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Abstract

Daily volatility proxies based on intraday data, such as the high-low range and the

realized volatility, are important to the specification of discrete time volatility models,

and to the quality of their parameter estimation. The main result of this paper is

a simple procedure for combining such proxies into a single, highly efficient volatility

proxy. The approach is novel in optimizing proxies in relation to the scale factor (the

volatility) in discrete time models, rather than optimizing proxies as estimators of the

quadratic variation. For the S&P 500 index tick data over the years 1988–2006 the

procedure yields a proxy which puts, among other things, more weight on the sum

of the highs than on the sum of the lows over ten-minute intervals. The empirical

analysis indicates that this finite-grid optimized proxy outperforms the standard five-

minute realized volatility by at least 40%, and the limiting case of the square root of

the quadratic variation by 25%.

JEL classification: C22, C52, C65, G1.

Key Words: volatility proxy, realized volatility, quadratic variation, scale factor,

arch/garch/stochastic volatility, intraday seasonality, variance of logarithm.

Much of the understanding of financial asset price volatility has to be deduced from volatility

proxies, as volatility itself is inherently unobservable. Proxies such as the intraday high-low

range or the realized volatility are important objects for modelling financial asset prices

and volatility. Good proxies increase forecast accuracy and improve parameter estimation

for discrete time volatility models. So the search for optimal proxies is beneficial to topics

central to financial economics, such as portfolio allocation, pricing financial instruments, and

risk management.

Garch and stochastic volatility models are standard tools for the time series analysis of

daily volatility. This paper is novel in analyzing proxies in relation to these discrete time

models. It addresses the problem of optimizing volatility proxies when intraday high-

frequency data are available. In an ideal world, with a continuously observed asset price

process in a frictionless market, a first natural candidate for a proxy would be the (square

root of the) quadratic variation. The daily quadratic variation is the limit of the realized

variance1 as the lengths of the sampling intervals approach zero, see for instance Andersen,

Bollerslev, Diebold, and Labys (2001). However, in discrete time models the volatility is

1One obtains the realized variance by summing the squared intraday financial returns over, for instance,
five-minute intervals.
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a scale factor, and the square root of the quadratic variation is generally not a perfect es-

timator of this scale factor. Moreover, the quadratic variation does not always lead to an

optimal estimator of the scale factor, as shall be clear from a simple example. So, even in

ideal circumstances, finding good proxies for discrete time volatility is not a trivial task.

Discrete time volatility models were developed before high-frequency data became readily

available, and are typically applied to daily, or lower frequency returns. Most discrete time

models for the daily financial return rn satisfy the canonical product structure:

rn = snZn. (1)

Here the observed financial return rn is modelled as the product of an iid innovation Zn and

a positive scale factor sn, called the volatility. One usually assumes that Zn has mean zero

and, for standardization, unit variance. Specific models differ in their specification of the

volatility process; an example is the stationary Garch(1,1) recursion

s2
n = κ + αr2

n−1 + βs2
n−1, (2)

where κ, α, β > 0 and α + β < 1.

The scale factors (sn) are not observed, and one may use the daily close-to-close returns

rn to estimate and evaluate models for sn. An early paper that makes use of intraday data to

obtain a daily volatility proxy is Parkinson (1980): under the assumption that the log price

process is a Brownian motion within the day, the intraday high-low range provides a superior

volatility estimator compared with the daily close-to-close return. See also Alizadeh, Brandt,

and Diebold (2002). For more general intraday price processes, Visser (2008) develops a quasi

maximum likelihood estimator (QMLE) for daily volatility models. This QMLE makes use

of intraday based volatility proxies Hn, and yields a precise criterion for the quality of a

proxy by looking at the relative errors log(Hn/sn). The quality of the parameter estimators

is then determined by the measurement variance λ2 of the relative error,

λ2 = var(log(Hn/sn)). (3)

The smaller λ2, the smaller the standard errors of the parameter estimators. This result holds

for surprisingly general intraday price processes. It also holds irrespective of the particular

volatility model for sn. The criterion λ2 is valid within a large class of volatility proxies H ,

including popular proxies such as the intraday high-low range, the realized volatility and

realized power variation.

The main result of the present paper is a procedure for combining volatility proxies into
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a single, highly efficient proxy. The combined proxy has minimal measurement variance

λ2, as given by equation (3). The paper takes a model free approach: it develops a theory

for ranking and combining proxies without assuming a particular model for the sequence

of volatilities (sn), and without making strong model assumptions for the intraday price

process. The resulting tools developed in the paper are straightforward to apply.

Empirical analysis of S&P 500 index futures market tick data from January 1988 to

mid 2006 shows that the techniques in this paper enable one to construct a good proxy

for the S&P 500 volatility. Moreover, our empirical results suggest that indeed in practice

the quadratic variation is not optimal for the scale factor sn: the analysis indicates that our

finite-grid optimized proxy is more efficient than the (square root of the) quadratic variation.

Interestingly, the optimized proxy based on the sum of the highs, the sum of the lows, and

the sum of the absolute returns over ten-minute intervals, puts more weight on the highs

than on the lows. From this point of view, the upward price movements are more informative

than the downward movements.

Related Literature

The present paper is first to specifically address the problem of optimizing volatility proxies

from the perspective of discrete time volatility models, but its underlying theme, dealing

with high-frequency data in daily volatility modelling, is shared with two other branches of

the literature. On the one hand there is the temporal aggregation literature, see for instance

Drost and Nijman (1993), Drost and Werker (1996), and Meddahi and Renault (2004); on

the other hand there is the literature cast in the framework of continuous time semimartin-

gales. An important part of the semimartingale literature is concerned with estimation of

the quadratic variation, and dealing with microstructure noise. In that literature, as in our

empirical analysis, the use of high-low ranges over five or ten-minute intervals has received at-

tention, see for instance Martens and van Dijk (2007) and Christensen and Podolskij (2007).

One may also improve quadratic variation estimators by subsampling and averaging realized

variances, see Zhang, Mykland, and Äıt-Sahalia (2005). Hansen and Lunde (2005) discuss

how to combine unbiased estimators of the integrated variance, in particular how to com-

bine the realized variance and the squared overnight return. For overviews see Andersen,

Bollerslev and Diebold (2008) and McAleer and Medeiros (2008). Of course, the measures

proposed by the quadratic variation literature may be used as proxies for sn, and prove

valuable as input to a combination of proxies for sn.

The remainder of the paper is organized as follows. Section 1 discusses the model for the

intraday return process Rn(·). Section 2 introduces proxies, and develops tools for ranking
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and optimizing them. Section 3 constructs a good volatility proxy for the S&P 500 data. In

Section 4 we give the most important conclusions. The appendices A, B, C, and D contain

a description of the data, a discussion of microstructure effects, introduce the empirical

technique of prescaling, and provide mathematical details.

1 Model

We observe for each trading day n a process Rn(·), being the continuous time log-return

process within that day. It starts with the overnight return at time u = 0, and at the end

of the day, at time u = 1, we obtain the close-to-close return rn = Rn(1). Figure 1 depicts

five actual intraday log-return processes Rn, for the S&P 500, for n = 2285, . . . , 2289. The
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Figure 1: Five intraday return processes Rn(·), with respect to the previous day’s close,
n = 2285, . . . , 2289, for the S&P 500. Starting at 1997–02–14.

second day in the figure (n = 2286 in our sample), for example, starts with a small positive

overnight return, and the value of the index increases towards the end of the day to arrive

at a plus of rn = Rn(1) ≈ 0.01, or +1% at the close of the day.

Now, the standard framework for intraday high-frequency data would be to assume that

Rn(·) is a semimartingale on the unit time interval (i.e. the trading day). Although the

model that the paper proposes is not at odds with the semimartingale approach, it is for

our purposes perhaps more insightful to first have a look at a simple example, the scaled

Brownian motion:

Rn(·) = snWn(·).

Here, Wn(·) is a standard Brownian motion on the unit time interval independent of sn,

and one may think of sn as the scale factor of a daily Garch process. So the scale factor
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sn represents daily volatility and is constant within the day, whereas the Brownian motion

Wn(·) captures the intraday price movements. Estimation of sn is an easy task in this model.

Indeed, the daily quadratic variation QV now yields an exact relationship:

QV (Rn) = s2
n,

so the square root of the quadratic variation is a perfect estimator of sn. Our model for

Rn(·) is a generalization of the scaled Brownian motion:

Rn(·) = snΨn(·), (4)

where Ψn(·) is an arbitrary process on the unit time interval, again independent of sn. The

processes Ψn(·) over different days are assumed independent. Moreover, there are no model

assumptions for the sequence (sn). To the best of our knowledge, the general form that the

model (4) takes is new; we refer to it as the scaling model. It is highly interesting for our

purposes because of its relation to discrete time volatility models: the model yields daily

close-to-close returns rn that satisfy

rn = snZn,

(setting Zn = Ψn(1)) which is the canonical discrete time model structure, see equation (1).

In general the quadratic variation is not a perfect estimator of s2
n: if Ψn(·) has nondetermin-

istic quadratic variation, then

QV (Rn) 6= s2
n.

Let us be precise on the model assumptions for the scaling model. To this purpose we

introduce the discrete time model filtration (Gn), which includes the history of (sn, Ψn)

extended with sn+1. So, Gn = σ{(Ψi)i≤n, (si)i≤n+1}. The σ-field Gn represents the model

information2 at the start of day n+1. The intraday return processes Rn(·) satisfy the scaling

model whenever

Rn(u) = snΨn(u), 0 ≤ u ≤ 1,

and

M1. The daily scale factors sn are strictly positive,

2The statistician only observes the processes Rn(·).
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M2. Ψn(·) is a cadlag3 process on the closed interval [0, 1],

M3. The processes Ψn(·) are identically distributed,

M4. The process Ψn(·) is independent of Gn−1, for all n.

Conditions (M1) and (M2) are technical and do not lead to practical limitations. By (M3)

and (M4), the processes Ψn(·) are iid over different days. The process Ψn(·) may be any

process representing the intraday price pattern. The sequence of scale factors (sn) may

be any strictly positive stochastic process, as long as the process Ψn(·) is independent of

current and past scale factors sk. So the factors (sn) may satisfy a Garch model, or a

stochastic volatility model. They may also contain structural breaks, so be nonstationary.

The actual fluctuations in the process Ψn(·) determine the pattern of the intraday return

process, such as up or down days, quiet or hectic days. The scaling model is not a model of

constant intraday volatility: depending on Ψn(·) the day may be hectic (for instance, a large

quadratic variation) when sn is low, and vice versa. The process Ψn(·) allows for intraday

seasonality. It may also have, for instance, leverage effects, jumps, stochastic spot volatility,

a non-zero mean process.

Conditions (M1) to (M4) ensure that daily volatility proxies may be decomposed into a

scale factor and an independent measurement error, see equation (5) in Section 2.1. Note

that Ψ(1) is not standardized; identification of sn and Ψn(·) shall not be necessary for the

study of proxies, see Section 2.1.

2 Proxies

This section discusses proxies for sn. Section 2.1 discusses how proxies may be compared.

Section 2.2 shows how proxies may be combined into a superior one.

Let us first address how the theory in the paper relates to the quadratic variation of the

intraday log price process. In particular, what is the relation between sn and the quadratic

variation? In recent years the quadratic variation of financial processes has received atten-

tion as a way of dealing with high-frequency data. The daily quadratic variation (QV) is

the limit of the realized variance as the lengths of the sampling intervals approach zero.

The standard framework is to assume that the intraday log price process is a semimartin-

gale. Under fairly mild regularity conditions the quadratic variation then is an unbiased

estimator of the conditional variance of the daily close-to-close return rn, see for instance

Andersen, Bollerslev, Diebold and Labys (2003). So, if sn satisfies a Garch model (hence is

3The sample paths are right-continuous and have left limits.
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Fn−1-measurable), then the quadratic variation is an unbiased estimator of s2
n:

E(QVn|Fn−1) = var(rn|Fn−1) = s2
n,

where in general the scale factor sn is a truly latent variable.

2.1 Ranking Proxies

A number of alternative volatility proxies have appeared in the literature: the intraday high-

low range (e.g. Parkinson, 1980), the realized volatility (e.g. Barndorff-Nielsen and Shephard,

2002, and Andersen et al., 2003), the sum of absolute returns (more generally the square

root of the realized power variation, see Barndorff-Nielsen and Shephard, 2003, 2004), the

square root of bipower variation (Barndorff-Nielsen and Shephard, 2004), the square root of

the realized range (e.g. Martens and van Dijk, 2007, and Christensen and Podolskij, 2007).

All these proxies have the property of positive homogeneity: if the intraday process Rn(·)
is multiplied by a factor α ≥ 0, then so is the proxy:

H(αRn) = αH(Rn), α ≥ 0.

The present paper allows any positive and positively homogeneous proxy. We shall refer to

both the random variable Hn,

Hn ≡ H(Rn),

and the functional H as proxies. The proxy Hn is linear in sn:

Hn = snH(Ψn).

For quadratic proxies we refer to the final paragraph of this section.

The following decomposition (5) is central to the results of the paper. Applying loga-

rithms leads to an additive measurement equation:

log(Hn) = log(sn) + Un. (5)

So the log of a proxy consists of the sum of two independent terms, the log of the scale

factor sn and a measurement error

Un ≡ log(H(Ψn)).
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The measurement errors Un form an iid sequence. Our criterion for the quality of proxy is

given by the measurement variance λ2 = var(log(Hn/sn)),

λ2 = var(Un). (6)

The smaller λ2, the more efficient the proxy is for QML parameter estimation of discrete time

volatility models.4 For additional discussion of the measurement variance see Appendix D.1.

A proxy H(1) is better than H(2) if it has smaller measurement variance:

(λ(1))2 ≤ (λ(2))2.

For this ranking to make sense, it has to be the same for all possible representations of

Rn(·) = snΨn(·). This is confirmed by Proposition D.1 in Appendix D.2. An optimal proxy

H∗ satisfies

var(log(H∗(Ψ))) = inf
H

var(log(H(Ψ))).

For a proxy H, the measurement error Un only depends on the process Ψn(·). So the optimal-

ity of a proxy H is independent of the particular discrete time model for the scale factors (sn).

Optimal proxies exist and they can be shown to be unique up to a constant factor, see Ap-

pendix D.2, yet there does not seem to be a concrete way of determining this optimal proxy,

or for computing its measurement variance. The appendix also provides a simple example

that shows that the square root of the quadratic variation need not be an optimal proxy,

Example D.2.1.

A first practical step is to achieve a data-based ranking: how can one tell from the time

series of realizations Hn of several proxies, which one is the best? Taking variances on both

sides of the decomposition (5) gives

var(log(H(i)
n )) = (λ(i))2 + var(log(sn)). (7)

There is no covariance term by the independence of sn and Ψn(·). Equation (7) shows

that the variances of the proxies all have the common term var(log(sn)). It follows that if

the variance of the log proxy is smaller, then the measurement variance must be smaller.

4See the theory on the log-Gaussian QMLE in Visser (2008).
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Assuming var(log(sn)) < ∞, one has the equivalence

(λ(1))2 ≤ (λ(2))2 ⇔ var(log(H(1)
n )) ≤ var(log(H(2)

n )). (8)

So, in empirical applications one may simply rank proxies by estimating the variance of their

logarithm. See Section 3.1 for ranking proxies for the S&P 500 index.

We end this section with a remark on quadratic proxies. One may be interested in

proxies that are homogeneous of a degree p 6= 1, for instance proxies that are quadratic in

nature. These proxies satisfy H̃(αRn) = α2H̃(Rn), and are proxies for s2
n. The theory of

the paper directly applies to quadratic proxies, since H̃ is linear in s2
n. The ranking of a

quadratic proxy corresponds to the ranking of its homogeneous version (which one obtains

by taking the square root). So the optimal quadratic proxy is the square of our optimal

proxy: H̃∗ = (H∗)2, and one may restrict attention to proxies that are homogeneous of

degree p = 1.

2.2 Combining Proxies

We are now ready for the main result of the paper. For finding a good proxy one first needs

to think up some simple proxies. The procedure below will then combine these into a single,

more efficient proxy. Suppose we are supplied with the proxies H (1), . . . , H(d). Consider the

geometric combination of these proxies,

H(w)
n ≡

d∏

i=1

(H(i)
n )wi, w1 + . . . + wd = 1, wi ∈ R. (9)

Here, the column vector w is the d-dimensional coefficient vector. The restriction
∑

wi = 1

is needed to obtain a proxy, though the coefficients are not restricted to the interval [0, 1].

It is natural to have the coefficients wi acting as exponents in equation (9), since taking

logarithms now yields an additive problem. Let Λ denote the covariance matrix of the

measurement errors U (i) = log(H(i)(Ψ)):

Λ = cov([U (1), . . . , U (d)]′). (10)

The measurement error U (w) ≡ log(H(w)(Ψ)) of the geometric combination in (9) equals

U (w) =
d∑

i=1

wiU
(i),
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which has variance λ2
w = w′Λw and, as for the global minimal variance portfolio in Markowitz

portfolio theory, λ2
w is minimal for

w∗ =
Λ−1ι

ι′Λ−1ι
, ι = (1, . . . , 1)′, (11)

with optimal variance λ2
w∗ = 1

ι′Λ−1ι
. This solution is empirically infeasible since the measure-

ment errors U
(i)
n are not observed. However, by equation (8) one may equivalently minimize

var(log(H
(w)
n )). Now, let Λp,n denote the covariance matrix of the log of the simple proxies:

Λp,n = cov([log(H(1)
n ) . . . log(H(d)

n )]′). (12)

The covariance matrix Λp,n is the covariance matrix Λ with a common term var(log(sn))

added to each element:

Λp,n = Λ + var(log(sn)) ιι′. (13)

The optimal coefficients w∗ may now be obtained upon replacing Λ by Λp,n in equation (11),

see formula (14) below. In empirical applications one may want to assume stationarity for

(sn), so that the covariance matrix

Λp,n = Λp,

may simply be estimated by the sample covariance matrix.

Theorem 2.1. Let Rn(·) satisfy the scaling model. Assume var(log(H (i)(Ψ))) < ∞ for

i = 1, . . . , d, and var(log(sn)) < ∞. Let the covariance matrices Λ and Λp,n be defined by

(10) and (12). The optimal coefficient vector w∗ in (11) does not depend on the form of the

process (sn) and may be expressed as

w∗ =
Λ−1

p,nι

ι′Λ−1
p,nι

. (14)

The variance of the logarithm of the optimal geometric combination is

var(log(H(w∗)
n )) = λ2

w∗ + var(log(sn)),

where λ2
w∗ = 1

ι′Λ−1ι
is its measurement variance.
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Proof. The optimal coefficient w∗ does not depend on (sn): by equation (8)

arg minwvar(log(H(w)
n )) = arg minwvar(log(H(w)(Ψn))),

so

arg minw w′Λp,nw = arg minw w′Λw. (15)

Define the Lagrangian w′Λp,nw+µ (1−w′ι). Differentiating the Lagrangian with respect

to w yields 2Λp,nw−µι = 0, hence w = 1/2 Λ−1
p,nµι. By ι′w = 1, this yields µ = 2/ι′Λ−1

p,nι and

w = Λ−1
p,nι/ι

′Λ−1
p,nι. Since w′Λp,nw is convex in w and there is a unique solution to the first

order condition, it is the optimum.

Use (15) to obtain the equalities w∗ = Λ−1
p,nι/ι

′Λ−1
p,nι = Λ−1ι/ι′Λ−1ι, which imply

var(log(H(w∗)
n )) = λ2

w∗ + var(log(sn)).

�

Remark 1. In empirical applications one uses estimates of the covariance matrix. To reduce

estimation error, we shall use the technique of prescaling, see Appendix C.

We end this section with a few words relevant to empirical implementation. Assuming

stationarity for the process (sn, Ψn), the covariance matrix Λp,n = Λp is consistently estimated

by the sample covariance matrix of the log of the proxies, thereby providing coefficients ŵ

that are consistent for w∗. More generally, this estimator for w∗ may remain consistent while

allowing, for example, for structural breaks in the scale factors (sn). See the consistency

condition (19) in Appendix D.3 for details.

3 A Good Proxy for S&P 500 Volatility

This section constructs a good proxy for volatility, applying the techniques of Section 2 to the

S&P 500 futures tick data over the years 1988–2006, a total of 4575 trading days. Appendix

A describes the data. The proxies below are constructed taking care of microstructure noise,

see Appendix B.

3.1 Ranking Proxies

One can think of many proxies for the daily volatility sn. Table 1 compares twelve simple

proxies constructed from the data.
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full 1st 2nd 3rd 4th
name PV PV PV PV PV
RV5 0.064 0.070 0.070 0.073 0.042
RV10 0.080 0.085 0.093 0.090 0.052
RV15 0.089 0.096 0.105 0.093 0.061
RV20 0.100 0.110 0.117 0.103 0.071
RV30 0.117 0.133 0.134 0.113 0.087
abs-r 0.611 0.683 0.550 0.635 0.568
hl 0.161 0.179 0.176 0.160 0.130
maxar2 0.118 0.134 0.124 0.118 0.088
RAV5 0.058 0.060 0.065 0.066 0.040
RAV10 0.072 0.072 0.085 0.082 0.049
RVHL10 0.053 0.057 0.061 0.061 0.034
RAVHL10 0.047 0.048 0.055 0.054 0.031
minimal PV 0.047 0.048 0.055 0.054 0.031

Table 1: Performance of twelve proxies. The table gives the PV: the variance of the logarithm after
prescaling by EWMA(0.7) predictor for RV5. The full sample is split into four subsamples. The following
proxies are included. We abbreviate square root to sqrt.: RV5: sqrt. of sum of squared 5-min. returns;
RV10: sqrt. of sum of squared 10-min. returns; RV15: sqrt. of sum of squared 15-min. returns; RV20:
sqrt. of sum of squared 20-min. returns; RV30: sqrt. of sum of squared 30-min. returns; abs-r: absolute
close-to-close return; hl: high-low of the intraday return process; maxar2: maximum of the absolute 2-min.
returns; RAV5: sum of absolute 5-min. intraday returns; RAV10: sum of absolute 10-min. intraday returns;
RVHL10: sqrt. of sum of 10-min. squared high-lows; RAVHL10: sum of 10-min. high-lows;

For each proxy a measure of comparison is given for five samples: first the full sample

(days 2 to 4575) and then for four subsamples spanning the full sample (2:1144, 1145:2287,

2288:3431, 3432:4575). The measure of comparison is PV (prescaled variance), which is the

variance of the logarithm of a proxy H after prescaling by a suitable series pn,

PV (H) = var(log
(
Hn/pn

)
)

= var(log(sn/pn)) + λ2
H .

Smaller PV ’s correspond to more efficient proxies. Prescaling does not effect the theo-

retical ranking of proxies, but helps to diminish statistical noise, see Appendix C. The

first observation cannot be prescaled and is left out of the variance computations. For the

prescaling sequence (pn) we take an exponentially weighted moving average predictor of five-

minute realized volatility with smoothing parameter β = 0.7, yielding a prescaling sequence

pn = 0.7 pn−1 + 0.3 RV 5n−1. We have set the smoothing parameter so that the sample vari-

ance of the logarithm of prescaled five-minute realized volatility is minimal. A smoothing

parameter around β = 0.7 for a realized volatility filter was found to fit well in earlier re-

search, see for instance Engle (2002). Recall that the prescaled variance ranks proxies, but

the measurement variance λ2 itself remains unknown.

The first column of Table 1 gives the prescaled variances over the full sample. The
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full 1st 2nd 3rd 4th
name PV PV PV PV PV
RV5-up 0.066 0.070 0.070 0.073 0.051
RV5-down 0.094 0.103 0.101 0.104 0.068
RV10-up 0.091 0.094 0.101 0.095 0.074
RV10-down 0.133 0.138 0.146 0.149 0.100
RAV5-up 0.064 0.066 0.070 0.067 0.051
RAV5-down 0.097 0.099 0.101 0.110 0.077
RAV10-up 0.093 0.093 0.102 0.097 0.081
RAV10-down 0.147 0.145 0.155 0.168 0.120
RAV10HIGH 0.053 0.055 0.061 0.054 0.041
RAV10LOW 0.081 0.082 0.086 0.090 0.064
minimal PV 0.053 0.055 0.061 0.054 0.041

Table 2: Performance of upward/downward decomposed proxies. The table splits proxies from Table 1
according to upward and downward price movements. For example, RV5-up is sqrt. of sum of squared 5-min.
positive returns, RAV10HIGH is the sum of 10-min. highs, and RAV10LOW is the sum of 10-min. absolute
lows.

standard five-minute realized volatility RV5 has PV = 0.064. The first column shows that

the quality of the realized volatility RV improves if one increases the sampling frequency from

30 minutes to 5 minutes. The prescaled variance is maximal for the absolute close-to-close

returns, confirming that absolute or squared daily returns are poor proxies.5 Note that the

maximal absolute two-minute return outperforms the intraday high-low range, which tends

to use returns based on much longer time spans. Overall, we find that sums of absolute

values lead to more efficient proxies than sums of squared values. This observation relates to

a finding of Barndorff-Nielsen and Shephard (2003), whose simulations indicate that absolute

power variation, based on the sum of absolute returns, has better finite-sample behaviour

than the realized variance. The best performing proxy in Table 1 is RAV HL10, the sum of

the ten-minute high-low ranges. The remaining columns of Table 1 show that the ranking

of the different proxies is stable: the ranking in the subsamples is the same as in the full

sample, with one exception in the second subsample for RV 30 and maxar2. Though the

measurement variances are not observed, from the full sample column we may infer that

the measurement variance λ2 of RAV HL10 is at least 25% smaller than the measurement

variance of RV 5, by (0.064 − 0.047)/0.064 ≈ 0.27.

Table 2 splits proxies from Table 1 into upward and downward components. For instance,

the five-minute realized volatility is decomposed according to upward and downward price

5We use the absolute returns larger than 0.001, or 10 basis points, to avoid taking the log of zero. This
leaves 4079 daily returns.
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movements:

(RV5)2 =

K∑

i=1

r2
n,i

=
K∑

i=1

r2
n,i I{rn,i>0} +

K∑

i=1

r2
n,i I{rn,i<0}

= (RV5-up)2 + (RV5-down)2.

Here, rn,i denotes the return over the i-th intraday five-minute interval on day n. As

one would expect RV5 (PV=0.064) is better than RV5-up (PV=0.066) and RV5-down

(PV=0.094). Note that the upward proxies are consistently more efficient than their down-

ward counterparts. This difference suggests that, when proxying the scale factor sn, one

should put more weight on the upward movements.

3.2 Optimized Combination

The proxies in Tables 1 and 2 may each be of value for measuring the scale factor sn, but

certain proxies may be more useful than others. This section combines the proxies in Tables 1

and 2 into a more efficient one using the combination formula of Section 2.2. We also conduct

a thorough stability analysis, and discuss properties of the optimized proxy.

The five-minute realized volatility RV5 is a standard proxy, and has PV=0.064. Let

us improve upon this value. First, by using the (square root of the) sum of the squared

high-low ranges over intraday intervals, RVHL10 has PV = 0.053, see Table 1. It is better

to use absolute values: RAVHL10 has PV = 0.047. Now use the theory of Section 2.2 to

combine the high-low ranges in RAVHL10 with the absolute returns in RAV10: inserting

the covariance matrix Λ̃p,n of the log of these two prescaled proxies into formula (14), yields

the proxy

Hn = (RAV HL10n)
1.82(RAV 10n)−0.82, (PV = 0.041).

Decomposing RAVHL10 into its upward and downward components, RAV10HIGH and

RAV10LOW, we obtain the proxy

H(ŵ)
n = (RAV 10HIGHn)

1.04(RAV 10LOWn)0.72(RAV 10n)
−0.76, (PV = 0.038). (16)

Of course, one may also apply the optimal coefficient formula (14) to all twenty-one proxies

in Tables 1 and 2 at once.6 The full combination yields a proxy with PV = 0.037, which

6We exclude the absolute close-to-close return in performing this calculation.
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full 1st 2nd 3rd 4th
name PV PV PV PV PV

H(ŵ) 0.038 0.039 0.043 0.043 0.028

H(ŵ,1) 0.038 0.039 0.043 0.043 0.028

H(ŵ,2) 0.039 0.039 0.043 0.043 0.029
H(ŵ,3) 0.039 0.040 0.044 0.042 0.029

H(ŵ,4) 0.039 0.040 0.045 0.044 0.027
minimal PV 0.038 0.039 0.043 0.042 0.027

Table 3: Combined proxy, optimized for different subsamples: performance and stability.

only marginally outperforms the proxy obtained in (16). We prefer to work with the simpler

proxy in (16) and we refer to it as the optimized proxy H
(ŵ)
n .

The optimized proxy easily outperforms all proxies in Tables 1 and 2. If one extrapolates

the full sample prescaled variances of the realized volatilities of Table 1 to a time interval

of length zero (corresponding to the limiting case of the quadratic variation), one obtains

a value between 0.050 and 0.060. The value PV = 0.038 for the optimized proxy is well

below these values, suggesting that this proxy for the daily scale factor is more efficient than

the square root of the quadratic variation. Indeed, the optimized proxy has a measurement

variance λ2 which is at least 40% smaller than the five-minute realized volatility, by (0.064−
0.038)/0.064 ≈ 0.41, and may be 25% smaller than the measurement variance of the square

root of the quadratic variation, by (0.05 − 0.038)/0.05 ≈ 0.24.

Observe that the coefficient for RAV10 in the optimized proxy is negative (ŵ3 = −0.76).

In geometrical terms this negative coefficient may be explained as follows. The log proxies

are vectors in an affine space. The proxies are highly related, since all proxies approximate

the same daily scale factor sn. The optimal proxy is not in the convex hull of the proxies in

Tables 1 and 2. The original proxies do not completely reflect the direction of the optimal

proxy. The coefficients outside [0, 1] correct the direction.

Table 3 investigates the stability of the optimized proxy H
(ŵ)
n . Similarly to Table 1 it

lists performance measures for the full sample and for four subsamples. The first row gives

the performance of H
(ŵ)
n in the different subsamples; comparison with Tables 1 and 2 shows

that H
(ŵ)
n outperforms all those proxies in every subsample. The proxy H

(ŵ,i)
n is constructed

using the coefficients that are optimal for the i-th subsample. In the first subsample the

performance of the globally optimized H
(ŵ)
n (PV=0.039) is not substantially outperformed

by H
(ŵ,1)
n (PV=0.039). A similar statement holds for the other subsamples. Moreover,

proxies based on any particular subsample are close to optimality in all other subsamples.

For instance, the proxy optimized for the first subsample (the years 1988–1992) is nearly

optimal for the years 2002–2006. We conclude that the optimality of H
(ŵ)
n is stable.

Proxies are important for volatility forecast evaluation. Good proxies help in distinguish-
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ing better from poor forecasts, see for instance Hansen and Lunde (2006a) and Patton and

Shephard (2008). Table 4 explores the quality of the optimized proxy in a heuristic way. It

gives the coefficient of determination, R2, of a linear regression of the logarithm of a proxy

on the logarithm of another proxy lagged one day:

log(H(j)
n ) = α + β log(H

(i)
n−1) + εn.

Large R2’s in a particular column mean that the proxy in that column is largely predictable,

suggesting that it is a good proxy to use for volatility forecast evaluation. The R2’s attain

their maximum at the optimized proxy, in the most right column.7

RV30 RV20 RV15 RV10 RV5 H(ŵ)

RV30(-1) 0.35 0.39 0.42 0.46 0.50 0.58
RV20(-1) 0.38 0.42 0.45 0.49 0.54 0.61
RV15(-1) 0.39 0.44 0.47 0.50 0.55 0.63
RV10(-1) 0.41 0.45 0.48 0.52 0.57 0.66
RV5(-1) 0.43 0.48 0.51 0.55 0.60 0.69

H(ŵ)(−1) 0.44 0.48 0.51 0.54 0.60 0.71

Table 4: R2 of the regression log(H
(j)
n ) = α + β log(H

(i)
n−1) + εn, for i, j = 1, . . . , 6, and n = 2, . . . , 4575.

Table 5 gives an impression of the distributions of the measurement errors of the five-

minute realized volatility and of the optimized proxy. It gives descriptive statistics based

on the logarithm of the prescaled proxies. We do not provide the sample averages since

the quality of a proxy is insensitive to scaling, see Appendix D.1. It appears that putting

less weight on the sum of the lows, and more on the sum of the highs, helps to diminish

the skewness. The optimized proxy is more symmetrical and more concentrated than the

five-minute realized volatility.

log(RV 5n/pn) log(H
(ŵ)
n /pn)

st. dev. 0.25 0.20
skewness 0.62 0.00
kurtosis 6.00 4.05

Table 5: Proxy distributions. For the full sample, n = 2, . . . , 4575: standard deviation, skewness, and
kurtosis of the logarithm of the prescaled proxy, log(Hn/pn). Prescaling filter pn is EWMA(β = 0.7) based
on RV5.

Finally, Figure 2 shows the time series graphs of four different proxies. The proxies

were standardized to have mean one, by dividing them by their mean. From top to bottom

the curves become ’less erratic’, suggesting a decrease in the variance of the measurement

errors Un. Each step shows a marked improvement.

7The optimized proxy is constructed as an optimized proxy for sn, not as an optimal predictor for sn+1.
Even so, the R2’s attained in the bottom row H(ŵ)(−1) are large.
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4 Conclusions

This is the first paper to address the problem of optimizing volatility proxies in relation to

discrete time volatility models, such as Garch and stochastic volatility models. The results

of the paper should be of use to researchers that aim at improving discrete time models:

proxies are important for the specification of these models; they are also an essential input

to parameter estimation and volatility forecast evaluation. Most of these models satisfy

the canonical product structure rn = snZn, where rn is the daily financial return, sn the

volatility, and Zn an iid innovation. The problem of finding good proxies for discrete time

models differs from the problem of finding good estimators of the quadratic variation for

continuous time semimartingales. Our theory is founded on three distinctive elements:

• The continuous time model for the intraday return process Rn(·) is new, but yields the

canonical discrete time model if one samples daily close-to-close returns. Moreover, it

requires only minimal assumptions.

• The class of volatility proxies H for sn is new, but encompasses most well-known

proxies, such as the realized volatility, the high-low range, and the absolute return.

• The criterion of ranking proxies by the variance of the relative measurement error

Un = log(Hn/sn) is new. It is natural because of the multiplicative role of the scale

factor, and it is consistent with optimal QML parameter estimation for discrete time

models.

In this paper a volatility proxy is a positive, and positively homogeneous statistic of the

intraday log-return process. We provide easy-to-implement tools for ranking proxies and

combining them into a highly efficient proxy. The approach is to a large extent model free:

an optimal proxy for the scale factor sn is an optimal proxy under all possible discrete time

models of the form rn = snZn.

For the S&P 500 data a combination of the sum of the highs, the sum of the lows, and

the sum of the absolute returns over ten-minute intervals yields a good proxy. One should

put more weight on the sum of the highs than on the sum of the lows, when proxying

volatility. The empirical results indicate that the optimized proxy, although it uses only

a finite sampling grid, is more efficient for the scale factor sn than (the square root of)

the quadratic variation, which is based on the limiting case of continuous sampling. Our

optimized proxy outperforms the five-minute realized volatility by at least 40%, and the

square root of the quadratic variation by 25%.

This paper has addressed the problem of ranking and optimizing proxies for today’s scale

factor sn. We see opportunities for future research to use proxies for the specification of the
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daily volatility process (sn), and accordingly use proxies to forecast future volatility.

Acknowledgment

The authors are indebted to Guus Balkema, Peter Boswijk, Chris Klaassen, Oleg Kozlovski,

Remco Peters, and Duncan Sands for detailed comments and suggestions.

19



1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
0

1

2

3

4

5

6

(a) Absolute close-to-close returns

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
0

1

2

3

4

5

6

(b) Intraday high-low range

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
0

1

2

3

4

5

6
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Figure 2: Time series of four standardized proxies, Hn/H̄n.
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Appendices

A Data

Our data set is the U.S. Standard & Poor’s 500 stock index future, traded at the Chicago

Mercantile Exchange (CME), for the period 1st of January, 1988 until May 31st, 2006. The

data were obtained from Nexa Technologies Inc. (www.tickdata.com). The futures trade

from 8:30 A.M. until 15:15 P.M. Central Standard Time. Each record in the set contains

a timestamp (with one second precision) and a transaction price. The tick size is $0.05 for

the first part of the data and $0.10 from 1997–11–01. The data set consists of 4655 trading

days. We removed sixty four days for which the closing hour was 12:15 P.M. (early closing

hours occur on days before a holiday). Sixteen more days were removed, either because of

too late first ticks, too early last ticks, or a suspiciously long intraday no-tick period. These

removals leave us with a data set of 4575 days with nearly 14 million price ticks, on average

more than 3 thousand price ticks per day, or 7.5 price ticks per minute.

There are four expiration months: March, June, September, and December. We use the

most actively-traded contract: we roll to a next expiration as soon as the tick volume for

the next expiration is larger than for the current expiration.

An advantage of using future data rather than the S&P 500 cash index is the absence

of non-synchronous trading effects which cause positive autocorrelation between successive

observations, see Dacorogna et al. (2001). As in the cash index there may be bid-ask effects

in the future prices which induce negative autocorrelation between successive observations.

We deal with these effects by taking large enough time intervals, see Appendix B. Since we

study a very liquid asset the error term due to microstructures is relatively small.

B Microstructure Noise Barrier

On small time scales financial prices are subject to market microstructure effects, such as

the bid-ask bounce, price discreteness, and asynchronous trading, see, for instance, Zhang,

Mykland, and Äıt-Sahalia (2005), Oomen (2005,2006), and Hansen and Lunde (2006b).

These effects may invalidate the model assumptions. Microstructure effects may be avoided

by sampling at sufficiently wide intervals.

In the present paper the measure of comparison is the variance of the logarithm. The

standard realized volatility RV and the realized range RV HL (see Table 1) depend on the

sampling interval ∆u. Figure 3 shows the graph of ∆u → v̂ar(log(H∆u(Rn))), for ∆u ranging

from zero to sixty minutes. These curves suggest that a qualitative change of behaviour
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occurs for ∆u ≈ five minutes for realized volatility, and ∆u ≈ eight minutes for realized

range. The realized volatilities in the paper are based on five-minute sampling intervals or

larger. For realized range our minimal sampling interval is ten minutes.
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Figure 3: Plots of the sample variance of the log of a proxy with ∆u ranging from zero to 60 minutes (zero
is tick per tick). (a) Realized volatility, RV . (b) Realized range, RV HL.

C Prescaling

The methods of comparing proxies by the variance of the logarithm and of combining proxies

in Theorem 2.1 are formulated in terms of population variances and covariances. In practical

situations, one has to work with the sample counterparts of these quantities, which introduces

sampling error. To reduce the part of the sampling error caused by the scale factors (sn),

we propose the technique of prescaling. The idea is to stabilize the sequence (sn), by scaling

it by a predictable sequence of random variables (pn). Let Fn = σ(Ri, i ≤ n) denote the

observable information up until day n.

Definition C.1. A prescaling sequence (pn) is an (Fn−1) adapted sequence of strictly positive

random variables.

The prescaling factors pn are used to define adjusted scale factors

s̃n = sn/pn.

Proposition C.2. Assume the processes (Rn) satisfy the scaling model. Prescale the scale

factors (sn) to obtain the sequence (s̃n) above. The corresponding processes (R̃n), where

R̃n = s̃nΨn, satisfy the scaling model.
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Proof. The variables (s̃n) are positive. Both pn+1 and sn+1 are Gn-measurable, hence so is

s̃n+1. Therefore R̃n satisfies the scaling model. �

As a result one obtains proxies for s̃n. These are prescaled proxies:

H̃n = H(R̃n) = H(Rn)/pn.

The proxy H̃n for s̃n has the same measurement error as the proxy Hn for sn :

Ũn = log(H̃n) − log(s̃n)

= log(Hn) − log(pn) − (log(sn) − log(pn))

= Un.

So, ranking and optimizing proxies before and after prescaling are equivalent in terms of

population statistics; therefore one may replace sn by s̃n, and Hn by H̃n in the paper. As a

consequence, the population value of the term var(log(sn)) in equations (7) and (13) changes

into

var(log(s̃n)) = var(log(sn/pn)).

A perfect predictor pn of sn results in var(log(s̃n)) = 0.

D Mathematical Details

D.1 Properties of the Measurement Variance

A smaller measurement variance is better for QML parameter estimation for volatility mod-

els, see Section 2.1. Let us here provide some additional intuition on the measurement

variance λ2. Since proxies are positive and may have a heavy tail, it is natural to apply

logarithms.8 Let us have a look at the bias and the variance of the measurement error Un.

Equation (5),

log(Hn) = log(sn) + Un,

makes clear that for a given proxy H the measurement error introduces a constant bias,

EUn = µ, independent of sn. In applications where the proxy is used as a variable in a

8In practice proxies are strictly positive. An exception is the absolute close-to-close return |rn|, for which
one could either set the measurement variance to infinity, or exclude the zeros from the sample. In either
case |rn| proves a poor proxy.
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regression, the bias is corrected by the regression parameters. It is also possible to rescale

the proxy, replacing H by aH, to obtain a bias-corrected version. Consider for instance the

ideal situation of a perfect proxy, a proxy with zero measurement variance. Such a proxy

gives the volatility up to a constant factor c > 0:

Hn = c sn.

So, the key determinant of the quality9 is the measurement variance λ2. Moreover, changing

the measurement units of a proxy by a positive factor a > 0 does not change the measurement

variance λ2 :

var(log(aH(Ψ))) = var(log(H(Ψ))) = λ2. (17)

From a practical point of view, it is an advantage that the criterion λ2 is insensitive to

changes in scale: one does not need to rule out potentially biased proxies, which bypasses

the difficulty of telling a priori whether a proxy is unbiased, and the difficulty of finding a

priori a suitable rescaled version of each proxy. A good proxy is such that its time series

(Hn) has a high degree of comovement with the series (sn). This is confirmed by looking at

correlations. Assume 0 < var(log(sn)) < ∞. It then follows, using the decomposition (5),

that

corr(log(Hn), log(sn)) =
(
1 +

λ2

var(log(sn))

)−1/2
. (18)

So log proxies with smaller measurement variance λ2 have larger correlation with log(sn).

The ideal situation of zero measurement variance gives perfect correlation. For example,

if Ψ(·) is the standard Brownian motion on [0, 1], then the square root of the quadratic

variation yields
√

QVn = sn.

D.2 Identification and Optimality

Let us first address the issue of identification. The following proposition states that different

representations (sn, Ψn) for Rn(·) result in the same ordering for proxies. So, for our purposes

identification of sn and Ψn(·) plays no role.

Proposition D.1. Suppose H(1) and H(2) are proxies. Moreover, assume (sn, Ψn) and

9One may observe that minimizing the measurement variance λ2 is closely related to minimizing the
mean squared error E(log(Hn) − log(sn))2 = λ2 + (EUn)2, since the bias-corrected version aH will yield
E(log(aHn) − log(sn))2 = λ2 by equation (17).
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(s′n, Ψ′
n) both satisfy the scaling model for Rn(·). If H(1) is better than H(2) for Ψ, then H(1)

is also better than H(2) for Ψ′.

Proof. By assumption s′nΨ′
n = snΨn. Independence of sn and Ψn implies

var(log(s′n)) + var(log(H(1)(Ψ′
n))) = var(log(sn)) + var(log(H(1)(Ψn)))

≤ var(log(sn)) + var(log(H(2)(Ψn)))

= var(log(s′n)) + var(log(H(2)(Ψ′
n))).

Hence var(log(H(1)(Ψ′
n))) ≤ var(log(H(2)(Ψ′

n))). �

The following example shows that the square root of the quadratic variation is not nec-

essarily the most efficient proxy for sn.

Example D.2.1. Consider the case that Ψ(·) is a diffusion:

dΨ(u) = σ(u) dB(u), 0 ≤ u ≤ 1,

where B(·) denotes standard Brownian motion. Let the instantaneous volatility process σ(u)

be deterministic at the opening and stochastic for the rest of the day. More specifically,

suppose σ(u) equals 1 before time of day u0 = 1/2, and σ(u) equals either c1 or c2 after u0,

both with probability 1/2. The square root of the truncated quadratic variation over [0, 1/2]

equals sn times a constant, hence has zero measurement variance. The square root of the

quadratic variation of Rn(·) is the product of sn and a random variable with positive variance.

One may wonder whether optimal proxies exist in general. Recall that an optimal proxy

H∗ satisfies

var(log(H∗(Ψ))) = inf
H

var(log(H(Ψ))).

Theorem D.2. If there is a proxy with finite measurement variance, then there exists an

optimal proxy.

Proof. See appendix D.3. �

The next proposition states that optimal proxies are scaled versions of one another, except

possibly on a set of measure zero.

Proposition D.3. Suppose H(1) and H(2) are two optimal proxies. Then there is a constant

a > 0, such that H(1)(Ψ)
a.s.
= aH(2)(Ψ).

Proof. See appendix D.3. �
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D.3 Proof of Existence of Optimal Proxies

To prove the existence of optimal proxies we need a rigorous definition of proxy. Recall that

the process Ψ(·) is cadlag on [0, 1]. Let D[0, 1] denote the Skorohod space of cadlag functions

on [0, 1]. Endow D[0, 1] with the Skorohod topology. The space D[0, 1] is a separable,

complete metric space (see Billingsley (1999)). The space C[0, 1] of continuous functions on

the unit interval is a linear subspace of D[0, 1].

A proxy is the result of applying a certain estimator, the functional H , to the day n

intraday return process Rn(·). Our proxies are positive, and positively homogeneous.

Definition D.4. Let H be a measurable, positively homogeneous functional D → [0,∞), on

a linear subspace D of D[0, 1]. Assume Ψ ∈ D a.s., and H(Ψ) > 0 a.s. Then H is a proxy

functional. The random variable Hn = H(Rn) is a proxy.

Usually there is no danger of misunderstanding, and we refer to both H and Hn as proxies.

Proof of Theorem D.2. We have to show that there exists a measurable, positively ho-

mogeneous functional H∗ : D → [0,∞), with H∗(Ψ) > 0 a.s., and var(log(H∗(Ψ))) ≤
var(log(H(Ψ))) for all proxy functionals H. The proof uses standard Hilbert space argu-

ments.

For a proxy functional H, write U = log(H). Define λ2
H = var(log(H(Ψ))). Let U denote

the space of all log proxy functionals with λ2
H < ∞. The space U is not empty, by assump-

tion. If EU(Ψ) = a 6= 0, then H ′ = e−aH is an equally good proxy functional for which

Elog(H ′(Ψ)) = 0. Therefore we may restrict attention to the subspace U0 of U of centered

functionals. The space U0 is affine: if U1, U2 ∈ U0, and w ∈ R, then wU1 + (1 − w)U2 ∈ U0,

since (H(1))w(H(2))(1−w) is a proxy functional.

Define λ2
inf = infH:log(H)∈U0{λ2

H}. Consider the space L2(D,B), of equivalence classes [U ] of

log proxy functionals U , with inner product < [U (1)], [U (2)] >= E
(
U (1)(Ψ)U (2)(Ψ)

)
. Here, B

denotes the Borel sigma-field for D. Notice that U0 is a subset of L2 and that λ coincides

with the L2-norm ||.|| on U0. Let U1, U2, . . . ∈ U0 be a sequence for which ||Ui|| → λinf . Then

[U1], [U2], . . . is a Cauchy sequence in L2 : apply the parallelogram law to obtain

0 ≤ ||Um − Un||2 ≤ −4||Um + Un

2
||2 + 2||Um||2 + 2||Un||2.

Since U0 is affine, (Um + Un)/2 ∈ U0, hence ||Um+Un

2
||2 ≥ λ2

inf . Therefore ||Um − Un||2 ≤
−4λ2

inf + 2λ2
m + 2λ2

n → 0 for m, n → ∞.
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By completeness of L2 the sequence [U1], [U2], . . . converges to an element [U0] in L2 and by

continuity of the norm λ2
0 = λ2

inf . Pick a functional U0 ∈ U0 from [U0]. Let us use U0 to

construct a functional H∗ that satisfies the conditions stated at the start of the proof. For

every L2 convergent sequence there exists a subsequence that converges almost surely. Let

Uik = log(H(ik)(f)) → U0(f) on a set C almost everywhere in D. Define on the convergence

set C: H∗(f) = lim H(ik)(f). For {αf : f ∈ C, αf /∈ C, α ∈ [0,∞)}, define H∗(αf) =

αH∗(f). For remaining f ∈ D define H∗(f) ≡ 0. The functional H∗ assigns a single value

to each f ∈ D : consider f1, f2 ∈ C, α1, α2 > 0, and f = α1f1 = α2f2. Then H∗(α1f1) ≡
α1H

∗(f1) = α1H
∗(α2/α1 f2). By homogeneity of H∗ on C this equals α2H

∗(f2) ≡ H∗(α2f2).

Being the result of a limit, the functional H∗ is measurable. Positive homogeneity follows

by construction. Moreover, H∗(Ψ) > 0 almost surely, since U0(Ψ)
a.s.
= log(H∗(Ψ)) and

var(U0(Ψ)) = λ2
0 < ∞. Finally, var(log(H∗(Ψ))) = λ2

inf ≤ λ2
H for all H. �

Lemma D.5. If H∗ is an optimal proxy, and H is a proxy, then cov
(
log(H∗(Ψ)), log(H(Ψ))

)
=

(λ∗)2.

Proof of Lemma D.5. Consider the proxy functional H(f) ≡
(
H∗(f)

)w(
H(f)

)1−w
, with

measurement variance λ2
w = w2(λ∗)2 + 2w(1−w) cov

(
log(H∗(Ψ)), log(H(Ψ))

)
+ (1−w)2λ2.

Since H∗ is optimal, ∂λ2
w/∂w |w=1 = 0. Hence cov

(
log(H∗(Ψ)), log(H(Ψ))

)
= (λ∗)2. �

Proof of Proposition D.3. Both proxies have measurement variance (λ∗)2. Let H0 denote the

centered proxy: H0 = exp(−Elog(H(Ψ))) H, with Elog(H0(Ψ)) = 0. Consider the covariance

of the centered log proxies: cov
(
log(H

(1)
0 (Ψ)), log(H

(2)
0 (Ψ))

)
. By Lemma D.5 this covariance

equals (λ∗)2. By Cauchy-Schwarz this equality holds if and only if H
(1)
0 (Ψ)

a.s.
= H

(2)
0 (Ψ). In

other words, if and only if H(1)(Ψ)
a.s.
= aH(2)(Ψ), for certain a > 0. �

D.4 Consistency Condition for the Coefficients ŵ

We provide additional discussion on consistent estimation of the optimal coefficients w∗.

First some notation. Let (Xn)n∈1...N be a series of vectors. Let v̂ar(Xn) and ĉov(Xn) denote

the standard empirical variance and covariance matrices of the series (Xn). Let H(Rn) be

shorthand for the d-dimensional column vector of proxies H (i)(Rn), and let Un denote the

accompanying measurement errors. Let log(H(Rn)) denote the element wise logarithms. So,

log(H(Rn)) = log(sn) · ι + Un.

The standard formula for the sample variance of the sum of random vectors gives:

v̂ar(log((H(Rn)) = v̂ar(log(sn))ιι′ + v̂ar(log(Un)) + 2 · ĉov(Un, log(sn) · ι).
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The estimator ŵ is given by ŵ = arg minw w′v̂ar
(
log(H(Rn))

)
w. As in the proof of Theorem

2.1, the variance of log(sn) drops out:

ŵ = arg minw w′
(
v̂ar(log(Un)) + 2 · ĉov(Un, log(sn) · ι)

)
w.

If ŵ is consistent for w∗, then asymptotically it should solve arg minw w′Λw. The term

v̂ar(log(Un)) converges to Λ for increasing sample sizes, since the measurement error vectors

Un are iid. So, the consistency of ŵ comes down to the consistency condition that the ’sample

covariance’ of log(sn) and Un (recall that both Un and sn are not observed) converges to

zero in probability:

ĉov(Un, log(sn) · ι) P→ 0, N → ∞. (19)

In addition to existence of second moments and the independence of Un and log(sn), the

stationarity for (sn, Ψn) is a sufficient, but not necessary, condition that ensures that the

consistency condition (19) holds.
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