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Abstract 

 

Purpose: Over the last couple of years, Chinese manufacturing sector was affected by the onset 

of US-China trade war and the outbreak of COVID-19. In such a scenario, air quality in China has 

encountered a shock, and the impacts of these two incidents are unknown. In this study, we analyze 

the convergence of air quality in China in presence of multiple structural breaks, and how the 

impacts of these two events are different from each other. 

 

Design/methodology/approach: In order to assess the nature of shocks in the presence of multiple 

structural breaks, Clemente-Montañés-Reyes (1998) with two structural breaks and Bai and 

Carrion-i-Silvestre (2009) with five structural breaks are employed. 

 

Findings: Our results reveal that air quality in China is showing the sign of convergence, and it is 

consistent across 18 provinces, which are worst hit by the outbreak of COVID-19. In presence of 

transitory shocks, the impact of COVID-19 outbreak is found to be higher, whereas the impact of 

US-China trade war is found to be more persistent. Lastly, outbreak of COVID-19 has been found 

to have more impact on pollutants with higher severity of health hazard. 

 

Originality: To the best of our knowledge, this is the first study that contributes to the empirical 

literatures in terms of investigating the convergence of overall air pollution and individual air 

pollutants taking COVID-19 and trade war into account. 
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1. Introduction 

Over last few years, the Chinese economy has experienced shocks because of two major mutually 

exclusive events, i.e., trade war between the USA and China, and another is the outbreak of Novel 

Coronavirus, popularly known as COVID-19. The USA is the largest single market for Chinese 

goods, but trade barriers imposed by USA forced China’s growth rate below 7% in 2018 and 2019, 

first time since 1990 (Morrison 2018, McDonald 2020). According to National Bureau of Statistics 

of China, the manufacturing Purchasing Managers Index (PMI) of China remained in negative 

territory for about straight 6 months in 2019, because of the trade barriers imposed by the USA. 

Subsequent to this, the Chinese economy was hit again with the outbreak of COVID-19 in Chinese 

city of Wuhan in December 2019 (Zhu et al. 2020). The country’s manufacturing PMI fell sharply 

to 35.7% in February 2020 from 50% in January 2020, with production index taking the hardest 

hit. The composite PMI output index also fell to 28.9% in February 2020 from 53% in the previous 

month. 

First, during last few decades, while being world’s largest manufacturer, environmental 

quality of China has taken a toll, as energy intensive and polluting industries continued to increase 

(Morrison, 2018). Owing to the US-China trade war and outbreak of COVID-19, manufacturing 

and other economic activities in China were hit, and it impacted the air quality of China. Due to 

the lockdown of traffic and power plants, the concentration of NO2 and other pollutants have 

decreased (NASA, 2020). As people continued to postpone and avoid air-travel and unneeded 

commutes to work, carbon emissions have dropped by 25% in China alone (Myllyvirta, 2020). 

Given this situation, the nature of shock to air quality of China by these two incidents needs to be 

analyzed, as these shocks are permanent or transitory in nature. Moreover, following the latent 

observations in the recent works on the impact of COVID-19 outbreak on air quality of China by 
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He et al. (2020) and Le Quéré et al. (2020), it might be possible that air pollutants in China might 

show a sign of convergence.  

Second, the reason to analyze these two apparently separate events is because of their 

similar impacts on the level of air quality across the Chinese cities. On the one hand, much of the 

pollution in Chinese cities can be traced back to the production of commodities for the 

consumption of other countries, notably USA and Europe (Helm, 2020). The recent trade war 

between China and USA has imposed a great concern for the Chinese economic growth which has 

slowed down compared to the past decades (Swift, 2019).  But at the same time, this trade war has 

helped the Chinese economy improve its air quality as several manufacturing companies have 

shifted their production services from China which in turn reduced the energy consumption, a 

leading source of anthropogenic air pollutants (Wang, 2019). On the other hand, the COVID-19 

emerged amidst the trade war and with the shutdown of factories and production, the air quality 

benefitted even more significantly. Hence, due to these two events which are structurally different, 

the air quality in Chinese cities experienced similar outcome on its environment. To accommodate 

these similar outcomes, this study makes an attempt to demonstrate the effects of these separate 

events on the air quality. However, the two mentioned incidents are structurally different, and 

therefore, they might have differential impacts on air pollutants. The US-China trade war is 

characterized by a series of political events, which had an indirect impact on manufacturing 

activities, while the outbreak of COVID-19 had a direct impact on manufacturing and allied 

economic activities. Coal powered industries are the major sources of air pollution in China. But 

as a result of the trade war, USA’s imports of Chinese coal and petroleum products fell by nearly 

70% in 2018, while coal output fell by 6.3% in the first two months of 2020, as the outbreak of 

COVID-19 affected mining activities (Bekkers and Schroeter 2020, NBS 2020). Impacts of these 
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two events may also differ based on the nature of individual air pollutants. Power plants and 

construction activities cause spike in NO2, CO, PM2.5, PM10 and SO2, while O3 is formed through 

vehicular NOx and VOCs (Feng et al. 2015). Trade war is largely associated with reduction in 

manufacturing activities and hence reduction in air pollutants that result specifically from 

industrial pollution. Outbreak of COVID-19, on other hand, has been discouraging travel and 

transport activities across the nation, along with the postponement of other economic activities. 

Therefore, the nature of impact exerted by these two incidents might differ from one another. 

Moreover, as both of these activities severely impacted the energy consumption and consequential 

ambient air pollution, hence it might be noteworthy to observe the difference of impacts between 

these two events, given the evolutionary impacts of these two events might be different from each 

other. A major reason behind this argument is that while the US-China trade war is majorly 

politically driven and it can have an impact on the anthropogenic activities limited by international 

borders, the impact of COVID-19 might not depend on the international borders and it might have 

a different impact on the anthropogenic activities. It can be expected that this difference might be 

arising out of the duration of the impact, or the type of pollutant these events can impact. 

Irrespective of this nature, it can be logically assumed that there might exist certain difference 

between the impacts exerted by these two events. 

Third, the air pollutants prevalent in atmospheric environment of China differ based on 

their level of severity, which is determined by their molecular size and half-life. Based on the level 

of economic and human activities, atmospheric concentration of these pollutants differs. In 

continuation with the previous argument, given the structural difference between the US-China 

trade war and outbreak of COVID-19, their impacts on the Chinese air quality are expected to be 

different, and this difference might be reflected on the various types of pollutants differed by 
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severity. For example, Cole et al. (2020) found that NO2 fell by 63% in Wuhan during the 

lockdown period, while no significant fall in SO2 or CO emissions was observed during that period. 

Hence, it might be expected that the impacts of US-China trade war and outbreak of COVID-19 

differ based on the nature of pollutants. 

Given this background, it can be said that the US-China trade war and the outbreak of 

COVID-19 had substantial impacts on Chinese air quality, and these impacts might be different. 

Moreover, the nature of shocks to air quality of China is still unknown. These two aspects bring 

out the objective of the study. The present study intends to look into (a) whether the impacts of 

US-China trade war and the outbreak of COVID-19 on Chinese air quality are different from each 

other, and (b) how these two impacts differ from each other. These research objectives can help in 

determining the change in air quality in presence of two different and mutually exclusive events. 

From a broad outlook, this study can help the policymakers with certain recommendations, as this 

study isolates and analyzes the impacts of a political event and a pandemic on the air quality of 

China. Looking at the scenario from the lens of environmental sustainability, outcomes of this 

study might shed light on the areas of economic and environmental policy realignment in the event 

of political or health hazards. As the study by Sofia et al. (2020) gives an idea about strategic 

landscaping of sector-level emission reduction, it also provides an idea about the possibilities of 

differential impact on nature of pollutants, and our study has drawn inferences from the particular 

findings of that study. The present study sheds light in this area by analyzing the convergence of 

air quality index in China for the last six months (September 2019 to March 2020) and covering 

18 Chinese provinces, which have been affected the most by the outbreak of COVID-19. Using 

Clemente-Montañés-Reyes (1998) unit root test with two structural breaks and Bai and Carrion-i-

Silvestre (2009) with five structural breaks, convergence of air quality index (AQI) components 
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(particulate matter, ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide) across the 18 

cities are analyzed. We have found that the AQI and its individual components are showing a sign 

of convergence, and thereby demonstrating the betterment of air quality in China. The shocks to 

the air quality were found to be transitory, while the impact of COVID-19 outbreak was higher 

and the impact of US-China trade war was more persistent. Lastly, pollutants with higher severity 

of health hazard were more affected by the outbreak of COVID-19, whereas coarse pollutants with 

lower severity of health hazard were more affected by US-China trade war. 

2. Data and Methodology 

2.1 Data description 

The daily data for AQI and its six components of 18 Chinese cities2 over a period of 6 months 

(October 01, 2019 to March 16, 2020) have been collected from World Air Quality Index (WAQI) 

project available on Air Quality Index China (AQICN)3. The project collects daily data of air 

pollutants concentrations and then illustrates them in real time for over 100 countries. This project 

compares the data released by different stations, embassies and environmental protection agencies 

with that of Chinese cities. This project converts raw concentrations to AQI using US 

Environmental Protection Agency’s instant cast (i.e., Instant AQI) scale. AQI measures the air 

quality based on six pollutants, i.e., particulate matter (PM2.5 and PM10), Ozone (O3), Nitrogen 

Dioxide (NO2), Sulfur Dioxide (SO2) and Carbon Monoxide (CO) emissions. Measurements are 

based on 1 hour reading and hence an AQI reported at 10PM indicates that measurement was done 

from 9PM to 10PM. Composite AQI has been calculated based on the following formula: 

 
2 Beijing, Changsha, Chengdu, Fuzhou, Guangzhou, Hangzhou, Hefei, Jinan, Kunming, Nanchang, Nanjing, Nanning, 

Shanghai, Shenyang, Shijiazhuang, Wuhan, Xian, and Zhengzhou 
3 World Air Quality, “Real-time Air Quality Index (AQI)”. Available at: https://aqicn.org. 

https://aqicn.org/
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𝐴𝑄𝐼 = max⁡(𝐴𝑄𝐼𝑃𝑀2.5, 𝐴𝑄𝐼𝑃𝑀10, 𝐴𝑄𝐼03, 𝐴𝑄𝐼𝑁𝑂2, 𝐴𝑄𝐼𝑆𝑂2, 𝐴𝑄𝐼𝐶𝑂)           (1) 

Where AQIPM2.5, AQIPM10, AQIO3, AQINO2, AQISO2, and AQICO   are partial indices of individual 

air pollutants. 

𝐴𝑄𝐼𝑝 = [𝐴𝑄𝐼𝑝ℎ⁡−𝐴𝑄𝐼𝑝𝑙⁡𝐶ℎ𝑖𝑔ℎ⁡−𝐶𝑙𝑜𝑤⁡ ] ∗ (𝐶𝑝 − 𝐶𝑙𝑜𝑤⁡) + 𝐴𝑄𝐼𝑝𝑙              (2) 

Where, 𝐴𝑄𝐼𝑝 is the partial index of air pollutant p, 𝐶𝑝 is the daily average concentration of 

p.⁡𝐶ℎ𝑖𝑔ℎ⁡and 𝐶𝑙𝑜𝑤⁡ are threshold concentrations of air pollutant at air quality grade. AQIph and AQIp1 

correspond to 𝐶ℎ𝑖𝑔ℎ⁡and 𝐶𝑙𝑜𝑤⁡and they represent threshold partial indices of p at air quality grade 

(Zhang et al., 2019). 

2.2 Stationarity test 

We have first analyzed the convergence in air quality through unit root tests by Clemente-

Montañés-Reyes (1998) with two structural breaks and Bai and Carrion-i-Silvestre (2009) with 

five structural breaks. Following this, we have analyzed the convergence of individual components 

of air quality index (AQI) across the 18 cities, and we have analyzed the size of impacts of those 

two incidents by the number of structural breaks appearing for each of pollutants across the cities. 

A detailed scheme of the methods is illustrated in Appendix 1. 

In order to assess the nature of shocks in the presence of multiple structural breaks, Bai and 

Carrion-i-Silvestre (2009) unit root test has been employed. The empirical design of the model is 

as per the following: 𝑋𝑖𝑡 = 𝛼𝑖𝑍𝑖𝑡 + 𝛽𝑖𝑌𝑖𝑡 + 𝜀𝑖𝑡          (3) 

Here, Xit is the stochastic process differential, Zit is the matrix of exogenous covariates with 

coefficients ai, Yit is a (L x 1) vector of common factors denoting the presence of cross-sectional 

dependence, βit is a (L x 1) vector of factor loadings, and εit is the stochastic error term. Using 
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principal component analysis and controlling for the cross-sectional dependence, the stationary 

matrix version of Eq. (3) can be written as: 𝐱𝑖 = 𝛂𝑧𝑖 + 𝛃𝑖𝑦𝑖 + 𝜀𝑖           (4) 

{ 
 𝐱𝑖 = (∆𝑥𝑖2, …⁡, ∆𝑥𝑖𝑇)′⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝛂 = (∆α2, …⁡, ∆α𝑇)′⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝛃𝑖 = (∆β𝑖2, …⁡ , ∆β𝑖𝑇)′⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝛽𝑖𝑡 = (1, 𝐷𝑀1,𝑖𝑡 , …⁡, 𝐷𝑀𝑠𝑖,𝑖𝑡)′ ⁡⁡  
Here, DM is the dummy variable denoting the presence of any structural break TBi in i-th time 

series, such that 𝐷𝑀𝑖𝑡 = 1,⁡ if⁡𝑡 > 𝑇𝐵𝑖, else⁡𝐷𝑀𝑖𝑡 = 0. For j number of unknown structural 

breaks,⁡𝐷𝑀𝑗,𝑖𝑡 = 1, if 𝑡 > 𝑇𝐵𝑗𝑖, else 𝐷𝑀𝑗,𝑖𝑡 = 0. Now, provided the estimated values of 𝛂,⁡𝑧𝑖,⁡𝛃𝑖, 
and⁡𝑦𝑖 to be �̂�,�̂�𝑖,⁡�̂�𝑖, and⁡�̂�𝑖, the cumulative residual vector can be defined as �̂�𝑖𝑡 =∑ �̂�𝑖,𝑠 − �̂��̂�𝑖,𝑠 + �̂�𝑖,𝑠�̂�𝑖,𝑠𝑡𝑛=2 . According to modified Sargan and Bhargava (1983) (thereafter MSB) 

approach, the MSB statistics can be defined as: 𝑀𝑆𝐵𝑖(𝜋𝑖) = (𝑇−2∑ �̂�2𝑖,𝑡−1𝑇𝑡=1 ) �̂�𝑖2⁄         (5) 

Here, 𝜋𝑖,𝑗 = 𝑇𝐵𝑗𝑖/𝑇, �̂�𝑖2⁡ is the variance of �̂�𝑖,𝑗, and T is the length of the time series. 

For enhancing the explanatory power, Bai and Carrion-i-Silvestre (2009) suggested the average 

individual statistic to be: 𝑍 = √𝐶{𝑀𝑆𝐵(𝜋)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝜏̅} 𝛾 → 𝑁(0,1)⁄          (6) 

Here, 𝑀𝑆𝐵(𝜋) = ∑ 𝑀𝑆𝐵𝑖(𝜋𝑖)/𝐶𝐶𝑖=1 , 𝜏 = ∑ 𝜏𝑖/𝐶𝐶𝑖=1 , 𝛾𝑖 = ∑ 𝛾𝑖2/𝐶2𝐶𝑖=1 , and C is the breadth of the 

cross-sections. The Fisher-type test statistics are given by: 𝑃 = −2∑ ln(µ𝑖)𝐶𝑖=1 → 𝑋2𝐶2           (7) 𝑃𝑚 = {−2∑ ln(µ𝑖)𝐶𝑖=1 − 2𝐶} √4𝐶⁄ → 𝑁(0,1)       (8) 

Here, µ𝑖 are the respective probability values of individual 𝑀𝑆𝐵𝑖 assessments. 

3. Results 
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Before we talk about the impact of US-China trade war and outbreak of COVID-19 on 

Chinese AQI, it is necessary to mention about the caveats and assumptions. Following the recent 

study by Hu et al. (2021) on four pandemic hotspots in four Asian countries divulge that the 

transformations in the AQI might be attributable to other exogenous factors. The inherent pollution 

characteristics of the cities are also responsible to this transformation, as the cities prone to higher 

pollutions might show a sign of reversal in the air quality during the post-COVID scenario. On the 

other hand, the cities prone to lower pollutions might show a sign of continuous improvement in 

the air quality during the post-COVID period. These structural attributes of the chosen cities are 

not incorporated in the analysis. A major reason behind this assumption is that the study period 

has not covered the post-COVID scenario, and therefore, we assumed these characteristics not to 

have a major impact in the study outcomes. With this assumption stated, we begin the discussion 

of the study outcomes. 

3.1. Convergence of AQI 

First, stationarity of AQI is checked using Clemente-Montañés-Reyes (1998) unit root test with 

two structural breaks, and the results reported in Table-1 show that most of structural breaks are 

appearing in February 2020, followed by January 2020 and December 2019. The AQI is 

demonstrating stationarity at level, and thereby, demonstrating the convergence in emissions 

pattern. The evidence of convergence divulges that the shocks to AQI are transitory. We can see 

that the prominent structural breaks found from this test correspond to the time when the Chinese 

economy was suffering from COVID-19. In order to dig deeper into this issue, we have checked 

stationarity of AQI using Bai and Carrion-I-Silvestre (2009) unit root test with five structural 

breaks, and the results are reported in Table-1. While showing the evidence in support of 

convergence, the structural breaks came out to be different than the former one. Using this test, 
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October 2019 was found to be the month with the maximum number of structural breaks, followed 

by February 2020, January 2020, and December 2019. This also gives an indication that we should 

not restrict the analysis to two structural breaks, and therefore, Bai and Carrion-I-Silvestre (2009) 

unit root test will be used for further analysis. 

While two tests on same AQI endows with different set of structural breaks, it is possible 

that individual components of AQI across the 18 Chinese provinces might demonstrate different 

structural breaks. In order to look into the issue, individual components of AQI need analyzing. In 

this pursuit, individual components of AQI are checked for their convergence on the presence of 

maximum five structural breaks, and the results are reported in Table-2. All six components of 

AQI demonstrate the evidence of convergence, and thereby, divulging that the shocks to these 

components are transitory in nature. The wholesome distribution of the structural breaks is 

depicted in Figure-1. However, the structural breaks appearing for those indicators are different.  

3.2. Analysis of AQI components 

The overall structural breaks appearing for PM2.5 are majorly clustered around February 2020, 

December 2019, and January 2020 (see Figure-2). Out of 18 provinces, 11 provinces have 

demonstrated the presence of structural breaks in February 2020, 10 provinces have demonstrated 

the presence of structural breaks in December 2019, and 8 provinces have demonstrated the 

presence of structural breaks in January 2020. There are provinces, which have demonstrated 

single structural breaks. For example, Nanning is the only province to demonstrate two structural 

breaks in February 2020, whereas January 2020 is the only structural break for Beijing. On the 

other hand, structural breaks for PM10 are comparatively different from that of the case of PM2.5. 

The structural breaks are majorly visible on October 2019, November 2019, December 2019, and 

January 2020 (see Figure-3). Out of 18 provinces, 14 provinces have demonstrated the presence 
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of structural breaks in October 2019, 11 provinces have demonstrated the presence of structural 

breaks in November 2019, 10 provinces have demonstrated the presence of structural breaks in 

December 2019, and 12 provinces have demonstrated the presence of structural breaks in January 

2020. In case of Wuhan, the structural break has appeared in March 2020. As source of PM2.5 and 

PM10 are largely the same, therefore, it is expected that the structural breaks appearing for PM2.5 

will be lagged by PM10, as the finer particulate matters stay longer in the atmosphere. The 

shrinkage in the manufacturing sector due to the trade war with the United States caused the initial 

structural breaks in PM10 appearing during October 2019, and this was the time, when PM10 

encountered the first significant transitory shock during the study period. With the gradual rise in 

the manufacturing sector, the second transitory shock to PM10 was visualized in November 2019. 

However, the sudden outbreak of COVID-19 has brought a shock to the ongoing economic 

activities in China, and alongside manufacturing sector, transportation and allied sectors also 

encountered a slowdown. Therefore, PM10 arising out of these sectors encountered a third 

transitory shock, and the third structural break in December 2019 was experienced. This was the 

time, when the first significant structural break for PM2.5 appeared, as along with economic 

activities, other household activities consistently started declining. With the lockdown in Wuhan 

starting from January 23, 2020, the economic activities experienced a further decline, and the 

PM2.5 demonstrated the second structural break on January 2020. With the rise in lockdown 

period and further decline in economic and human activities in the preceding month, PM2.5 

encountered the third structural break on February 2020. 

The structural breaks appearing for SO2 emissions are majorly clustered around January 

2020, October 2019, November 2019, and February 2020 (see Figure-4). Out of 18 provinces, 10 

provinces have demonstrated the presence of structural breaks in October 2019, 8 provinces have 
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demonstrated the presence of structural breaks in January 2020, and 7 provinces have 

demonstrated the presence of structural breaks in November 2019. Just like in the case of PM2.5, 

it can be seen that there are provinces which have demonstrated single structural breaks. For 

example, the only structural break for Hefei appeared in September 2019, whereas it was October 

2019 for Changsha. In case of Kunming, two structural breaks appeared in January 2020. 

Following trade war with the United States, sudden shrinkage in manufacturing sector caused the 

initial structural breaks in SO2 appearing during October 2019, as it was a transitory shock to SO2 

emissions pattern. Subsequent to this event, the sudden outbreak of COVID-19 brought forth a 

slump in the economic activities in China, and this transitory impact resulted in the structural 

breaks in January 2020. On the other hand, structural breaks for NO2 are nearly similar to that of 

the case of SO2. The structural breaks appearing for NO2 emissions are majorly clustered around 

January 2020, September 2019, and October 2019 (see Figure-5). Out of 18 provinces, 12 

provinces have demonstrated the presence of structural breaks in January 2020, 11 provinces have 

demonstrated the presence of structural breaks in September and December 2019, and 10 provinces 

have demonstrated the presence of structural breaks in October 2019. Beijing is the only province, 

which has demonstrated single structural break in December 2019. At the onset of the US-China 

trade war, air traffic activities started declining from September 2019 and as a result, vehicular 

emissions experienced significant reduction/fall as well. This reduction in vehicular emissions 

increased with the slump in manufacturing activities in the preceding month, and due to this 

incident, SO2 and NO2 experienced the structural breaks in October 2019. With the detection of 

first COVID-19 case in December 2019, vehicular movement within and across provinces started 

reducing again, and thereby causing a transitory shock in NO2 emissions in December 2019. 
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The structural breaks appearing for CO emissions are majorly clustered around January 

2020, and November 2019 (see Figure-6). Out of 18 provinces, 17 provinces have demonstrated 

the presence of structural breaks in January 2020, and 12 provinces have demonstrated the 

presence of structural breaks in November 2019. No structural breaks were found beyond January 

2020. Following the US-China trade war, a fall in the vehicular sales caused the reduction in CO 

in November 2019, and it appeared as a transitory shock for CO emissions. In January 2020, the 

outbreak of COVID-19 caused not only a slump in manufacturing and other economic activities, 

but also started reducing the community concentrations. These had the second transitory shock on 

CO emissions. However, the scenario for O3 is quite different. The structural breaks appearing for 

O3 emissions are majorly clustered around October 2019, November 2019, and September 2019 

(see Figure-7). Out of 18 provinces, 14 provinces have demonstrated the presence of structural 

breaks in October 2019, 12 provinces have demonstrated the presence of structural breaks in 

November 2019, and 11 provinces have demonstrated the presence of structural breaks in 

September 2019. Data for O3 emissions in Nanjing was not found, and hence no structural are 

reported for this province. Wuhan has reported only one structural break in November 2019. The 

results show that the outbreak of COVID-19 did not have a major transitory shock on the O3 

emissions, as the structural breaks are appearing during the period of US-China trade war. Because 

of the slowdown of manufacturing activities and vehicular transportation, it appears that O3 

emissions encountered transitory shocks. 

3.3. Analysis of cities 

The overall structural breaks appearing across the cities are clustered around January 2020, 

followed by October 2019, and November 2019 (see Figure-8). While Fuzhou, Hangzhou, Hefei, 

and Nanchang encountered the most number (= 18) of structural breaks, Nanjing encountered the 
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least number (= 10) of structural breaks. We tried to find out any possibility of the appearance of 

structural breaks with the average AQI level of the cities, and we observed no significant pattern 

between these two aspects. For example, both Kunming and Shijiazhuang have encountered 17 

structural breaks each, when Kunming has the lowest average AQI and Shijiazhuang has the 

highest AQI. Nanjing has encountered 10 structural breaks, when its average AQI is the closest to 

the average AQI of the entire sample. Therefore, we could not obtain any significant association 

between the structural breaks and average AQI level for the cities. 

However, it is surprising to find out that most of the structural breaks appeared during the 

period, when temporary lockdown was declared in China. This was the time when the cities 

encountered a total of 71 structural breaks, with Nanchang and Shanghai leading with 7 structural 

breaks each on January 2020, followed by Hangzhou with 6 structural breaks. The standard 

deviation in the impacts on the cities came out to be 1.697, which shows that AQI of all the cities 

were not equally impacted by the outbreak of COVID-19. On the other hand, the impact of US-

China trade war is visible in the structural breaks appearing in October and November 2019. 

During these two periods, AQI of the sample cities were affected with standard deviations of 0.858 

and 1.056, respectively. A brief summary of the findings is provided in Table 3. 

4. Discussion 

The shocks to AQI of the sample Chinese provinces have been found to be transitory, but the extent 

and persistence of shocks were different in nature. As each of the manufacturing, transport, 

logistics, and tourism sector of China is highly dependent on fossil fuel consumption, the outbreak 

of COVID-19 appeared as a shock to energy consumption pattern in these sectors, and thus, the 

negative environmental externality exerted by these sectors also encountered a similar shock. 

Moreover, due to lockdown, several corporate offices were closed, and hence the vehicular 
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congestion also came down. This also resulted in a sudden shock in the vehicular emission pattern. 

These shocks appeared as structural breaks in unit root tests applied on AQI of the sample Chinese 

cities. This shock was not persistent, as the number of structural breaks across the sample cities 

got reduced in the subsequent months, i.e., February and March 2020. On the other hand, US-

China trade war also took a toll on the manufacturing sector of China, and therefore, the negative 

environmental externality exerted by this sector was also affected. Now, though this impact was 

transitory, the impact was visible for nearly two consecutive months, i.e., October and November 

2019. Therefore, in terms of persistence, the impact of US-China trade war on AQI of sample 

Chinese cities has been greater compared to the impact of COVID-19 outbreak. Considering the 

case of US-China trade war, the studies by Fuchs et al. (2019) and He et al. (2020) have focused 

majorly on the negative impacts of agricultural and deforestation dimensions, while the results of 

the present study have revealed the impact on air quality indicators. However, the environmental 

impact of the US-Mexico cross-border trucking dispute was different compared to impact of US-

China trade war. Following the study by Alexander and Soukup (2010), the impact of the US-

Mexico trade war had a negative impact on the environmental quality, as the trucking companies 

did not adhere to the U.S. safety and environmental standards. Consequently, this trade war 

deteriorated the environmental quality in both Mexico and the US. A similar kind of environmental 

impact was also experienced in case of US-Canada trade war. Following the study of Devine 

(1987), it can be found that the deterioration of the environmental quality stemmed from the 

deforestation caused by the trade war. Compared to these two trade wars, the US-China trade war 

had a different impact on the environmental quality. The restoring of environmental equilibrium 

in this case of trade war falls in the similar lines with the theoretical analysis of Copeland (2000). 
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Saying this, it should be remembered that the number of shocks on AQI was higher in case 

of the COVID-19 outbreak, and in this view, the number of shocks can be considered as the size 

of the impact. From this perspective, the impact of COVID-19 outbreak on AQI of the sample 

Chinese cities was higher compared to the impact of US-China trade war. The study by Zhang et 

al. (2020) and Elobeid et al. (2021) have mentioned about the reduction in ambient emissions by 

these two activities, results of the present study complement the findings obtained by Zhang et al. 

(2020) by carrying out the comparative impact assessment of these two events. 

Following COVID-19 outbreak, the air quality in the Chinese cities is showing a sign of 

convergence, and it signifies an improvement in air quality, as polluting industries were hard hit 

by the pandemic. The impact on the air quality in China started during the US-China trade war 

period, and the impact has been different in terms of size. Moreover, all components of AQI have 

been impacted differently by these two major incidents. O3, PM10, and NO2 have been more 

impacted by US-China trade war, whereas PM2.5 and CO have been more impacted by the outbreak 

of COVID-19. The impacts of both of the incidents on SO2 have been nearly similar. From the 

results, it can be inferred that the sudden reduction in economic and human activities have made a 

transitory impact on PM2.5 and CO, whereas the reduction in manufacturing activities have made 

a transitory impact on O3, PM10, SO2, and NO2. Therefore, the coarse particulates and pollutants 

with low half-life are impacted by the US-China trade war, whereas the finer particulates and 

pollutants with high half-life are impacted by the outbreak of COVID-19 (for discussion on half-

life, see Struttmann et al. 1998, Wade III et al. 1975, Wilson and Suh, 1997). Therefore, in terms 

of improvement in air quality, it can be said that the outbreak of COVID-19 has been more 

effective than the US-China trade war, as the former has been able to converge the finer 
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particulates and pollutants with high half-life, which are more harmful than the coarse particulates 

and pollutants with low half-life. 

5. Conclusion 

By far, we have analyzed the impacts of US-China trade war and outbreak of COVID-19 on AQI 

and its components for 18 Chinese provinces over September 2019 to March 2020. In this pursuit, 

we have analyzed the convergence of AQI and its components through the unit root test by 

Clemente-Montañés-Reyes (1998) with two structural breaks and by that of Bai and Carrion-I-

Silvestre (2009) with five structural breaks. The results show that (1) AQI and its components 

across the 18 Chinese provinces demonstrate convergence, which illustrates the betterment of air 

quality during the study period, (2) the impact of US-China trade war is more persistent than the 

impact of the outbreak of COVID-19, whereas the size of the impact of the latter event is more 

compared to the former one, and (3) the impact of the outbreak of COVID-19 is more visible on 

the finer particulates and pollutants with high half-life and more severity in terms of health hazards. 

These findings fulfill the research objectives of the study. 

Given these findings, certain policy implications for the Chinese policymakers emerge. 

Anthropogenic activities result in majorly two types of pollutants, namely with high and low risk 

of health hazards, and any major economic activity might impact both these pollutants differently. 

Slowing down of the economic and anthropogenic activities might reduce the intensity of these 

pollutants, but the intensity might differ based on the source of the slowdown, and there the role 

of policy intervention might come. Any activity resulting in a sudden and large slowdown might 

reduce the intensity of pollutants with more severe health hazards, while activities resulting in a 

persistent slowdown might reduce the intensity of pollutants with less severe health hazards. It is 

the role of the policymakers to assess the nature of impact over a period of time by analyzing the 
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convergence structure of the impact. For activities with sudden large impact, the focus should be 

on reducing the impact of more severe pollutants, as the effort from the policymakers by setting 

the proper environmental regulations might have a multiplier effect by complementing impact of 

that particular activity. Occurrences of such incidents will also give an idea to the policymakers 

about the possible source of the pollutants by tracing the slowdown patterns of the economic and 

anthropogenic activities, and setting the environmental policy targets accordingly to reduce the 

further negative environmental externality exerted by those particular activities. The present study 

sheds light on this particular aspect of policymaking through the convergence analysis of the AQI 

components of China in the wake of the US-China trade war and the outbreak of COVID-19. 

In theoretical terms, this study has shown the way to isolate and analyze the impacts of two 

mutually exclusive events, which might cause the differential betterment of environmental quality. 

Bringing two consecutive and different political and pandemic events within a same empirical 

framework have allowed us to isolate the impacts of these events, and thereby, to differentiate the 

impacts on different components of air quality. Findings of this study might not only be important 

from the perspective of policymaking, but also might be important from the theoretical aspects of 

epidemiology studies, which aim at analyzing the environmental impact of a pandemic outbreak. 

Saying this, it is also needed to state the limitations of the study. The study has been 

conducted on the 18 Chinese cities for 6 months, and the unavailability of data has been a major 

challenge for the study. Moreover, bringing spatial dimension in the analysis could have brought 

forth additional insights in the study. While mentioning the limitations, it also needs remembering 

that this study can be considered as a baseline approach for analyzing the differential impacts of 

any two events on the air quality of any nation, and there lies the contribution of the study. Future 

studies on this direction can be carried out at the cross-country level for bringing out a comparative 
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scenario about the differential impact of such events, along with carrying out the analysis by 

considering the spatial dimensions of the pollutants. 
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Table 1: Structural Breaks for AQI in Chinese Provinces 

Provinces 
Clemente-Montañés-Reyes (1998) [maximum two breaks]  Bai and Carrion-I-Silvestre (2009) [maximum five breaks] 

Break 1 T-Statistic Break 2 T-Statistic ρ – 1  Break 1 Break 2 Break 3 Break 4 Break 5 

Beijing 8-Feb-20 3.415a 11-Feb-20 -3.581a -7.533  17-Jan-20 14-Feb-20 NIL NIL NIL 

Changsha 25-Nov-19 3.447a 6-Feb-20 -5.047a -4.999  30-Oct-19 29-Jan-20 NIL NIL NIL 

Chengdu 31-Oct-19 7.988a 29-Feb-20 -2.774a -4.423  27-Oct-19 1-Dec-19 NIL NIL NIL 

Fuzhou 23-Jan-20 -2.832a 30-Jan-20 1.922c -3.690  16-Jan-20 NIL NIL NIL NIL 

Guangzhou  6-Dec-19 3.976a 7-Jan-20 -8.796a -3.654  16-Sep-19 17-Dec-19 5-Jan-20 NIL NIL 

Hangzhou 24-Sep-19 4.151a 19-Jan-20 -4.526a -5.377  6-Oct-19 NIL NIL NIL NIL 

Hefei 14-Oct-19 5.654a 3-Feb-20 -4.461a -8.325  11-Oct-19 NIL NIL NIL NIL 

Jinan 7-Dec-19 7.558a 6-Feb-20 -7.136a -8.472  23-Jan-20 NIL NIL NIL NIL 

Kunming 4-Dec-19 1.193a 10-Feb-20 4.908a -7.331  16-Sep-19 1-Oct-19 1-Nov-19 27-Dec-19 14-Feb-20 

Nanchang 6-Oct-19 5.544a 24-Jan-20 -6.019a -7.331  3-Oct-19 27-Nov-19 2-Feb-20 NIL NIL 

Nanjing 26-Oct-19 6.224a 3-Feb-20 -4.659a -8.922  25-Sep-19 23-Oct-19 NIL NIL NIL 

Nanning 31-Jan-20 -2.317b 20-Feb-20 0.760 -4.191  27-Oct-19 3-Feb-20 18-Feb-20 NIL NIL 

Shanghai 2-Dec-19 4.547a 1-Feb-20 -4.224a -9.531  27-Nov-19 NIL NIL NIL NIL 

Shenyang 20-Dec-19 10.019a 29-Jan-20 -6.690a -3.492  22-Dec-19 1-Feb-20 NIL NIL NIL 

Shijiazhuang 22-Dec-19 8.401a 11-Feb-20 -6.405a -4.314  3-Oct-19 29-Nov-19 6-Jan-20 14-Feb-20 NIL 

Wuhan 2-Dec-19 4.547a 1-Feb-20 -4.224a -9.531  27-Nov-19 NIL NIL NIL NIL 

Xian 30-Oct-19 10.597a 11-Feb-20 -5.674a -3.559  27-Oct-19 19-Dec-19 10-Feb-20 NIL NIL 

Zhengzhou 23-Oct-19 8.648a 6-Feb-20 -4.127a -8.242  16-Dec-19 3-Feb-20 NIL NIL NIL 

            

       Z 1.4407c  Z* 2.1479b 

       Pm 0.0767  Pm* -1.4847b 

       P 36.6511a  P* 23.4021 
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Table 2: Structural Breaks for different pollutants in Chinese Provinces 

Provinces Pollutant Break 1 Break 2 Break 3 Break 4 Break 5 

Beijing 

PM2.5 16-Jan-20     

PM10 29-Nov-19 14-Dec-19 21-Feb-20   

SO2 28-Sep-19 18-Oct-19 13-Nov-19 28-Nov-19  

NO2 27-Dec-19     

O3 30-Sep-19 25-Oct-19 14-Nov-19 1-Mar-20  

CO 6-Dec-19 14-Jan-20    

Changsha 

PM2.5 27-Nov-19 4-Feb-20    

PM10 16-Oct-19 12-Dec-19 29-Dec-19 18-Jan-20  

SO2 29-Oct-19     

NO2 24-Sep-19 7-Jan-20    

O3 30-Sep-19 30-Oct-19 14-Nov-19 3-Feb-20  

CO 1-Dec-19 30-Jan-20    

Chengdu 

PM2.5 1-Dec-19 27-Jan-20    

PM10 24-Oct-19 29-Nov-19 14-Dec-19   

SO2 28-Sep-19 13-Dec-19 6-Jan-20 27-Jan-20  

NO2 19-Sep-19 30-Oct-19    

O3 24-Sep-19 9-Oct-19 17-Nov-19 8-Jan-20  

CO 30-Nov-19 30-Jan-20    

Fuzhou 

PM2.5 24-Jan-20     

PM10 23-Oct-19 18-Dec-19 4-Jan-20 5-Feb-20 21-Feb-20 

SO2 28-Nov-19 6-Jan-20    

NO2 27-Sep-19 2-Nov-19 7-Dec-19 6-Jan-20  

O3 16-Sep-19 1-Oct-19 31-Oct-19 25-Nov-19  

CO 20-Dec-19 10-Jan-20    

Guangzhou  

PM2.5 16-Sep-19 9-Dec-19 4-Jan-20   

PM10 25-Oct-19 16-Nov-19 4-Dec-19 1-Jan-20  

SO2 2-Feb-20 20-Feb-20    

NO2 30-Oct-19 14-Nov-19 6-Jan-20   

O3 28-Sep-19 30-Oct-19 17-Jan-20   

CO 8-Nov-19 10-Jan-20    

Hangzhou 

PM2.5 5-Oct-19 14-Jan-20    

PM10 16-Oct-19 2-Nov-19 24-Nov-19 1-Jan-20  

SO2 14-Oct-19 22-Nov-19 13-Dec-19 2-Jan-20  

NO2 29-Oct-19 13-Nov-19 26-Jan-20   

O3 23-Sep-19 18-Nov-19 8-Jan-20   

CO 25-Oct-19 27-Jan-20    

Hefei 

PM2.5 26-Sep-19 19-Nov-19 4-Feb-20   

PM10 19-Oct-19 23-Nov-19 18-Dec-19 20-Jan-20  

SO2 21-Sep-19     

NO2 22-Sep-19 19-Oct-19 16-Dec-19 6-Jan-20  

O3 23-Sep-19 28-Oct-19 31-Dec-19 1-Mar-20  

CO 30-Nov-19 6-Jan-20    

Jinan 

PM2.5 7-Dec-19 1-Feb-20    

PM10 27-Sep-19 27-Oct-19 17-Nov-19 15-Dec-19 11-Jan-20 

SO2 28-Oct-19 10-Dec-19    

NO2 26-Sep-19 13-Oct-19 30-Oct-19   

O3 3-Oct-19 7-Nov-19 18-Jan-20   

CO 28-Nov-19 6-Jan-20    

Kunming 
PM2.5 27-Oct-19 13-Feb-20    

PM10 24-Sep-19 26-Oct-19 10-Nov-19 1-Feb-20  
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SO2 6-Jan-20 27-Jan-20    

NO2 29-Sep-19 28-Nov-19 14-Dec-19 6-Jan-20  

O3 19-Sep-19 21-Oct-19 17-Feb-20   

CO 13-Nov-19 23-Jan-20    

Nanchang 

PM2.5 3-Oct-19 27-Nov-19 4-Feb-20   

PM10 26-Nov-19 11-Dec-19 5-Jan-20 28-Jan-20  

SO2 2-Dec-19 2-Jan-20 27-Jan-20   

NO2 27-Sep-19 26-Oct-19 6-Jan-20   

O3 2-Oct-19 18-Nov-19 9-Jan-20   

CO 28-Nov-19 10-Jan-20    

Nanjing 

PM2.5 29-Sep-19 18-Dec-19    

PM10 15-Oct-19 30-Oct-19    

SO2 27-Nov-19 19-Dec-19 4-Jan-20   

NO2 10-Dec-19     

O3      

CO 13-Nov-19 20-Jan-20    

Nanning 

PM2.5 2-Feb-20 17-Feb-20    

PM10 15-Oct-19 2-Nov-19 20-Nov-19 11-Dec-19  

SO2 31-Oct-19 27-Nov-19    

NO2 22-Sep-19 23-Nov-19 8-Dec-19 6-Feb-20  

O3 2-Oct-19 27-Oct-19 12-Jan-20   

CO 5-Dec-19 19-Jan-20    

Shanghai 

PM2.5 1-Dec-19 4-Feb-20    

PM10 27-Sep-19 11-Jan-20 27-Jan-20   

SO2 26-Oct-19 1-Jan-20 27-Jan-20 1-Mar-20  

NO2 14-Oct-19 6-Nov-19 14-Dec-19 19-Jan-20  

O3 18-Nov-19 8-Jan-20    

CO 23-Nov-19 15-Jan-20    

Shenyang 

PM2.5 23-Dec-19 2-Feb-20    

PM10 25-Oct-19 20-Nov-19 28-Dec-19 20-Jan-20  

SO2 27-Sep-19 24-Jan-20    

NO2 31-Oct-19 17-Dec-19 6-Jan-20   

O3 30-Oct-19 16-Nov-19 26-Feb-20   

CO 26-Nov-19 17-Jan-20    

Shijiazhuang 

PM2.5 9-Oct-19 23-Dec-19 8-Jan-20   

PM10 25-Oct-19 21-Nov-19    

SO2 27-Sep-19 24-Oct-19 26-Nov-19 24-Feb-20  

NO2 22-Sep-19 23-Nov-19 8-Dec-19   

O3 27-Sep-19 12-Nov-19 25-Dec-19   

CO 22-Nov-19 18-Jan-20    

Wuhan 

PM2.5 1-Dec-19 4-Feb-20    

PM10 23-Oct-19 21-Jan-20 1-Mar-20   

SO2 30-Sep-19 23-Oct-19 14-Dec-19 6-Feb-20 22-Feb-20 

NO2 30-Sep-19 31-Oct-19 31-Dec-19 25-Jan-20  

O3 6-Nov-19     

CO 24-Nov-19 29-Dec-19    

Xian 

PM2.5 9-Oct-19 20-Dec-19 26-Jan-20   

PM10 4-Jan-20 20-Jan-20 26-Feb-20   

SO2 2-Oct-19 31-Oct-19 2-Feb-20   

NO2 14-Oct-19 6-Jan-20 8-Feb-20   

O3 26-Sep-19 6-Nov-19 1-Mar-20   

CO 21-Nov-19 31-Jan-20    

Zhengzhou PM2.5 16-Dec-19 6-Jan-20 4-Feb-20   
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PM10 26-Oct-19 20-Jan-20    

SO2 21-Oct-19 20-Nov-19 7-Feb-20 22-Feb-20  

NO2 19-Sep-19 5-Jan-20    

O3 25-Sep-19 29-Oct-19 1-Mar-20   

CO 23-Dec-19 14-Jan-20    

 

 

Table 3: Summary of findings 

Sl No. Findings 

1 AQI and its components across the 18 Chinese provinces demonstrate convergence 

2 The impact of US-China trade war on AQI is more persistent than the impact of COVID-19 outbreak 

3 The impact of COVID-19 outbreak on AQI is larger in size than the impact of US-China trade war 

4 O3, PM10, and NO2 emissions are impacted by the US-China trade war 

5 PM2.5 and CO emissions are impacted by the outbreak of COVID-19 

6 Both the events have nearly similar impacts on SO2 emissions 
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Figure 1: Distribution of Structural Breaks for different pollutants 

 

 

Figure 2: Distribution of Structural Breaks for PM2.5 
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Figure 3: Distribution of Structural Breaks for PM10 

 

 

Figure 4: Distribution of Structural Breaks for SO2 
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Figure 5: Distribution of Structural Breaks for NO2 

 

 

Figure 6: Distribution of Structural Breaks for CO 
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Figure 7: Distribution of Structural Breaks for O3 

 

 

Figure 8: Distribution of Structural Breaks for the Cities 
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Appendix 1: Illustrative Scheme of Methods used 
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