configuration turns out to emerge from the specific assumptions of the neoclassical 

growth model. Its capital accumulation process implies the infinite capital supply 

elasticity, while the exogenous labor growth implies finite elasticity for that factor. 

Corollary 2 then shows that as long as the elasticity of the capital supply is finite or 

the production function is characterized by diminishing returns to scale, technological 

progress in steady state will not be purely labor-augmenting. Therefore, exposing the 

implicit underlying assumptions which make the neoclassical growth model require 

steady-state technological progress to be purely labor-augmenting resolves the puzzle 

of the Uzawa theorem. In particular, there is no restriction on the steady-state 

direction of technological progress in the neoclassical growth model provided these 

assumptions are appropriately reset. 

Some authors (Sato et al., 1999, 2000; Irmen, 2013) have already modified the 

capital accumulation process, introduced a production function with diminishing 

returns to scale for capital and labor (Casey and Horii, 2019), or modified both 

(Grossman et al., 2017) to obtain steady-state growth with capital-augmenting 

technological progress. However, none of these authors has pointed out that the 

infinite capital supply elasticity and the constant returns to scale of the production 

function are the premises leading to the Uzawa theorem. Acemoglu (2003) and Jones 

and Scrimgeour (2008) correctly noted that it is the asymmetry between capital and 

labor in the neoclassical growth model that causes technological progress to be more 

labor-augmenting in the steady-state. That asymmetry stems from the different 

accumulation processes; capital is accumulated in terms of units of the output good 

while labor is not. However, these authors did not further connect this asymmetry to 

the supply elasticities of capital and labor. They also failed to note that capital supply 

must be infinitely elastic for the steady-state technological progress to be purely 

labor-augmenting. Irmen (2018) correctly recognized that the premise of Uzawa’s 
theorem includes also the CRS production function, but he failed to point out, in 

addition, the condition on the capital supply elasticity.  

2. Why is modern economic growth characterized by the Kaldor facts? 

Kaldor's (1961) stylized facts characterize principal features of modern 

economic growth, and have been recently verified by Jones (2016). Why does modern 

economic growth display these characteristics? This is the basic question that growth 

theory must answer. 

The neoclassical growth model yields steady-state growth which is consistent 
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with the Kaldor facts by assuming that technological progress is purely labor-

augmenting. Yet, it has not been able to explain why technological progress takes this 

form. Again, Table 1 lays out the aforementioned conditions on structural parameters 

that lead to the result. It may be that these conditions are basically in line with the 

historical circumstances that enabled Western Europe to start the process of modern 

economic growth. Actually, for quite a long time after the industrial revolution, only 

few Western European countries entered the phase of capital-based industrialization. 

The resources needed to produce capital and accumulate it were drawn from the entire 

world, making the capital supply elasticity quite large. In addition, due to the 

demographic change, the higher per capita income no longer increased but rather 

reduced the birth rate. The elasticity of the labor supply became finite. 

3. Can investment-specific technological progress and purely labor 

augmenting technological progress be compatible in steady state? 

Although purely labor-augmenting technological progress can explain the 

Kaldor facts, empirical data also find another important fact in modern economic 

growth. In particular, the relative price of capital equipment, adjusted for quality, has 

been falling steadily for decades, as shown in figure 2 above (Grossman et al., 2017; 

Jones, 2016; Gordon, 1990; Greenwood et al., 1997). This indicates the presence of 

investment-specific technological progress. Unless the production function is Cobb-

Douglas, with such technological progress the steady-state growth path of existing 

neoclassical growth models will either no longer be purely labor-augmenting or even 

fail to exist. This poses a new difficult problem for the neoclassical growth model.  

At present, there are two solutions for the problem in the literature: one is to 

argue that the production function is indeed Cobb-Douglas, at least in the steady state 

(Jones, 2005; León-Ledesma and Satchi, 2018); the other is to introduce capital-

augmenting technological progress into the production function (Grossman et al., 

2017; Casey and Horii, 2019). The empirical evidence cited in the introduction, 

showing that the substitution elasticity of capital and labor is not unitary, indicates 

that the Cobb-Douglas production function specification may be empirically invalid. 

While the steady-state equilibrium can be obtained by introducing capital-augmenting 

technological progress, the capital/output ratio will continue to decline in steady-state, 

which is inconsistent with the Kaldor facts. 

We have shown above in section V, that with a constant return to scale 

production function, (i.e., 𝜙 = 𝜑 = 1) , both investment-specific and purely labor-

augmenting technological progress can concurrently be present at the steady state, 

provided the investment adjustment costs increase at a rate that just offsets the 

investment-specific technological progress, (that is, 𝛼𝐾 = 1 − 𝑔𝑞𝑔 ). The CES 
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specification of the production function implies that the elasticity of factor 

substitution is not required to be 1; there is a steady state in the model, which is 

consistent with the long-term stability of factor income shares; at the same time, 

technological progress in the final good production is purely labor-augmenting which 

is consistent with the Kaldor facts. Of course, whether this resolution of the 

neoclassical model’s conflict with the empirical findings is more plausible than those 

suggested by the existing literature (Jones, 2005; León-Ledesma and Satchi, 2018; 

Grossman et al., 2017; Casey and Horii, 2019) is a matter of further empirical study. 

4. Why did technological progress not increase per capita income before the 

industrial revolution? 

According to Ashraf and Galor (2011), before the industrial revolution 

technological progress only increased land productivity and population density, and 

had little impact on labor productivity. According to corollary 3, if the production 

function has constant returns to scale, as long as labor has infinite supply elasticity, 

there can be no labor-augmenting technological progress in the steady-state. The 

growth model of Section V also shows that when the 𝛼𝐿 = 1 , the labor supply 

elasticity is infinite and per capita income remains unchanged in the steady state18. In 

that steady state, technological progress and land growth can only lead to population 

growth and increased population density, which is consistent with the empirical study 

of Ashraf and Galor (2011). Therefore, the stagnation of technology and the shortage 

of land are not the crucial causes of the Malthusian trap. Rather, it is the infinite labor 

supply elasticity that is fundamental to the result. 

5. What led to the industrial revolution? 

While this paper does not build a Unified Growth model in the spirit of Galor 

(2011), it may shed some light on the transformation from the Malthusian trap to 

modern growth. From the perspective of the direction of technological progress, 

industrial revolution amounts to a transition from a path that completely excludes 

labor augmentation to one that includes it, that is, from 
Ȧ(t)A(t) = 0 to 

Ȧ(t)A(t) > 0. From 

corollary 1 or table 1, we can see that the fundamental reason for such a transition is 

that the labor supply elasticity changes from infinite to finite (assuming that the 

production function has constant returns to scale). While this paper provides no 

mechanism that may cause such an elasticity change, this is one of the core contents 

of Galor’s (2011) Unified Growth Model. 

 
18  Even if the production function has diminishing returns to scale, there is labor-

augmenting technological progress in the steady state but per capita income is still constant. 
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Ⅶ Concluding Remarks 

For the understanding of some important issues of economic growth, the 

direction of technological progress is at least as important as its rate, or even more 

important. As it turns out, the elasticities of factor supplies and the characteristics of 

the returns to scale of the production function are the key variables associated with the 

economic environment. Indeed, the core conclusion of this paper is that these are the 

factors that affect the direction of steady-state technological progress. If production is 

characterized by constant returns to scale, the direction of technological progress 

depends solely on the relative elasticities of the factor supplies, and tends to the factor 

with relatively smaller supply elasticity. This conclusion is obtained directly from a 

generalized production function and the definitions of steady-state growth, direction 

of technological progress and factor supply elasticities, and has nothing to do with the 

specific forms of the production function and the factor accumulation processes.  

These features also constrain the environment of profit-maximizing innovators 

when they choose the direction of technological progress. This is demonstrated 

through a specific micro-founded growth model that extends the Acemoglu (2002) 

model, and verifies the core conclusion of this paper. The findings presented above 

can be used to provide new explanations to a series of important problems in 

economic growth, such as the puzzle of the Uzawa theorem, the Kaldor facts and the 

Malthusian trap, and issues related to the industrial revolution. 

The main innovation of this paper is driven by the introduction of a generalized 

production function and generalized factor accumulation processes. The returns to 

scale of the generalized production function can be constant or decreasing while the 

introduction of investment adjustment costs allows the factor supply elasticities in the 

generalized factor accumulation processes to range from zero to infinity. These 

features allow this paper to expose the crucial role the returns to scale and the supply 

elasticities play in determining the direction of technological progress. 

While theoretically the returns to scale of the production function may be 

constant or diminishing, and the factor supply elasticities may range from zero to 

infinity, their actual values are subject to an empirical investigation. In view of their 

important impact on the direction of technological progress, estimating these 

parameters should be an important task for future empirical research. This is 

particularly true where the investment adjustment costs are concerned because of their 

impact on factor supply elasticities and thereby on the direction of technological 

progress. Moreover, the presence of investment adjustment costs affects the standard 

perpetual inventory method used to calculate the capital stock, as the contribution of 

current investment is no longer linear. Consequently, the commonly used assessments 

of the capital stock are likely to be systematically upwards biased. 
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Appendix A：The derivation process of equation (12) 

Dividing the denominator of equation (11) by the two sides of equation (10) 

yields: 

𝐷𝑇𝑃 = Ḃ(t)/B(t)Ȧ(t)/𝐴(𝑡) = Ḃ(t)B(t) / [Ḃ(t)B(t) + 𝜙 K̇(t)K(t)]Ȧ(t)𝐴(𝑡) / [Ȧ(t)𝐴(𝑡) + 𝜑 L̇(t)𝐿(𝑡)] =
1 + 𝜑 L̇(t)𝐿(𝑡) / Ȧ(t)𝐴(𝑡)1 + 𝜙 K̇(t)K(t) / Ḃ(t)B(t)      (A1) 

The growth rates of 𝑟(𝑡) and 𝑤(𝑡) in equations (3) are obtained by taking 𝑘(𝑡) as 

a constant, yielding: 

{  
  �̇�(t)𝑤(𝑡) = Ȧ(t)𝐴(𝑡) + (𝜑 − 1) L̇(t)𝐿(𝑡)�̇�(t)𝑟(𝑡) = Ḃ(t)B(t) + (𝜙 − 1) K̇(t)K(t)                                                     (𝐴2) 

Substituting equations (A2) into equations (4) then yields: 

{   
   𝜀𝐿 = L̇(t)/𝐿(𝑡)Ȧ(t)𝐴(𝑡) + (𝜑 − 1) L̇(t)𝐿(𝑡)𝜀𝐾 = K̇(t)/𝐾(𝑡)Ḃ(t)B(t) + (𝜙 − 1) K̇(t)𝐾(𝑡)

                                                        (𝐴3) 
From equations (A3) we obtain: 

{  
  L̇(t)𝐿(𝑡) / Ȧ(t)𝐴(𝑡) = 𝜀𝐿1 + (1 − 𝜑)𝜀𝐿K̇(t)K(t) / Ḃ(t)B(t) = 𝜀𝐾1 + (1 − 𝜙)𝜀𝐾                                                    (𝐴4) 

Substituting equations (A4) into equation (A1) and rearranging implies equation 

(12): 𝐷𝑇𝑃 = (1 + 𝜀𝐿)/[1 + (1 − 𝜑)𝜀𝐿](1 + 𝜀𝐾)/[1 + (1 − 𝜙)𝜀𝐾] 
 

Appendix B：Proof of Corollary 2 (Uzawa’s Steady-State Theorem) 

First, “If” direction. Let  𝜀𝐾 = ∞ and 𝜙 = 1. Then 
Ḃ(t)B(t) = 0 in a steady-state 

equilibrium. 

Proof:  

According to proposition 1,  𝐷𝑇𝑃 = (1 + 𝜀𝐿)/[1 + (1 − 𝜑)𝜀𝐿](1 + 𝜀𝐾)/[1 + (1 − 𝜙)𝜀𝐾] 
If 0 < 𝜑 ≤ 1 and 𝜀𝐿 < ∞, then  
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𝐷𝑇𝑃 = (1 + 𝜀𝐿)/[1 + (1 − 𝜑)𝜀𝐿]∞ = 0 

If 𝜀𝐿 = ∞ and 0 < 𝜑 < 1, then by l’hospital’s rule, (1 + 𝜀𝐿)/[1 + (1 − 𝜑)𝜀𝐿] →11−𝜑 < ∞. Hence, in this case,  

𝐷𝑇𝑃 = 1/(1 − 𝜑)∞ = 0 

If 𝜀𝐿 = ∞ and 𝜑 = 1, we obtain: 𝐷𝑇𝑃 = 1 + 𝜀𝐿1 + 𝜀𝐾 = ∞∞ ≠ 0 

From (A3) we also know that with 𝜀𝐾 = ∞ and 𝜙 = 1, 𝜀𝐾 = K̇(t)/𝐾(𝑡)Ḃ(t)B(t) + (𝜙 − 1) K̇(t)𝐾(𝑡) = K̇(t)/𝐾(𝑡)Ḃ(t)/B(t) = ∞ 

However, K̇(t)/𝐾(𝑡) must be finite. Hence in this case too 
Ḃ(t)B(t) = 0. 

In sum, when 𝜀𝐾 = ∞  and 𝜙 = 1 , we obtain that 
Ḃ(t)B(t) = 0  in a steady-state 

equilibrium. 

 

Second, “Only If” direction. Let 
Ḃ(t)B(t) = 0. Then 𝜀𝐾 = ∞ and 𝜙 = 1 in a steady-

state equilibrium. 

Proof: 

If 
Ḃ(t)B(t) = 0, then 𝐷𝑇𝑃 = Ḃ(t)/B(t)Ȧ(t)/𝐴(𝑡) = (1+𝜀𝐿)/[1+(1−𝜑)𝜀𝐿](1+𝜀𝐾)/[1+(1−𝜙)𝜀𝐾] = 0  

Since 𝜀𝐿 ≥ 0, and 0 < 𝜑 ≤ 1, the numerator is strictly positive. Therefore, it 

must be the case that 1 + 𝜀𝐾[1 + (1 − 𝜙)𝜀𝐾] = ∞ 

Clearly, if 𝜙 < 1 and 0 ≤ 𝜀𝐾 < ∞, then  1 + 𝜀𝐾[1 + (1 − 𝜙)𝜀𝐾] < ∞ 

If 𝜙 < 1 and 𝜀𝐾 = ∞, then by l’hospital’s rule  lim𝜀𝐾=∞ 1 + 𝜀𝐾[1 + (1 − 𝜙)𝜀𝐾] = 11 − 𝜙 < ∞ 

If 𝜙 = 1 and 𝜀𝐾 < ∞, then  1 + 𝜀𝐾[1 + (1 − 𝜙)𝜀𝐾] = 1 + 𝜀𝐾 < ∞ 

Therefore, 
Ḃ(t)B(t) = 0 is obtained only if 𝜙 = 1 and 𝜀𝐾 = ∞.  
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In conclusion, 𝜀𝐾 = ∞ and 𝜙 = 1  are necessary and sufficient conditions for Ḃ(t)B(t) = 0 in steady state equilibrium. 

 

Appendix C: Proof of Proposition 2. 

Letting the final good serve as numeraire, the representative competitive final 

good producer faces the input prices 𝑝L and 𝑝K and selects the respective 𝑌𝐾 and 𝑌𝐿  so 

as to maximize 𝜋𝑌 = 𝑌 − 𝑝L𝑌𝐿 − 𝑝K𝑌𝐾                                                                   (𝐶1) 
subject to the production function (14), yielding the demand functions:  {𝑝𝐾 = (1 − 𝛾)[𝛾 + (1 − 𝛾)(𝑌𝐾/𝑌𝐿)(𝜀−1)/𝜀]1/(𝜀−1)(𝑌𝐾/𝑌𝐿)−1/𝜀𝑝𝐿 = 𝛾[𝛾 + (1 − 𝛾)(𝑌𝐾/𝑌𝐿)(𝜀−1)/𝜀]1/(𝜀−1)     .                                      (𝐶2) 

The reperesentative producers of YK and YL maximize their profits by choosing 

Z(j) and X(i), given the intermediate input prices 𝑝Z(𝑗) and 𝑝X(𝑖): 
{  
  𝜋𝐾 = 𝑝𝐾𝑌𝐾 −∫ 𝑝𝑍(𝑗)𝑍(𝑗)𝑑𝑗𝑀

0𝜋𝐿 = 𝑝𝐿𝑌𝐿 −∫ 𝑝𝑋(𝑖)𝑋(𝑖)𝑑𝑖𝑁
0

                                                              (𝐶3) 
subject to their respective production functions (15). This generates the demand 

functions 

{𝑍(𝑗) = (𝑌𝐾) 1−𝛽1−𝜙𝛽(𝜙𝑝𝐾/𝑝𝑍(𝑗))1/(1−𝜙𝛽)𝑋(𝑖) = (𝑌𝐿) 1−𝛽1−𝜑𝛽(𝜑𝑝𝐿/𝑝𝑋(𝑖))1/(1−𝜑𝛽)                                               (𝐶4) 
The intermediate input producers, who hold the exclusive right to produce their 

particular type of input, face the prices of the primary inputs and choose, respectively, (𝑝Z(𝑗), 𝐾(𝑗)) and (𝑝𝑋(𝑖), 𝐿(𝑖)) to maximize {𝜋𝑍(𝑗) = 𝑝Z(𝑗)𝑍(𝑗) − 𝑟𝐾(𝑗)𝜋𝑋(𝑖) = 𝑝X(𝑖)𝑋(𝑖) − 𝑤𝐿(𝑖)                                                                  (𝐶5) 
subject to their technologies (16) and the demand functions (C4). 

From the maximization (C5) we obtain: { 𝑝𝑍(𝑗) = 𝑝𝑍 = 𝑟/𝜙𝛽𝑝𝑋(𝑖) = 𝑝𝑋 = 𝑤/𝜑𝛽                                                                               (𝐶6) 
which imply that all intermediate inputs have the same mark-up over marginal cost. 

Substituting equations (C6) into (C4), we find that all capital-intensive and all labor-

intensive intermediate goods are produced in equal (respective) quantities.  
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{𝑍(𝑗) = (𝑌𝐾) 1−𝛽1−𝜙𝛽(𝛽𝜙2𝑝𝐾/𝑟)1/(1−𝜙𝛽)𝑋(𝑖) = (𝑌𝐿) 1−𝛽1−𝜑𝛽(𝛽𝜑2𝑝𝐿/𝑤)1/(1−𝜑𝛽)                                                 (𝐶7) 
By the production functions of the intermediate inputs (16), all monopolists 

have the same respective demand for labor and capital. 

The material factor market clearing conditions imply: {𝑍(𝑗) = 𝐾/𝑀𝑋(𝑖) = 𝐿/𝑁                                                                                               (𝐶8) 
Substituting equations (C8) into (15), we obtain the equilibrium quantities of the 

labor-intensive and capital-intensive inputs as equations (C9): 

{  
  𝑌𝐿 = [∫ 𝑋(𝑖)𝜑𝛽𝑑𝑖𝑁

0 ]1/𝛽 = 𝑁(1−𝜑𝛽)/𝛽𝐿𝜑
𝑌𝐾 = [∫ 𝑍(𝑗)𝜙𝛽𝑑𝑗𝑀

0 ]1/𝛽 = 𝑀(1−𝜙𝛽)/𝛽𝐾𝜙                                         (C9) 
Substituting equations (C9) into equation (14), we obtain equations (21) as 

follows: 𝑌 = [𝛾(𝑁(1−𝜑𝛽)/𝛽𝐿𝜑)(𝜀−1)/𝜀 + (1 − 𝛾)(𝑀(1−𝜙𝛽)/𝛽𝐾𝜙)(𝜀−1)/𝜀]𝜀/(𝜀−1) 
 

Appendix D: Proof of Proposition 3. 

Letting 𝑘 ≡ 𝐵𝐾𝜙𝐴𝐿𝜑 = 𝑀(1−𝜙𝛽)/𝛽𝐾𝜙𝑁(1−𝜑𝛽)/𝛽𝐿𝜑 , the factor-intensive production function 

becomes: 𝑓(𝑘) ≡ 𝑌/𝐴𝐿𝜑 = [𝛾 + (1 − 𝛾)𝑘(𝜀−1)/𝜀]𝜀/(𝜀−1)                              (D1) 
Using equation (D1), we transform the market prices of the capital-intensive and 

labor-intensive inputs (C2) into the following forms: 

{ 
 𝑝𝐾 = 𝜕𝑌𝜕𝑌𝐾 = 𝑓′(𝑘)               𝑝𝐿 = 𝜕𝑌𝜕𝑌𝐿 = 𝑓(𝑘) − 𝑘𝑓′(𝑘)                                                                  (𝐷2) 

Substituting (C8) and (C9) into (C7), we obtain 

{𝐾/𝑀 = (𝑀(1−𝜙𝛽)/𝛽𝐾𝜙) 1−𝛽1−𝜙𝛽(𝛽𝜙2𝑝𝐾/𝑟)1/(1−𝜙𝛽)𝐿/𝑁 = (𝑁(1−𝜑𝛽)/𝛽𝐿𝜑) 1−𝛽1−𝜑𝛽(𝛽𝜑2𝑝𝐿/𝑤)1/(1−𝜑𝛽)                           (𝐷3) 
Substituting (D2) into (D3) and rearranging, we obtain the market prices of 

capital and labor: 
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{𝑟 = 𝛽𝜙2𝐾𝜙−1𝑀(1−𝜙𝛽)/𝛽𝑓′(𝑘)                                    𝑤 = 𝛽𝜑2𝐿𝜑−1𝑁(1−𝜑𝛽)/𝛽[𝑓(𝑘) − 𝑘𝑓′(𝑘)]                                  (𝐷4) 
Substituting equation (16) and (C6) into (C5), we obtain: { 𝜋𝑍(𝑗) = (𝑟/𝜙𝛽 − 𝑟)𝑍(𝑗)𝜋𝑋(𝑖) = (𝑤/𝜑𝛽 − 𝑤)𝑋(𝑖)                                                            (𝐷5) 
Substituting (C8) into (D5) yield: {𝜋𝑍 = (𝑟/𝜙𝛽 − 𝑟)𝐾/𝑀                           𝜋𝑋 = (𝑤/𝛽𝜑 − 𝑤)𝐿/𝑁                                                                 (𝐷6) 
The monopoly profit of each producer of an intermediate product is obtained by 

substitutitng (D4) into (D6): {𝜋𝑍 = (1 − 𝜙𝛽)𝜙𝑀(1−𝜙𝛽−𝛽)/𝛽𝐾𝜙𝑓′(𝑘)                          𝜋𝑋 = (1 − 𝜑𝛽)𝜑𝑁(1−𝜑𝛽−𝛽)/𝛽𝐿𝜑[𝑓(𝑘) − 𝑘𝑓′(𝑘)]                (𝐷7) 
From equations (D7) and (D4) we finally obtain equation (22): 𝜋𝑍𝜋𝑋 = (1 − 𝜙𝛽)/𝜙(1 − 𝜑𝛽)/𝜑 . 𝑟𝑤 . 𝐾𝐿 . 𝑁𝑀 

 

Appendix E：Proof of Proposition 4. 

First, consider the market for scientists which determines the supply of 

innovations. Free-entry into the R&D sector implies that the marginal innovation 

value of scientists should be equal across technologies. Using the innovation 

possibilities frontier function (20), this implies 𝑑𝑁𝑁𝜋𝑋 = 𝑑𝑀𝑀𝜋𝑍                                                                (𝐸1) 
From the innovation profit equation (D7) we obtain 𝑑𝑁𝑑𝑀 (1 − 𝜑𝛽)𝜑(1 − 𝜙𝛽)𝜙 = 𝑘𝑓′(𝑘)𝑓(𝑘) − 𝑘𝑓′(𝑘)                                       (E2) 
Applying equation (D1) in (E2) yields 

𝑘∗ = [ 𝛾𝑑𝑁(1 − 𝛾)𝑑𝑀 (1 − 𝜑𝛽)𝜑(1 − 𝜙𝛽)𝜙] 𝜀𝜀−1                                        (E3) 
Equation (E3) shows that market clearing implies that k* is a constant, 

determined solely by the parameters 𝛾, 𝑑𝑀, 𝑑𝑁 , 𝛽, 𝜑, 𝜙 and 𝜀. 

Second, we solve the Euler equations. 

Let the Hamiltonian associated with the household optimization problem be: 
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𝐻 = 𝑈(𝐶)𝑒−𝜌𝑡 + 𝜆𝐾(𝑞(𝑡)𝐼𝐾𝛼𝐾 − 𝛿𝐾𝐾) + 𝜆𝐿(𝑏𝐿𝐼𝐿𝛼𝐿 − 𝛿𝐿𝐿) +𝜇[𝑤𝐿 + 𝑟𝐾 + 𝑤𝑆𝑆 − 𝐶 − (𝐼𝐾 + 𝐼𝐿)]                                             (𝐸4) 
The first-order conditions are: 

{𝐶−𝜃𝑒−𝜌𝑡 = 𝜆𝐾𝛼𝐾𝑞(𝑡)𝐼𝐾𝛼𝐾−1   𝐶−𝜃𝑒−𝜌𝑡 = 𝜆𝐿𝛼𝐿𝑏𝐿𝐼𝐿𝛼𝐿−1      𝐶−𝜃𝑒−𝜌𝑡 = 𝜇                                                                                         (𝐸5) 
Taking log-derivatives of both sides of (E5) over time, we obtain 

{   
   −𝜃 �̇�𝐶 − 𝜌 = �̇�𝐾𝜆𝐾 + (𝛼𝐾 − 1) 𝐼�̇�𝐼𝐾 + 𝑔𝑞−𝜃 �̇�𝐶 − 𝜌 = �̇�𝐿𝜆𝐿 + (𝛼𝐿 − 1) 𝐼�̇�𝐼𝐿           −𝜃 �̇�𝐶 − 𝜌 = �̇�𝜇                                        

                                                (𝐸6) 
The motion equations of λK and λL are: {λ̇𝐾 = −𝜕𝐻/𝜕𝐾 = 𝜆𝐾δK − μr    λ̇𝐿 = −𝜕𝐻/𝜕𝐿 = 𝜆𝐿δL − μw                                                           (𝐸7) 
Based on (E5) and (E7), we obtain {λ̇𝐾/𝜆𝐾 = δK − r𝛼𝐾𝑞(𝑡)𝐼𝐾𝛼𝐾−1λ̇𝐿/𝜆𝐿 = δL −w𝛼𝐿𝑏𝐿𝐼𝐿𝛼𝐿−1                                                                (𝐸8) 
Using (E8) in (E6), we obtain the Euler equations (E9).  

{  
  �̇�𝐶 = 1𝜃 {𝑟𝛼𝐾𝑞(𝑡)𝐼𝐾𝛼𝐾−1 − (𝛼𝐾 − 1) 𝐼�̇�𝐼𝐾 − 𝑔𝑞 − 𝜌 − 𝛿𝐾}�̇�𝐶 = 1𝜃 {𝑤𝛼𝐿𝑏𝐿𝐼𝐿𝛼𝐿−1 − (𝛼𝐿 − 1) 𝐼�̇�𝐼𝐿 − 𝜌 − 𝛿𝐿}                               (𝐸9) 

Third, we solve for the steady state equilibrium. 

We first conjecture that there exists a steady-state growth path (hereafter SSGP) 

then verify it indeed exists by explicitly solving for it. 

From the budget constraint (19) and the definition of an SSGP, we obtain Ẏ𝑌 = İ𝐼 = 𝐼�̇�𝐼𝐿 = 𝐼�̇�𝐼𝐾 = Ċ𝐶                                                                      (E10) 
Then, according to the primary factor accumulation functions (17), along an 

SSGP the following must hold: 
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{  
  �̇�𝐾 = 𝛼𝐾 𝐼�̇�𝐼𝐾 + �̇�𝑞 = 𝛼𝐾 �̇�𝐶 + �̇�𝑞          �̇�𝐿 = 𝛼𝐿 𝐼�̇�𝐼𝐿 = 𝛼𝐿 �̇�𝐶                                                                          (E11) 

From equation (D1) we obtain: 𝑌 = 𝑁1−𝜑𝛽𝛽 𝐿𝜑𝑓(𝑘) = 𝑀1−𝜙𝛽𝛽 𝐾𝜙𝑓(𝑘)/𝑘                        (E12) 
Since k is constant along the SSGP, from (E12) we get: �̇�𝑌 = 1 − 𝜑𝛽𝛽 �̇�𝑁 + 𝜑 �̇�𝐿 = 1 − 𝜙𝛽𝛽 �̇�𝑀 + 𝜙 �̇�𝐾                                  (𝐸13) 
Equations (E10), (E11), (E13), together with the innovation possibilities frontier 

(20), yield: 

{  
  (1 − 𝜑𝛼𝐿) �̇�C = 1 − 𝜑𝛽𝛽 {dNSN − δ}                       (1 − 𝜙𝛼𝐾) �̇�C = 𝜙 �̇�𝑞 + 1 − 𝜙𝛽𝛽 {dM(S − SN) − δ}                    (E14) 

From (E14) and 𝑆𝑀＋𝑆𝑁＝𝑆, we obtain the allocation of scientists between the 

two kinds of intermediate R&D processes: 

{  
  𝑆𝑁∗ = 𝜒2(𝑑𝑀𝑆 − 𝛿) + 𝜒1𝛿 + 𝛽(1 − 𝜑𝛼𝐿)𝜙𝑔𝑞𝜒1𝑑𝑁 + 𝜒2𝑑𝑀𝑆𝑀∗ = 𝜒1(𝑑𝑁𝑆 − 𝛿) + 𝜒2𝛿 − 𝛽(1 − 𝜑𝛼𝐿)𝜙𝑔𝑞𝜒1𝑑𝑁 + 𝜒2𝑑𝑀                         (E15) 

where 𝜒1 ≡ (1 − 𝜑𝛽)(1 − 𝜙𝛼𝐾) and 𝜒2 ≡ (1 − 𝜙𝛽)(1 − 𝜑𝛼𝐿).  
Combining (E10), (E14) and (E15), we get the growth rates: 

(�̇�𝑌)∗ = (𝐼�̇�𝐼𝐿)∗ = (𝐼�̇�𝐼𝐾)∗ = (�̇�𝐶)∗ = 𝑔                                           (𝐸16) 
where 𝑔 = 1 − 𝜑𝛽𝛽 (1 − 𝜙𝛽)[𝑑𝑀dN𝑆 − (dN + 𝑑𝑀)δ] + 𝜙𝛽dN𝑔𝑞𝜒1𝑑𝑁 + 𝜒2𝑑𝑀  

Substituting (E16) into (E11) and (E13) we obtain: 

{   
   (K̇/K)∗ = α𝐾𝑔 + 𝑔𝑞                                     (L̇/L)∗ = α𝐿𝑔                                                (Ṁ/M)∗ = 𝛽1 − 𝜙𝛽 [(1 − 𝜙𝛼𝐾)g − 𝜙𝑔𝑞](Ṅ/N)∗ = 𝛽1 − 𝜑𝛽 (1 − 𝜑𝛼𝐿)g                  

                                        (E17) 
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Equations (E16) and (E17) confirm that the model has an SSGP19. 

While (E15) shows that there exists also an allocation of scientists which 

supports the SSGP, it remains to be verified that there exists an appropriate allocation 

of income into the competing uses. 

Using equations (D4), the Euler equations (E9) can be written as: 

{  
  �̇�𝐶 = [𝛼𝐾 𝑞(𝑡)𝐼𝐾𝛼𝐾𝐾 𝑌𝐼𝐾𝑀(1−𝜙𝛽)/𝛽𝐾𝜙𝑌 𝛽𝜙2𝑓′(𝑘) − (𝛼𝐾 − 1) 𝐼�̇�𝐼𝐾 − 𝜌 − 𝛿𝐾] /𝜃            �̇�𝐶 = [𝛼𝐿 𝑏𝐿𝐼𝐿𝛼𝐿𝐿 𝑌𝐼𝐿 𝑁(1−𝜑𝛽)/𝛽𝐿𝜑𝑌 𝛽𝜑2[𝑓(𝑘) − 𝑘𝑓′(𝑘)] − (𝛼𝐿 − 1) 𝐼�̇�𝐼𝐿 − 𝜌 − 𝛿𝐿] /𝜃 (E18) 

Let 𝑠𝐾 ≡ 𝐼𝐾/𝑌, 𝑠𝐿 ≡ 𝐼𝐿/𝑌. Substituting equation (15), sK, sL, the definitions of 𝑘 and (D1) into (E18) and rearranging, we get: 

{  
  �̇�𝐶 = [𝛼𝐾 1𝑠𝐾 𝑘𝑓′(𝑘)𝑓(𝑘) 𝛽𝜙2 (�̇�𝐾＋𝛿𝐾) − (𝛼𝐾 − 1) 𝐼�̇�𝐼𝐾 − 𝜌 − 𝛿𝐾] /𝜃            �̇�𝐶 = [𝛼𝐿 1𝑠𝐿 [𝑓(𝑘) − 𝑘𝑓′(𝑘)]𝑓(𝑘) 𝛽𝜑2 (�̇�𝐿＋𝛿𝐿) − (𝛼𝐿 − 1) 𝐼�̇�𝐼𝐿 − 𝜌 − 𝛿𝐿] /𝜃  (E19) 
Substituting (E10) and (E11) into (E19), we obtain 

{  
  �̇�𝐶 = [𝛼𝐾𝛽𝜙2 1𝑠𝐾 𝑘𝑓′(𝑘)𝑓(𝑘) (𝛼𝐾 �̇�𝐶 + 𝑔𝑞＋𝛿𝐾) − (𝛼𝐾 − 1) �̇�𝐶 − 𝜌 − 𝛿𝐾] /𝜃   �̇�𝐶 = [𝛼𝐿𝛽𝜑2 1𝑠𝐿 𝑓(𝑘) − 𝑘𝑓′(𝑘)𝑓(𝑘) (𝛼𝐿 �̇�𝐶＋𝛿𝐿) − (𝛼𝐿 − 1) �̇�𝐶 − 𝜌 − 𝛿𝐿] /𝜃  (E20) 

Rearranging (E20) yields: 

{  
  �̇�C = 𝜌 + δK − (𝑔𝑞 + 𝛿𝐾){𝛼𝐾𝛽𝜙2𝑘𝑓′(𝑘)/[𝑠𝐾𝑓(𝑘)]}𝛽𝛼𝐾2𝜙2𝑘𝑓′(𝑘)/[𝑠𝐾𝑓(𝑘)] + 1 − 𝛼𝐾 − 𝜃     �̇�C = 𝜌 + δL{1 − 𝛽𝜑2𝛼𝐿[𝑓(𝑘) − 𝑘𝑓′(𝑘)]/[𝑠𝐿𝑓(𝑘)]}𝛽𝛼𝐿2𝜑2[𝑓(𝑘) − 𝑘𝑓′(𝑘)]/[𝑠𝐿𝑓(𝑘)] + 1 − 𝛼𝐿 − 𝜃                       (E21) 

Using 𝑘∗ in (E3), we obtain:  

{  
  𝑘𝑓′(𝑘)𝑓(𝑘) = (𝜑 − 𝜑2𝛽)𝑑𝑁(𝜑 − 𝜑2𝛽)𝑑𝑁 + (𝜙 − 𝜙2𝛽)𝑑𝑀               𝑓(𝑘) − 𝑘𝑓′(𝑘)𝑓(𝑘) = (𝜙 − 𝜙2𝛽)𝑑𝑀(𝜑 − 𝜑2𝛽)𝑑𝑁 + (𝜙 − 𝜙2𝛽)𝑑𝑀                             (E22) 

 

19 The transversality conditions are lim𝑡→∞[𝜆𝐾(𝑡)𝐾(𝑡)] = 0 and lim𝑡→∞[𝜆𝐿(𝑡)𝐿(𝑡)] = 0. At this 

stage, we cannot provide a rigorous mathematical discussion on stability. However, at 𝛼𝐾 =1, 𝛼𝐿 = 0,  𝑔𝑔 = 0 and 𝜑 = 𝜙 = 1, our environment degenerates to that of Acemoglu (2003). 

Therefore, by continuity, at least around  that point, by Acemoglu’s argument the steady state is 

stable as long as 𝜀 ≤ 1.  
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Substituting (E16) and (E222) into (E21), we then get: 

{  
  𝑠𝐾∗ = (𝛼𝐾g + 𝑔𝑞 + δK)𝛼𝐾𝛽𝜙2𝜌 + δK − (1 − 𝛼𝐾 − 𝜃)g . 𝜒3𝑑𝑁𝜒3𝑑𝑁 + 𝜒4𝑑𝑀𝑠𝐿∗ = (𝛼𝐿𝑔 + δL)𝛼𝐿𝛽𝜑2𝜌 + δL + (𝜃 + 𝛼𝐿 − 1)𝑔 . 𝜒4𝑑𝑀𝜒3𝑑𝑁 + 𝜒4𝑑𝑀                                  (E23) 

where 𝜒3 ≡ (𝜑 − 𝜑2𝛽) and 𝜒4 ≡ (𝜙 − 𝜙2𝛽). 
Let 𝑠𝐶 ≡ 𝐶/𝑌 so that: 𝑠𝐶 + 𝑠𝐾 + 𝑠𝐿 = 1                                                                       (𝐸24) 
Substituting (E23) into (E24), we obtain that along an SSGP, sC is given by: 𝑠𝐶∗ = 1 − 𝑠𝐾∗ − 𝑠𝐿∗                                                                  (E25) 
Equations (E15), (E23) and (E25) provide the allocation of scientists and 

income needed to obtain the SSGP.  

Fourth, the factor shares. 

The income shares of capital, labor and scientists are obtained respectively 

from (D4), (D7) and (E3) as follows:  𝜎𝐾 = 𝑟𝐾𝑌 = 𝛽𝜙2𝑑𝑁(1 − 𝜑𝛽)𝜑𝑑𝑀(1 − 𝜙𝛽)𝜙 + 𝑑𝑁(1 − 𝜑𝛽)𝜑                               (𝐸29) 
𝜎𝐿 = 𝑤𝐿𝑌 = 𝛽𝜑2𝑑𝑀(1 − 𝜙𝛽)𝜙𝑑𝑀(1 − 𝜙𝛽)𝜙 + 𝑑𝑁(1 − 𝜑𝛽)𝜑                              (𝐸30) 𝜎𝐾 and 𝜎𝐿 represent income share of capital and labor respectively.  𝜎𝑆 = 𝑀𝜋𝑍 + 𝑁𝜋𝑋𝑌 = (1 − 𝜙𝛽)(1 − 𝜑𝛽)(𝜑𝜙𝑑𝑁 + 𝜑𝜙𝑑𝑀)(1 − 𝜙𝛽)𝜙𝑑𝑀 + (1 − 𝜑𝛽)𝜑𝑑𝑁    (𝐸31) 𝜎𝑆 represents income share of scientists which include monopoly profit of two 

kinds of intermediate products. 

Equations E(29), E(30) and E(31) establish that the factor income shares are 

constant in SSGP. 

In addition, notice that total factor income share is given by: 𝜎𝐾 + 𝜎𝐿 + 𝜎𝑆 = 𝜑𝜙[𝑑𝑁(1 − 𝜑𝛽) + 𝑑𝑀(1 − 𝜙𝛽)]𝑑𝑀(1 − 𝜙𝛽)𝜙 + 𝑑𝑁(1 − 𝜑𝛽)𝜑                (𝐸32) 
When 𝜙 < 1 or 𝜑 < 1, the total factor income share is less than 1 and there 

will be net profit for the final product firm. This is because of diminishing returns to 

scale. Otherwise, the total factor income share will equal to 1.  

Finally, notice that the solution process implies that there exists only one 

allocation of scientists and income that is consistent with an SSGP. 
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Appendix F: Proof of Corollary 5 

From equation (D4), we obtain that in steady state: 

{  
  �̇�𝑤 = (𝜑 − 1) �̇�𝐿 + 1 − 𝜑𝛽𝛽 �̇�𝑁�̇�𝑟 = (𝜙 − 1) K̇K + 1 − 𝜙𝛽𝛽 �̇�𝑀                                             (F1) 

Using equations (E17) in (F1) results in:  

{�̇�𝑤 = (1 − 𝛼𝐿)𝑔         �̇�𝑟 = (1 − 𝛼𝐾)𝑔 − 𝑔𝑞                                                          (F2) 
Using (F2) and equations (E17) in the factor elasticities yields equation (23), 

that is:  

{  
  𝜀𝐾 ≡ K̇/𝐾�̇�/𝑟 = α𝐾 + 𝑔𝑞/𝑔(1 − 𝛼𝐾) − 𝑔𝑞/𝑔 𝜀𝐿 ≡ L̇/𝐿�̇�/𝑤 = 𝛼𝐿1 − 𝛼𝐿                    

 


