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Abstract

This paper expands on our understanding of the lights-income relationship by linking the
newest generation of nighttime satellite images derived from the Visible Infrared Imaging
Radiometry Suite, VIIRS, to nationwide panel-data on population and income for both
Brazil and the United States. The dataset includes 3,095 US counties and 5,570 munićıpios
covering the years 2012-2018. I leverage the quality and frequency of those data sources
and the VIIRS lights images and validate that nighttime light responds to changes in
income when controlling for population effects. I find positive effects of GDP on light in
both USA and Brazil though light is less responsive to changes in GDP in the USA than
in Brazil. Consistent with the literature I find evidence of nonlinearities in the form of
decreasing marginal effects of GDP on nighttime light. These results hold across many
specifications and are robust to sub-sample analysis and placebo tests. Harnessing the
large sample size I use regressions by centile of nighttime light to outline the effects of
GDP and population on nighttime light across the entire distribution of light. Finally,
I use a between-county estimator to identify the effects of time-invariant infrastructure
features on night-time light. I find that roads, rail, ports, airports and border crossings
contribute positively to nighttime light.
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Keywords: night-time light, GDP, population, infrastructure, regional development,
Brazil, USA
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1 Introduction

The National Aeronautics and Space Administration (NASA) collects high-resolution imagery

of the earth at night using the newer Suomi-NPP satellite. The latest generation of images is

captured onboard using the Visible Infrared Imaging Radiometry Suite (VIIRS). Starting with

groundbreaking papers by Henderson et al. (2012) and Chen and Nordhaus (2011) over the

past decade the use of nighttime light data among social scientists has flourished. Though their

use has not yet become widespread the newest generation of images offers major advancements

over the previous generation of images including increased sensitivity at both the extensive and

intensive margins of light (Donaldson and Storeygard, 2016; Gibson et al., 2021).1 Henderson

et al. (2012) and Chen and Nordhaus (2011) proposed that human-generated lights could be

used as a proxy for income and the authors find a strong relationship between income and

lights at the country level. The authors in Henderson et al. (2012) faced some limitations with

their data in that the reference national accounts data from many low-income countries could

be noisy making identification of the exact parameters linking income, GDP and population

difficult and, worse, potentially causing omitted variable bias (Bosch-Capblanch et al., 2009).

Data from the previous generation of satellites were top-coded meaning the sensor was unable

to record light values beyond a certain integer, 63. This translated into dense and bright areas

being top-coded causing loss of information.2 The newer VIIRS images no longer face this

limitation as the new sensor has been customized to capture nighttime imagery (Elvidge et al.,

2017; Chen and Nordhaus, 2015). VIIRS images have a much higher resolution than those from

DMSP. The previous generation of nighttime lights had a pixel size of 5km by 5km (25km2),

45 times larger than VIIRS images which have a pixel width of 742m by 742m or 0.55km2

(Elvidge et al., 2013).

Research using data from Sweden has suggested that light growth might be more closely

linked with population movements more than with fluctuations in income (Mellander et al.,

2015). I attempt to resolve that question concerning the primary determinants of human-

generated light by putting the VIIRS nighttime lights to the test with panel data from the

second administrative level. These administrative units are known as counties in the United

States and munićıpios in Brazil.3 Panel data including variables measuring both population and

GDP is useful in this context in that it that allows me to control for unobserved, time-invariant,

county-and-munićıpio-specific characteristics such as climate or the presence of infrastructure

that might influence the estimated effect of GDP on nighttime light. I argue that without

estimating separately the marginal effect of population on nighttime light the VIIRS nighttime

lights offer much lower value-added for economists who are interested in making inference

about the welfare or the relative welfare of individuals. A principal contribution of this paper

is therefore to further understanding of the lights-income-population nexus by linking lights

to high-quality administrative panel data that permit the decomposition of light growth to

its constituent components: population and GDP growth. The richness of these data allows

1This satellite collection program is called the Defense Meteorological Satellite Program or DMSP
2Example images can be found in appendix figure 10
3The name munićıpio translates to ‘municipality’
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for deeper explorations of the possible nonlinear ways in which population and GDP might

enter the nighttime light production function. A second key contribution is to clarify the

quality and capacity for nighttime lights to proxy for GDP at a high resolution. Providing

evidence supporting this relationship between economic output and light will allow future users

to utilize this data in the appropriate context and with increasing precision. Due to the potential

for spatially correlated economic shocks I incorporate standard errors which are robust to

spatially correlated shocks based on the work of Conley (1999). Incorporating spatial dynamics

is critically important. Given the density of some munićıpios and counties it is difficult to

imagine they do not suffer from common economic shocks. This high-resolution analysis of the

relationship between nighttime light and GDP or economic output can validate and motivate

more research utilizing nighttime lights as a proxy indicator for growth or development.

Given the size (n=55,048) of the combined dataset I am able to conduct extensive sub-

sample analysis. I find that nighttime light tends to be more strongly correlated with GDP

for poorer counties in the USA while the relationship is stable across the distribution of GDP

for munićıpios. The direct effect of GDP on nighttime light may be unreliably estimated

due to endogeneity - areas with light and GDP growth might also attract individuals to live

there (Van Lottum and Marks, 2012). To combat this potential issue I incorporate state×year

dummies which controls for political, price, weather or other state-level or state-specific shocks.

Previous authors have suggested that electrical consumption data may be of a similar value

to nighttime light as a proxy indicator (Mellander et al., 2015; Henderson et al., 2012). I

also compare the nighttime light measure alongside electrical consumption data at the county

level in California over the sample years. I find that electrical consumption does correlate

with higher levels of GDP and population. In a within-county model I find only an effect of

increases in the population on an increase in commercial electrical consumption. A within-

county transformed model reveals no statistically significant correspondence between within-

county changes in output and electrical consumption.

With respect to the burgeoning literature of papers using nighttime light almost all of the

literature to date has utilized the older generation of satellite images, the DMSP satellite data.

Unless otherwise noted all of the following papers utilize DMSP rather than VIIRS data. Au-

thors Pinkovskiy and Sala-i Martin (2016) use nighttime lights to evaluate the relative quality

of national accounts data over household survey data. Jedwab et al. (2017) examine path de-

pendence manifested by the establishment of colonial-era railways and the effects of colonial

railways on modern day development in Kenya. The authors in Jedwab et al. (2017) use night-

time lights as their measure of contemporary economic development. A conceptually similar

paper examines the persistent effects of Roman roads on contemporary economic development

in Europe (Dalgaard et al., 2018). Keola et al. (2015) analyze growth in developing countries

using nighttime lights. The authors propose that nighttime lights may not extensively capture

economic activity in agricultural areas where light may not scale with productive activities.

Michalopoulos and Papaioannou (2013) investigate pre-colonial institutions and explore how

they shaped regional economic development using nighttime lights as an indicator for economic

development. The authors find a strong correspondence between pre-colonial institutions and

3



present-day economic development. Similarly Ranjan and Talathi (2021) examines the effect

of colonial institutions on present-day economic development in India using nighttime lights

to measure contemporary economic growth. Mirroring findings in other papers the authors

conclude that areas less impacted by colonial institutions grow more rapidly though there ap-

pears to be convergence (Banerjee and Iyer, 2005). Cook and Shah (2020) analyze the effects

of India’s rural employment guarantee program using nighttime lights and finds evidence for

beneficial economic effects of the program.

Gennaioli et al. (2013) take a deep dive into the roots of regional development by testing for

a correspondence between human capital and regional development though they use nighttime

lights as a robustness check rather than as a primary method. Jean et al. (2016) use nighttime

lights and machine learning to create a model for predicting poverty at a highly disaggregated

level. Michalopoulos and Papaioannou (2014) use nighttime lights to estimate the effects of

ethnic divisions and institutions on economic outcomes. The authors find that institutions do

not fully explain differences in within-ethnic group economic outcomes. Alesina et al. (2016)

use nighttime lights to measure the effects of different geographical endowments on economic

well-being. The authors identify the presence of an inverse relationship between contemporary

economic development and ethnic inequality.

Baum-Snow et al. (2017) explore how railroads and highways have influenced the Chinese

urban landscape. In their paper railroads and highways are found to displace populations

in China and, the authors argue, may create a negative effect by decentralizing economic

activity. Henderson et al. (2018) explores whether geography influences the spatial distribution

of human economic activity proxied by light. The authors find that geographic characteristics

account for as much as 50% of the variation of economic activity (light). In less-developed

countries the authors find that agricultural contributions explain more variation in light than

do changes in international trade. Gennaioli et al. (2013) evaluate regional development and

convergence using a new dataset of regional GDP and cross-validate their findings with night

lights data. Henderson et al. (2017) attempts to identify the causes of urbanization in Africa

utilizing nighttime lights data. The primary hypothesis of this paper is that urbanization may

be shaped by climate change as a primary force.

Hodler and Raschky (2014) examine the presence of stronger contemporaneous growth in

regions or states associated with the leader of a country and find a significant result. The

authors conclude that during the term of a premier the region from which that premier comes

enjoys higher GDP growth in relation to the rest of the country. Mellander et al. (2015) examine

the relationship between economic activity, population, enterprise density and nighttime light in

Sweden. Utilizing high-resolution geospatial data on enterprises and enterprise characteristics

the authors find that light growth corresponds most strongly to nighttime population density

(population) rather than daytime enterprise density. A significant limitation of the analysis

in Mellander et al. (2015) is that the authors use cross-section rather than panel data. Using

panel data I find that nighttime light moves both with population and income changes though

nighttime light appears to move most strongly with income. Mellander et al. (2015) argue

that night-time light is only weakly correlated with income although in their OLS regressions
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night-time light appears to increase by 0.424 units with an increase of one unit of Total Wage

Incomes which is actually extremely close to the point estimates for the effect of GDP on

nighttime light in the United States (0.472) when estimated with my preferred specification

with state-year dummies. Levin and Zhang (2017) utilizes data from the newer VIIRS satellite

and analyzes lights-income relationship for all the urban areas on the globe (n=4,153) in the

months of January 2014 and July 2014. They find that lights are more closely related with

national income per capita than with population.

One recent paper measures the effects on light of flooding in cities around the globe and

finds that low-lying areas in cities recover as fast as other areas. There appear to be no

permanent effects of flooding on city development (Kocornik-Mina et al., 2020). The authors

utilize the prior generation of nighttime lights to measure economic recovery from large-scale

floods in over 1,800 cities across 40 countries. The authors find that low-elevation areas are

more likely to flood and they are also fast to recover from damage. Low-lying areas are centers

of concentrated economic activity and the authors find no evidence that economic activity

endogenously relocates to higher, more secure areas. This work represents one of the strongest

examples of the type of analysis that can be done with nighttime lights, especially in a context

where it is not necessary to distinguish between population changes and relative changes in

income holding population constant.

Bluhm and Krause (2018) use nighttime lights images to measure primate cities in sub-

Saharan Africa and the growth of primate cities.4 The authors highlight the potential benefits of

sub-national or regional measurement of economic activity using lights and offer some critiques

of the shortcomings of the DMSP technology. The primary purpose of Bluhm and Krause

(2018) is to document the increases in the size of primate cities and test if city lights follow

a pareto distribution. Frick et al. (2019) use DMSP night-time lights data to analyze the

effect of special economic zones on economic activity. They find that key determinants to the

success of special economic zones were links with pre-existing industrial infrastructure in the

surrounding area and the presence of large markets in which to sell outputs. Bleakley and Lin

(2012) use night-time lights from the years 1996-7 to test for path-dependence around natural

water features in the United States such as waterfalls. The authors find that portage sites,

locations where, in the past, transport boats could not pass and thus cities arose, are likely

to still be of a substantial size around 100 years after the portage sites were relevant. Smith

and Wills (2018) leverage the global nighttime lights coverage to estimate the fraction of the

population below the poverty line. They find that spillovers from economic activity rarely reach

to rural populations. Similarly Bruederle and Hodler (2018) use DMSP lights and find that

nighttime light is a meaningful proxy for economic development at the local level in sub-Saharan

Africa. Gibson et al. (2021) outline the reasons for preferring the VIIRS series to the DMSP

nighttime lights and tests for a relationship between economic output and nighttime light in

Indonesia though in their context the authors use nighttime lights as a predictor rather than

the dependent variable. They find a persistent relationship which is even stronger with VIIRS

4A primate city is very large primary urban agglomeration that is the social, economic and legislative center of
a country
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nighttime lights compared to DMSP. The authors demonstrate VIIRS lights better capture the

rural/urban split relative to DMSP nighttime lights.

In contrast with the previous nighttime lights papers which have often focused on the entire

globe or multiple countries as the scope of analysis in this paper I contrast the United States

and Brazil, two countries which have some similar characteristics and some differences. In

using two countries I depart from Mellander et al. (2015) which exclusively analyzes Sweden.

Sweden is a relatively wealthy and demographically homogenous country with relatively few

major urban areas in Northern Europe. The 3,095 counties of the United States provide a

much larger landmass and total population (10m vs. 350 m) than Sweden and the United

States enjoys substantial heterogeneity with respect to landmass and shape as well as demo-

graphic composition and population density. Both Brazil and the United States feature diverse

geographic characteristics including mountains, lakes, rivers and coastlines. The differences

within the United States are evident when we consider places like California, with only 58

counties per 40m citizens; Alaska which has oil wealth, enormous counties and extremely tall

mountains though it is sparsely populated; Arizona which is mostly desert and borders Mexico;

Washington which has dense deciduous and evergreen forest, mountains and a shared border

with Canada while Hawaii is a tropical island halfway between the US and Japan in middle of

the Pacific ocean.

A country with 211 million people5 living in 5,570 munićıpios, Brazil is also diverse in

environmental and geographical characteristics. Though munićıpios are, on average, smaller

than counties there is significant overlap between munićıpio size and county size. There is also

substantial heterogeneity in the geography of Brazilian munićıpios ranging from the unique

coastal city of Rio de Janeiro to Manaus in the middle of the Amazon rainforest. Brazil has

dense and poor areas to a much larger extent than the USA. Since the two countries combined

include many heterogenous county and munićıpio types I analyze the USA and Brazil combined

sample as well as separate estimates for USA and Brazil. Combining the USA and Brazil

samples allows me to leverage more than 55,000 observations, 21,634 from the USA and 33,414

from Brazil. Results with the two samples combined are shown alongside results from the

separate samples in most sections of the paper.

2 Motivating NTL

2.1 Nighttime Lights for Small Areal GDP Estimation

In the past nighttime lights papers have often focused on utilizing lights data for measuring areas

where no good GDP measures existed. In general these were larger areas such as the country

or the state level. Because of the global coverage and the high-resolution dimension of the

VIIRS images it is important to know to what extent lights measure GDP at a high resolution.

Knowing this will allow future researchers to utilize these data with a deeper knowledge of the

5Source IBGE Census Data: https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-
populacao.html?=&t=resultados
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relationships between these variables. Some researchers may not need to dissect the different

effects of population/GDP changes but for other researchers there is value in understanding

the relationship between population and nighttime lights while holding income constant and

between nighttime lights and income while holding population constant.

2.2 High(er) Frequency Measurements

VIIRS nighttime lights images are available at a global level at monthly frequency with a 3-

month lag from the present period and completely free. This means that utilizing nighttime

lights data it is possible to inexpensively monitor fluctuations in remote or impossible-to-access

areas at a high frequency. Since VIIRS lights data are available at high frequency this facilitates

measurement of economic fluctuations in very small areas and at a high frequency.6 High

frequency localized measures of economic output could allow for a more precise proxy or measure

of GDP that could inform policymakers, international organizations and potentially private

firms. For example if we know that there is a 1:1 correspondence between GDP and light in

certain areas we then have a good alternative measure to GDP available at a high frequency.

Administrative or official GDP data is not available at a monthly frequency for all counties

all over the world. The limits of this may be even pushed further by highlighting smaller

polygons or buffering spatial points data around households, villages, firms, airports or other

infrastructure features.

2.3 Superiority to Other GDP Alternatives

Some authors have proposed that alternative data sources may be of equal value as a proxy for

GDP. One example of a proposed alternative is electrical consumption data (Henderson et al.,

2012). I find a strong correspondence between nighttime light and electrical consumption

exclusively in cross-sectional estimates though electrical consumption appears more strongly

associated with changes in population than with changes in income. This makes sense: average

annual electrical consumption per individual may not vary much with respect to income. This

fact means VIIRS nighttime lights data can also be leveraged to estimate electrical consumption

for residential areas or to measure large firms such as factories and other industrial areas.

3 Methodology

The main approach of this paper is to use panel-data econometrics to uncover the links between

population growth, income growth and nighttime light as measured. Using nighttime light as

the dependent variable makes sense in the context because the satellite images from the VIIRS

6Nighttime lights images are even available on a daily basis from NASA at
https://worldview.earthdata.nasa.gov/. Daily frequency images are more complex to work with as pix-
els may be covered with clouds and daily imagery does not undergo any pre-processing to remove other noise
or aberrations. Working with the daily-frequency data, though complex, could present interesting options
for monitoring weekly or daily fluctuations that might be of note. One example is perhaps the timing of the
harvest period in agricultural areas, or weekly changes in urban lit areas to monitor an urban business cycle.
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are sometimes noisy even after processing. Despite the drawbacks the images are very precise

in how they record the texture of activity across space. Given the density of counties and

munićıpios and that population and economic activity are spatially related it is critical to

incorporate controls for spatially correlated economic shocks using the procedure developed by

Conley (1999) and Hsiang (2010).7 The general model is a night-time light production function.

It states simply that night-time light is a function of income, population and other factors:

NTLct = β1[GDPct] + β2[POPct] + αc + φt + εct (1)

Where c indexes the county or munićıpio, t indexes the year, αc are the county/munićıpio fixed

effects and φt is a wave fixed effect. Based on previous papers such as Hu and Yao (2019) there

is reason to believe that income and population may not enter the nighttime light production

function linearly. This is an important consideration for our purposes as nonlinearities may

mask the effects of interest. For these reasons I also estimate an alternate specification that

includes squared terms and interaction terms as independent variables. The intuition behind

the squared terms is that there could be strongly diminishing effects of income and population.

The interaction term is included to capture the possibility that the lights-income and lights-

population relationship could be amplified (or dampened) in more populated, wealthier counties

and munićıpios. The second potential specification is therefore the following:

NTLct = β1X + β2(X
2) + β3(x1 × x2...) + αc + φt + εct (2)

The first term is the log-transformed variable, the second term is the squared transformation

of all control variables and the third term is the interaction of all control variables. Regressions

are also presented that include state-year fixed effects that control for unobserved, state-year

specific economic shocks such as price shocks, political elections or other economic volatility

including weather shocks. Though computationally expensive I argue these results allow robust

and precise estimates of the effect of GDP on lights.

Between-county Estimation

There are geographic and physical characteristics of counties and munićıpios which we may

like to analyze but it is difficult because infrastructure features are largely invariant within

the sample period of 2012-2018. The effect of infrastructure and other time-invariant features

are therefore “washed out” by the fixed-effects procedure. In order to obtain identification of

time-invariant features all variables are collapsed to their group means. Identification of the

effect of the infrastructure or geographic features then comes from comparing between counties

which have infrastructure or features to other counties that lack infrastructure features within

the same state. Given the size of the sample and the survey period I feel that using the between

7Particularly in Brazil, munićıpios are densely packed as well as highly populated. A figure depicting the density
of munićıpios in the center of Sao Paolo is included in the appendix (Figure 11) for illustration.
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estimator is the most appropriate approach to consider the effects of geographic variables. As

the sample period is short I argue the presence of infrastructure elements is unlikely to be

endogenous to nighttime light or GDP within the sample period. Roads, airports, rail lines and

ports were either already present at the start of the sample period (2012) or they take decades

to prepare and construct. The estimated equation using the between estimator is:

NTLc = β1X̄c + β2(X̄
2

c
) + β3(x̄1c × x̄2c...) + α1[PORTc] + α2[ROADc] + α3[AIRPORTc]+

α4[RAILc] + α5[BORDERc] + ψs + εc (3)

where x̄ refers to the county-level means of the variables, x̄1× x̄2 represents interactions among

controls, specifically the interaction of population×GDP and αs is a fixed-effect at the state

level.

4 Data

Table 1 details years of data availability. The VIIRS nighttime lights series starts only in 2012

while GDP data at the county level are available from 2001-2018 for the US and for a similar

period for Brazil. County-level population estimates for the U.S. start in 2009 and are available

until 2018. This analysis is therefore limited by the lack of current population data and GDP

data from Brazil as we have no American Community Survey (ACS) estimates for population

at the county level past 2018 for the U.S.A. and 2017 in Brazil. Tables showing the top and

bottom counties by nighttime lights and top and bottom munićıpios can be found in appendix

tables 16-19.

Source Years Available

GDP
USA BLS 2001-2018
Brazil IBGE 2002-2017

Population
USA ACS/census 2009-2018
Brazil IBGE 1975-2017

Lights Both NoAA/NASA 2012-present

Table 1: Data Availability

4.1 BLS/IBGE GDP Data

Over the past few years the Bureau of Labor Statistics (BLS) has been releasing local-area cal-

culations for gross domestic product. In the BLS GDP statistics county-level GDP is calculated

using the income approach. Based on the availability of data the Bureau of Economic Analysis

(BEA) utilizes the income method for calculating county-level GDP. “GDP is computed as the

sum of compensation of employees, taxes on production and imports less subsidies, and gross

operating surplus. The initial regional estimates are then scaled to the national estimates so
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that all BEA estimates are reconciled” (Aysheshim et al., 2020).8 There is substantial between-

county variation in the GDP data as some counties produce output worth millions of dollars

while others produce well under 100k per annum. The Brazilian GDP data comes from the

Instituto Brasileiro de Geograf́ıa e Stat́ıstica (IBGE). The data are compiled from governmental

and other administrative data sources, similar to the U.S.A. GDP estimates.9

(a) Foz do Iguaçu, PR (b) Brasilia, DF

(c) Sao Paolo, SP (d) Manaus, AM

Figure 1: Night-time Lights of Four Major Brazilian Cities;
Layers: Basemap: Open Street Map, CC License; Night-time Lights Annual Image (2019);
Changes in NTL 2012-2017 - Green = small change, Red = large change

4.2 ACS/IBGE County-Level and Munićıpio-level Population Data

Population estimates come from ACS 5-year estimates of the county-level population. These

are calculated using data sampled from counties on a rolling basis over the course of 5 years.

ACS data are the main survey data for intercensal periods.

Like the GDP estimates the Brazilian population estimates also come from the IBGE. The

estimates are based on the Brazilian population census which took place in 2000 and 2010 and

adjusted for changes in between.

8Principal sources of the county-level GDP data are the Department of Labor’s Quarterly Census of Earnings
and Wages, air-carrier traffic statistics, Department of Transportation surface transport data, bank branch
deposits and other proprietary government sources. A full accounting of all sources and information used in
the calculation of GDP at the county level can be found in Aysheshim et al. (2020).

9The full details of all sources and methods for the production of the Brazilian GDP estimates can be found on
the IBGE website
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4.3 VIIRS Night-time Lights Data

The Visible Infrared Imaging Radiometer Suite (VIIRS) is designed to capture human-made

light and overcomes many limitations of the previous Defense Meteorological Satellite Pro-

gram (DMSP) satellite images. The Suomi NPP satellite is a joint civilian venture of the

United States National Aeronautic and Space Administration (NASA), the Department of De-

fense and the National Oceanographic and Atmospheric Administration which started in 2011.

Overcoming a major limitation of the DMSP lights, the VIIRS incorporates an automatic gain

sensor which adjusts allowing greater sensitivity and reducing the need for performing calibra-

tion procedures with the images. This also means the sensor can better capture much lower

and higher levels of light than the previous generation (Elvidge et al., 2017).10 Additionally the

automatic gain sensor reduces limitations around night-time lights data coming from heavily

saturated urban areas. The new VIIRS images are available on a daily frequency or in monthly

composite forms and the resolution is extremely high. VIIRS pixels are .742km×.742km com-

pared to DMSP pixels which are 5km×5km across (Carlowicz, 2012; Elvidge et al., 2013).

This sensitivity is of interest to researchers attempting to pinpoint precise centers of economic

activity.

Some examples of night-time lights images of major Brazilian cities are shown in figure 1 and

U.S. cities are shown in figure 2. Long-run changes in night-time light are shown in green-red

colors to demonstrate intensity. First in panel (a) of figure 1 the city of Foz do Iguacu, Paraná,

Brazil is visible where the Itaipu hydroelectric dam straddles the border with Paraguay, to the

East and Argentina to the South. Much more development is apparent on the Paraguayan

side than on the Brazilian side demonstrating the sensitivity and high-resolution of the VIIRS

sensor. Changes in both the extensive and intensive margins are visible on the Paraguayan side

while on the Brazilian side there is much less change at the extensive margin and light/growth

appears to be condensed along the highway. In the top right corner of the figure panel (b)

shows Brasilia, Distrito Federal with economic growth visible down to Gôıana in the bottom

left corner with the city of Anápolis in between. This area has experienced a relatively rapid

period of development compared to other parts of Brazil. Figure 1 panel (c) is São Paulo, São

Paulo which is by far the most populated Brazilian state at 48.6m persons. Around São Paulo

there appears to be substantial development and sprawl especially along the coastline and the

highway corridor. In panel (d) we have Manaus, a Brazilian city in the rainforest. In Manaus

the increases in the intensive margin, light intensity, are clearly much more intense than changes

in the extensive margins that would correspond to outward expansion of nighttime light.

Chicago, Illinois is shown in figure 2 panel (a) and appears quite spread out over space.

Las Vegas, Nevada in panel (b) is an interesting example because of its intensity relative to

the darkness of the nearby unpopulated desert. Panel (c) demonstrates how in Washington,

D.C., despite high density of lights, changes in light intensity can still be distinguished at a

10The Suomi-NPP satellite flies over the earth around 1:30am and 1:30pm local time each day and captures
images using the spectroradiometer, a device similar to the capture device in a digital camera (Carlowicz,
2012). Raw data from the sensor are then processed to remove non-human generated disturbances such as
aurora borealis, stray light, natural fires and other light which could potentially introduce noise. A detailed
accounting of the processing of the data can be found in Elvidge et al. (2017).
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(a) Chicago, IL (b) Las Vegas, NV

(c) Washington, DC (d) Silicon Valley, CA

Figure 2: Night-time Lights of Four Major US Cities;
Layers: Basemap: Open Street Map, CC License; Night-time Lights Annual Image (2019);
Changes in NTL 2012-2017 - Green = small change, Red = large change

high resolution. The dark red spot just south of Washington, D.C. is National Harbor, an

area of major development for the D.C. metropolitan area over the last few years. The major

development inside D.C. over that period was the Southwest Waterfront which can also be seen

as the glowing yellow dot where the Potomac River meets the Anacostia at the southern tip of

D.C.. In figure 2 panel (d) one of the wealthiest, most expensive and most productive regions

in the country is depicted in Northern California from Berkeley to San Jose revealing pockets of

development along the way. The variance in light is substantial, from Robertson County, KY,

the county with the least total light, to Yukon-Koyukuk County, AK with the most light.11

4.4 California Electrical Consumption Data

California’s state energy agency, California Energy Commission, makes available electrical con-

sumption data at the county level for all counties in California.12 These administrative data are

available from 1990-2018. To the best of my knowledge these data do not represent a sample of

electrical consumption data. A regression of nighttime light on electrical consumption can be

seen in table 2. Nighttime light is strongly correlated with electrical consumption and slightly

more so with non-residential electrical consumption.

11Tables 16-19 show the counties with the most and least light and are included in the appendix.
12https://ecdms.energy.ca.gov/elecbycounty.aspx
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(1) (2) (3) (4)
Total NTL Total NTL Total NTL Total NTL

Commr. Elec. Cons. 0.712***
(0.0178)

Resid. Elect. Cons. 0.772***
(0.0243)

Comb. Elect. Cons. 0.763*** 0.593
(0.0183) (0.557)

Observations 406 406 406 406
R-squared 0.869 0.806 0.868
Number of Counties 58

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 2: California Nighttime Lights (log) Regressed on the Log of Electrical Consumption

4.5 Infrastructure Data

Infrastructure data including the location of ports, rail, navigable waterways and the location

of border crossing points have been collected from the U.S. federal government’s Homeland

Infrastructure Foundation Level Database (HIFLD). Airport locations were taken from open

data sources.13 Data on primary roads, which includes interstates and principal highways, were

collected from the US Census Department.14

5 Results

13https://ourairports.com/
14https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2020&layergroup=Roads

13



N mean median sd min max
Total Nighttime Light 406 54822 17507 112144 755.6 822111
BLS GDP 406 41730000 7615000 97600000 47224 710900000
LS Population 406 668138 181767 1453000 1140 10140000
ACS Population 406 669915 181536 1452000 1057 10120000
miles2 406 2727 1554 3097 48.56 20118
km2 406 7063 4024 8020 125.8 52104
Non-residential Elec. Cons. 406 3315 781.4 7021 4.008 49193
Residential Elec. Cons. 406 1585 553.2 3090 9.291 21162
Total Elec. Con. 406 4901 1474 10032 13.89 69946

Table 3: Summary Statistics of Variables Used in Electrical Consumption Regressions

(1) (2) (3) (4) (5) (6) (7) (8)
Total NTL Total NTL Total Elec Total Elec. Resid. Elec. Resid. Elec. Comm. Elec. Comm. Elec.

Area 0.486*** 0.147*** 0.209*** 0.0472***
(0.0206) (0.0143) (0.0205) (0.0133)

BLS GDP 0.551*** 0.261*** 0.235*** 0.0419 0.392*** 0.0993 -0.00390 -0.00551
(0.0572) (0.0790) (0.0272) (0.0337) (0.0503) (0.131) (0.0484) (0.0382)

ACS Population 0.0974 -1.239 0.672*** 0.525* 0.555*** 0.374 0.878*** 0.712***
(0.0637) (0.926) (0.0292) (0.300) (0.0562) (0.393) (0.0545) (0.178)

Constant -3.670*** -5.638*** -7.688*** -4.616***
(0.296) (0.182) (0.274) (0.213)

Observations 406 406 406 406 406 406 406 406
R-squared 0.922 0.981 0.956 0.964
Number of Counties 58 58 58 58
County FE yes yes yes yes
Year FE yes yes yes yes yes yes yes yes

All columns contain cluster-robust standard errors (county) in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 4: California Electrical Consumption Regressions
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5.1 California Electrical Consumption Regressions

Table 3 contains the summary statistics of variables used in the electrical consumption regres-

sions while table 4 shows the results. The availability and granularity of the California data

permit the direct comparison of the value-added of night-time lights over electrical consumption

data. Columns 1-2 are the regression of only the California night-time lights using the same

set of parsimonious controls as earlier. We see in column 1 and 2 that nighttime lights tracks

with BLS GDP in California as well as the area. The GDP-lights relationship is significant

both in the pooled OLS and the within-county models. With respect to the electrical consump-

tion data the administrative electrical consumption data follows more closely with increases in

the population as we see in column 3. In the within-county transformed regression in column

4 none of the independent variables are significant. Columns 5 and 6 represent residential

electrical consumption while columns 7 and 8 show commercial electrical consumption. Res-

idential and commercial electrical consumption both correspond to more populated counties

though the effects are statistically significant in the pooled OLS models. The effect of GDP on

electrical consumption is estimated to be much smaller than the effect of population and the

estimated effect of GDP on electrical consumption is only statistically significant in column 5,

a pooled-OLS model with year fixed effects.

5.2 Aggregate Linear and Non-linear Form Estimates

Combined USA BRA
(1) (2) (3) (4) (5) (6)
NTL NTL NTL NTL NTL NTL

GDP 0.922*** 1.249** 0.704*** 1.978*** 0.377*** 0.0749
(0.0891) (0.510) (0.0410) (0.174) (0.0344) (0.120)

Pop -0.465*** -1.336** -0.0810 -1.679*** 0.164*** 0.0886
(0.103) (0.611) (0.0519) (0.222) (0.0455) (0.151)

GDP2 -0.00604 -0.0450*** 0.0138
(0.0437) (0.0114) (0.0212)

Pop2 0.0514** 0.107*** -0.00213
(0.0254) (0.0120) (0.0266)

GDP×Pop 0.00203 -0.0277 0.0210
(0.0710) (0.0193) (0.0468)

Observations 55,043 55,043 21,634 21,634 33,409 33,409
# of Counties/Munićıpios 8,665 8,665 3,095 3,095 5,570 5,570

*** p<0.01, ** p<0.05, * p<0.1
Conley-Udry spatially corrected standard errors in parenthesis

Spatial kernel threshold distance = 5500km
All columns contain county/munićıpio and year fixed effects

Table 5: Global Combined, USA, and BRA Linear Model

Table 5 contains the estimates of the linear model as well as the model controlling for

higher-order terms. Descriptive statistics for all variables used in the estimations can be found
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in table 15 in the appendix. Column 1, 3 and 5 are the linear estimates while 2, 4 and 6 are

the estimates with added controls for nonlinear relationships.15 For the combined estimates

in columns 1 and 2 we see strong and positive effects of GDP on light. For the linear model

the effect of GDP on light for the combined sample is a nearly 1:1 increase in nighttime light.

In column 3, the sample restricted only to the USA, the effect size is still significant at the

1% significance level though the effect size is estimated to be slightly smaller and .70 while in

column 5 the effect size of .38 in Brazil indicates that increases in GDP may have a smaller

effect on changes in nighttime light in Brazil. The effect of population increases, except for

the Brazilian munićıpios, is estimated to be negative with the magnitude of the estimates

varying slightly. This suggests inaccurate point estimates for the population effects or possibly

heterogenous effects. In Brazil, the effect of population on light in the linear model is modest

and statistically significant. For Brazil the magnitude of the coefficient on population changes

is much smaller than that on GDP indicating light moves more closely with economic output

than it does with changes in the population.

Looking at the estimates incorporating the nonlinear controls the effect of GDP that enters

linearly is estimated to be somewhat larger in the model with nonlinear controls. GDP2 is

statistically significant at the 1% significance level exclusively for the USA sample. The effect

of population2 is estimated to be positive and small though statistically significant for the

combined sample. A larger positive statistically significant effect is estimated for the USA

sample while for the Brazilian sample the effect is estimated to be small, negative and is not

statistically significant at standard levels. Last, the interaction between GDP×population is

estimated to be positive and significant for the joint estimates while for the USA its negative

though not statistically significant at standard levels of significance.

Table 6 contains the same regressions incorporating state-year fixed effects which control

for price shocks, migration shocks, political elections or weather shocks at the state-year level.

These regressions are extremely demanding on the data as they require 441 additional dummies

for the combined regressions 306 state-year dummies for the USA regressions and 135 dummies

for the Brazil estimates. Looking first at the linear models in columns 1, 3 and 5 we can see

the effect size of the GDP variable is now slightly diminished. The effect of population in the

combined estimates is statistically significant and positive though smaller in magnitude across

all linear models than the effect of within-county changes in GDP. The effect size of GDP for

the U.S.A. sample is about 30% smaller at 0.472 versus 0.704 for the non-dummies regression.

For Brazil the effect size is actually larger than the counterpart in table 5 by 48%, the largest

change of any of the coefficients in the linear model. For the Brazilian sample the effect on

population is 2.5 times larger in magnitude than those in the regressions without the state-year

dummies.

Turning to the models with nonlinear controls in columns 2, 4 and 6 we see some differences

15For all models the spatial kernel distance was set to 5500km. This permits economic shocks from counties or
municṕios to influence other counties or municṕios up to 5500km away. Since two country’s data is in use
this allows for the influence of municṕios in the northern half of Brazil to even influence economic activity in
southern Florida. With such a threshold, economic shocks in Alaska can influence the entire western half of
the United States, for example, but not the mid-atlantic states.
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Combined USA BRA
(1) (2) (3) (4) (5) (6)
NTL NTL NTL NTL NTL NTL

GDP 0.528*** 1.596*** 0.472*** 0.728*** 0.564*** 1.398***
(0.00819) (0.0497) (0.0101) (0.0941) (0.0111) (0.0714)

Population 0.275*** -1.226*** 0.169*** -0.824*** 0.424*** -0.238***
(0.00943) (0.0635) (0.0117) (0.0895) (0.0138) (0.0808)

GDP2 -0.0308*** 0.00413 -0.0508***
(0.00450) (0.00606) (0.0126)

Population2 0.100*** 0.0843*** 0.00416
(0.00577) (0.00493) (0.0229)

GDP*Pop -0.0319*** -0.0464*** 0.0463
(0.00921) (0.00911) (0.0331)

Observations 55,048 55,048 21,634 21,634 33,414 33,414
State*Year FE Yes Yes Yes Yes Yes Yes

All Columns contain county and munićıpio fixed effects
Conley HAC Spatially-corrected standard errors in parentheses

spatial kernel threshold distance = 5500km
***p=0.01, **p=0.05, *p=0.1

Table 6: Nighttime Lights Regressions with State-Year Dummies

though strikingly the estimates for the combined sample look relatively similar to those from

column 2 of table 5 which is the corresponding regression with the state-year dummies omitted.

The effect size on GDP is almost identical at 1.6 for the state-year dummies model versus 1.2

for the no-dummies model. For the USA and Brazilian sample estimates the effect sizes are

very different. For the USA the effect size on GDP is estimated to be smaller at 0.728, closer in

magnitude to the linear point estimate. The effect of population remains negative and is now

smaller in magnitude.

The effect on GDP2 for the combined samples is estimated to be around -.03. For the USA

sample the effect of GDP2 is no longer negative or meaningful in terms of magnitude when

state-year dummies are included while for the Brazil sample the effect is much closer to the

estimates for the combined sample at -.05. The effects of population2 are estimated to be

slightly larger in the combined sample with state-year dummies in table 6 column 2. For the

U.S. the effect is positive and significant while also similar in size. For the Brazilian sample the

coefficient is small in magnitude and not statistically significant for the state-year regressions.

The effect on population×GDP is negative for the combined and US samples estimated at

-.032 to -.046. While it is estimated to be positive for the Brazilian sample it is not statistically

significant. Given the differences in the level of per-capita consumption of different counties

this indicates there may be different effects of population×GDP depending on the country.

The estimated effect of population×GDP on nighttime light is discussed in greater detail in

the online appendix.
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Number of Number of
Counties Municipios

Quantile of GDP

1 99 10910
2 592 10417
3 3908 7100
4 7664 3345
5 9371 1637

Quantile of Area

1 322 10688
2 2198 8810
3 6293 4717
4 7570 3437
5 5251 5757

Quantile of Population

1 2380 8629
2 3162 7849
3 3888 7118
4 5201 5808
5 7003 4005

Quantile of Population Density

1 4924 6085
2 3826 7183
3 3684 7324
4 4180 6829
5 5020 5988

Table 7: Quantiles of Counties vs Munićıpios

5.3 Regressions by Quantiles

The following analysis of the effect of GDP on nighttime light divides the sample into quantiles

of GDP, population and area. In each case the thresholds are standardized and estimates

can therefore be compared from the lowest-income Brazilian munićıpios with the poorest USA

counties. Table 7 compares the quantiles of counties to munićıpios and reveals differences in

the distribution of counties and munićıpios. U.S. counties tend to be larger, wealthier and less

populated while Brazilian munićıpios tend to be small and highly populated. Broken down

into quantiles of population density we see a more interesting split in the sample where in the

U.S. counties are clustered at the bottom and top of the distribution in terms of population

density. For the Brazilian munićıpios most of them fall into the 2nd-4th quantiles of population

density. The most substantial overlap between munićıpios and counties occurs in the 4th and

5th highest quantiles of population density. Again, in all estimates the results are split into the

USA sample and the Brazilian sample for analysis.

5.3.1 Quantiles of GDP

The estimates in table 8 are divided by quantiles of GDP. Relative to Brazil there are very

few U.S. counties which fall into the lowest-income bracket. For the US we see a discernible

pattern where the strongest relationship between GDP and Nighttime light appears for the

lowest quantiles of income. In the higher quantiles of GDP the relationship between GDP

and nighttime light is much weaker indicating the presence of heterogenous effects of GDP on
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nighttime light even within a country. With respect to Brazil we see a similar story though the

effects of GDP on nighttime light are weaker than in the same quantiles for the United States

counties. In table 9 columns 3-5 the effects of GDP on nighttime light appear to be amplified

for lower quantiles and dampened as income increases.

5.3.2 Quantiles of Population

The quantile estimates in tables 10 and 11 are split by quantiles of population. Again the

thresholds are standard so we can compare countries. With the U.S.A. we see a similar pattern

as we do with respect to GDP meaning that the effects of GDP on nighttime light are estimated

to be larger for counties that have smaller populations. The effect for the smallest quantile is

about three times as large as the effect for the counties with the estimates for the most populated

counties suggesting strong heterogeneity in effect size. The largest quantile represents counties

with population greater than 250k persons. For Brazil we see a different pattern with the effect

size appearing to increase and then peak in the 4th quantile which includes munićıpios with

between 30k persons and 250k persons. Munićıpios with 250k persons and above in Brazil have

a drop of in the effect size and the relationship between GDP and nighttime light for the top

quantile is comparable to the estimates for second quantile of population size.

5.3.3 Quantiles of Area

The final quantile estimates in tables 12 and 13 represent estimates for counties and munićıpios

divided by different size categories. This is of particular interest since the within-county and

within-munićıpio estimator stripped out time-invariant location-specific heterogeneity in the

form of fixed effects. This means we do not directly observe any effects of area (time-invariant)

on nighttime light. For the U.S.A. the effect size increases steadily from the smallest to the

largest counties. The difference in the distribution of munićıpios and counties in terms of size

is apparent by looking at the number of observations in each category. There are many more

munićıpios in the smallest quantile than there are counties. Only in the second quantile do we

start to see a sizeable overlap. The effect size in the largest quantile of counties is several times

larger than that in the smallest quantile of counties. With respect to Brazilian munićıpios the

effect of GDP on nighttime light is smaller in the smallest two quantiles while it increases and

levels off for the three largest quantiles of munićıpios. This resembles the U.S. pattern albeit

without the sharper peak in the largest quantiles. Analyzing the effect size utilizing different

sub-samples reveals repeatedly the strong heterogeneity in the effects of GDP on nighttime

light as well as the cross-country differences.

5.4 Regressions by Centile

5.4.1 Regressions by Centile - Linear Models

Figure 3 shows the effect size of the effect of GDP on nighttime light by centiles. Each point

corresponds to one centile’s estimated coefficient. All coefficients are estimated separately by
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Quantile 1 2 3 4 5
(1) (2) (3) (4) (5)
NTL NTL NTL NTL NTL

GDP 1.281*** 0.761*** 0.787*** 0.601*** 0.574***
(0.126) (0.0669) (0.0157) (0.0132) (0.0183)

Pop -0.795*** -0.0868 -0.172*** 0.0564*** 0.0842***
(0.177) (0.0969) (0.0211) (0.0175) (0.0240)

Observations 99 592 3,908 7,664 9,371
*** p<0.01, ** p<0.05, * p<0.1

Conley-Udry spatially corrected error terms in parenthesis
Spatial kernel distance 5500km

Table 8: Regression by Quantiles of GDP - USA

Quantile 1 2 3 4 5
(1) (2) (3) (4) (5)
NTL NTL NTL NTL NTL

GDP 0.261*** 0.300*** 0.272*** 0.217*** 0.183***
(0.0193) (0.0118) (0.0107) (0.0115) (0.0152)

Pop 0.241*** 0.240*** 0.323*** 0.446*** 0.522***
(0.0243) (0.0149) (0.0137) (0.0149) (0.0198)

Observations 10,910 10,417 7,100 3,345 1,637
*** p<0.01, ** p<0.05, * p<0.1

Conley-Udry spatially corrected error terms in parenthesis
Spatial kernel distance 5500km

Table 9: Regression by Quantiles of GDP - BRA

Quantile 1 2 3 4 5
(1) (2) (3) (4) (5)
NTL NTL NTL NTL NTL

GDP 0.646*** 0.686*** 0.546*** 0.381*** 0.212***
(0.0192) (0.0341) (0.0217) (0.0195) (0.0240)

Pop 0.0468* -0.0459 0.130*** 0.341*** 0.557***
(0.0284) (0.0467) (0.0289) (0.0259) (0.0313)

Observations 2,380 3,162 3,888 5,201 7,003
*** p<0.01, ** p<0.05, * p<0.1

Conley-Udry spatially corrected error terms in parenthesis
Spatial kernel distance 5500km

Table 10: Regressions by Quantiles of Population - USA
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Quantile 1 2 3 4 5
(1) (2) (3) (4) (5)
NTL NTL NTL NTL NTL

GDP 0.469*** 0.620*** 0.656*** 0.751*** 0.588***
(0.0139) (0.0118) (0.0334) (0.0116) (0.0141)

Pop -0.0349* -0.183*** -0.192*** -0.276*** -0.0136
(0.0184) (0.0153) (0.0421) (0.0148) (0.0180)

Observations 8,629 7,849 7,118 5,808 4,005
*** p<0.01, ** p<0.05, * p<0.1

Conley-Udry spatially corrected error terms in parenthesis
Spatial kernel distance 5500km

Table 11: Regressions by Quantiles of Population - BRA

Quantile 1 2 3 4 5
(1) (2) (3) (4) (5)
NTL NTL NTL NTL NTL

GDP 0.106** 0.331*** 0.417*** 0.577*** 0.919***
(0.0468) (0.0164) (0.00999) (0.0108) (0.0188)

Pop 0.650*** 0.384*** 0.286*** 0.0886*** -0.336***
(0.0629) (0.0216) (0.0133) (0.0144) (0.0253)

Observations 322 2,198 6,293 7,570 5,251
*** p<0.01, ** p<0.05, * p<0.1

Conley-Udry spatially corrected error terms in parenthesis

Table 12: Regressions by Quantiles of Area - USA

Quantile 1 2 3 4 5
(1) (2) (3) (4) (5)
NTL NTL NTL NTL NTL

GDP 0.275*** 0.386*** 0.531*** 0.454*** 0.503***
(0.0178) (0.0210) (0.0180) (0.0196) (0.0137)

Pop 0.282*** 0.151*** -0.0251 0.0703*** 0.0183
(0.0231) (0.0271) (0.0226) (0.0246) (0.0173)

Observations 10,688 8,810 4,717 3,437 5,757
*** p<0.01, ** p<0.05, * p<0.1

Conley-Udry spatially corrected error terms in parenthesis
Spatial kernel distance 5500km

Table 13: Regressions by Quantiles of Area - BRA
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(a) Combined Sample (b) USA Counties

(c) BRA Munićıpios

Figure 3: Effect of GDP on Nighttime Light - Linear Controls

centile using OLS. Panel a shows the combined estimates of Brazilian munićıpios and U.S.

counties. The intensity of light is increasing by centiles from low to high such that higher

centiles correspond to counties and munićıpios with more light. In the first figure we can see

there appear to be sharp nonlinearities present as we can see the effect size changes following an

s-shaped curve. Figures for the U.S.A. and Brazil estimates are found in the next two panels

b and c. Again, in the figure in panel b each dot represents a coefficient estimate for one

centile of nighttime light. In the USA estimates we can see a more or less linearly increasing

effect size from the lowest to highest centile with effects bounded by 0.5 and 1. A value of 1

corresponds to a 1:1 change in light in response to income changes. The following figure in

panel (c) represents the same centile structure but for the Brazilian part of the sample. The

effect size on GDP starts around .25 for the bottom centiles and increases to .35 around the

20th centile and continues from .35 to .4 for the top centiles. It appears clear that the effects

of GDP on light are bigger in the United States, and, at least according to these figures there

appear to be significant nonlinearities.

The figures of effects of population on nighttime light by centile of light are in figure 4.

The first panel (a) contains combined estimates which display pronounced nonlinearities and

a major jump of the effect from positive to negative at the 50th centile. For the same figures

using US data in panel (b) we can see the effect size is decreasing from 0 to about -0.5 over the

full range of nighttime lights and the effect is almost universally estimated to be negative for

the effect of population on nighttime light. Next is the same using the Brazilian munićıpios in
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panel (c). The picture is extremely different in this graph with the effect size unambiguously

positive and increasing from .1 to .4 across the range of nighttime lights centiles. This clarifies

how different the effects are in different countries and underscores how models that blindly

integrate nighttime lights data from multiple countries could be problematic, particularly in

models using cross-sectional data. Models with nonlinear controls were also estimated by centile

of light but for the sake of brevity the results are included in the online appendix.

(a) Combined (b) USA Counties

(c) Brazilian Munićıpios

Figure 4: Effect of Population on Nighttime Light - Linear Controls

5.5 Economic Geography Regressions

Utilizing the capacities afforded by this data I am able to extract estimates of the effect of

infrastructure on nighttime light. The economic geography variables which are included are

whether the county/munićıpio has any of the following geographic or physical characteristics:

the presence of a major road, the presence of a border crossing point, the presence of an airport,

the presence of railway infrastructure and the presence of navigable waterways. The values of

all the variables are collapsed to their county-level means for the years 2012-2018 and then

the indicator variables for geographic characteristics are tested with the implied counterfactual

being other counties within the same state that lack the infrastructure features. The idea behind

these regressions is to capture the marginal contribution to light of each of these infrastructure

elements holding income and population constant.

The results of the economic geography regressions can be found in table 14. Looking at

the columns estimates of the effect of GDP they are not far off the estimates in the state-year
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regressions, a reassuring finding. The even numbered columns, 2, 4 and 6 contain the models

with nonlinear controls while the odd-numbered columns correspond to the models with only

linear controls for GDP and population. The primary variables of interest in these regressions

are the economic geography variables. The first control is for the presence of a port. The

presence of a port increases light substantially across all columns. The effect appears to be

positive and statistically significant at the 1% level except in column 6 where the estimates

for the effect of the presence of a port on nighttime light is significant at only the 10% level.

Compared to other geographic controls the presence of a port appears to have one of the largest

effects on nighttime light. The presence of a primary road increases light though surprisingly the

effect is negative and significant in the combined sample. The presence of railway infrastructure

is indicated to be positive. The effect size appears to be moderate and slightly smaller than

the effect of the presence of a port. There are also large estimated effects of the presence of

a border crossing on nighttime light with the presence of a border crossing increasing light by

between 1 and 13 percentage points for the USA sample and between 13 and 54 percentage

points for the Brazilian sample. With respect to airports we see an overwhelmingly positive

effect of airports on light with the effect fairly large in the dis-aggregated USA and Brazil

estimates. The presence of a navigable waterway corresponds to lower levels of nighttime light

though only in Brazil likely due to the presence of the Amazon rainforest around the Amazon

river.

6 Placebo Test

As a test for parameter stability, although as we have seen there are some inconsistent results

for different models and parts of the distribution, I drop sequentially one year’s worth of data

from the sample and repeat the same regressions. The results for these tests are shown in the

online appendix. The test reveals very little change in the value of the estimated parameters

for both the model with linear controls and the model with nonlinear controls. In the combined

sample model with nonlinear controls the point estimates of the effect of GDP on light are very

high and quite similar to the model estimates in table 6 column 2, which is the corresponding

model. The point estimates on the effect of population are negative and statistically significant

which is consistent with the model estimated in table 6. Looking at the linear results the

coefficient on the GDP variable appears to be precisely estimated ranging between .04 and .02

points of the original estimate in table 6 column 1. Looking at the estimates for USA except for

the column where 2012 is dropped the estimates are stable and appear consistently estimated.

The effect of GDP2 is not statistically different from zero though the effect of populaton2 is

unambiguously positive and very similar to the earlier estimates with no dropped observations.

The estimates with linear controls also appear to be stable as all are within a tight margin the

original estimates of .472.

The placebo tests for the Brazilian sample closely align with the linear estimates from the

principal regressions ranging between .545 to .561 in the placebos relative to an estimate of

0.564 in table 6. The effect of population on nighttime light in Brazil also changes little across
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Combined USA BRA

(1) (2) (3) (4) (5) (6)
NTL NTL NTL NTL NTL NTL

Area 0.0557 0.193* 0.346*** 0.466*** -0.114*** 0.00449
(0.0907) (0.110) (0.0614) (0.0718) (0.0258) (0.0141)

GDP 0.580*** 0.989* 0.371*** 0.309 0.394*** 0.250
(0.0766) (0.575) (0.0375) (0.247) (0.0602) (0.185)

Population -0.0547 -1.035 0.0926*** -0.0936 0.267*** -0.183
(0.152) (0.788) (0.0341) (0.270) (0.0827) (0.243)

GDP-squared 0.000385 0.0485*** -0.0677***
(0.0442) (0.0154) (0.00716)

Population-squared 0.0699*** 0.0978*** -0.112***
(0.0205) (0.0109) (0.0231)

Population-GDP -0.0265 -0.125*** 0.212***
(0.0628) (0.0192) (0.0219)

Location has:

Port 0.339*** -0.0464 0.377*** 0.248*** 0.648*** 0.190*
(0.0555) (0.0965) (0.0475) (0.0493) (0.118) (0.114)

Major Road -0.799*** -0.662*** 0.198*** 0.116*** -0.585*** 0.333***
(0.290) (0.169) (0.0120) (0.0173) (0.133) (0.0449)

Rail Access 0.816*** 0.592*** -0.0504 0.00871 0.346*** 0.0823***
(0.197) (0.171) (0.0594) (0.0499) (0.0191) (0.00837)

Border Crossing 0.400*** 0.298* 0.129 0.0132 0.544*** 0.127
(0.153) (0.163) (0.100) (0.102) (0.106) (0.0796)

Airport 0.708*** 0.0941 0.199*** 0.0206 0.853*** -0.272***
(0.173) (0.0900) (0.0620) (0.0291) (0.0330) (0.0596)

Navigable Water 0.144* 0.0142 0.0271 0.0369 -0.316** -0.425***
(0.0811) (0.0961) (0.0564) (0.0487) (0.124) (0.101)

Observations 8,664 8,664 3,095 3,095 5,569 5,569
78 78 51 51 27 27

Conley-Udry spatially corrected standard errors in parenthesis
Spatial kernel distance 5500km
*** p<0.01, ** p<0.05, * p<0.1

Table 14: Economic Geography Regressions
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the columns (.434 to .447) and matches up with the combined estimates (0.424) reinforcing the

strength of the earlier estimates using the combined sample.For the Brazilian side of the sample

we see that the estimates for the effect of GDP in the nonlinear model appears to be less stable.

Put differently, the placebo tests with nonlinear controls reveal a sensitivity of the estimates of

the elasticity of nighttime light with respect to GDP. For each increase of 1 of GDP, nighttime

light increases by .88.

7 Conclusion

Using quality nationwide panel data from the USA and Brazil and pairing these data with

the newest VIIRS night-time satellite imagery I analyzed the relationship between population,

income, geographic variables and human-generated night-time light measured at the second

administrative level. I find that the relationship between nighttime lights, GDP and population

changes is strong though the relationship between GDP and light is estimated to be much

stronger than that of population and nighttime light. These results are robust even after

incorporating higher-order terms and interaction terms to account for the potential presence

of nonlinearities in the lights-income-population nexus. Centile regressions were estimated by

slices of the nighttime light distribution and also confirm the large positive effect of GDP on

nighttime light. Decreasing returns to GDP and population in nighttime light were estimated

and indicated to be present. I also discussed and tested the value-added of nighttime lights over

electrical consumption data finding that electrical consumption is more sensitive to changes in

population growth than changes in income. As such electrical consumption appears to be a

weak proxy for income. Nighttime light data is available with near-global coverage at a monthly

frequency and therefore nighttime lights appears to be preferable to other GDP alternatives.

I utilized a between-county estimator to measure the effects of important infrastructure el-

ements on light. Infrastructure elements were confirmed to be primary drivers of commerce as

roads, rail, ports and airports by finding they substantially influence light production. These

findings are useful to future researchers looking to use VIIRS imagery for high-resolution or

high-frequency economic analysis with nighttime lights. These results provide strong evidence

that night-time light changes correspond to changes in population and income at a high geospa-

tial resolution. The relationship between nighttime light, GDP and population is strongly

indicated to be different for the U.S.A. and Brazil. Future researchers should pay articular

attention to incorporating nonlinear terms and avoid combining nighttime lights from multiple

countries particularly in cross-sectional analysis.
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(1) (2) (3) (4) (5) (6)
N mean median std max min

Combined

Longitude 55,043 -64.35 -52.05 -52.05 -32.42 -163.94
Latitude 55,043 5.13 -6.95 -6.95 69.3 -33.65
NTL† 55,043 7.18 7.23 7.23 14.89 0
GDP† 55,042 12.81 12.56 12.56 20.38 7.92
GDP2† 55,043 19.56 19.29 19.29 32.62 5.33
Population† 55,043 9.78 9.65 9.65 16.31 2.73
Population2† 55,042 25.61 25.12 25.12 40.76 15.84
Has a Port 55,043 0.01 0 0 1 0
Has Railway 55,043 0.48 0 0 1 0
Has a Road 55,043 0.76 1 1 1 0
Has Airport 55,043 0.14 0 0 1 0
Has Border Crossing 55,043 0.01 0 0 1 0
Has Navigable Waterway 55,043 0.14 0 0 1 0

USA Sample

Longitude 21,634 -92.31 -90.5 -90.5 -67.64 -163.94
Latitude 21,634 38.46 38.42 38.42 69.3 19.6
NTL† 21,634 8.93 8.77 8.77 14.89 6.1
GDP† 21,634 13.85 13.68 13.68 20.38 7.92
GDP2† 21,634 20.56 20.32 20.32 32.26 8.91
Population† 21,634 10.28 10.16 10.16 16.13 4.47
Population2† 21,634 27.71 27.36 27.36 40.76 15.84
Has a Port 21,634 0.03 0 0 1 0
Has Railway 21,634 0.88 1 1 1 0
Has a Road 21,634 0.45 0 0 1 0
Has Airport 21,634 0.32 0 0 1 0
Has Border Crossing 21,634 0.02 0 0 1 0
Has Navigable Waterway 21,634 0.3 0 0 1 0

Brazilian Sample

Longitude 33,409 -46.25 -46.52 -46.52 -32.42 -73.44
Latitude 33,409 -16.45 -18.11 -18.11 4.68 -33.65
NTL† 33,409 6.05 5.9 5.9 12.74 0
GDP† 33,408 12.13 11.89 11.89 20.37 8.34
GDP2† 33,409 18.92 18.69 18.69 32.62 5.33
Population† 33,409 9.46 9.34 9.34 16.31 2.73
Population2† 33,408 24.26 23.77 23.77 40.73 16.69
Has a Port 33,409 0.01 0 0 1 0
Has Railway 33,409 0.22 0 0 1 0
Has a Road 33,409 0.97 1 1 1 0
Has Airport 33,409 0.02 0 0 1 0
Has Border Crossing 33,409 0 0 0 1 0
Has Navigable Waterway 33,409 0.03 0 0 1 0

† variables are in log form

Table 15: Descriptive Statistics for All Regression Variables
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State County NTL GDP Pop. Area (km2)
Alaska Denali 192378 24 1979 30804.5
Florida Orange 201986 8334 1290886 2597.8
California San Diego 205572 20278 3271516 11021.2
Florida Broward 210588 9100 1885328 3166.7
Michigan Wayne 217356 8239 1769036 1598.5
Texas Bexar 228025 9198 1891468 3260.4
California Orange 236651 21957 3144191 2060.8
Alaska Bethel 240566 64 17958 110738.7
California Riverside 246225 7084 2352348 18943.3
North Dakota McKenzie 254939 226 11418 7383.9
California San Bernardino 279688 7433 2119305 52104.5
Alaska Nome 302419 40 9898 61513.0
Alaska Matanuska-Susitna 304239 225 100981 64566.9
Texas Tarrant 304434 10210 1985057 2316.1
Texas Dallas 404065 23034 2553382 2352.0
Alaska Valdez-Cordova 417111 191 9430 97412.9
Nevada Clark 419246 9529 2102224 20898.6
Alaska Southeast Fairbanks 479759 61 6933 67813.1
Arizona Maricopa 562605 20214 4176687 23890.9
Illinois Cook 631355 35267 5230569 2492.4
California Los Angeles 754761 65017 10060972 10587.5
Texas Harris 768729 36901 4518852 4557.3
Alaska Northwest Arctic 778597 64 7729 95235.7
Alaska North Slope 1697991 945 9780 235152.8
Alaska Yukon-Koyukuk 2366099 27 5466 380898.6
† GDP in 10,000 of $; *area in km2

Table 16: Top 25 US Counties in Total Light 2012-2018
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State County NTL GDP† Pop. Area*
Kentucky Robertson 552 2 2164 261.3
Massachusetts Nantucket 580 140 10912 125.6
Washington Wahkiakum 702 8 4139 678.5
Virginia Mathews 735 15 8827 231.3
Washington San Juan 741 58 16303 469.7
Massachusetts Dukes 744 137 17222 285.7
West Virginia Wirt 819 6 5799 600.5
Georgia Glascock 827 4 3029 374.1
Georgia Taliaferro 838 3 1649 505.7
Indiana Ohio 845 10 5927 226.9
Kentucky Owsley 877 5 4514 513.3
Virginia Rappahannock 895 24 7356 687.6
Virginia Highland 900 8 2216 1087.5
Georgia Quitman 909 4 2329 426.2
Missouri Worth 940 6 2051 701.3
Tennessee Moore 945 16 6313 328.3
Georgia Schley 965 11 5167 438.4
Colorado San Juan 978 4 706 1006.0
West Virginia Calhoun 979 13 7446 726.3
Virginia Craig 1004 8 5120 852.0
Georgia Clay 1021 7 3017 571.8
Tennessee Trousdale 1080 14 9065 289.2
Tennessee Pickett 1101 11 5071 458.0
Georgia Webster 1113 5 2643 544.0
Kentucky Menifee 1156 7 6385 534.1
Illinois Hardin 1172 10 4072 470.8
† GDP in 10,000 of $; *area in km2

Table 17: Bottom 25 US Counties in Total Light 2012-2018
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State Munićıpio NTL GDP† Pop. Area*
Rio Grande do Sur Tunas 13 2 4556 218.1
Rio Grande do Sur São Pedro das Missões 13 2 1970 80.0
Rio Grande do Sur Lagoa Bonita do Sul 16 2 2803 108.7
Piaúı São Francisco de Assis do Piaúı 16 1 5738 1095.7
Piaúı Novo Santo Antônio 16 1 3219 469.6
Piaúı Murici dos Portelas 17 2 8866 481.3
Piaúı Caxingó 17 1 5258 489.1
Rio Grande do Sur Senador Salgado Filho 17 3 2870 147.2
Minas Gereis Grupiara 17 1 1409 193.1
Minas Gereis Dom Viçoso 18 1 3059 113.9
Minas Gereis Ouro Verde de Minas 18 2 6105 175.5
Rio Grande do Sur Pirapó 19 2 2678 292.9
Paráıba Riacho de Santo Antônio 19 1 1898 91.3
Tocantins Juarina 20 1 2240 481.0
Minas Gereis São Sebastião do Rio Preto 20 1 1599 128.0
Minas Gereis Passabém 20 1 1751 94.2
Rio Grande do Sur São José das Missões 21 2 2727 98.1
Minas Gereis Frei Lagonegro 21 1 3464 167.5
Goiás Diorama 24 2 2534 687.3
Piaúı Wall Ferraz 24 1 4365 270.0
Piaúı Pedro Laurentino 24 1 2474 870.3
Acre Jordão 25 3 7405 5357.3
Rio Grande do Sur Mariana Pimentel 25 2 3895 337.8
Piaúı Lagoa do Barro do Piaúı 25 1 4569 1295.8
Goiás Nova América 25 1 2343 212.0
† GDP in 10,000 of $; *area in km2

Table 18: Top 25 Darkest Munićıpios, Brazil 2012-2017
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State Munićıpio NTL GDP† Pop. Area*
São Paolo Jundiáı 30834 1408 397700 431.2
Minas Gereis Uberlândia 31038 1076 654923 4115.2
Rio de Janeiro Nova Iguaçu 31424 551 802719 519.9
Pernambuco Recife 34704 1833 1606584 218.4
São Paolo São José dos Campos 34767 1237 680950 1099.4
São Paolo São Bernardo do Campo 36741 1750 809812 409.5
Santa Catarina Florianópolis 37000 634 463549 675.4
São Paolo Ribeirão Preto 39130 1035 658399 650.9
Pará Belém 40376 1083 1434512 1059.5
Rio de Janeiro Duque de Caxias 41558 1169 880006 467.6
São Paolo Sorocaba 43416 1124 637397 450.3
Maranhão São Lúıs 46243 991 1067738 834.8
São Paolo Guarulhos 50383 1915 1311158 318.7
Mato Grosso do Sul Campo Grande 50840 876 845447 8093.0
Bnahia Salvador 55621 2133 2885124 693.0
Goiás Goiânia 56070 1670 1414191 730.2
São Paolo Campinas 61071 2091 1153001 794.5
Amazonas Manaus 63359 2498 2024447 11401.1
Ceará Fortaleza 64042 2068 2575380 314.9
Minas Gereis Belo Horizonte 66282 3215 2484310 331.4
Rio Grande do Sur Porto Alegre 71406 2438 1466640 496.7
Paraná Curitiba 82195 3057 1861972 435.0
Distrito Federal Braśılia 237396 7641 2870359 5780.0
Rio de Janeiro Rio de Janeiro 262282 11420 6461605 1199.7
São Paolo São Paulo 308877 23689 11867895 1521.1
† GDP in 10,000 of $; *area in km2

Table 19: Top 25 Brightest Munićıpios, Brazil 2012-2017
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(a) Metropolitan Tokyo, DMSP 2013 (b) Metropolitan Tokyo, VIIRS 2013

(c) DC, Maryland and Virginia, DMSP 2013 (d) DC, Maryland and Virginia, VIIRS 2013

Figure 5: DMSP Nighttime lights(Older Generation, Top Panel) Contrasted with VIIRS Nighttime Lights (newer generation, bottom panel)
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Figure 6: Munićıpios in Downtown Sao Paolo
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