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Abstract

Colonization opportunities and interstellar trade are not remote possibilities if

feasible habitable worlds are discovered. The Economics here relies heavily on

the Science and the necessary conditions to be inspected when looking for life

on planets beyond our solar system. The physical conditions demand struc-

tural similarity of an extra-solar planet (exoplanet) to Earth, and the necessary

bio-chemical conditions needed to sustain life in the planet. These two aspects

are commonly referred to as earth-similarity and habitability, respectively. We

propose a novel bi-objective optimization framework as a tool to measuring

Earth Similarity Score (CDHS). This is succeeded by investigating possible in-

teractions between Earth-similarity and habitability. The investigation is con-

ducted via two variants of penalized multi-objective particle swarm optimiza-

tion: Speed Constrained Multi-objective PSO (SMPSO) and a novel variant of

Multi-Objective Quantum PSO (MOQPSO). The optimization framework dis-

penses of classical gradient descent/ascent approach (GD/GA) by replacing it

with SMPSO and MOQPSO. The approach to the production relations com-
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monly adopted in production economics can be a natural influence for modeling

habitability in exoplanets. An insightful demonstration establishes this claim.

The scores reveal potentially habitable planets for interstellar trade. An ana-

lytical model of colonization in an exoplanet is also presented where we derive

conditions for interstellar migration using the time to travel to such a planet (if

possible) as one of the key parameters.

Keywords: Exoplanetary Habitability Score, Particle Swarm Optimization,

Multi-Objective Optimization, Interstellar Trade, Game Theory, Production

Economics

1. Introduction

The search for planets outside our solar system [1] and the possibility of life

on such planets has been an international venture since Frank Drake’s attempt

with Project Ozma [2] in the mid 20th Century. The discovery of the first

extrasolar planet in 1991 started a trend that has lasted over 25 years and

yielded over 3700 confirmed exoplanets. Many attempts have been made to

model the habitability of these planets via a score based on their similarities

to Earth. One such habitability score is the Cobb-Douglas Habitability score

(CDHS) [3, 4] that models a planet’s habitability using established planetary

parameters as inputs. These inputs are the radius, density, escape velocity and

surface temperature of an exoplanet. Estimating this score requires maximizing

a production function by finding an optimal solution in the feasible region of a

constrained search space.

The idea behind using a production function to quantify habitability is that

production functions help us with the optimization of an objective whose inputs

may inherently need to be balanced. In potentially habitable exoplanets, there

are various physical factors that must be carefully balanced and these include the

mass of a planet, the distance of the planet from its parent star, the presence

of the planet within its parent star’s habitable zone, etc. A majority of the

observed exoplanets have extreme attributes that are unsuitable for life the
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way it is on Earth; for example, a planet may have an enormous mass, or

the temperature of the surface may be too cold for harboring life, as some

examples of extreme conditions. A very small portion of the exoplanets that we

know today have well-balanced physical attributes in a manner that leads us to

believe in the possibility of life, the way it is on Earth, in planets outside our

solar system.

In this respect, the Cobb-Douglas Habitability Production Function (CD-

HPF) is a method that can quickly provide a score that is representative of

the potential of habitability of an exoplanet. The inputs of the CD-HPF are in

Earth Units (EU): this provides a ready standardization of the input parameters

to the model. Like any economic production function, the CD-HPF requires the

optimization of an objective. The Cobb-Douglas Habitability Scores (CDHS)

[3, 4] provides a quick insight into how balanced the planetary attributes of an

exoplanet are, while also providing a perspective on the habitability potential.

The CD-HPF is calculated in a two-fold manner: by calculating the interior -

CDHS using radius and density, and the exterior-CDHS, by using escape velocity

and surface temperature; the final score is computed by calculating the mean of

the interior and exterior scores. In the current work, we build up on [3] and [4]

by posing the model as a multi-objective optimization problem based on Pareto

optimality of the two scores within the model. In view of the ’production’

of habitability scores, it should mean that reallocation of inputs to measuring

interior score should not affect the exterior score. This also Our present work

will provide yet better insights to the distribution of planetary factors, and how

their trade-offs affect habitability. The Cobb-Douglas habitability scores are

decomposed into two parts: the interior and the surface scores, denoted by

CDHSi and CDHSs, respectively. The inputs to the CDHSi are the radius and

the density of a planet, and the inputs to the CDHSs are the surface temperature

and the escape velocity. The reason that these are computed separately is

because in themselves, they can help us compare the different aspects of two

exoplanets. For instance, the interior score could give us a quick insight into

the physical constitution and serve as the basis for the comparison of the rocky

3



interior of different planets; and the surface score could provide us insights into

the similarity of the surface of a planet of that of Earth, and consequently, into

the similarities in temperature.

This paper presents the solution of the bi-objective optimization problem

(Section 5) arising out of habitability score computation of exoplanets and dives

deep in to the several layers of the problem. We draw an analogy from produc-

tion economics (Sections 7 and 8), and solve the constrained approximation

problem in production economics in Section 8. The correctness of our approach

is verified by comparing with computations from past solution approaches [3, 4]

(see Figure 4). We present HT-MOQPSO (novel multi-objective implementa-

tion of QPSO, described in Section 8). Section 3 provide strong essence and

background of exploiting PSO as a viable alternative to the classical Newtonian

ascent/descent methods in computing the optimal habitability score of exo-

planets. A game theoretic interpretation of the components of the bi-objective

framework is also presented in Section 6. The habitability score computation

approach in section 5 is validated by PSO based clustering of exoplanet (sec-

tion 10) thereby choosing a set of suitable candidates for habitable exoplanet.

A possible colonization strategy and modeling to inhabit such potential candi-

dates is discussed at length in section 11. To the best of our knowledge, such

an exposition has not been previously presented in the literature.

2. Cobb-Douglas Habitability score (CDHS) and necessary background

Given the increasing rate of discovery of exoplanets (especially with the

scheduled launch of the James Webb Space Telescope in 2019), it can be ex-

pected that the amount of data samples of exoplanets will reach the scale of a

big-data problem (much like the the volume of samples collected by the SDSS3,

which is terabytes in size). In this context, it is important to explore the current

classification schemes and to devise methods which can automatically discover

3Sloan Digital Sky Survey
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meaningful patterns in data and classify them. Since not one single parame-

ter can suffice as the sole criteria for habitability, we explore methods which

take into consideration multiple observable characteristics of exoplanets. For

example, presence of water may increase the likelihood of an exoplanet to be

potentially habitable [5]. If a planet resides in the HZ, it is considered to be

potentially habitable since the atmospheric conditions in these zones are more

likely to support life [6, 7]. However, in either case, the habitability cannot be

affirmed until other parameters such as planet’s orbital and physical properties

are collectively considered.

We develop a method which does not require target class labels but finds

an optimal convex combination of the observables. With 3875 confirmed and

about 3000 unconfirmed discoveries4, the amount of accumulated data is rich

and diverse. Consequently, the challenge in determining the potentially hab-

itable candidates is manyfold and lies in the selection of principal parameters.

The selection issue was first highlighted in [8] via formulation of the Planetary

Habitability Index (PHI) and the Earth Similarity Index (ESI). The Biological

Complexity Index (BCI) [5] was introduced to accommodate biological features.

The following is a brief discussion on the mathematical representation of these

indices.

Earth Similarity Index (ESI). ESI was designed to determine the exoplanet

similarity to Earth [8], since we know that sustainability of life depends on

Earth-similar conditions. ESI ranges from 0 to 1 depending on the increas-

ing degree of similarity to Earth. A planetary body with an ESI over 0.8 is

considered to be Earth-like. ESI is represented as:

ESIx =

(

1−

∣

∣

∣

∣

x− x0
x+ x0

∣

∣

∣

∣

)w

, (1)

with ESIx being the ESI value of a planet for x property, x0 the Earth’s value for

that property, and w the weighting component for adjusting the sensitivity of the

4Feb. 2019, NASA Exoplanet Archive, https://exoplanetarchive.ipac.caltech.edu
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scale. Four parameters: surface temperature Ts, density D, escape velocity Ve

and radius R, are used to determine the total ESI, through calculating separately

the interior ESIi (from radius and density), and surface ESIs (from escape

velocity and surface temperature). Finally, the total ESI of a planet is calculated

by taking the geometric mean of ESIi and ESIs. However, ESI in this form

(1) only describes the similarity of a planet to the Earth. It does not determine

habitability. For example, it is relatively high for the Moon – about 0.5.

Planetary Habitability Index (PHI). PHI is a metric for quantitative mea-

surement of the ability of a planet to develop and sustain life, [8] represented

as,

PHI = (S · E · C · L)1/4 , (2)

where S is a substrate, E is available energy, C is appropriate chemistry and

L stands for liquid medium. The PHI value of each parameter is divided by

the maximum PHI to normalize the scale to between 0 to 1. However, the

PHI parameters are difficult to measure, and may not represent other necessary

properties for determining planet’s present habitability. Safonova et al. [9]

proposed to complement the PHI with the age of the planet (see their Eq. 6).

Biological Complexity Index (BCI). Another habitability index containing

geophysical complexity G, temperature T and planetary age A was defined by

the same group [5] as an extension of the PHI:

BCI = (S · E · T ·G ·A)1/5 . (3)

This is again normalized to the maximum BCI value in the set to produce the

scale from 0 to 1. Yet, Venus has BCI of zero and Enceladus has BCI of 0.17,

while Gliese 581c has the highest BCI of any exoplanet, even higher than the

Earth. However, this planet has more of a Venus-like environment being very

close to its star. In addition, this index was mainly oriented at assessing the

probability of finding a complex (evolved) life on a planetary body.

The standard conservative definition of a habitable planet is applied for

planets residing in the classical HZ: a region where liquid water may exist on
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the surface [10, 11]. However, it is possible for a planet to be a good candidate

for habitability even outside the classical HZ, or even without a host [12, 13, 14].

Also, our Moon is within the HZ but clearly is not potentially habitable for our

kind of life. Though observational efforts focus on the search for Earth’s twin

(i.e. the planet with ESI = 1), it is quite possible that even with ESI close

to 1, a planet is not potentially habitable. Recent ‘best candidate’ for a life-

supporting planet, Gliese 832c with ESI = 0.81 [15], was found more likely to

be a super-Venus and is, probably, tidally locked with its star.

Cobb-Douglas Habitability Production Function (CD-HPF) and Cobb-

Douglas Habitability Score (CDHS). The Cobb-Douglas (C-D) production

function was originally proposed to model the growth of the American economy

during the period of 1899-1922 and has been widely used in economics and in

industries to obtain optimal input combinations subject to a budget constraint

[16]. The C-D production function possesses a number of important proper-

ties including homogeneity, convexity of the isoquants (i.e. same output with

many input combinations, and analogously, for indifference curves, same utility

from various commodity combinations), and importantly, the satisfaction of the

well-known Inada conditions for guaranteeing the stability of the growth path.

We discuss some of these properties in further detail as part of our motivation

behind using a specific structure for measuring Habitability Score.

The Cobb-Douglas Habitability score (we denote this as Y ) comprises of two

components: interior score (CDHSi) and surface score (CDHSs). These scores

are estimated by maximizing the following input-output relationships,

Yi = CDHSi = Rα.Dβ (4)

Ys = CDHSs = V δe .T
γ
s (5)

where R,D, Ve and Ts are radius, density, escape velocity and temperature,

respectively. α, β, δ, γ are coefficients of elasticity and 0 < α, β, γ, δ < 1. The

above two equations are concave under constant returns to scale (CRS) [3],
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when α+β = 1 and γ+δ = 1, and also under decreasing returns to scale (DRS)

[3], when α + β < 1 and γ + δ < 1. The final CDH score is calculated as the

weighted linear combination of interior and surface score, where the weights wi

is the weight of the interior score, and ws is the weight of the surface score.

Y = wi.Yi + ws.Ys (6)

Here, wi, ws ≥ 0 and wi + ws = 1. In [3], the final CDHS score of a planet is

arrived at by estimating the interior and surface scores independently, which is

done by finding the elasticities that maximize (4) and (5) under CRS and DRS.

However, since Ve =
√

2GM
R , where G is the gravitational constant, the implica-

tion is that increasing interior score will not be possible without compromising

on the surface score and vice versa. This paper attempts to bring out this trade-

off between Yi and Ys by setting up a penalized bi-objective maximization task

that finds a non-dominated solution set (Pareto front) describing the interplay

between the two components of the habitability score.

3. Motivation

Considering the complexity of assessing the habitability of exoplanets, it’s

perhaps not wise to make definite conclusions about exoplanet habitability

classes by label based classification approach alone. PHL data set contains

six classes in the data set, of which the classes, non-habitable, mesoplanet and

psychroplanet classes have non-negligible number of planets. The remaining

three classes in the data are those of thermoplanet, hypopsychroplanet and

hyper-thermoplanet. As a first step the data in the PHL-EC is preprocessed,

described in detail by earlier work by Saha et. al [4]. Therefore, it is beyond

reasonable doubt to explore different methods that can be proved mathemat-

ically justified by physical interpretations. However, unlike machine learning

based classifiers investigated by Saha et. al and Basak et. al [4, 17] the cur-

rent work proposes habitability assessment of newly discovered exoplanets via

unsupervised (clustering) approaches. The proposed methods integrate com-
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Figure 1: Observed behavior (scatter plot) of Interior and Surface habitability scores of some

exoplanets: We expect the solutions to be non-dominating

putational methods to compute habitability scores and label-free grouping of

Earth-like planets (unsupervised) for determining the degree of habitability of

an exoplanet. This is a significant exercise as the uncertainty and challenges

involved in finding and ascertaining habitable planets. We hope, the outcome

of the proposed model agree with previous results and embellish the results fur-

ther reported in Basak et. al [17] and thus, may be used as indicators while

looking for new habitable worlds. Our principal contribution is to propose an in-

tegrated approach to habitability clustering of exoplanets. Clustering approach

is novel as it doesn’t use existing class labels as reported in catalogs and groups

exoplanets to several clusters based on some geometric/spatial similarity using

parameters (strictly excluding surface temperature and all parameters related

to surface temperature in PHL-EC). This approach is thus, independent of any

class labels and therefore free from possibly problematic ground truth and bias

that might exist in the data set. We present Particle Swarm Based clustering

(PSO) of exoplanets since the majority of the habitability score computation

revolves around PSO [18].
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3.1. Technical Motivation: Justifying the Optimization approach

As discussed in [3, 19], a Cobb-Douglas function models the response of

an output variable on varying its inputs. The multiplicative input relationship

allows inclusion of n number of such inputs, each with its respective elasticity.

The function is concave when the sum of elasticities is not greater than one

ensuring that an optimum exists for the function inside a feasible region defined

by the constraints on elasticities. In the case of exoplanetary habitability, the

proposed metric models as to how the habitability score Y changes on varying

inputs on planetary parameters. This is achieved by allowing the coefficients of

elasticity to be adjusted via an optimization algorithm.

The final CDHS (derived from (4) and (5)) defined in Equation (6), is equal

to the convex combination of Yi and Ys. The weights wi and ws define the

importance of the interior and surface scores in determining the final CDHS.

The Cobb-Douglas Habitability production function can also be formally written

as,

Y = Rα.Dβ .V δe .T
γ
s (7)

CDHS is estimated by maximizing (7) subject to α+β+δ+γ = 1. CDHS can

be calculated from both (6) and (7). In [3], for the ease of visualization in 3D

space, CDHS is split into two components – (4) and (5) – and the final score

is arrived by estimating these two components independently. Fig.2 shows the

surface plot for the interior score and surface score along with their maximum

values under CRS. A suitable value of wi and ws is manually set through hit

and trial, and the final CDHS is estimated from (6). Based on the weights

chosen, the final CDHS score can widely vary.

It is made clear in [3] that the sole motivation for splitting Y into two

components is because the four decision variables – α,β,γ and δ – and Y cannot

be represented visually. Can there be a more scientifically driven motivation to

estimate Yi and Ys independently? This paper attempts to answer this question

and serves as an extension to the ideas presented in [3].
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Figure 2: Plots of interior CDHSi for CRS [3] and surface CDHSs have similar profile.

3.2. Our Contribution

This paper proposes a robust alternative to the methods proposed in [3]

to quantify exoplanet habitability. A multi-objective framework is proposed to

simultaneously establish both interior and surface score of an exoplanet. The

solution sets which the proposed framework produces are explained with a game

theoretic analysis.

Hypervolume Terminated Multi-Objective Quantum PSO, a novel muti-

objective algorithm, is also explored to estimate exoplanet habitability under a

modified CRS constraint. Analogies from production economics are significantly

highlighted to further strengthen the motivation for the proposed framework for

exoplanet habitability estimation.

The cornerstone of the manuscript (underneath the deep technical novelty)

is the integration of habitable candidates via clustering approach. We propose

meta-heuristic based (PSO) clustering. This is because the spatial distribution

of exoplanets is random, doesn’t follow regular geometric patterns and therefore

using spherical assumptions of distribution justifying K Means type method [20]

can’t be used. The clustering approach helps cross-validate habitability groups

(Earth like planets) with CDHS to obtain a more reliable set of potentially

habitable exoplanets. More specifically, our method finds planets similar to

Earth in some spatial distributional sense using some distance measure. This

approach finds and places some planets, apparently, in Earth’s group while

clustering other planets in different groups. The optimization approach finds
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validation if the planets with habitability score (CDHS) close to Earth (CDHS=

1) also belong to Earth’s group by the clustering approach. We have shown

this in section 10 and thus established the efficacy of the habitability score

optimization approach proposed in the paper.

Finally, we offer a discussion and analytical model on tangible returns with

marketable options to cater in relation to identifying habitable exoplanets. We

discuss the economic viability of possible settlement of habitats in potentially

habitable exoplanets. A colonization model is discussed in detail and analytical

implications of optimal trade based on the time to reach nearer habitable planets

are argued for. Section 11 provides ample justification for the colonization

conjecture.

4. Representing the Single-objective problem in a bi-objective setting

Multi-objective optimization problems are challenging for various reasons.

Saddle points are sometimes difficult to overcome. While some methods are

globally good, they tend to suffer from oscillating local minima, especially when

optimizing multiple objectives. Several variants of PSO or other meta-heuristics

are employed to solve a variety of problems. Zhang et. al [21] proposed a method

to handle additional control parameters by building a group teaching model

for solving global optimization problems. Lai et. al [22] integrated diversity-

preserving strategy and the probabilistic application of a local optimization

procedure to solve the NP-hard 0/1 Knapsack problem. Their method uses

a variant of Quantum Particle Swarm Optimization where a distanced-based

diversity-preserving strategy was used to manage population over generations.

Quadratic knapsack problem with conflict graphs is another interesting prob-

lem with diverse applications in Engineering. The method by Dahmani et. al

[23] is inspired from the binary particle swarm optimization combined with a

quick and efficient local search. THe vanilla PSO is bot designed to handle con-

straints in optimization problems. This could be tackled by imposing penalties

or expanding search operator and directional information as proposed by Ang
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et. al [24]. Roshanzamir et. al designed a variant pf PSO where they managed

to achieve balance between exploration and exploitation by assigning different

tasks to different group of swarms[25].

Since the paper attempts to explore how the two components of the CDH

score, surface score and interior score, interact when the decision variables are

changed, we make use of a multi-objective variant of PSO known as Speed Con-

strained Multi-Objective Particle Swarm Optimization (SMPSO) [26]. While

the basic idea of the multi-objective variant remains the same as that of the sin-

gle objective-variant [27], SMPSO uses certain strategies to find a non-dominated

solution set that simultaneously maximizes the two components of the CDH

score. Constraints on the decision variables such as coefficients of elasticity of

the planetary parameters are imposed by augmenting the objective functions

with L1 penalty functions. The exoplanet catalog [28], hosted by the Plane-

tary Habitability Laboratory at the University Of Puerto Rico at Arecibo, is

the dataset that we use for conducting this experiment. To the best of our

knowledge, this kind of interpretation of a typical single objective setting is not

available in literature.

The problem of estimating CDHS score under CRS constraints in a bi-

objective optimization setup can be represented as:

min
~x

~f(~x) = [−Yi,−Ys] (8)

subject to

α+ β = 1, γ + δ = 1, 0 < α, β, γ, δ < 1 (9)

where ~x is a vector of decision variables [α, β, δ, γ]. Since our goal is to bring

out the trade-off between the interior score and the surface score as implied

by the relationship between a planet’s escape velocity Ve and its radius R, it

becomes necessary to bring out the relationship between the elasticity coeffi-

cients of Ve and R. In the appendix section in [3], the desired relationship

between the elasticity coefficients has been derived successfully. This relation-

ship is Ve = δ
α
WR

WVe
R where WR and WVe

are weights chosen to represent the

13



importance of R and Ve respectively. This equation can be rearranged in the

following way:

δ = α
Ve

R
C where, C =

WVe

WR
(10)

We use Equation (10) to bring out the dependence between Yi and Ys within the

bi-objective optimization framework. To impose the DRS constraint, we simply

replace equality constraints in (9) to the following inequality constraints:

α+ β < 1, δ + γ < 1 (11)

Since the goal is to bring out the trade-off between the surface score and

the interior score, it is essential to use Equation (10) in the optimization task:

instead of searching for δ, we derive δ using α and C. We add C, which is the

ratio of importance of escape velocity to the importance of radius, to the list

of decision variables so that the optimization algorithm looks for the best value

of C that maximizes the surface score and the interior score while observing

the CRS or DRS constraint (See Appendix B for constraint modeling using

penalties).

In many real-world problems, the Pareto front cannot be calculated for a

variety of reasons. Instead, most existing algorithms estimate an approximation

set [29] of objective vectors that is not necessarily equal to the "true" Pareto

front of the problem. The paper proposes an experimental setup that uses

exoplanetary data from the aforementioned catalog to find solution sets that

minimize the negative of the interior and surface scores while observing the

CRS constraint.

5. CDHS Results

The PHL catalog contains observed and estimated stellar and planetary pa-

rameters of 3415 confirmed exoplanets. However, estimates for surface temper-

ature is available for only 1586 planets. To conduct our experiments, we drop

the planets for which the estimates of surface temperature are not available. We
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performed our experiments using data from 664 rocky planets out of which the

results from TRAPPIST-1 planetary system are emphasized.

Under DRS, an increase in input does not lead to an equivalent increase in

output. In fact, the proportion of the increase in the output is less than the

increase in the input. However, CRS conditions will ensure that our model for

habitability estimation generates outcomes that change in the same proportion

as the changes in all inputs. Because of this characteristic and the fact that CRS

constraint subsumes several functional structures and properties within itself,

CRS is preferred over DRS to model exoplanetary habitability.

5.1. Results Obtained Under CRS Constraints

It can be observed from the Pareto front graphs of two of the TRAPPIST-1

planets illustrated in figure 3 that there is a clear trade-off between the interior

and surface scores. The series of (Yi, Ys) values in the objective space invites

the following question: which among the points in the solution set should be

chosen to calculate the final CDHS of an exoplanet? To answer this, we need

to recall that the CDHS is a linear combination of the interior and surface

scores. The definition of CDHS is equivalent to that of a line segment between

two given points which means that CDHS is a real number that lies between

Yi and Ys and the choice of weights wi and ws will determine the proximity of

CDHS to Yi and Ys. For a given weight pair (wi, ws), the most ideal (Yi, Ys)

from the Pareto front will be the one for which CDHS is maximum. Let us set

wi = 1.0 and ws = 0.0, and take Yi = 0.885 and Ys = 0.97 from the solution

set detailed in table 1. The CDHS value for this selection is 0.885 but for the

given selection of weight pairs, the most ideal solution from the Pareto front is

Yi = 0.898 and Ys = 0.958.

The trade-off between these two components implies cooperation rather than

competition which means that a decrease in one component of the score is

compensated by the increase in the other component of the score and hence,

maintaining a consistent final score. The different CDHS values for different

choices of weight pairs are close to each other since |Yi − Ys| is a really small
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Figure 3: Pareto front for TRAPPIST-1 b and e under CRS. The computed habitability scores

using our approach when compared with previous approaches [3][4], we observe that the scores

match closely for more than 664 rocky exoplanets.

value. This is not observed in earlier computations where a fixed weight pair

worked for the desired habitability score. This is not the case here and therefore,

the weight selection and the optimization approach yields habitability scores of

planets (believed to be in the same league as Earth) close enough to 1, which

is the Earth’s habitability score! This is a robust approach compared to earlier

gradient ascent/descent based approaches [3, 4]. Moreover, a simple choice of the

coefficients will yield a range of values of habitability for each planet. The range

is within acceptable limits (i.e. in terms of proximity to Earth’s habitability

score, for the TRAPPIST-1 system of planets in particular). Instead of a fixed

number for the habitability score, we obtain an acceptable range. This is a

marked departure from the earlier approaches.

5.2. Comparison With Past Approaches

We compare our results with the ones in [3] and [4] for more than 600 rocky

planets. To calculate CDHS using our approach, we will assign an arbitrary

weight pair of wi = 0.5 and ws = 0.5 and pick (Yi, Ys) from the solution set that

leads to the largest CDHS value. The observed distribution of divergence in

figure 4 provides a strong validation that the results obtained from the proposed
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α β γ δ C Yi Ys Y

0.571 0.429 0.197 0.803 1.722 0.885 0.97 0.9615

0.575 0.425 0.194 0.806 1.717 0.886 0.969 0.9607

0.583 0.417 0.187 0.813 1.708 0.89 0.966 0.9583

0.585 0.415 0.185 0.815 1.706 0.891 0.965 0.9576

0.587 0.413 0.183 0.817 1.704 0.892 0.964 0.9568

0.59 0.41 0.18 0.82 1.702 0.893 0.963 0.9560

0.602 0.398 0.168 0.832 1.692 0.898 0.958 .952

Table 1: Solution set for TRAPPIST-1 b under CRS. Note, the CDHS is close to 1, implying

potential habitability

Figure 4: Distribution of absolute differences between the habitability scores under CRS and

the scores from [3] & [4])
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multi-objective model do not deviate much from the calculated CDHS in [3] and

[4].

6. Game Theoretic Interpretation

In cooperative games, the participants or the players cooperate to achieve

a common goal and there is no conflict of interests. Now, we define a two-

player game in which the participants – interior score and surface score – play

to achieve a common goal of maximizing the final CDHS score. N = {I, S}

are participants of the game and let S ⊆ N be a coalition that forms among

the participants N . There are 2n, where n = number of participants, coali-

tions that are possible. The coalitions can be represented as powerset of (N) =

{{∅}, {I}, {S}, {I, S}}. We quantify the benefit of a coalition through a charac-

teristic function v : 2n → IR. For our game model, we define the characteristic

function as: v(∅) = 0, v({I}) = 0, v({S}) = 0, v({I, S}) = maxE(u(xi, yj))

where u(xi, yj) is a payoff function, xi ∈ Si, yj ∈ Ss and Si and Ss are strategy

sets for players I and S respectively. The value of the coalition is the maximum

possible expectation of the payoff function. As the CDHS of an exoplanet de-

pends on both interior and surface scores, coalitions of only one participant have

no benefits: this means that the game is essential [30]. Let us assume that

players I and S are playing to maximize CDHS of the planet TRAPPIST-1 b

under CRS constraint. Let Si, strategy for I, be a set of all Yi values from table

1 and Ss, strategy for S, be a set of all Ys values from table 1, For this game,

we define the following payoff function:

u(xi, yj) =











0.1 ∗ xi + 0.9 ∗ yj , if (xi,yj) ∈ D

0, otherwise

(12)

Here, D = {(xi, yj)|xi ∈ Si, yj ∈ Ss and i = j}. The payoff function

u(xi, yj) is CDHS with weights wi and ws set to 0.1 and 0.9 respectively for

pairs of scores (xi, yj) from Table 1. We assume that both players get an equal

payoff for their contribution to the final CDHS. In this game, a player might
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either choose a pure strategy or a mixed strategy to maximize payoff. These

strategies are chosen according to some probability distribution.

A vector X = [P (x1), ...., P (xn)] is mixed strategy for player I and Y =

[P (y1), ..., P (yn)] is mixed strategy for player S, where P (xi) ≥ 0,
∑n
i=1 P (xi) =

1, P (yj) ≥ 0, and
∑m
j=1 P (YJ) = 1. A pure strategy is a special case of mixed

strategy. X represents a pure strategy if P (xi) = 1 and P (xj) = 0 ∀ j 6= i.

Now, given mixed strategies X and Y , the expected payoff of the game is

E(X,Y ) =
∑n
i=1

∑m
j=1 u(xi, yj)P (xi)P (yj). There exist points (X∗, Y ∗) for

which E(X,Y ) is maximum. We can now define the optimization problem as:

maxP (x),P (y)E(X,Y ) subject to
∑n
i=1 P (xi) = 1,

∑m
j=1 P (yj) = 1 and, 0 ≤

P (xi), P (yj) ≤ 1. We plug in the required values in E(X,Y ) and we get the

equation: E(X,Y ) = P (x1)P (y1)0.9615 + P (x2)P (y2)0.9607 + ..... Since there

is no pair (xi, yj), such that i 6= j, for which u(xi, yj) > 0, the players I and S

should cooperate and choose their strategies xi and yj so that i = j to maximize

the payoff. Because of this, we make P (xi) = P (yj), where i = j.

We find that E(X,Y ) is maximum when P (x1) = P (y1) = 1 and P (xi) =

P (yj) = 0 ∀ i 6= 1, j 6= 1. This means that max(E(X,Y )) = 0.9615 and the

optimal strategy for maximizing payoff is a pure strategy where I plays x1 and

S plays y1 all the time. One important thing to note is that we set weights

wi and ws to 0.1 and 0.9 respectively and the values of xi and yj are interior

scores and surface scores from table 1. If we change the weights wi and ws, the

expected payoff function will change and players I and S will start playing a

different strategy to maximize the expected value of payoff (final CDHS). This

explains the trade-off between the interior and surface scores; when one score

decreases, it is compensated by an increase in the other score. The ideal (Yi, Ys)

for the CDHS calculation is determined by the choice of (wi, ws). No matter

what wi and ws is set to, the observed trade-off between Yi and Ys makes sure

that a consistent CDHS is maintained.

When player I chooses a strategy x1, the best strategy for S to play is y1, and

if S were to choose y1, the best strategy for I to play is x1. We can generalize

this fact by saying that when player I chooses strategy xi, the best strategy for
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S to play is yj and if S chooses yj , the best strategy for I to play is xi and

i = j. Hence, all points (xi, yj) ∀i = j are pure strategies Nash Equilibria.

7. A Production Economics Argument for the PSO approach

Perfect competition is a market structure where several firms coexist, each

apparently using a CRS production function such that no one has an advantage

in this market from producing more at a lower cost than the rest. That would

be feasible only with IRS (increasing returns to scale), and one or two firms will

dominate the entire market instead of a large number of homogeneous firms.

Perfect competition implies the presence of a large number of firms driving a

stable market equilibrium. It is well known in related disciplines that perfect

competition implies the complete absence of inter-firm competition because each

is a small entity in view of the market size, such that individual firms have little

control or influence over price formation and the aggregate quantity sold in the

market. CRS in the usage of economics is integral to the presence of perfectly

competitive markets by ensuring equi-proportionate returns to factor inputs.

Conversely, DRS implies that the use of inputs generate less than proportion-

ate increase in the output. Therefore, to the extent that firms optimize on

profit or cost, these should resist the expansion of production beyond the point

where output grows less than proportionately to the use of inputs. In industries,

where DRS is the dominant production relation, it is expected that sustenance

of production would be questionable beyond a reasonable point in time, simply

because the factor returns cannot be paid up from the profit earned. Yet, in

some case, particularly, public sector operations in many countries, DRS seems

to be prevalent owing to various commitments (such as, job creation for the less

privileged) of the government, albeit not as a technological strategy. Since the

concept of the CDH score is borrowed from production economics, we deem it

necessary to interpret the objective in the light of economics and therefore, we

explore the bi-objective framework under CRS constraints rather than the DRS

constraints. It is easy to understand that non-adherence to CRS would lead to
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either DRS or IRS in operation, of which DRS is sub-optimal and may be ignored

given the much wider coverage available under CRS technology. Therefore, the

model under this particular CRS constraint provides an adequate motivation

to explore the bi-objective optimization framework where the players, the inte-

rior and surface scores are in perfect competition with each other and ensures

a Pareto front. We observe this for all the simulations offered subsequently.

For example, a multi-objective optimization framework in economics which is

more of a theoretical curiosity [31] is often not entertained, typically because the

point which optimizes all objective functions may be infeasible in view of the

available data and may exist only as a utopia. The dominant approach has been

to consider one, or a related set of objective functions as the core optimization

problem. In contrast to this, in the current work, we entertain a bi-objective pro-

duction function and successfully obtain converging Pareto fronts. This should

not only serve as a strong motivation behind what we conceptualize but should

also serve as possible direction for many other applications in related disciplines.

8. Motivation for Q-PSO: An Analogy From Production Economics

We embark on an important corollary of our investigation by drawing an

analogy from production relations widely used in economics. Indeed, the ap-

proach to the production relations commonly adopted in industries can be a

natural influence for modeling habitability in exoplanets. The structure follows

a direct application of the well known CD production function offering a wide

array of general formulations. So we investigate if there is an ǫ difference be-

tween the DRS and the CRS production functions (in our case CD-Habitability

Score) if optimized separately. Note that the proposed production relations de-

termine the output elasticity of factors as estimates and if the output responds

less than proportionately to increases in inputs, the relation is of DRS nature

and the production cannot be sustained beyond a critical level of (negative)

profit consequent to that. In the case of CRS, the production can continue

infinitely. In other words, if we write α + β = 1 as α + β − ǫ < 1 where ǫ > 0
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but is infinitesimally small, then can we use Q-PSO [32] to solve the modified

optimization problem under modified CRS constraints and discover that the

optimal solution obtained under original CRS is insignificantly different from

modified CRS (an approximation of the DRS constraints). As we discussed in

section 5, DRS is less preferred since it could amount to leakage and eventual

shut down of production as the production is less than proportionate to in-

puts. However, if a firm, experiencing a downturn, seeks a change of fortunes

within their budgetary constraints, can they inflict an ǫ change and still hope to

sustain itself? We note that ǫ must facilitate this movement via some variable

input, say technology, which in many cases, functions as a black box at an initial

phase. Alternatively for DRS to approach CRS, it is possible that an existing

parameter is aggravated by epsilon as an infinitesimal change, replicating a pro-

ductivity surge owing to unaccounted for external factors. Thus, if we raise β,

viz, by a factor ǫ, it helps to approach the limit. It could also be owing to the

adoption of a policy, such as the minimum wage or efficiency wage. If that helps

labor to behave more productively than before, then a situation of DRS may

approach CRS in the limit. For capital, it could be the influence of innovations

in investment plans or use of a better technology or super-CEO that raises its

productivity. We took the second approach (i.e., modified DRS → CRS) as

the ideal test case for our method, HT-MOQPSO: a novel implementation of

Quantum PSO with hypervolume based termination criteria.

We expect the difference in optimal values between the two constraint set-

tings to be minimized by Q-PSO. In other words, we ask if the optimal value of

y (production) under modified DRS (→ CRS) will be agonizingly close to the

optimal production (equivalent CDHS) guaranteed under original CRS. The an-

swer is yes, as observed by the experimental results (see table 3) performed on

CDHS (analogous to the production function in Economics). We adopt a two-

phase approach to address the above questions. First, we attempt to solve the

bi-objective problem using Q-PSO. Next, we solve the modified DRS problem

(with an ǫ jump i.e. rewriting the DRS constraint, α+β < 1 as α+β+ǫ = 1) and

check for similarity in solution front with the original CRS. We used Hausdorff
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distance metric for comparison between the solution fronts and inspect random

samples manually for proximity check. We have also solved the modified opti-

mization problem by two ways. First, we fix the ǫ to a very small number and

compare the two solution fronts. Additionally, we let ǫ to be defined as a small

constraint in the optimization framework so that we obtain different values of

it (via the solution process of the constrained MOO problem) while maintain-

ing proximity in the solution fronts. This outcome fortifies what is known in

production Economics as "scale efficiency". We observe that the ǫ-jump is han-

dled quite efficiently by HT-MOQPSO. Details are demonstrated via Hausdorff

distance (please see Table 3).

8.1. Hypervolume Terminated Multi-Objective Quantum PSO (HT-MOQPSO)

Algorithm 1: HT-MOQPSO pseudocode

1 initialize Swarm()

2 initialize LeadersArchive()

3 i = 0

4 while not terminationCriteria() do

5 update ParticlePosition()

6 perturb constraints()

7 evaluate Swarm()

8 update LeadersArchive()

9 update LocalBest()

10 calculate HyperVolume()

11 i++

12 end

13 return LeadersArchive

Unlike classical PSO, quantum PSO [32], as the name suggests, draws inspi-

ration from the principles of quantum mechanics. In the standard PSO system,

the trajectory of a particle is determined by its position ~x and its velocity vector
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~v. This model of exploration of search space is based on Newtonian mechanics

but this is not the case in PSO with quantum behaved particles. In quan-

tum mechanics, Heisenberg’s uncertainty principle states that position ~x

and velocity ~v cannot be determined simultaneously and hence the concept of

particle trajectory becomes meaningless in quantum PSO. Because of this rea-

son, the algorithm for QPSO is drastically different from the standard PSO.

In this paper, we present a novel implementation of multi-objective variant of

QPSO [32] written using modules offered in jmetalpy python framework.

The classical PSO suffers from local convergence but QPSO addresses this

flaw as it is globally convergent [33]. In PSO with quantum behaved particles,

the quantum state of each particle is denoted by a wave function Ψ(x, t) instead

of its position and velocity vector. Ψ is a function of space and time and

gives a complex number. What is physically meaningful is the squared of the

magnitude of the wave function |Ψ|2, which offers a probabilistic measure of

finding a particle at a particular point in an n-dimensional space. At any point

in time t, the wave function Ψ(x, t) in a system is such that
∫∞
−∞ |Ψ(x, t)|2dx = 1.

Now, the position update of a particle xi in the jth dimension is governed by

the following equations:

xij(t) = p+ χj .L.ln(
1

u
), if k > 0.5 (13)

xij(t) = p− χj .L.ln(
1

u
), otherwise (14)

χj is a constriction factor calculated for the jth decision variable that ensures

that the swarm does not explode [34]. χj is the difference of upper and lower

bound imposed on the jth decision variable multiplied by 10−3. p, L, u, φ1, φ2

and k are usual terms defined in [32]. Here, the only configurable parameter is g

which is used to compute the value of L and it is set to 0.95 in our experiments.

Our implementation of multi-objective QPSO remains the same as the algo-

rithm described in [26]. However, particles do not have a velocity component

associated with them and hence, there is no step for velocity computation. The
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position of the swarm is updated according to equations 13 and 14. We introduce

via HT-MOQPSO, a hyper-volume [35] based termination criteria described by

the boolean expression: k ≥ maxIteration OR (k ≥ 0.02 ∗ maxIteration AND

hv(k) − hv(k − 1) < τ). Here k is the current iteration, hv(k) is the hypervol-

ume of the solution at the kth iteration and τ > 0. The idea is to terminate the

algorithm when the change in hypervolume from the previous iteration is less

than a very small positive real number τ which is set to 10−8. Algroithm 1 is

the pseudocode for the proposed HT-MOQPSO.

8.2. Complexity Analysis

The complexity analysis of HT-MOQPSO is provided in this section. If M is

the number of objectives, N is the number of decision variables, S is the swarm

size, L is the size of the archive and F is the sum of complexities of objective

functions, then the basic operations and their worst case are as follows:

• Archive initialization : O(LN)

• Swarm initialization : O(SN)

• Swarm Evaluation : O(FS)

• Procedure to check the domination status of any two solutions: O(M)

• Crowding distance computation: O(ML)

• Local best particle initialization : O(S)

• Global best particle initialization: O(S(L+ML)) = O(SML)

• Position update: O(S(N +M))

• Local best particle update : O(SM)

• Leaders archive update: O(S(L+ML)) = O(SML)

• Hyper volume calculation : O(LN−2logL)
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Table 2: Hypervolume quality measure on the benchmark functions

Functions SMPSO HT-MOQPSO NSGAII

Kursawe 295.76 296.87 297.27

Fonseca-Flemming 23.75 24.33 24.33

ZDT1 14.04 23.85 23.99

ZDT2 7.52 22.63 22.32

ZDT3 16.98 27.51 28.13

Viennet 2 790.47 790.55 790.24

Therefore, the total complexity of HT-MOQPSO becomes O(SN)+O(FS)+

O(S)+O(SML)+η.(O(S(N+M))+O(SF )+O(SM)+O(SML)+O(LN−2logL))

where η is the total number of iterations.

8.3. Benchmark Results

To test the performance of HT-MOQPSO, we selected 6 multi-objective op-

timization benchmark functions for comparison with SMPSO and NSGA-II [36].

The benchmark functions are Kursawe [37], Fonseca-Flemming [38], ZDT1 [39],

ZDT2 [39], ZDT3 [39] and Viennet 2 [40]. For fairness in comparison, we apply

the hypervolume based termination criteria for all three algorithms under test

and set the population size of all three algorithms to 100.

Table 2 documents the performance of the three multi-objective algorithms

on the selected benchmark functions. We compute hypervolume for the solu-

tion sets found by the algorithms to measure the quality of the sets. Hypervol-

ume calculates the region in the objective space dominated by the solution set

bounded above by a reference point. We set this reference point to (5, 5) for all

the benchmark functions and compute the hypervolume. The greater the hy-

pervolume, the better the quality of the solution set. It is apparent from Table 2

that the performance of the three is identical for Kurasawe, Fonseca-Flemming

and Viennet2. However HT-MOQPSO and NSGAII outperform SMPSO on

benchmark functions ZDT1, ZDT2 and ZDT3.
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8.4. Results Under Modified DRS (the ǫ-Correction)

Planets
Hausdorff Distance

(fixed ǫ )
Hausdorff Distance

(variable ǫ)

TRAPPIST-1 b 0.2361 0.1591

TRAPPIST-1 c 0.0076 0.0265

TRAPPIST-1 d 0.0032 0.0546

TRAPPIST-1 e 0.0404 0.0032

TRAPPIST-1 f 0.0197 0.1172

TRAPPIST-1 g 0.1636 0.0407

TRAPPIST-1 h 0.0138 0.0111

Table 3: Hausdorff distance between solutions obtained under modified CRS (ǫ- perturbed)

and the original CRS constraint: introduction of "production economics scale efficiency"

bridges the gap between CRS and DRS further.

The solution set obtained under the modified DRS constraint is compared

with the solution set obtained under the original CRS constraint. As mentioned,

we run two optimizations under the modified CRS constraint. In the first run,

we fix ǫ to 10−8 and in the second run, we make ǫ a decision variable which

is estimated by the optimization algorithm. For the purpose of comparison,

we need to calculate a distance measure between two solution sets A and B

in the bi-objective space. We have chosen Hausdorff Distance to quantify how

close the solution sets obtained under the modified CRS constraint are to the

ones obtained under the original CRS constraint. Table 3 depicts the Haus-

dorff distance measured for the planets in the TRAPPIST-1 system. It can be

observed that the distance measurement ranges from 0.003 to 0.16 for optimiza-

tion results where ǫ is varied by the algorithm. For fixed ǫ values, the Hausdorff

distance varied from 0.003 to 0.2361. These distances are very small due to

the fact that the solutions obtained under the new modified DRS constraint is

insignificantly different from the solutions under CRS constraint. This justifies

our claim that the leakage caused due to DRS constraints (output being lesser

to proportionate inputs) can be bridged by introducing the "ǫ-perturbation".
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This "ǫ-perturbation" or "ǫ-jump from DRS to CRS" is handled very well by

HT-MOQPSO, especially in the case of scale-efficient production (ǫ is varied

and not fixed). We attribute this to the quantum states of the particles in the

swarm and the corresponding jumps between these states.

9. Quality measurement on CDHS production functions

Hypervolume Purity

Planets SMPSO NSGAII HT-MOQPSO SMPSO NSGAII HT-MOQPSO

TRAPP-1 b 1.3357 1.4615 1.4868 0.0 0.0 1.0

TRAPP-1 c 1.3892 1.4143 1.4135 0.0 1.0 0.5058

TRAPP-1 d 0.8681 0.9137 0.9132 0.0 1.0 0.0

TRAPP-1 e 0.8059 0.8318 0.8316 0.0 0.0869 0.9393

TRAPP-1 f 0.7828 0.8288 0.8289 0.0 0.1379 0.8181

TRAPP-1 g 1.0123 1.2223 1.2248 0.0 0.8 0.9444

TRAPP-1 h 0.5412 0.5524 0.5390 0.25 1.0 0.1764

Table 4: Performance metrics of HT-MOQPSO, SMPSO and NSGAII for computing habit-

ability under CRS constraint

We compared the performance of HT-MOQPSO against that of SMPSO and

NSGA-II for estimating the two components of the Cobb-Douglas Habitability

Score. As mentioned earlier, hypervolume measures the region in the objective

space dominated by a solution set. In our problem, since the goal is to optimize

two objective functions, the objective space is two dimensional and hence, hy-

pervolume is a measure of the area dominated by a solution set. We measure

hypervolume with respect to a reference point (0, 0). Another quality measure

that we have used is purity [41], which measures the portion of rank one so-

lutions of an algorithm that makes up the rank one solutions of the union of

rank one solutions of all the algorithms under comparison. Rank one solutions

of a solution set is the subset of the solution set which is non-dominated within

the solution set. Purity is a number that lies between [0, 1]. When the purity

measure of an algorithm is 1, it implies that all solutions in the rank one set of

the algorithm contain solutions that are non-dominated by any other solutions

28



of other algorithms in comparison. When the purity measure is 0, it implies

that all solutions in the rank one solution set of an algorithm are dominated by

some solutions belonging to another algorithm. For both of these performance

metrics, the higher the measure the better the quality of the result is. It is

observed from Table 4 that hypervolume values are comparable for all three al-

gorithms. However, SMPSO performs poorly in terms of purity while NSGAII

and HT-MOQPSO have purity measurement ranging from 0.1 to 1.0.

10. PSO based clustering of Exoplanets: Cross validating habitable

candidates identified by CDHS

Data clustering is an unsupervised learning algorithm which involves group-

ing similar data points into non-overlapping subsets. Clustering algorithms

have immense application in the fields of machine learning, data analysis and

pattern recognition. Data points in the same cluster should have similar proper-

ties, while the data points in different cluster should have dissimilar properties.

Clustering helps us find the relationship between the data points by seeing what

clusters they fall into. Success of any clustering method depends on choosing an

optimal set of parameters/attributes. The selection of appropriate attributes is

very crucial for any analysis. We plot the distribution of attributes of habitable

and non-habitable exoplanets and try to find a pattern in their distribution.

We have made use of Hausdorff distance metric to find the distance between

the distribution of attributes of habitable and non-habitable planets. Hausdorff

distance between two distribution A and B is defined as following,

dH(A,B) = max
∀a∈A

min
∀b∈B

| a− b | (15)

For every point a in A,we find the distance of the nearest point in B , store

this in a set, and then find the maximum of all these distances. Some of the

selected parameters selected for input to the PSO clustering algorithm 5 are

5The PSO clustering suite has implemeneted several clustering algorithms, K Means being

one of those. main.py needs to be run where KMeans was not used but has as default in the
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period, escape velocity, gravity, mass etc.

Each iteration of swarm updates the velocity of the particle towards its pbest

and gbest values. The minimization function is quantization error which is a

metric of error introduced by moving each point from its original position to

its associated quantum point. In clustering, we often measure this error as

the root-mean-square error of each point(moved to the centroid of its cluster).

When a particle finds a location that is better than the previous locations, it

updates this location as the new current best for the particle i. The aim is

to find the global best among all the current best solutions until the objective

no longer improves or after a certain number of iterations. Here xi and vi are

position vector and velocity vector respectively. The new velocity is found by

the velocity update as explained earlier.

Here f(x) is a function to be minimized which is also called as the fitness

function, where x is an n-dimensional array. Algorithm 2 outlines the approach

to minimizing f(x) using PSO and Algorithm 3 assigns cluster label. A set of

particles are randomly initialized with a position and a velocity. The position

of the particle corresponds to its associated solution. Here each particle has

cluster centroids which is the solution and pbest score calculated using the fitness

function. The pbest position that corresponds to the minimum fitness is selected

to be the gbest position of the swarm.

The algorithm finds 7 clusters, out of which cluster 4 is where Earth belongs

(see Fig. 5). Cluster 4 also contains several other exoplanets which include

prominently, among others, Trappist 1-e, Proxima Cen-b etc. More impor-

tantly, the CDHS computed by the proposed method of the planets belonging

to cluster 4 are close to 1 (Note, CDHS_Earth=1). Clusters 3 and 5 are the

next closest to Earth’s cluster and contain some of the following planets whose

CDHS are also close to Earth. Clusters 1, 2, 7 for example contain planets whose

CDHS are far away from that of the Earth.

suite. Assigning hybrid ==false will disable automatic choice of KMeans
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Algorithm 2: Algorithm for PSO

input : An n-dimensional array of data x

output : An array of cluster labels

1 for j ← 1 to max_iterations do

2 for each particle i← 1 to n_particles do

3 up, ug ≈ U(0, 1)

4 vi ← w.vi + λgug(gbest− pi) + λpup(pbesti − pi)

5 pi ← pi + vi

6 if f(pi < f(pbesti) then

7 pbesti ← pi

8 end

9 end

10 for each particle i← 1 to n_particles do

11 if f(pbesti) < f(gbest) then

12 gbest← pbesti

13 end

14 end

15 end

16 cluster ← g(x, gbest)

17 return cluster
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Algorithm 3: Algorithm for clustering

input : An n-dimensional array of data x and gbest

centroids

output : An array of cluster labels

1 for each gbest_centroids c do

2 for each data x do

3 for each param i← 1 to n_params do

4 d← d+ (xi − ci)
2

5 end

6 distance.append(d)

7 end

8 global_distance.append(distance)

9 end

10 global_distance← transpose(global_distance)

11 cluster ← argmin(global_distance)

12 return cluster
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Figure 5: Earth belongs to cluster 4, and so do a number of planets including Trappist 1-e,

Proxima Cen-b and others whose CDHS is close to that of Earth. The clustering approach

is independent of CDHS scores, rather based on physical attributes and a similarity measure,

driven by PSO clustering algorithm

The concept of developing a clustering method based on evolving body of

knowledge of exoplanets is appealing. What we propose and implement here

is a method of inference based on the fusion of two orthogonal approaches.

CDHS symbolizes Earth similarity and PSO based clustering searches for hab-

itable candidates without computing any sort of Earth similarity score. Table 5

demonstrates results of the clustering algorithm which didn’t use CDHS while

assigning planets to different clusters or groups. Thus, the clustering approach

is independent of the habitability score computation method and stands as a

validation technique for the CDHS approach. For example, let us consider a

couple of samples from Table 5. GJ 176 b belongs to cluster 1 by virtue of

the algorithmic assignment (algorithms 2 and 3) and it’s easy to see from the

scores computed that its CDHS is 2.78. Thus, over-reliance on a particular
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Planets cluster number CDHS

GJ 176 b cluster 1 2.78

Kepler-163 b cluster 2 1.89

Kepler-171 b cluster 3 2.02

Kepler-186 f cluster 4 2.00

Kepler-290 b cluster 3 264.7

Kepler-292 d cluster 3 2.24

Kepler-1393 b cluster 1 2.98

Proxima Cen-b cluster4 1.01

Kepler-20 c cluster 3 2.4

Kepler-59 b cluster 2 263.4

Kepler 61 b cluster 2 2.01

Trapp 1-c cluster 3 1.24

Trapp 1- d cluster 5 0.96

Trapp 1-e cluster 4 1.17

Trapp 1-f cluster 5 1.02

Trapp 1-g cluster 4 1.09

GJ 667 C b cluster 7 3.88

Table 5: CDHS of a representative sample of planets from PHL-EC and their corresponding

cluster association: Earth belongs to Cluster 4 by automatic selection via Algorithm 2 and

Algorithm 3

Earth-similarity score (CDHS) is successfully avoided. We now have a method

which testifies for the efficacy of such scoring methods. PSO based clustering

described in this section offers us that flexibility.

From table 5, we observe that Proxima Cen b belongs to Earth’s cluster

and also possess favorable habitability score. If such a planet is not too far

away from the Earth, we could build a model for interstellar migration using

the time to travel to such a planet (if possible) as one of the key parameters.

Next section deliberates on colonization opportunities on such set of discovered

and potentially habitable exoplanets found by our analysis.
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11. Exoplanets and Inter-stellar Trade: Some Conjectures

This section deals with two issues concerning the ‘space dimension’ of in-

ternational trade. First and foremost, in order to justify the inclusion of these

issues in the current context one might invoke the applications of standard

economic principles that underlie many of the path-breaking scientific projects

and explorations that have changed the global order over generations. It is

well-known that in the recent times scientific discoveries and innovations like

those in the sphere of information technology have completely revolutionized

the patterns of economic transactions between agents. In the process, scien-

tific discoveries and the economic outcomes associated with these have become

complementary to each other leading to more prosperity as also vulnerabilities

of different orders. In addition to the quality and academic merits associated

with exploring scientific ideas, such as that in the present context of identifying

habitable exoplanets and assigning scores to these, sheer market forces behind

public budgetary allocations and private initiatives warrant that tangible re-

turns are explored alongside. We offer a brief overview of what such tangible

returns with marketable options cater in relation to identifying habitable exo-

planets. Earlier Krugman (2010) in a rare extension of the traditional theory of

international trade to interstellar transactions argued that the recent progress

in the technology of space travel as well as the prospects of the use of space for

energy production and colonization make the critic’s assertions about limited

use of economics as a pragmatic tool, doubtful. The discovery of a habitable

exoplanet shall require all the fundamental theorems and laws of economics to

be re-established with the same importance as the rules and conditions of astro-

physics, for example. The discovery and plans to explore an exoplanet cannot

be too different from arriving at the ‘new world’ in 1492. Once the habitability

score is obtained, it is ideal to focus on the marginalist analysis commonly used

in economics and compare gains from interstellar trade with that of the cost

involved. This is expected to cover many dimensions, such as resources, tech-

nology, time and entrepreneurship, etc., where risk, uncertainty and discount
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factors among different agents play crucial roles. We will assume a model of

colonization to begin with, where the main thrust shall be on expanding the

resource base for earth as potential gains from trade. This shall predominantly

interact with models of interplanetary negotiations, spillover and distribution.

11.1. The Model

Assume that the fixed cost of sending a carrier to the exoplanet is c and

the cost of research and development building up to the point of engaging in a

voyage is M. These are large fixed costs to be borne by the public or private

agency which wishes to use the outcome of identifying habitable exoplanets and

choosing one or more to send the voyages to. Let the interest rate prevailing

on earth be r, which is the opportunity cost of investing billions of dollars in

this project. On the same note, we will disregard any other interest calculation

either by observers external to earth, or if at all, by anybody aboard the carrier

(also see Krugman, 2010 in this regard as to why the estimate has relevance

only in view of the observer-cum-investor on earth rather than other entities).

Indeed, the discounted future stream of earnings following the investment is

analogous to investing in a long-run bond or over indefinite future, which for

the sake of obtaining closed-form solutions is considered as 2N years, where it

takes N years to visit the exoplanet in question. We further assume that the

carrier is equipped with instruments that can identify and extract commodities

or resources considered of value over a long horizon, to the investor and if

exchangeable, then of value to potential buyers in future. The model applies a

pure colonial extraction mode, whereby, the voyage procures these items for a

per unit extraction cost of pE > 0 . Once delivered back to earth on return the

per unit price of these items is p̂E > 0. The decision problem here is how much

to quantity to extract, i.e., the optimal quantity, q̂E . From this rather simple

specification, the voyage must deliver back an amount which ensures that the

total revenue earned from selling these items is greater than the total cost:

p̂E q̂E > (c+M + q̂EpE) ∗ (1 + r)2N (16)
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which solves for,

q̂E ≥
(c+M) ∗ (1 + r)2N

p̂E − pE(1 + r)2N
≡ ˜̂qE (17)

Obviously, a change in fixed costs should raise the optimal quantity to be ex-

tracted at a fixed rate. However, if the time to reach the exoplanet increases, the

optimal quantity extracted rises, and for even longer spells the optimal quantity

may fall. These are directly observable from equations (27) and (28) below.

δ ˜̂qE
δN

= 2
ln (1 + r)(c+M)(1 + r)2N p̂E

(−p̂E + pE(1 + r)2N )2
(18)

And,

δ2 ˜̂qE
δN2

= −4
ln(1 + r)2(c+M)p̂E [(1 + r)2N p̂E + (1 + r)4NpE ]

(−p̂E + pE(1 + r)2N )3
(19)

Equation (28) suggests that

δ2 ˜̂qE < 0, iff (−p̂E + pE(1 + r)2N )3 > 0

In other words, with passage of time if the discounted return from selling the

interstellar commodities on earth falls below the price of extracting the same,

the quantity extracted would fall. Although we do not model preference in this

framework, but this might be an outcome of preference shifting away from the

commodity in question over time. This is a source of uncertainty manifested in

the form of lower discounted price of the commodity. Thus, the relation between

the optimal quantity extracted and the time taken to complete the round-trip

journey from the exoplanet in question might display an inverted u-shape over

longer time horizon. Indeed, by assuming the rate of interest to be 2% annually,

the fixed cost of the voyage (c=$100 bn), the cost of research and development

spread over several years (M=$75 bn), the price of per unit of the commodity

on earth as $20,000 and extraction cost at $10,000 per unit, then the relation

appears as in Figure 6 below.

Further, in figure 7, we explore the trajectory of what should be the optimal

extraction strategy for the business investing in voyages to exoplanets in terms

of an admissible range of years taken to complete the voyage and variations in

the price of extraction of materials from the exoplanet. Not unexpectedly, as
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Figure 6: Relation between number of years and optimal extraction

Figure 7: Relation between number of years, cos;t of extraction and optimal extraction

the number of years taken to complete the voyage increases along the horizontal

axis (N), and the rate of extraction increases along the y-axis ( ), the optimal

volume of extraction is the maximum attainable.

11.2. Scope of Interstellar Trade

Instead of the extraction model discussed above, if earth and the exoplanets

are engaged in trade in the same fashion as countries engage in it, the above

conditions would undergo suitable changes. Suppose the per unit price of the

earth’s commodity in the exoplanet is p̃E (export price, f.o.b) and the quantity
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that gets traded from earth is qT . Balance of trade with the exoplanet requires

that:

p̃E ∗ q
T = p̂E ∗ ˜̂qE (20)

Where, is now the import (c.i.f) price of the commodity from exoplanet. It is

natural to assume that if trade takes place instead of extraction, the quantity in

question receivable from the exoplanet shall be less than and could be equal to

. Since we apply the discount rate effective for a trade from earth, the interest

rate assumed in the previous sub-section remains unchanged. From (29), the

quantity trade by businesses on earth equals:

qT =
p̂E ∗ ˜̂qE
p̃E

(21)

Substituting from (26), equation (30) leads to:

qT =
p̂E(c+M)(1 + r)2N

p̃E p̂E − pE(1 + r)2N
(22)

Equation (31) suggests that a rise in N should affect the volume of trade fol-

lowing the condition of balanced trade, when the previously defined extraction

cost in the exoplanet may now be treated as a collection (shipment) cost borne

by the importer from earth. The volume of trade with the exoplanet is concave

with the passage of time. The first and second order differentiation with respect

to N are given in (32) and (33) respectively, such that,qE is constant at a high

value of N and that trade might cease if the discounted return from future value

of the imports consumed on earth is lower than the exports shipped out in the

present times.
δqT

δN
= 2

ln(1 + r)(c+M)(1 + r)2N p̂2E
p̃E(−p̂E + pE(1 + r)2N )2

(23)

and
δ2qT

δN2
= 4

ln(1 + r)2(c+M)p̂2E [(1 + r)2N p̃E + (1 + r)4NpE ]

p̃E(−p̂E + pE(1 + r)2N )3
(24)

Figure 8 treats the shipping cost in the exoplanet and the time travelled as

variables in the same estimate of trade volume between earth and the exoplanet.

Using the same numerical specifications (and assuming that the cost of shipping

and the cost of extraction are same in the exoplanet) as applicable for the
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Figure 8: Relation between number of years and optimal trade volume from earth

previous results, here we find that the quantity traded (vertical axis) undergoes

cyclical fluctuations for different values of the extraction cost and the length of

time involved.

Equation 33 and figures 6, 7 clearly indicate that the time, N , to reach

any exoplanet is a key factor in determining volume of interstellar trade and

possible migration. In any catalog, e.g. Exoplanets Data Explorer [42] there

is a column ’Distance to star’ in Stellar parameters. We, upon arranging it in

increasing order, observe the nearby exoplanets. Proxima Cen b is one such with

exoplanet which also happens to be potentially habitable by our computation

in Sections 5 and 10 (Please see Table 5).

12. Conclusion

We illustrate the results of our proposed model using planetary inputs from

the recently discovered group of seven Earth-like planets known as the TRAPPIST-

1 system. Please note, the method was applied to all discovered and con-

formed Rocky exoplanets. Trappist system is used for illustration purpose.

TRAPPIST-1 e (belongs to Earth Cluster as shown in section 10) has been

established to be the most habitable candidate out of the seven [43]. The

manuscript provides empirical evidence of the correctness of our approach by
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Figure 9: Relation between number of years, collection cost and optimal trade volume from

earth

comparing the computed habitability scores (see table 1 and fig 4) for the

TRAPPIST-1 system with existing values in the literature. The solution sets

obtained for planets under the TRAPPIST-1 system exhibit a clear trade-off

between the interior and the surface scores. Through a game theoretical anal-

ysis, we find that this structural relationship between the two scores ensures

that the weighted combination of the two results in a consistent CDHS value

regardless of the weights chosen for the scores. A multi-objective optimization

framework is proposed to solve the problem in order to gain structural infor-

mation about the original optimization problem. We precisely accomplish this

objective by gaining insight on the trade-off between interior and surface habit-

ability sores. This is something not observed with single objective optimization

approach [44]. There is no clear relationship between the surface and interior

score which we would like to understand. It needs to be explored whether this

trade-off is a catalyst for habitability or whether this is accidental. We say this

because the trade-off is observed in the TRAPPIST-1 system, particularly in

the planets which are considered potentially habitable (earth-like). Interior and

Surface scores serve two different purposes in determining the habitability of

exoplanets. In other words, one cannot be replaced by the other and the goal is

to include both toward developing a reliable habitability indicator. Therefore,
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the bi-objective framework is justified and we gain rich insights from it! The

strength of this proposed approach has been validated using machine learning

algorithms such as KNN [3] and XGBoosted trees [4] by utilizing computed

CDHS values and labeling corresponding exoplanets into appropriate classes.

However, in past approaches, CDHS is computed by splitting it into two com-

ponents – surface score and interior score – which are estimated independently.

The sole reason for this split is due to the ease of visualization of these compo-

nents against their input parameters. Because of the dependence between the

planetary parameters that are used to estimate these components, it is specu-

lated that there is an intrinsic relationship between the interior score and surface

score. And hence, a new model for CDHS estimation is proposed that factors

in the relationship between the two scores. A multi-objective optimization task

is defined to search for coefficients of elasticity that simultaneously maximizes

both interior and surface score. The result is a non-dominated solution set that

is characterized by trade-offs between the two components of the score. This

relationship between the interior (Yi) and surface score (Ys) implies cooperation

between the two components. Since the final CDHS is a number that lies be-

tween Yi and Ys in which weights wi and ws determine the proximity of CDHS

to Yi and Ys, the trade-off relationship implicates that a decrease in Yi is com-

pensated by an increase in Ys and vice-versa. This allows a consistent CDHS to

be maintained. We take a game theoretic approach and prove that the choice of

weight pairs will decide what (Yi, Ys) from the Pareto front is ideal for CDHS

calculation. The conclusion is that unlike [3] and [4], no matter what wi and

ws are set to, the trade-off between Yi and Ys ensures a consistent CDHS. The

result is a robust methodology for quantifying exoplaneteray habitability.

We combined clustering approach with habitability score computation to

develop richer inference from the data of exoplanets. The planets which are

identified as both having CDHS close to the Earth and belonging to the same

cluster as Earth are probably the most likely candidates for habitable planets.

This method can bolster our understanding of factors that affect habitability

in the long run. The clustering approach is also free from any class labels that
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already exist in the catalog and are not beyond reasonable doubt, either due

to bias or dependence of surface temperature. The clustering approach didn’t

consider surface temperature or related attributes in feature selection.

The manuscript develops a tool for planetary habitability prediction using

bi-objective optimization method for habitability score computation combined

with planetary features to generate a predictor. Unlike earlier work, the predic-

tor is developed as a computational intelligence (CI) tool, departing significantly

from label-based classification approach. We observe convergence between the

outcome of two approaches, thus fortifying the belief of producing a more reli-

able set of habitable planets for further physical investigation.
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Appendix A. Convergence for hypervolume terminated QPSO (HT-

MOQPSO)

We assume the quantum delta potential model of PSO where,

|ψ|2dxdydx = Qdxdydz (A.1)

|ψ|2 is the probability density function satisfying

∫ +∞

−∞
|ψ|2dxdydx =

∫ +∞

−∞
Qdxdydx = 1 (A.2)

The state function, ψ(x, t) is described by Schrödinger equation. Consider H

as the Hamiltonian operator, for a single particle of mass m in a potential field

V (x), given as

H = −
h2

2m
∆2 + V (x) (A.3)

where h is the Planck’s constant. Let us consider the time dependent and time

independent Schrodinger equation to arrive at the variant describing the delta

potential well of QPSO: Hψ = ih∂ψ∂t ; time dependent variant and Hψ = Eψ;

time independent variant where E = Energy eigen value and V (x) = −γ∂(x−

p) = −γ∂(y); y = x− p. p is the center of the attraction potential field. This is

essential for stability and bound state of the potential. Using the above variants,

we can write

[−
h2

2m

d2

dy2
− γ∂(y)]ψ = Eψ

=⇒
d2ψ

dy2
+

2m

h2
γ∂(y)ψ = −

2m

h2
Eψ

=⇒
d2ψ

dy2
+

2m

h2
[γ∂(y) + E]ψ = 0

=⇒
d2ψ

dy2
− β2ψ = 0;where β =

√

−2mE

h

Let L = 1
β . The wave function (normalized) and the probability density function

can be represented as ψ(y) = 1√
L
e−|y|/L and Q(y) = 1

Le
−2|y|/L respectively.

The termination condition on the MOQPSO algorithm based on hypervolume

is based on the assumption that successive iterative computation of the area
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including soluton set (pareto front) would converge i.e. the differences between

the successive areas bounded by ǫ implying the swarm movement being restricted

in an ǫ - neighborhood to guarantee convergence. Since, the probability density

function is computed already. We arrive at the expression stating the difference

in hypervolume. ||Ai+1−Ai|| =
∫ +ǫ

−ǫ ||Q(Ai+1)−Q(Ai)||dy → ǫ. As ǫ→ 0 when

i→∞, HT-MOQPSO is guaranteed to converge asymptotically.

Appendix B. Modeling constraints using penalties

We represent all strict inequality and equality constraints as non-strict equal-

ity constraint as described by Ray and Liew [45]. We convert strict inequality

constraint of the type g′(x) < 0 to a non-strict inequality constraint g(x) by

introducing an error term ǫ such that g(x) = g′(x) + ǫ ≤ 0. By introducing

a tolerance value τ , we convert equality constraint of the form h(x) = 0 to

g(x) = |h(x)| − τ ≤ 0. For a solution pi, let ci denote the vector of constraint

values. Then cik = max(gk(pi), 0) ∀ k = 1, 2, 3, ....m. When cik = 0, then

solution pi lies in the feasible region of the search space.

Applying this rule, constraints under CRS can be translated to

−φ+ ǫ ≤ 0, φ− 1 + ǫ ≤ 0 ∀φ ∈ {α, β, δ, γ} (B.1)

|α+ β − 1| − τ ≤ 0, |δ + γ − 1| − τ ≤ 0 (B.2)

Under DRS, we replace (B.2) with α + β + ǫ − 1 ≤ 0, δ + γ + ǫ − 1 ≤ 0.

We impose these constraints through the use of penalty methods. In penalty

methods, we augment the objective functions with penalty functions that "pe-

nalizes" a candidate solution when it violates any of the constraints. In case of

a minimization problem, penalty functions return a large positive value, when a

candidate solution moves outside of the feasible region, that gets added to the

base objective function. This, in turn, makes the objective function large and

undesirable and hence, making the candidate solution weak.
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We define the following penalty functions:

ψ(x) =











0, if |x| − τ ≤ 0,

k1.|x|, otherwise

,Ω(x) =











0, if x+ ǫ ≤ 0,

k2.|x|, otherwise

k1 and k2 are penalty factors. Larger the penalty factors, the more severe

the penalty is. Using functions ψ and Ω, we augment objective functions (4)

and (5) under CRS condition as

PYi = −Yi + ψ(α+ β − 1) + Ω(−α) + Ω(α− 1) + Ω(−β) + Ω(β − 1) (B.3)

PYs = −Ys + ψ(δ + γ − 1) + Ω(−δ) + Ω(δ − 1) + Ω(−γ) + Ω(γ − 1) (B.4)

Using these augmented objective functions, the constrained optimization task

(8) subject to (9) is equivalent to the unconstrained optimization task: min~x ~f(~x) =

[PYi, PYs]. In our experiments, we set k1 and k2 to 1012 and make ǫ and τ equal

to 10−8.

Appendix C. Hyper-parameter tuning

Tuning and improvising parameters such as max and min velocity, learning

factors such as cognitive and social factors, inertia weight etc. is not possible

through the methods that the classes in Jmetalpy provides. Tuning of these

parameters is really crucial for the algorithm to converge. With respect to the

range of the functions that we are trying to optimize and the constraints that

are imposed on the search space, the algorithm, with the default parameters

provided by the library, did not yield desirable solutions. Most of the solutions

in the solution set were outside of the feasible region of the search space. We

suspected that V max was too large and V min was too small. And hence,

some changes were made in Jmetalpy′s source code to make parameter tuning

possible. Initially, for jth decision variable,V maxj =
upperboundj−lowerboundj

2.0 ;

V minj = −V maxj , where upperboundj is the largest allowable value for the
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jth decision variable and lowerboundj is the smallest allowable value for the jth

decision variable. For our problem, these values where changed to V maxj =

upperboundj−lowerboundj
1000.0 with V minj still set to −V maxj . Learning factors w,

C1 and C2 are sampled from a uniform distribution with specified ranges i.e.

w ∼ U(wmin, wmax), C1 ∼ U(C1min, C1max), and C2 ∼ U(C2min, C2max). We

set wmin = wmax = 0.1, C1min = 0.1, C1max = 0.5, C2min = 0.8 and C2max =

1.5. The swarm size is set to 100.
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