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Abstract

We propose a Markov chain Monte Carlo Conditional Maximum Likelihood

(MCMC-CML) estimator for two-way fixed-effects logit models for dyadic data. The

proposed MCMC approach, based on a Metropolis algorithm, allows us to overcome

the computational issues of evaluating the probability of the outcome conditional on

nodes in and out degrees, which are sufficient statistics for the incidental parame-

ters. Under mild regularity conditions, the MCMC-CML estimator converges to the

exact CML one and is asymptotically normal. Moreover, it is more efficient than

the existing pairwise CML estimator. We study the finite sample properties of the

proposed approach by means of a simulation study and three empirical applications,

where we also show that the MCMC-CML estimator can be applied to binary logit

models for panel data with both subject and time fixed effects. Results confirm the

expected theoretical advantage of the proposed approach, especially with small and

sparse networks or with rare events in panel data.

Directed network, Fixed effects, Link formation, Metropolis algo-

rithm, Panel data
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1 Introduction

Network models have received increasing attention in the economic literature, as these

models can effectively represent links and interactions between economic agents that

emerge in several fields of application such as trade (Helpman et al., 2008), risk shar-

ing (Fafchamps and Gubert, 2007; Attanasio et al., 2012), knowledge spillovers (Zacchia,

2020), financial contagion (Acemoglu et al., 2015), and diffusion of microfinance (Baner-

jee et al., 2013). Such an interest has spurred the development of related statistical and

econometric methods, especially for the analysis on network formation (see De Paula,

2020, for a recent and extensive review).

The model typically applied is based on the directed Erdős-Rényi random graph (Erdős

and Rényi, 1960) where the probability of link formation is a function of node-specific

parameters, capturing the network agents heterogeneity, and observable covariates that

vary with each pair of nodes. The parameters associated with these variables represent

homophily, which is the attitude of agents to create links with other agents that have

similar characteristics. This model can be seen as an extension of the popular p1 model

proposed by Holland and Leinhardt (1981) to include covariates. Consistent Maximum

Likelihood (ML) estimation of all the model parameters is however hampered by the

incidental parameters problem (Neyman and Scott, 1948; Lancaster, 2000), which arises

in fixed-effects models as the number of parameters for the node heterogeneity increases

with the number of nodes. The asymptotic properties of the ML estimator for a model of

link formation in the directed case are established by Yan et al. (2019).

Different strategies have been put forward to overcome the incidental parameter prob-

lem so as to obtain either a consistent or bias reduced estimate of the model parameters.

With regards to the latter, Yan et al. (2019) and Dzemski (2019) consider an analyt-

ical bias correction for the ML estimator that builds on Fernández-Val and Weidner

(2016), who studied the incidental parameters problem in nonlinear panel data models

with both individual and time fixed effects. Similarly, for the undirected case, Graham

(2017) adapts the iterated bias correction technique developed by Hahn and Newey (2004)

for nonlinear panel data models with individual heterogeneity parameters. Despite their

ease of implementation, the estimation approaches based on bias corrections are viable

only with dense graph sequences (Graham, 2017), a condition required for the estima-

tion of the node-specific parameters. However most social and economic networks are

sparse, meaning that only a small fraction of all possible links are observed. Also, bias

corrected estimators have been shown to exhibit poor finite sample properties in such

cases (Jochmans, 2018).

An alternative approach to bias-corrections is based on conditioning the link formation

logit probability on suitable sufficient statistics to eliminate the incidental parameters

representing node heterogeneity. In this vein is the strategy adopted by Graham (2017)
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for undirected networks and by Charbonneau (2017) and Jochmans (2018) for the directed

case. In particular, the conditional estimator of the homophily parameters proposed

by Charbonneau (2017) maximizes the pairwise or quasi-likelihood (P-CML, hereafter),

which does not depend on the node-specific parameters. Doing so allows them to avoid the

specification of the full conditional likelihood, which would arise as a generalization of the

approaches put forward by Rasch (1961) and Chamberlain (1980) specifically to binary

panel data models. Differently from the quasi-likelihood method, the Conditional ML

(CML) approach uses the number of incoming and outgoing links of all nodes as sufficient

statistics for the heterogeneity parameters, but the resulting likelihood is computationally

intractable. The bulk of the problem rests on the enumeration of binary tables with fixed

marginal sums, a challenging task that has been debated in the literature (Wang and

Zhang, 1998; Pérez-Salvador et al., 2002). Nevertheless, the strategy of conditioning on

sufficient statistics is preferable because applicable to sparse as well as dense network, as

it does not require to estimate the incidental parameters.

In this paper we overcome the computational issue of evaluating the full conditional

likelihood of a logit model for network formation with homophily parameters and node

heterogeneity. Once the incidental parameters are eliminated by conditioning on the

nodes out and in degree, the estimator for the homophily parameters is then obtained

by maximizing the resulting likelihood which is approximated by Markov chain Monte

Carlo (MCMC). MCMC-ML methods have been proposed by Geyer (1991, 1992); Geyer

and Thompson (1992); Geyer (1994); Huffer and Wu (1998), while a review of MCMC

methods for conditional inference is provided by Caffo and Booth (2003). We show that

under mild regularity conditions the MCMC-CML estimator converges to the full CML

estimator and has an asymptotic normal distribution.

The standard inferential framework for the conditional logit model (Andersen, 1970)

does not apply to the pairwise likelihood method considered by Charbonneau (2017) and

Jochmans (2018). In particular, in deriving consistency and limit distribution of the

resulting estimator, Jochmans (2018) shows that uniform convergence of the objective

function rests on the assumption that the accumulation of the informative quadruples,

corresponding to any pair of senders forming one out of two possible links with any two

receivers, does not cease as the sample size grows. This rate condition becomes relevant

with sparse networks, whereas it is not at all required within the standard CML frame-

work. Furthermore, since the pairwise likelihood is a misspecified density function giving

rise to unbiased estimating equations, the resulting estimator is consistent but generally

less efficient than the full ML one (Varin, 2008; Varin et al., 2011). The practitioner

dealing with socio-economic applications based on network models could actually benefit

from the use of the standard CML estimator, as the datasets in this field typically depict

small and sparse networks.
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We investigate the finite-sample properties of the MCMC-CML estimator by means

of a simulation study based the same design presented by Charbonneau (2017). Results

show that the MCMC-CML estimator proves to be effective in overcoming the incidental

parameters problem, as its small sample bias is negligible and comparable to that of the

P-CML estimator. Moreover, the MCMC-CML brings an efficiency gain with respect to

the pairwise CML, which is reflected by a sensible difference in the estimators standard

deviations.

We also consider two empirical applications on network data. The first concerns a

model for the formation of trade relationships between countries, based on data provided

by Helpman et al. (2008); the same exercise has been considered by Charbonneau (2017)

and Jochmans (2018), as an application of the P-CML, and by Chen et al. (2021) in the

context of interactive fixed effects. The second application is based on the sparse network

of US attorneys provided by (Lazega et al., 2001), where links are formed whenever

professional consultations occur. It emerges that the proposed MCMC-CML estimator

is able to reproduce the results obtained by the alternative methods, with the advantage

of offering more precise estimates than those obtained by P-CML, especially when the

network is small and sparse.

It is worth noticing that the proposed approach can also be applied to the estima-

tion of panel data logit models with both individual and time fixed effects that have

been considered in the recent stream of literature regarding panel factor models for bi-

nary data (Fernández-Val and Weidner, 2016; Boneva and Linton, 2017; Jochmans and

Otsu, 2019; Ando et al., 2021; Chen et al., 2021). In particular, under the assumption of

additive fixed effects, the proposed estimator is the conditional counterpart of the analyt-

ical and jackknife bias corrections by Fernández-Val and Weidner (2016). We show that

the MCMC-CML approach can be applied to a binary panel logit model with both sub-

ject and time fixed effects by means of an empirical application based on banking crises

data provided by Laeven and Valencia (2018) to identify early warning signs of financial

distress.

The remainder of the paper is organized as follows: Section 2 briefly describes the

logit model for network formation and establishes notation; Section 3 illustrates the CML

estimation and its computational issues; Section 4 describes the proposed MCMC-CML

approach; Section 5 contains the simulation study and Section 6 the empirical applications;

Finally Section 7 concludes.

2 Background

In this section we briefly describe the logit model for network formation, that has also been

considered by Charbonneau (2017) and Jochmans (2018). Assume we observe a random
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sample of n nodes, describing agents such as individuals, firms, banks, or countries, and

consider the possibility that a pair of nodes (i, j) forms a link (edge), with i, j = 1, . . . , n

and i 6= j. For each pair define yij = 1 if node i is connected (linked) to node j and yij = 0

otherwise. We assume that the connections are directed, allowing for the possibility that

yij 6= yji; yet the application of the proposed approach to the analysis of an undirected

network, that is yij = yji, is straightforward. The set of connections can be represented

by the adjacency matrix Y , defined as a n× n matrix such that each entry Y (i, j) = yij.

We exclude the possibility of self-ties, so that we characterize the elements on the main

diagonal of Y as missing values, which also allows us to avoid abuse of notation when

specifying the sample likelihood function.

Following Jochmans (2018), the link formation decision for a given dyad takes the

threshold-crossing form yij = I(sij) > 0, where I(·) is the indicator function and sij is the

surplus generated by the connection between the nodes i and j. The surplus is defined as

sij = x
′

ijβ + αi + γj + εij, (1)

where αi and γj denote node-specific unobserved traits, xij denotes a set of k dyad-

specific covariates associated with the vector of the homophily parameters β, and εij is

an idiosyncratic component. Under the assumption that εij follows a standard logistic

distribution, we can define the probability of link formation for the dyad i, j as

p(yij = 1|xij, αi, γj) =
exp

(

x′

ijβ + αi + γj
)

1 + exp
(

x′

ijβ + αi + γj
) , (2)

where the node heterogeneity components αi and γj are treated as fixed and enter in

fact the conditioning set. Such model is coherent with the Erdős-Rényi random graph

and represents an extension of the p1 model by Holland and Leinhardt (1981), in that

the probability of link formation is a function of the node heterogeneity and observable

dyad-specific covariates. Notice that the model described by Equation (2) can also be

used to specify a logit panel data model with two-way fixed effects (Fernández-Val and

Weidner, 2016), by letting i denote the subject and j the time occasion, for i = 1, . . . , N

and j = 1, . . . , T , with xij collecting a set of time-varying covariates. The panel data

counterpart of the adjacency matrix has dimension N × T and is not restricted to be a

square matrix.
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According to the model reported in (2), the likelihood function for the sample is

L(β) = p(Y |X,α,γ) =
n
∏

i=1

n
∏

j=1

p(yij|xij, αi, γj) =

exp
[

∑n

i=1

∑n

j=1 yijx
′

ijβ +
∑n

i=1(yi+αi) +
∑n

j=1(y∗jγj)
]

∏n

i=1

∏n

j=1[1 + exp(x′

ijβ + αi + γj)]
, (3)

where Y and X collect yij and xij, ∀i, j, with i 6= j, respectively, and where α =

(α1, ..., αn)
′ and γ = (γ1, ..., γn)

′ are vectors collecting the node heterogeneity parameters.

Moreover, yi+ =
∑n

j=1 yij denotes the number of outgoing links from node i, which is the

sum of the dependent variable for row i of the adjacency matrix. Similarly, y+j =
∑n

i=1 yij

is the number of incoming links to node j, which is the sum of yij for column j of the Y

matrix. In the panel setting, the quantities yi+ and y+j would be referred to as the row

and the column total scores, respectively.

Other than Charbonneau (2017) and Jochmans (2018), who also consider a conditional

approach, the same model is studied by Dzemski (2019) to develop the analytical bias

correction for the ML estimator that, however, is only viable when the network is dense.

The above model is instead different from the one considered by Graham (2017), which

describes an undirected network.

3 Conditional Maximum Likelihood

In the following we describe the conditional inference approach to the estimation of the

two-way fixed-effects logit model for network formation described by (2). We show that

the conditional likelihood does not depend on the incidental parameters after conditioning

on the nodes outdegrees and indegrees. Furthermore, we pin down the conditions under

which the related CML estimator is consistent and asymptotically normal.

For ease of notation, let y+ = (y1+, . . . , yn+)
′ be the vector collecting all the nodes

outdegrees (or row total scores) and y(+) = (y+1, . . . , y+n)
′ be the one containing all nodes

indegrees (or column total scores). Furthermore, let Z indicate a generic adjacency matrix

of dimension n× n and
∑

Z denote the sum across all the possible sample configurations

such that Z has the same row and column totals as Y , that is Z : z+ = y+, z(+) = y(+).

Lemma 1 (Sufficiency). For the model described in Equations (2) and (3), y+ and y(+)

are sufficient statistics for the incidental parameters, so that the conditional probability

p(Y |X,y+,y(+)) does not depend on α and γ, that is

p(Y |X,y+,y(+)) =
exp

(

∑n

i=1

∑n

j=1 yijx
′

ijβ
)

∑

Z exp
(

∑n

i=1

∑n

j=1 zijx
′

ijβ
) . (4)
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Proof. Define the joint probability of observing Y , y+ and y(+) as p(Y ∩y+∩y(+)|X,α,γ).

From the Bayes rule, we have that

p(Y ∩ y+ ∩ y(+)|X,α,γ) = p(Y |X,α,γ,y+,y(+))p(y+ ∩ y(+)|X,α,γ)

and similarly

p(Y ∩ y+ ∩ y(+)|X,α,γ) = p(y+ ∩ y(+)|Y ,X,α,γ)p(Y |X,α,γ).

In the second expression, p(y+ ∩ y(+)|Y ,X,α,γ) = 1 by definition. Then rearranging

the the first expression gives

p(Y |X,α,γ,y+,y(+)) =
p(Y |X,α,γ)

p(y+ ∩ y(+)|X,α,γ)
. (5)

Under model (2), the probability of observing the row and column total scores y+ and y(+)

is given by the sum of the probabilities of observing all the possible sample configurations

for which the adjacency matrix Z has the same total scores as Y , that is Z : z+ =

y+, z(+) = y(+). Therefore we have

p(y+ ∩ y(+)|X,α,γ) =

∑

Z exp
[

∑n

i=1

∑n

j=1 zijx
′

ijβ +
∑n

i=1(zi+αi) +
∑n

j=1(z(+)jγj)
]

∏n

i=1

∏n

j=1[1 + exp(x′

ijβ + αi + γj)]
.

By substituting (3) and the above expression in Equation (5), we obtain

p(Y |X,α,γ,y+,y(+)) =

exp
[

∑n

i=1

∑n

j=1 yijx
′

ijβ +
∑n

i=1(yi+αi) +
∑n

j=1(y(+)jγj)
]

∑

Z exp
[

∑n

i=1

∑n

j=1 zijx
′

ijβ +
∑n

i=1(zi+αi) +
∑n

t=1(z(+)jγj)
] = p(Y |X,y+,y(+))

which is Equation (4), as z+ = y+ and z(+) = y(+) are constant across the sample

configurations Z, and therefore no longer depends on the incidental parameters. ✷

The score vector and information matrix can be obtained from the conditional likeli-

hood in Equation (4). In this regard, it is useful to write the corresponding conditional

log-likelihood ℓ(β) = log p(Y |X,y+,y(+)) in matrix notation as

ℓ(β) = u(y,X)β − log
∑

Z

exp [u(z,X)β] , (6)

where y collects them = n(n−1) observations contained in vec(Y ), excluding the missing

values on the main diagonal; similarly z = vec(Z), X denotes the related m× k matrix
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of covariates, and u(y,X) =
∑n

i=1

∑n

j=1 yijx
′

ij. Using the standard theory about the

regular exponential family, we have the following expression for the score of ℓ(β)

s(β) = ∇βℓ(β) = u(y,X)− Eβ
[

u(y,X)|X,y+,y(+))
]

,

where

Eβ
[

u(y,X)|X,y+,y(+)

]

=
∑

Z

p(Z|X,y+,y(+))u(z,X).

As for the information matrix, we have

J(β) = −∇ββℓ(β) = V β

[

u(y,X)|X,y+,y(+))
]

,

where

V β

[

u(y,X)|X,y+,y(+))
]

=
∑

Z

p(Z|X,y+,y(+))d(z,X)′d(z,X),

with d(z,X) = u(z,X) − Eβ
[

u(y,X)|X,y+,y(+)

]

. Matrix J(β) is negative semi-

definite as V β

[

u(y,X)|X,y+,y(+))
]

is a variance-covariance matrix, so that ℓ(β) is

concave. By simple algebra, it is also possible to show that J(β) is negative definite

when X ′X is of full rank. Together with standard regularity conditions, non-singularity

of X ′X ensures identification of β (cf. Lemma 2.2 of Newey and McFadden, 1994). As

a consequence, the possibility of including node-constant covariates in the model specifi-

cation is ruled out.

Assuming that the evaluation of all the necessary components is feasible, the CML

estimator of β, denoted β̂, could be obtained by maximizing (6). Under the conditions

stated above, β̂ is consistent and asymptotically normal, as per Theorems 2.7 and 3.1 by

Newey and McFadden (1994). Finally, standard errors could be obtained as the square

root of the diagonal elements of Ĵ
−1
, a consistent estimate of J(β)−1.

Unfortunately, computing the sum at the denominator of (4) is often not feasible even

with samples of moderate size, as the number of matrices Z such that z+ = y+, z(+) =

y(+), for any configuration of y+ and y(+), increases dramatically with n. The problem

is equivalent to the enumeration of binary tables with fixed marginal sums, a challenging

task that has been debated in the literature (Wang and Zhang, 1998; Pérez-Salvador et al.,

2002). One solution is to adopt techniques that allow us to sample zero-one contingency

tables, which are widely exploited in many scientific fields. Among other works, (Chen

et al., 2005) report applications concerning ecology and psychometrics, making use of

importance sampling and MCMC algorithms. As described in the following section, we

rely on the latter to approximate the conditional likelihood and obtain the MCMC-CML

estimator.
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4 MCMC Conditional Maximum Likelihood

In this section, we first provide a brief and general overview of MCMC-ML and recall

its asymptotic properties, following Geyer (1991) and Huffer and Wu (1998), and then

illustrate the proposed approach.

4.1 Monte Carlo Maximum Likelihood

Consider the probability density function fθ, with respect to a measure µ. Assume that

fθ is know up to a normalizing constant and can be written as

fθ(x) =
1

z(θ)
hθ(x),

where hθ is a known function of θ but the normalizing constant is not, except for its

definition as a the integral

z(θ) =

∫

hθ(x)dµ(x), (7)

which is analytically intractable.

MCMC algorithms can be used to draw samples X1, . . . , XN from any ψ in the pa-

rameter space, that are then used to estimate the log-likelihood ratio for an observation

x

ℓ(θ) = log
fθ(x)

fψ(x)
= log

hθ(x)

hψ(x)
− log

z(θ)

z(ψ)
.

This is because the last term can be written as

z(θ)

z(ψ)
=

1

z(ψ)

∫

hθ(x)dµ(x) = Eψ

[

hθ(X)

hψ(X)

]

, (8)

of which a natural estimator is
1

N

N
∑

j=1

hθ(Xj)

hψ(Xj)
.

As a result, the log-likelihood ℓN(θ) can be obtained as

ℓN(θ) = log

[

hθ(Xobs)

hψ(Xobs)

]

− log

[

1

N

N
∑

j=1

hθ(Xj)

hψ(Xj)

]

, (9)

where Xobs denotes the observed data. The maximum of ℓN(θ) is denoted as θ̂N and is

the MCMC approximation of the ML estimator θ̂.

Asymptotic results for the MCMC-ML estimator are given in Geyer and Thompson

(1992) and Geyer (1994). Provided that samples are taken from an ergodic Markov chain,

for any fixed θ the ergodic theorem then ensures that ℓN(θ̂N) converges almost surely to
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ℓ(θ̂). If θ̂N is a maximizer of ℓN(θ) and θ̂ the the unique maximizer of ℓ(θ), then

θ̂N
a.s.−→ θ̂

follows from concavity of both ℓN(θ) and ℓ(θ) (cf. Theorem 4 by Geyer, 1994). Notice that

here the MCMC-ML estimator converges almost surely to the ML estimator as the number

of the Markov chain samples goes to infinity. By further assuming that
√
N∇θℓN(θ̂)

d→
N(0,A) for a suitable variance-covariance matrix A, and that B = −∇θθℓ(θ̂) is positive

definite, along with other standard regularity conditions, we have that −∇θθℓN(θ̂N)
p→ B

and √
N
(

θ̂N − θ̂
)

d→ N
(

0,B−1AB−1
)

,

as per Theorem 7 in Geyer (1994). Estimation of the asymptotic covariance matrix is

challenging due to the presence of A, which should account for the correlation within

the Markov chain. A HAC-type estimator is therefore advisable, but with the additional

concern for the sensitivity of the resulting estimate to the choice of the lag bandwidth.

For these reasons, Huffer and Wu (1998) propose to use B evaluated at the MCMC-ML

estimate θ̂N to approximate the asymptotic covariance matrix, motivated by its good

finite-sample performance. We refer the reader to Huffer and Wu (1998) for a thorough

discussion of the theoretical issues and results of extensive simulation studies.

4.2 Proposed methodology

We propose approximating the CML estimator of β based on the conditional probability

in (4) by means of an MCMC-CML estimator. In the following we describe the three

stages of our procedure: parameter initialization, drawing samples from a Markov chain,

and maximization of the resulting log-likelihood.

4.2.1 Initialization

First of all, we need a value for the parameter vector that will be used to draw the samples

and is a reference value in the likelihood function. With a notation similar to that adopted

in the previous section, we denote this vector by ψ. We set this value equal to the ML

estimator of β based on (3), that is ψ = β̂ML. The closer ψ to the true value of the

model parameters, the better the MCMC approximation of the likelihood function.

4.2.2 Metropolis algorithm

The observed data Y can be represented as a 0-1 table with fixed margins. Therefore we

want to randomly generate samples Y s with s = 1, . . . , N such that sums over rows, y+,

and columns, y(+), are fixed over draws.
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Diaconis and Gangolli (1995) and Diaconis and Sturmfels (1998) propose a random

walk MCMC that allows us to generate samples form a uniform distribution. We mimic

their strategy within a Metropolis algorithm in order to obtain the distribution of the

samples (0-1 tables) under the model described in (2) as follows:

1. Define a data table Y old starting from the observed data Y .

2. Find all the possible 2× 2 sub-matrices in Y old equal to

[

0 1
1 0

]

or

[

1 0
0 1

]

.

3. Randomly choose one of the suitable sub-matrices above and update the table ac-

cording to:

[

+1 −1
−1 +1

]

or

[

−1 +1
+1 −1

]

, respectively, so that row and column sums

remain unchanged. The updated table is the candidate denoted by Y cand.

4. Accept Y cand according to

min

[

1;
L(Y cand)

L(Y old)

]

> U(0, 1),

where L(Y ) = log p(Y |X,y+,y(+)), with p(Y |X,y+,y(+)) defined by (4), and

U(0, 1) denotes a random draw from a uniform distribution in [0, 1]. According to

the above formulation, we have that

L(Y cand)

L(Y old)
= exp

[

n
∑

i=1

n
∑

j=1

(

ycandij − yoldij

)

x′

ijψ

]

,

where ycandij and yoldij are the ij-th dyad in Y cand and Y old, respectively.

5. Store Y cand if accepted, Y old otherwise.

6. If Y cand is accepted, Y cand will be labeled Y old in the following steps.

7. Iterate steps 2 to 6 Ñ times.

8. In order to reduce the autocorrelation among the generated samples, we drop the

first 1000 tables (burn-in) and we set a thinning factor of 100. We end up with N

generated samples.

It can be shown that the Markov chain generated according to this procedure is ergodic

(cf. Lemma 2.1 in Diaconis and Sturmfels, 1998).
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4.2.3 The MCMC-CML estimator

Assume we have drawn the samples Y s, with s = 1, . . . , N . We can build the log-likelihood

as in (9) as follows. Let us define

hβ(Y ) = exp

(

n
∑

i=1

n
∑

j=1

yijx
′

ijβ

)

and

zβ(Y ) =
∑

Z

exp

(

n
∑

i=1

n
∑

j=1

zijx
′

ijβ

)

.

The approximated log-likelihood can therefore be written as

ℓN(β) = log

[

hβ(Yobs)

hψ(Yobs)

]

− log

[

1

N

N
∑

s=1

hβ(Ys)

hψ(Ys)

]

.

With our formulation and by making use of the matrix notation outlined in Section 3,

the log of the ratio hβ(Y )/hψ(Y ) simplifies to

log
hβ(Y )

hψ(Y )
= log

exp
(

∑n

i=1

∑n

j=1 yijx
′

ijβ
)

exp
(
∑n

i=1

∑n

t=1 yijx
′

ijψ
) = u(y,X) (β −ψ) .

The log-likelihood function can therefore be rewritten as

ℓN(β) = u(y,X)′(β −ψ)− log

{

1

N

N
∑

s=1

exp [u(ys,X)′(β −ψ)]
}

,

where ys = vec(Y s), missing vales excluded, from the s−th MC sample.

Let us denote the MCMC-CML estimator β̂N , which can be obtained by maximiz-

ing the MC conditional log-likelihood ℓN(β) by a Newton-Raphson algorithm using the

following score and Information matrix. The score function is

sN(β) = ∇βℓN(β) = u(y,X)− EN [u(ys,X)|X] ,

with

EN [u(ys|X)|X] =
N
∑

s=1

p(ys|X)u(ys,X),

where we avoid writing the expected value with respect to the vector β−ψ to avoid abuse

of notation and instead emphasize that it is taken over the N samples, and

p(ys|X) =
exp [u(ys,X)(β −ψ)]

∑N

s=1 exp [u(ys,X)(β −ψ)]
.
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The Information matrix can therefore be written as

JN(β) = −∇ββℓN(β) = V N [u(ys,X)|X)] ,

where

V N [u(ys,X)|X] =
N
∑

s=1

p(ys|X)e(ys,X)′e(ys,X),

with e(ys,X) = u(ys,X) − EN [u(ys,X)|X]. Akin to the CML estimator, matrix

JN(β) is negative semi-definite as V N [u(ys,X)|X)] is a variance-covariance matrix, so

that ℓN(β) is concave, and again by simple algebra it is possible to show that JN(β) is

negative definite when X ′X is of full rank.

Together with the ergodic property of the Markov chain used to generate tables with

fixed margins, the concavity of ℓN(β) is now enough to ensure that β̂N converges almost

surely to the CML estimator β̂, which is in turn a consistent estimator of β. By further

assuming that
√
NsN(β̂N) converges in distribution to a normal random variable, along

with other standard regularity conditions, β̂N is also asymptotically normally distributed

and, according Huffer and Wu (1998), the asymptotic variance-covariance matrix can be

well approximated by J(β̂N)
−1, where J(·) is the Information matrix of the conditional

likelihood.

5 Simulations

In this section we study the finite sample performance of the proposed MCMC-CML

estimator. The data generating process is as follows

yij = I (x1,ijβ1 + x2,ijβ2 + αi + γj + εij > 0) ,

for i, j = 1, . . . , n. Here x1,ij is a continuous regressor such that x1,ij = αi + γj + ηij, with

ηij ∼ N(0, 1), and x2,ij is a binary covariate observed according to x2,ij = I{uij > 0.5},
where uij is a [0, 1] uniform random variable. Both the fixed effects αi and γj are drawn

from independent standard normal random variables and εij is a standard logistic error

term. Finally, the homophily parameters are set to β1 = 1 and β2 = 2.5.

We consider networks of n = (25, 50) nodes and for each of the two scenarios we

perform 1,000 Monte Carlo replications. As for the proposed MCMC-CML estimator, for

each of the 1,000 Monte Carlo draws, we generate a Markov chain of 100,000 samples

where the first 20,000 are excluded (burn-in) and we apply a thinning factor of 100 on

the rest of the chain, ending up with N = 800 generated samples.

Tables 1 and 2 report the simulation results regarding the networks with n = 25

and n = 50, respectively, for the proposed MCMC-CML estimator along with the ML
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estimator of the two-way fixed-effects logit and the pairwise CML estimator (P-CML)

proposed by Charbonneau (2017) an Jochmans (2018). For each parameter, we report

the mean, median, standard deviation (sd), the interquartile range (iqr), the ratio between

estimated standard errors (se/sd), and the rejection rate of a simple t-test on the coefficient

for H0 : β1 = 1 and H0 : β2 = 2.5, respectively, where the nominal size of the test is set

to 5% (p.05).

The reported results show that the bias of the ML estimator, due to the incidental

parameters problem, is sizable for both parameters with a network of n = 25 nodes. On

average, ML estimates are about 20% larger than the true value of the parameters and

the rejection rate of the t-test is far from the nominal size. The bias, however, seems

to be decreasing in n. On the contrary, P-CML and MCMC-CML exhibit a negligible

bias with both networks. However, the MCMC-CML estimator seems to outperform the

P-CML one, at least with n = 25, in terms of bias and size of the t-test, even tough

both estimators here tend to overestimate standard errors. Finally, and in line with the

theoretical framework outlined above, we observe a remarkable advantage in terms of

efficiency of the MCMC-CML estimator with respect to the P-CML estimator. The latter

exhibits a standard deviation about 20% larger and a wider interquartile range with a

network of n = 25. Instead, the difference in the standard deviation reduces to about 10%

and interquartile ranges a are substantially the same with n = 50. In this respect, it is

worth clarifying that convergence of the two conditional estimators is based on the number

of likelihood components, equal to m = 2450 for the MCMC-CML estimator and to the

number of informative quadruples for the P-CML, that in the current design amounts to

about 49, 000 on average. It therefore stands to reason that, in larger networks with an

abundance of informative quadruples, the advantage in terms precision of the MCMC-

CML is masked by the faster convergence rate of the P-CML. Nevertheless, these results

suggest that the computational effort required by the MCMC-CML estimator is justified

by a sizable efficiency gain over the P-CML one, especially with smaller networks.

Table 1: Simulation results: n = 25

β1 = 1 β2 = 2.5

ML P-CML MCMC-CML ML P-CML MCMC-CML

mean 1.206 1.042 1.001 mean 2.982 2.576 2.481
median 1.193 1.035 0.993 median 2.964 2.545 2.478

sd 0.208 0.201 0.164 sd 0.437 0.414 0.341
iqr 0.268 0.255 0.216 iqr 0.597 0.578 0.454

se/sd 0.887 1.107 1.117 se/sd 0.877 1.129 1.127
p.05 0.189 0.037 0.041 p.05 0.228 0.021 0.037
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Table 2: Simulation results: n = 50 (Preliminary)

β1 = 1 β2 = 2.5

ML P-CML MCMC-CML ML P-CML MCMC-CML

mean 1.059 0.983 0.969 mean 2.668 2.491 2.459
median 1.049 0.987 0.965 median 2.660 2.486 2.479

sd 0.083 0.088 0.078 sd 0.159 0.165 0.150
iqr 0.114 0.103 0.103 iqr 0.261 0.207 0.226

se/sd 0.968 1.081 1.145 se/sd 1.037 1.167 1.218
p.05 0.109 0.036 0.074 p.05 0.164 0.018 0.000

6 Empirical examples

In this section we illustrate the proposed approach by means of three applications. We

first estimate a two-way fixed-effects gravity model for the extensive margin of trade; we

then turn to a sparse network of attorneys consulting professionally; finally we move away

from the network setting and apply the proposed approach to the estimation of a binary

panel data model for banking crises.

6.1 A binary two-way gravity model

We use data from Helpman et al. (2008) consisting of a cross section of 158 countries

and we focus on the existence of trade flows between pairs of countries, which give rise

to a trade network. The two-way fixed-effects logit model is used to describe the prob-

ability that an exchange between country i and j occurs, namely the trade extensive

margin, where covariates and the related homophily parameters as well as node-specific

heterogeneity are included.

The dependent variable is therefore a binary variable denoting whether a trade flow

occurs from country i to country j. As for dyadic-specific covariates, we include a set

of geographical regresses that are: Distance, which is the logarithm of the geographical

distance (in kilometers) between the capitals of each pair of countries; Island, a dummy

variable equal to 1 if one or both countries are islands; Landlock, equal to 1 if one or

both do not have access to the sea; Border, which is a dummy indicating whether the

two countries share a border. Furthermore, an additional set of variables captures the

institutional and cultural similarities of each pair of countries: Legal, Language, and

Currency are binary variables equal to one if countries i and j share the same legal origin,

the same language, and the same currency (or they are in the same currency union),

respectively; Religion is measure of cult similarities, and for details on its construction

we refer the reader to Helpman et al. (2008) and Charbonneau (2017). Finally, Colonial

Ties is a dummy variable assuming value 1 if country i colonized country j (or viceversa)
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and FTA is a binary variable capturing whether the two countries belong to a common

trade agreement.

Table 3 collects the estimation results for four different estimators based on mod-

els including both importer and exported fixed effects: ML is the (dummy variables)

Maximum Likelihood estimator, BC denotes the analytical bias-corrected ML estimator,

P-CML is the pairwise CML, and MCMC-CML is the proposed estimator. The bias cor-

rected estimator used here is one provided by Fernández-Val and Weidner (2016), which

was originally proposed for panel data but also applied to the estimation gravity equations

for the extensive margin of trade (Cruz-Gonzalez et al., 2017). Jochmans (2018) reports

that the mean out and in degrees in the sample are approximately 50%, describing a

rather dense network, which would lead us expect similar results from BC, P-CML, and

MCMC-CML. As a matter of fact, the estimates obtained by the proposed MCMC-CML

approach are rather similar those produced by ML, with and without a bias correction.

There are small differences between these coefficients and those resulting from the P-

CML estimator, for which however, with the exception of the coefficient associated with

geographical distance, the 95% confidence intervals overlap. For some covariates, the re-

lated homophily parameters are more precisely estimated by MCMC-CML rather than

by P-CML. Yet this evidence might be here mitigated by the fact that the likelihood

components exploited by the P-CML are 2, 852, 337 against the 24, 806 used to build the

MCMC approximate likelihood function.

Estimation results are in line with those presented already by Charbonneau (2017).

The estimates presented for the four methods considered all agree on the sign and mag-

nitude of the homophily parameters. In particular, geographical distance, as well as the

fact that one or both countries are either islands or are landlocks, have a negative effect

on the probability of trading. An exception is represented by sharing a common border,

which surprisingly seems to hamper the chances of an exchange. However both Char-

bonneau (2017) and Jochmans (2018) argue that the sign could be due to the sparsity

of this variable in the sample (17% of non-zero instances) and to its strong correlation

with geographical distance. Finally, all the regressors reflecting institutional and cultural

similarities, as well as an history of colonial ties and trade agreements, exert a positive

effect on the probability of trading.

6.2 A network of attorneys

We here consider an advice network created by 71 attorneys employed in US law firms.

The data are provided by Lazega et al. (2001) and the same example below is also pre-

sented by Jochmans (2018). Here the response variable takes value one if lawyer i has

consulted with lawyer j. The set of covariates associated with the network homophily

parameters comprises three dummy variables describing whether the attorneys have the
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Table 3: Estimation results: gravity model for the extensive margin of trade

ML BC P-CML MCMC-CML

Distance -1.252 -1.224 -0.995 -1.246
(0.039) (0.039) (0.056) (0.040)

Island -0.602 -0.589 -0.392 -0.623
(0.135) (0.135) (0.137) (0.153)

Landlock -0.361 -0.354 -0.198 -0.339
(0.189) (0.189) (0.199) (0.178)

Border -0.762 -0.745 -0.517 -0.759
(0.169) (0.169) (0.236) (0.178)

Legal 0.186 0.182 0.183 0.199
(0.054) (0.054) (0.061) (0.053)

Language 0.504 0.492 0.416 0.496
(0.069) (0.069) (0.075) (0.075)

Currency 0.898 0.881 1.057 0.890
(0.233) (0.233) (0.243) (0.236)

Religion 0.416 0.408 0.485 0.398
(0.109) (0.109) (0.120) (0.118)

Colonial ties 0.534 0.502 1.137 0.374
(0.529) (0.532) (0.661) (0.629)

FTA 3.471 3.374 3.523 3.531
(0.553) (0.553) (0.575) (0.836)

No. of countries: 158; No. of dyads: 24, 806. Standard error in parentheses. ML: dummy variable

maximum likelihood estimator; BC: bias corrected estimator (Fernández-Val and Weidner, 2016); P-CML:

pairwise conditional maximum likelihood estimator (Charbonneau, 2017; Jochmans, 2018); MCMC-CML:

proposed estimator. No. of Markov chain samples: 500k; Burn-in: 100k; Thinning factor: 100.
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Table 4: Estimation results: network model for consulting attorneys

ML BC P-CML MCMC-CML

Same status 0.958 0.920 0.944 0.930
(0.126) (0.126) (0.137) (0.119)

Same gender 0.244 0.234 0.204 0.231
(0.125) (0.125) (0.131) (0.127)

Same office 2.209 2.110 1.981 2.155
(0.125) (0.125) (0.141) (0.134)

Difference in tenure -0.040 -0.038 -0.034 -0.037
(0.010) (0.010) (0.012) (0.011)

Difference in age -0.016 -0.016 -0.018 -0.015
(0.009) (0.009) (0.009) (0.009)

No. of attorneys: 71; No. of dyads: 4, 970. Standard error in parentheses. ML: dummy variable

maximum likelihood estimator; BC: bias corrected estimator (Fernández-Val and Weidner, 2016); P-CML:

pairwise conditional maximum likelihood estimator (Charbonneau, 2017; Jochmans, 2018); MCMC-CML:

proposed estimator. No. of Markov chain samples: 500k; Burn-in: 100k; Thinning factor: 100.

same status (partner or associate) in the their respective law firms, have the same gender,

and work in the same firm, denoted same status, same gender, and same office, respec-

tively. Furthermore, the set of regressors include the difference in tenure and difference

in age between the two attorneys.

Table 4 reports the results for the four estimators considered also in Section 6.1 and,

all in all, results agree on a role of similarity between attorneys in forming a network

of professional consultations. The network statistics reported by Jochmans (2018) show

that both the mean in an out degree are about 18%, therefore depicting a considerably

sparser network than the one presented in the previous section. Jochmans (2018) argues

that in this setting the conditional approach should be favored over the bias correction

ML estimation. Even in this sparser network, however, the results obtained by both the

conditional approaches, P-CML and MCMC-CML, look quite similar to those obtained

by the bias-corrected ML estimator. Rather, it is worth to note that, compared with

the P-CML approach, most of the homophily parameters are more precisely estimated by

MCMC-CML.

6.3 A binary panel data model for banking crises

In the following, we illustrate how the proposed and alternative approaches can be applied

to the estimation of a binary panel data logit model with both subject and year fixed

effects. To this aim we consider a so-called logit early warning system for banking crises,

that is a binary choice model where the response variable takes value 1 if a banking crisis
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occurs in country i at time t and 0 in the tranquil periods. The set of covariates comprises

macroeconomic variables, usually lagged, considered relevant in signaling imminent spans

of financial turmoil. Accounting for both subject and time effects in this context can help

identify the early warnings and enhance the model ability to perform in-sample forecasts.

We consider a dataset consisting of 33 countries over the years 1985 − 2016. For the

sake of comparing the results obtained with the proposed MCMC-CML estimator with

other approaches, for which we use ready-to-use software, we selected a balanced panel.

It is worth mentioning, however, that the proposed approach can be extended to the

case of unbalanced panel data as well. The definition of banking crisis for a large set

of countries is provided by Laeven and Valencia (2018) and identifies 73 crisis episodes

in the data at hand. Such a structure of the dataset depicts a similar situation to that

presented in Section 6.2. Instead of small and sparse network, here we have a panel

dataset with similar and small n and T , and sparsity is somewhat represented by rarity of

the crisis events. The set of macroeconomic variables, available as International Financial

Statistics (International Monetary Fund) and/or World Development Indicators (World

Bank), is fairly self-explanatory and comprises Real GPD growth, the Log of per capita

GDP, Inflation, the Real interest rate, the ratio of M2 (broad money) to foreign exchange

reserves, the Growth rate of real domestic credit, and the Growth of net foreign assets to

GDP. All explanatory variables are lagged by one period. A broader version of the same

data has been considered by Pigini (2021) and Caggiano et al. (2016), to which we refer

the reader for more details on the variable definition and descriptive statistics.

Table 5 reports the estimation results for the same estimators considered in Section

6.1. Although, to the best of our knowledge, there are currently no panel data applications

available of the P-CML estimator, its possible viability for the estimation of binary panel

data models with both subject and time fixed effects is implied by Charbonneau (2017).

As with the previous applications, results are all coherent on the early warnings. In

particular, only the real GDP growth seems to be able to signal, with a statistically

significant effect, the outbreak of a banking crisis. The sign of the coefficients are in line

with those found in this strand of literature, with the exception of the those associated

with last two variables, which are however not statistically significant.

The results in table 5 also show a few discrepancies in the estimates obtained by ML

and those by the two conditional approaches. In this respect, it is worth to mention

that the ML estimator, with and without the bias correction, uses only 520 out of the

nT = 1, 056 available observations, as countries where and years when a crisis never occurs

are dropped from the estimation sample. On the contrary, the P-CML estimator exploits

1, 756 informative quadruples. More importantly, though, as in the previous example

it emerges here that the proposed MCMC-CML approach brings a gain in estimation

precision over the P-CML method.
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Table 5: Estimation results: early warning system for banking crises

ML BC P-CML MCMC-CML

Real GDP growtht−1 -0.207 -0.170 -0.157 -0.170
(0.045) (0.050) (0.069) (0.045)

Log of per capita GDPt−1 -0.862 -0.544 -0.552 -0.594
(0.337) (0.707) (0.770) (0.580)

Inflationt−1 0.019 0.019 0.027 0.020
(0.019) (0.018) (0.027) (0.016)

Real interest ratet−1 0.023 0.003 0.005 0.003
(0.021) (0.020) (0.023) (0.019)

M2 to foreign exchange reservest−1 0.016 0.017 0.018 0.018
(0.010) (0.011) (0.016) (0.010)

Growth of real domestic creditt−1 -0.013 -0.031 -0.024 -0.033
(0.030) (0.030) (0.039) (0.033)

Growth of net foreign assets to GDPt−1 1.484 2.755 2.107 2.909
(2.976) (2.985) (3.911) (2.634)

No. of countries: 33; No. of years: 32. Standard error in parentheses. ML: dummy variable maximum

likelihood estimator; BC: bias corrected estimator (Fernández-Val and Weidner, 2016); P-CML: pair-

wise conditional maximum likelihood estimator (Charbonneau, 2017; Jochmans, 2018); MCMC-CML:

proposed estimator. No. of Markov chain samples: 500k; Burn-in: 100k; Thinning factor: 100.

7 Conclusion

In this work we overcome the computational issue that arises with the evaluation of the

conditional probability for a two-way fixed-effects logit model. Logit models based on

dyadic data are relevant in describing link formation in a network where the quantities of

interest are the homophily parameters, that is, the propensity of subjects to form ties with

similar agents, and they need to be identified once node heterogeneity has been accounted

for. As illustrated by the empirical applications, these models are relevant to describe

trade relationships, social networks, and can also be adapted for the estimation of binary

panel data models with both individual and time permanent unobserved heterogeneity.

We have shown that, under mild regularity conditions, the MCMC-CML estimator

converges to the CML and is asymptotically normal. Also, the simulation study and

empirical applications here proposed confirm the well-known theoretical result, according

to which the full CML is more efficient than the estimator maximizing the composite

conditional log-likelihood, which is the alternative approach available in the literature.
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