Relationship between oil price and gross fixed capital formation: Malaysian case

Ali, Ariffhidayat and Masih, Mansur

INCEIF, Malaysia, Business School, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia

30 October 2017

Online at https://mpra.ub.uni-muenchen.de/110266/
MPRA Paper No. 110266, posted 19 Oct 2021 15:42 UTC
Relationship between oil price and gross fixed capital formation:
Malaysian case

Ariffhidayat Ali1 and Mansur Masih2

Abstract:
The aim of this paper is to investigate the lead-lag relation between oil price and gross fixed capital formation in an economy incorporating some other relevant macroeconomic variables such as, money supply and exchange rate. The standard time series techniques are used for the analysis. Malaysia is taken as a case study. The variables are bound together by a theoretical relation as evidenced in their being cointegrated. The generalized variance decomposition analysis tends to indicate that oil price is the most exogenous variable leading all other variables including gross fixed capital formation. The findings contain strong policy implications for the emerging economies like Malaysia.

Keywords: oil price, gross fixed capital formation, VECM, VDC, Malaysia

1 INCEIF, Lorong Universiti A, 59100 Kuala Lumpur, Malaysia.

2 Corresponding author, Senior Professor, UniKL Business School, 50300, Kuala Lumpur, Malaysia.

Email: mansurmasih@unikl.edu.my
1. Introduction

Oil is seen as both a bane and/or a boon to nations. This paper tries to explore the relationship (if any) with a few economic variables specifically with Malaysia’s Gross Domestic Capital Formation (GDCF), Broad Money (M2) and the USD: MYR Rate of Exchange. This remains an humble attempt to move away from focusing on the often cited GDP measure that incorporates other chunks that make up the standard aggregate demand function namely consumption (public/private) and net exports. Linking this to money supply and the exchange rate addresses albeit in a “sweeping” manner the “money” sector of the economy. The shift from GDP is mainly to address largely financing/investment decision making of private enterprises which “intuitively” may differ from “individual” decision making.

In an environment where oil is seen as a dwindling resource, where development of alternative energy supply goes through peaks and troughs it is safe to opine that high oil prices relative to historical prices is a permanent feature in the global economy.

Thus there is continuing relevance to analyze the effects of the price of oil on various countries, on aspects of the economy in the search for long-term policy responses to this phenomenon.
2. Literature Review

There are numerous studies done on the subject of oil price impact on the economy as per Darby (1982), Burbidge and Harrison (1984), Gisser and Goodwin (1986), Lee, Ni and Ratti (1995) just to name a few. These studies focused on select countries and carried different emphasis thus drawing different conclusions.

Conclusions remain representative of differing opinions, uncertainties governing attempts to apply the rigors of the physical sciences to a human phenomenon. Thus there remains a spectrum of conclusions supported by data that reveal that oil prices may, may not and to what extent (if any) it influences economic growth.

Gross fixed capital formation as a subset of GDP dates back to the Kuznets’s study on capital formation in the 1930s measuring the value of acquisitions of new or existing fixed assets by the business sector, governments and "pure" households (excluding their unincorporated enterprises) less disposals of fixed assets.

The emphasis here is on the business sector entailing the modern corporation as publicly traded entities. Managers are tasked at maximizing shareholders’ value (the present value of the discounted cash flow from a given investment). Fama:(1965) who developed the Efficient Market Hypothesis (EMH) points to
investors being able to correctly price the value of firms. These theorems have been subjected to theoretical and empirical analysis, accepted, rejected or modified although never fully discarded.

Intuitively therefore managerial decision making and arguably governmental decision making on allocating capital for acquisition and disposal of physical/fixed assets are more sophisticated compared to individual decision making in terms of investment.

3. Methodology

Data Set and Treatment

For the analysis, annual data for 40 years starting from 1971 was obtained from the World Bank website. All data were transformed by taking their logarithms. The variables chosen were: Gross Fixed Capital Formation (CF), Broad Money (M2), Crude Oil Price (OIL) and USD: MYR exchange rate (FX).

Cointegration Test

The above test applied to time series study is to determine the stationarity or non-stationarity of the variables under consideration. A
variable is said to be integrated of order n, if it requires differencing n times to achieve stationarity. Therefore variables are cointegrated if they are non-stationary integrated of the same order and yet their linear combination is stationary.

The presence of cointegration implies that variables do not drift away from each other arbitrarily. Any deviation from the long run relationship will result in some other variables adjusting similarly to the long run path. Cointegration test provides information on the long run relationship among the variables it also entails theoretical relevance in.

The augmented Dickey-Fuller (ADF) test was used to determine the variables’ stationarity properties or integration order. We test for stationarity or non-stationarity of each variable in their original and differenced form. We made sure that the level variable form is non-stationary and the differenced variable is stationary before proceeding to determine the lag order of the variables.

Long-Run Structural Modelling (LRSM)

After determining the number of lags and cointegrating relationship, LRSM is utilized to estimate theoretically meaningful long-run (or cointegrating) relations. We impose restrictions and over identifying it to see the relations of the variables based on theories.
Vector Error-Correction Modelling (VECM)

VECM identifies variables as either endogenous or exogenous in the long run. If the error correction coefficient in any equation is insignificant, the corresponding dependent variable of that equation is “exogenous”. But if the coefficient is significant, it implies that the corresponding dependent variable is “endogenous”. The size of the coefficient of the error correction term indicates the spread of a short term adjustment to bring about long term equilibrium and it represents the proportion by which the disequilibrium in the dependent variable is being corrected in each short period.

Variance Decompositions (VDCs)

VDC test for how relative endogeneity or exogeneity of the variables are. It decomposes the variance of the forecast error of a particular variable into proportions attributable to shocks in each variable in the system including its own. The relative endogeneity or exogeneity of a variable can be determined by the proportion of the variance explained by its own past shocks. The variable which is explained mostly by its own shocks is deemed to be the most exogenous of all variables. The variable that have a lot of decomposed proportions in other variables are said to be endogenous.
Impulse Response Functions (IRFs)

The Impulse response function is the graphical representation of information contained in the VDCs. The IRFs essentially map out the dynamic response of a variable owing to one period standard deviation shock to another variable.

Persistence Profiles

Persistence Profiles (PFs) maps out the dynamic response of the cointegrating vectors in the long run. The Persistent Profile traces out the effects of a system wide shock on the long run relations between the variables. We may ascertain the periods required for equilibrium after the whole system has been shocked.

4. Analysis and Findings

Step 1: Testing for stationarity/non-stationarity

The variables utilized were Gross Domestic Fixed Capital Formation (CF), Broad Money supply (M2), USD: MYR Exchange Rate (FX) and Crude Oil Price (OIL). The ‘log’ of the ‘level’ form of the variables and the ‘first difference’ of the log of the variables follows.

Log of level form variables:

\[\text{LCF} = \log (\text{CF}); \quad \text{LM2} = \log (\text{M2}); \quad \text{LFX} = \log (\text{FX}); \quad \text{LOIL} = \log (\text{OIL}); \]
First Difference of log level form variables:

\[DCF = LCF - LCF (-1); \quad DLM2 = LM2 - LM2 (-1); \]
\[DLFX = LFX - LFX (-1); \quad DOIL = LOIL - LOIL (-1); \]

The Augmented Dickey-Fuller (ADF) test was applied to the above; the ‘calculated’ estimates were compared against the ‘critical’ statistic values. The results of the ADF test have been summarized as per the below table.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description (log)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCF</td>
<td>Gross Fixed Capital</td>
<td>non-stationary</td>
</tr>
<tr>
<td></td>
<td>Formation</td>
<td></td>
</tr>
<tr>
<td>DLCF</td>
<td>1st. Diff. Gross Fixed Capital</td>
<td>Stationary</td>
</tr>
<tr>
<td></td>
<td>Formation</td>
<td></td>
</tr>
<tr>
<td>LFX</td>
<td>USD:MYR Exchange Rate</td>
<td>non-stationary</td>
</tr>
</tbody>
</table>
All the log level form variables are non-stationary and the first differenced log form are stationary.

Step 2: Determination of the order (or lags) of the VAR model

The inputs to determine the order of lags are as follows:

DCF & CONS DOIL DLM2 DLFX

We chose var (2) as the order of lags since the SBC criterion shows that var (2) has the highest value. Results are as the below.
Based on 33 observations from 8 to 40. Order of VAR = 6

List of variables included in the unrestricted VAR:
DCF

List of deterministic and/or exogenous variables:
CONS DLM2 DLFX DLOIL

Order LL AIC SBC LR test Adjusted LR test
6 33.8436 23.8436 16.3611 ------ ------
5 33.7138 24.7138 17.9795 CHSQ(1)= .25967[.610] .18098[.671]
4 33.2883 25.2883 19.3022 CHSQ(2)= 1.1107[.574] .77416[.679]
3 30.7791 23.7791 18.5413 CHSQ(3)= 6.1291[.105] 4.2718[.234]
1 27.9356 22.9356 19.1943 CHSQ(5)= 11.8160[.037] 8.2354[.144]

AIC=Akaike Information Criterion SBC=Schwarz Bayesian Criterion

Step 3: Testing cointegration

This determines the value of cointegrating relationship of the current model. We use ‘multivariate’ with var (2) to get the results based on ‘eigen values’ and the ‘trace’ statistics to determine the value of r (cointegrating relationship). If r = 0 is accepted, there is no cointegration among the variables. If r = 0 is rejected, there is cointegration among the variables.

The result below shows that maximized LL prefers r = 3, AIC prefers r = 2, SBC prefers r = 1 and HQC prefers r =2. We choose r =1 as the number of cointegrating vectors based on intuition.

Cointegration with unrestricted intercepts and restricted trends in the VAR
Cointegration LR Test Based on Maximal Eigenvalue of the Stochastic Matrix

38 observations from 3 to 40. Order of VAR = 2.
List of variables included in the cointegrating vector:
LCF LM2 LFX Trend
List of I(0) variables included in the VAR:
LOIL
List of eigenvalues in descending order:
.51006 .25100 .052311 .0000

Null Alternative Statistic 95% Critical Value 90%Critical Value
r = 0 r = 1 27.1121 25.4200 23.1000
r=1 r = 2 10.9827 19.2200 17.1800
r<= 2 r = 3 2.0417 12.3900 10.5500
Use the above table to determine r (the number of cointegrating vectors).

Cointegration with unrestricted intercepts and restricted trends in the VAR

Cointegration LR Test Based on Trace of the Stochastic Matrix

38 observations from 3 to 40. Order of VAR = 2.
List of variables included in the cointegrating vector:
LCF LM2 LFX Trend
List of I(0) variables included in the VAR:
LOIL
List of eigenvalues in descending order:
.51006 .25100 .052311 .0000

Use the above table to determine r (the number of cointegrating vectors).

Choice of the Number of Cointegrating Relations Using Model Selection Criteria

38 observations from 3 to 40. Order of VAR = 2.
List of variables included in the cointegrating vector:
LCF LM2 LFX Trend
List of I(0) variables included in the VAR:
LOIL
List of eigenvalues in descending order:
.51006 .25100 .052311 .0000

Step 4: Long Run Structural Modeling (LRSM)

The LRSM endeavors to estimate theoretically meaningful long-run (or cointegrating) relations by imposing on those long-run relations (and then testing) both identifying and over-identifying restrictions based on theories and information of the economies under review. The restriction applied was A1 = 1

ML estimates subject to exactly identifying restriction(s)
Estimates of Restricted Cointegrating Relations (SE's in Brackets)
Converged after 2 iterations

Cointegration with unrestricted intercepts and restricted trends in the VAR

39 observations from 2 to 40. Order of VAR = 1, chosen r =1.
List of variables included in the cointegrating vector:
LCF LM2 LFX LOIL Trend
List of imposed restriction(s) on cointegrating vectors:
A1=1

Vector 1
LCF 1.0000
(*NONE*)
LM2 -2.7039 2.93 (SIGNIFICANT)
(.92046)
LFX -0.37841 0.3539 (INSIGNIFICANT)
(1.0398)
LOIL .15680 1.185 (INSIGNIFICANT)
(.13235)
Trend .25182
(.12624)

LL subject to exactly identifying restrictions= 136.4934

The result of identifying restriction to the co-integration equation or linear combination equation at this stage can be as follows:

vector 1

\[\text{LCF}_t - 2.7039 \text{LM2}_t - 0.37841 \text{LFX}_t + 0.15680 \text{LOIL}_t \sim I(0) \]

\[
(0.92046) \quad (1.0398) \quad (0.13235)
\]

where values in parenthesis are the standard deviation.

Over identifying restrictions as follows:

A1 = 0; A2=0; A4=0
The co-integration equation or linear combination equation with the over
identifying restrictions at this stage can be as follows:

vector 1

where values in parenthesis are the standard deviation.

\[\text{LCF}_t - 2.3282 \text{ LFX}_t \sim I(0) \]

\[(3.0744) \]

Step 5: Vector Error Correction Model (VECM)

The fifth step in the Time-Series techniques is the VECM. In this test, if the error-correction coefficient is insignificant, the corresponding dependent variable is ‘exogenous’. But if that coefficient is significant, that implies that the corresponding dependent variable is ‘endogenous’.

The results for this test as follows.
ECM for variable LCF estimated by OLS based on cointegrating VAR(1)

Dependent variable is dLCF
39 observations used for estimation from 2 to 40

<table>
<thead>
<tr>
<th>Regressor</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T-Ratio [Prob]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.4917</td>
<td>1.0579</td>
<td>1.4101 [.167]</td>
</tr>
<tr>
<td>ecm(-1)</td>
<td>-.065055</td>
<td>.049504</td>
<td>-1.3141 [.197]</td>
</tr>
</tbody>
</table>

List of additional temporary variables created:

dLCF = LCF-LCF(-1)
ecm1 = 1.0000*LCF + 0.00*LM2 -1.5533*LFX + .10720*LOIL -.082469*Tr

R-Squared .044592 R-Bar-Squared .018771
S.E. of Regression .15652 F-stat. F(1, 37) 1.7269 [.197]
Mean of Dependent Variable .10194 S.D. of Dependent Variable .15801
Residual Sum of Squares .90649 Equation Log-likelihood 18.0154
Akaike Info. Criterion 16.0154 Schwarz Bayesian Criterion 14.3518
DW-statistic 1.2279 System Log-likelihood 133.7695

Diagnostic Tests

A:Serial Correlation
- CHSQ(1) = 7.1493 [.007]*F(1, 37) = 8.0807 [.007]*
B:Functional Form
- CHSQ(1) = .065400 [.798]*F(1, 37) = .060471 [.807]*
C:Normality
- CHSQ(2) = 11.9518 [.003]* Not applicable *
D:Heteroscedasticity
- CHSQ(1) = 1.8097 [.179]*F(1, 37) = 1.8004 [.188]*

ECM for variable LM2 estimated by OLS based on cointegrating VAR(1)

Dependent variable is dLM2
39 observations used for estimation from 2 to 40

<table>
<thead>
<tr>
<th>Regressor</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T-Ratio [Prob]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>.27189</td>
<td>.43442</td>
<td>.62588 [.535]</td>
</tr>
<tr>
<td>ecm(-1)</td>
<td>-.0062155</td>
<td>.020330</td>
<td>-.30574 [.762]</td>
</tr>
</tbody>
</table>

List of additional temporary variables created:

dLM2 = LM2-LM2(-1)
ecm1 = 1.0000*LCF + 0.00*LM2 -1.5533*LFX + .10720*LOIL -.082469*Tr

R-Squared .0025200 R-Bar-Squared -.024439
S.E. of Regression .064279 F-stat. F(1, 37) .093476 [.762]
Mean of Dependent Variable .13911 S.D. of Dependent Variable .063507
Residual Sum of Squares .15287 Equation Log-likelihood 52.7246
Akaike Info. Criterion 50.7246 Schwarz Bayesian Criterion 49.0610
DW-statistic 1.1387 System Log-likelihood 133.7695

Diagnostic Tests

* Test Statistics * LM Version * F Version *
* * * *
* A:Serial Correlation
- CHSQ(1) = 6.8620 [.009]*F(1, 37) = 7.6865 [.009]*
* * * *
ECM for variable LFX estimated by OLS based on cointegrating VAR(1)

Dependent variable is dLFX

<table>
<thead>
<tr>
<th>Regressor</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T-Ratio[Prob]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-1.5328</td>
<td>.42722</td>
<td>-3.5879[.001]</td>
</tr>
<tr>
<td>ecm1(-1)</td>
<td>.071818</td>
<td>.019993</td>
<td>3.5922[.001]</td>
</tr>
</tbody>
</table>

List of additional temporary variables created:

dLFX = LFX-LFX(-1)
ecm1 = 1.0000*LCF 0.00*LM2 -1.5533*LFX + .10720*LOIL -.082469*Tr

R-Squared .25858 R-Bar-Squared .23854
S.E. of Regression .063213 F-stat. F(1, 37) 12.9039[.001]
Mean of Dependent Variable .0013908 S.D. of Dependent Variable .072441
Residual Sum of Squares .14785 Equation Log-likelihood 53.3763
Akaike Info. Criterion 51.3763 Schwarz Bayesian Criterion 49.7128
DW-statistic 1.6409 System Log-likelihood 133.7695

Diagnostic Tests

A:Serial Correlation*CHSQ(1)= 1.2809 [.258]*F(1, 36)= 1.2225 [.276]*
B:Functional Form *CHSQ(1)= .0028707 [.957]*F(1, 36)= .0026501 [.959]*
C:Normality *CHSQ(2)= 147.6700 [.000] Not applicable *
D:Heteroscedasticity*CHSQ(1)= 1.1031 [.294]*F(1, 37)= 1.0770 [.306]*

A: Lagrange multiplier test of residual serial correlation
B: Ramsey's RESET test using the square of the fitted values
C: Based on a test of skewness and kurtosis of residuals
D: Based on the regression of squared residuals on squared fitted values

ECM for variable LOIL estimated by OLS based on cointegrating VAR(1)

Dependent variable is dLOIL

<table>
<thead>
<tr>
<th>Regressor</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>T-Ratio[Prob]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>6.1415</td>
<td>2.0771</td>
<td>2.9567[.005]</td>
</tr>
<tr>
<td>ecm1(-1)</td>
<td>-.28287</td>
<td>.097203</td>
<td>-2.9101[.006]</td>
</tr>
</tbody>
</table>

List of additional temporary variables created:

dLOIL = LOIL-LOIL(-1)
ecm1 = 1.0000*LCF 0.00*LM2 -1.5533*LFX + .10720*LOIL -.082469*Tr

R-Squared .18625 R-Bar-Squared .16426
S.E. of Regression .30734 F-stat. F(1, 37) 8.4686[.006]
Mean of Dependent Variable .098596 S.D. of Dependent Variable .33619
Residual Sum of Squares 3.4949 Equation Log-likelihood -8.2996
Akaike Info. Criterion -10.2996 Schwarz Bayesian Criterion -11.9632
DW-statistic 2.1499 System Log-likelihood 133.7695

Diagnostic Tests

* Test Statistics * LM Version * F Version *

* * * *
* A:Serial Correlation*CHSQ(1)= .38164[.537] F(1, 36)= .35577[.555] *
* * * *
* B:Functional Form *CHSQ(1)= .0016309[.968] F(1, 36)= .0015055[.969] *
* * * *
* C:Normality *CHSQ(2)= 35.6226[.000] Not applicable *
* * * *
* D:Heteroscedasticity*CHSQ(1)= .39480[.530] F(1, 37)= .37839[.542] *

A: Lagrange multiplier test of residual serial correlation
B: Ramsey's RESET test using the square of the fitted values
C: Based on a test of skewness and kurtosis of residuals
D: Based on the regression of squared residuals on squared fitted values

The table summarizes the findings on exogenous/endogenous variables.

<table>
<thead>
<tr>
<th>ECM(-1) Variable</th>
<th>Description (log)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCF</td>
<td>Gross Fixed Capital</td>
<td>exogenous</td>
</tr>
<tr>
<td></td>
<td>Formation</td>
<td></td>
</tr>
<tr>
<td>LM2</td>
<td>Broad Money</td>
<td>exogenous</td>
</tr>
<tr>
<td>LFX</td>
<td>USD:MYR exchange</td>
<td>endogenous</td>
</tr>
<tr>
<td></td>
<td>rate</td>
<td></td>
</tr>
<tr>
<td>LOIL</td>
<td>Crude Oil Price</td>
<td>endogenous</td>
</tr>
</tbody>
</table>
Step 6: Variance Decompositions (VDCs)

The sixth step involves Variance Decomposition. This step partitions the variance of the forecast errors into proportions attributable to shocks in each variable in the model equation including itself. The relative exogeneity/endogeneity was determined. Looking at the 10th horizon for each variable shocked, the percentage of the proportion can be realized.

ORTHOGONALIZED

TAKING HORIZON = 10

Orthogonalized Forecast Error Variance Decomposition for variable LCF
Cointegration with unrestricted intercepts and restricted trends in the VAR

39 observations from 2 to 40. Order of VAR = 1, chosen r =1.
List of variables included in the cointegrating vector:
LCF LM2 LFX LOIL Trend

List of imposed restrictions:
A1=1;

<table>
<thead>
<tr>
<th>Horizon</th>
<th>LCF</th>
<th>LM2</th>
<th>LFX</th>
<th>LOIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0000</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>.99590</td>
<td>.0033428</td>
<td>.2469E-3</td>
<td>.5145E-3</td>
</tr>
<tr>
<td>2</td>
<td>.98989</td>
<td>.0082356</td>
<td>.6084E-3</td>
<td>.0012676</td>
</tr>
<tr>
<td>3</td>
<td>.98374</td>
<td>.013240</td>
<td>.9781E-3</td>
<td>.0020377</td>
</tr>
<tr>
<td>4</td>
<td>.97811</td>
<td>.017833</td>
<td>.0013174</td>
<td>.0027446</td>
</tr>
<tr>
<td>5</td>
<td>.97315</td>
<td>.021866</td>
<td>.0016153</td>
<td>.0033654</td>
</tr>
<tr>
<td>6</td>
<td>.96899</td>
<td>.025340</td>
<td>.0018719</td>
<td>.0039001</td>
</tr>
<tr>
<td>7</td>
<td>.96524</td>
<td>.028308</td>
<td>.0020912</td>
<td>.0043569</td>
</tr>
<tr>
<td>8</td>
<td>.96214</td>
<td>.030839</td>
<td>.0022781</td>
<td>.0047464</td>
</tr>
<tr>
<td>9</td>
<td>.95948</td>
<td>.033000</td>
<td>.0024378</td>
<td>.0050791</td>
</tr>
<tr>
<td>10</td>
<td>.95721</td>
<td>.034851</td>
<td>.0025745</td>
<td>.0053640</td>
</tr>
</tbody>
</table>

Orthogonalized Forecast Error Variance Decomposition for variable LM2
Cointegration with unrestricted intercepts and restricted trends in the VAR

39 observations from 2 to 40. Order of VAR = 1, chosen r =1.
List of variables included in the cointegrating vector:
LCF LM2 LFX LOIL Trend

List of imposed restrictions:
A1=1;
<table>
<thead>
<tr>
<th>Horizon</th>
<th>LCF</th>
<th>LM2</th>
<th>LFX</th>
<th>LOIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.21328</td>
<td>0.78672</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0.43368</td>
<td>0.55722</td>
<td>0.0029480</td>
<td>0.0061421</td>
</tr>
<tr>
<td>2</td>
<td>0.60403</td>
<td>0.37406</td>
<td>0.013507</td>
<td>0.028140</td>
</tr>
<tr>
<td>3</td>
<td>0.71279</td>
<td>0.25409</td>
<td>0.0071034</td>
<td>0.014800</td>
</tr>
<tr>
<td>4</td>
<td>0.77856</td>
<td>0.17979</td>
<td>0.010739</td>
<td>0.022374</td>
</tr>
<tr>
<td>5</td>
<td>0.81853</td>
<td>0.13355</td>
<td>0.013507</td>
<td>0.028140</td>
</tr>
<tr>
<td>6</td>
<td>0.84350</td>
<td>0.10396</td>
<td>0.015541</td>
<td>0.032380</td>
</tr>
<tr>
<td>7</td>
<td>0.85963</td>
<td>0.084368</td>
<td>0.018164</td>
<td>0.037845</td>
</tr>
<tr>
<td>8</td>
<td>0.87043</td>
<td>0.070912</td>
<td>0.019022</td>
<td>0.039632</td>
</tr>
<tr>
<td>9</td>
<td>0.87791</td>
<td>0.061373</td>
<td>0.019690</td>
<td>0.041024</td>
</tr>
<tr>
<td>10</td>
<td>0.88326</td>
<td>0.054393</td>
<td>0.020220</td>
<td>0.042128</td>
</tr>
</tbody>
</table>

Orthogonalized Forecast Error Variance Decomposition for variable LFX
Cointegration with unrestricted intercepts and restricted trends in the VAR
39 observations from 2 to 40. Order of VAR = 1, chosen r = 1.
List of variables included in the cointegrating vector:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>LCF</th>
<th>LM2</th>
<th>LFX</th>
<th>LOIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.30787</td>
<td>0.023018</td>
<td>0.66911</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>0.32375</td>
<td>0.017903</td>
<td>0.65826</td>
<td>0.8789E-4</td>
</tr>
<tr>
<td>2</td>
<td>0.33663</td>
<td>0.014322</td>
<td>0.64881</td>
<td>0.2320E-3</td>
</tr>
<tr>
<td>3</td>
<td>0.34714</td>
<td>0.011752</td>
<td>0.64072</td>
<td>0.3944E-3</td>
</tr>
<tr>
<td>4</td>
<td>0.35576</td>
<td>0.0098615</td>
<td>0.63382</td>
<td>0.5557E-3</td>
</tr>
<tr>
<td>5</td>
<td>0.36289</td>
<td>0.0084369</td>
<td>0.62797</td>
<td>0.7069E-3</td>
</tr>
<tr>
<td>6</td>
<td>0.36883</td>
<td>0.0073395</td>
<td>0.62299</td>
<td>0.8444E-3</td>
</tr>
<tr>
<td>7</td>
<td>0.37382</td>
<td>0.0064766</td>
<td>0.61874</td>
<td>0.9673E-3</td>
</tr>
<tr>
<td>8</td>
<td>0.37804</td>
<td>0.0057854</td>
<td>0.61510</td>
<td>0.0010762</td>
</tr>
<tr>
<td>9</td>
<td>0.38163</td>
<td>0.0052223</td>
<td>0.61198</td>
<td>0.0011722</td>
</tr>
<tr>
<td>10</td>
<td>0.38471</td>
<td>0.0047565</td>
<td>0.60928</td>
<td>0.0012568</td>
</tr>
</tbody>
</table>

Orthogonalized Forecast Error Variance Decomposition for variable LOIL
Cointegration with unrestricted intercepts and restricted trends in the VAR
39 observations from 2 to 40. Order of VAR = 1, chosen r = 1.
List of variables included in the cointegrating vector:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>LCF</th>
<th>LM2</th>
<th>LFX</th>
<th>LOIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.30629</td>
<td>0.040751</td>
<td>0.016193</td>
<td>0.63677</td>
</tr>
<tr>
<td>1</td>
<td>0.29026</td>
<td>0.050210</td>
<td>0.015429</td>
<td>0.64410</td>
</tr>
<tr>
<td>2</td>
<td>0.27669</td>
<td>0.059028</td>
<td>0.014778</td>
<td>0.64951</td>
</tr>
<tr>
<td>3</td>
<td>0.26517</td>
<td>0.067053</td>
<td>0.014222</td>
<td>0.65356</td>
</tr>
<tr>
<td>4</td>
<td>0.25537</td>
<td>0.074247</td>
<td>0.013748</td>
<td>0.65663</td>
</tr>
<tr>
<td>5</td>
<td>0.24701</td>
<td>0.080637</td>
<td>0.013342</td>
<td>0.65901</td>
</tr>
<tr>
<td>6</td>
<td>0.23985</td>
<td>0.086284</td>
<td>0.012993</td>
<td>0.66087</td>
</tr>
<tr>
<td>7</td>
<td>0.23368</td>
<td>0.091261</td>
<td>0.012692</td>
<td>0.66237</td>
</tr>
<tr>
<td>8</td>
<td>0.22834</td>
<td>0.095647</td>
<td>0.012431</td>
<td>0.66358</td>
</tr>
<tr>
<td>9</td>
<td>0.22370</td>
<td>0.099514</td>
<td>0.012204</td>
<td>0.66458</td>
</tr>
<tr>
<td>10</td>
<td>0.21965</td>
<td>0.10293</td>
<td>0.012006</td>
<td>0.66542</td>
</tr>
</tbody>
</table>
The variable LCF is the target variable however the above does not support this assertion. Similarly this applies to LM2. The variables LFX and LOIL exhibited lower reliance for their exogeneity from its past compared to LCF and LM2.

GENERALIZED

TAKING HORIZON = 10

Generalized Forecast Error Variance Decomposition for variable LCF

Cointegration with unrestricted intercepts and restricted trends in the VAR

<table>
<thead>
<tr>
<th>Horizon</th>
<th>LCF</th>
<th>LM2</th>
<th>LFX</th>
<th>LOIL</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCF</td>
<td>95.7%</td>
<td>3.4%</td>
<td>0.25%</td>
<td>0.05%</td>
<td>100.0%</td>
</tr>
<tr>
<td>LM2</td>
<td>88.3%</td>
<td>5.4%</td>
<td>2.1%</td>
<td>4.2%</td>
<td>100.0%</td>
</tr>
<tr>
<td>LFX</td>
<td>38.4%</td>
<td>0.4%</td>
<td>60.9%</td>
<td>0.2%</td>
<td>100.0%</td>
</tr>
<tr>
<td>LOIL</td>
<td>21.9%</td>
<td>10.3%</td>
<td>1.3%</td>
<td>66.5%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

39 observations from 2 to 40. Order of VAR = 1, chosen r =1.
List of variables included in the cointegrating vector:
LCF LM2 LFX LOIL Trend
List of imposed restrictions:
A1 = 1;

<table>
<thead>
<tr>
<th>Horizon</th>
<th>LCF</th>
<th>LM2</th>
<th>LFX</th>
<th>LOIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00000</td>
<td>0.21328</td>
<td>0.30787</td>
<td>0.30629</td>
</tr>
<tr>
<td>1</td>
<td>0.99590</td>
<td>0.17992</td>
<td>0.30998</td>
<td>0.31202</td>
</tr>
<tr>
<td>2</td>
<td>0.98989</td>
<td>0.15624</td>
<td>0.31067</td>
<td>0.31545</td>
</tr>
<tr>
<td>3</td>
<td>0.98374</td>
<td>0.13895</td>
<td>0.31070</td>
<td>0.31760</td>
</tr>
<tr>
<td>4</td>
<td>0.97811</td>
<td>0.12602</td>
<td>0.31046</td>
<td>0.31899</td>
</tr>
<tr>
<td>5</td>
<td>0.97315</td>
<td>0.11610</td>
<td>0.31011</td>
<td>0.31993</td>
</tr>
<tr>
<td>6</td>
<td>0.96889</td>
<td>0.10835</td>
<td>0.30973</td>
<td>0.32058</td>
</tr>
<tr>
<td>7</td>
<td>0.96524</td>
<td>0.10318</td>
<td>0.30936</td>
<td>0.32105</td>
</tr>
<tr>
<td>8</td>
<td>0.96214</td>
<td>0.097183</td>
<td>0.30902</td>
<td>0.32140</td>
</tr>
<tr>
<td>9</td>
<td>0.95948</td>
<td>0.093088</td>
<td>0.30871</td>
<td>0.32166</td>
</tr>
<tr>
<td>10</td>
<td>0.95721</td>
<td>0.089686</td>
<td>0.30844</td>
<td>0.32187</td>
</tr>
</tbody>
</table>
Generalized Forecast Error Variance Decomposition for variable LM2
Cointegration with unrestricted intercepts and restricted trends in the VAR

39 observations from 2 to 40. Order of VAR = 1, chosen r = 1.
List of variables included in the cointegrating vector:
 | LCF | LM2 | LFX | LOIL | Trend
---|-----|-----|-----|------|------
A1=1;

Horizon LCF LM2 LFX LOIL
0 .21328 1.0000 .15274 .18891
1 .43368 .89083 .25625 .31443
2 .60403 .73694 .32685 .39946
3 .71279 .60231 .36700 .44748
4 .77856 .49982 .38842 .47289
5 .81853 .42447 .39968 .48608
6 .84350 .36892 .40556 .49285
7 .85963 .32733 .40859 .49625
8 .87043 .29556 .41076 .49848
9 .87326 .25119 .41097 .49860
10 .87791 .27082 .41097 .49860

Generalized Forecast Error Variance Decomposition for variable LFX
Cointegration with unrestricted intercepts and restricted trends in the VAR

39 observations from 2 to 40. Order of VAR = 1, chosen r = 1.
List of variables included in the cointegrating vector:
 | LCF | LM2 | LFX | LOIL | Trend
---|-----|-----|-----|------|------
A1=1;

Horizon LCF LM2 LFX LOIL
0 .30787 .15274 1.00000 .19518
1 .32375 .14467 .99873 .20270
2 .33663 .13813 .99664 .20872
3 .34714 .13282 .99428 .21357
4 .35576 .12846 .99195 .21751
5 .36289 .12486 .98975 .22075
6 .36883 .12186 .98776 .22344
7 .37382 .11934 .98598 .22569
8 .37804 .11721 .98440 .22758
9 .38163 .11540 .98301 .22919
10 .38471 .11385 .98178 .23057

Generalized Forecast Error Variance Decomposition for variable LOIL
Cointegration with unrestricted intercepts and restricted trends in the VAR

39 observations from 2 to 40. Order of VAR = 1, chosen r = 1.
List of variables included in the cointegrating vector:
 | LCF | LM2 | LFX | LOIL | Trend
---|-----|-----|-----|------|------
A1=1;

Horizon LCF LM2 LFX LOIL
0 .30629 .18891 .19518 1.0000
1 .30262 .19953 .18861 .99856
2 .27669 .20855 .18289 .99601
3 .26517 .21623 .17793 .99295
4 .25537 .22277 .17364 .98974
5 .24701 .22835 .16992 .98659
6 .23985 .23315 .16671 .98360
7 .23368 .23728 .16392 .98084
8 .22834 .24086 .16149 .97832
9 .22370 .24397 .15937 .97604
10 .21965 .24669 .15751 .97399

The orthogonalized VDCs assume that when a particular variable is shocked, all other variables in the system are switched off but the generalized VDCs do not make such a restrictive assumption. Nevertheless the results for the generalized VDCs do not provide any significant contrast to orthogonalized VDCs results.

Step 7: Impulse Response Functions (IRFs)

IRFs map the dynamic response path of a variable owing to a one-period standard deviation shock to another variable. The IRFs are normalized such that zero represents the steady-state value of the response variable. The graphs of each variable are as follows:

ORTHOGONALIZED:

![Orthogonalized Impulse Response(s) to one S.E. shock in the equation for LCF](image)

This graph shows the orthogonalized impulse response of other variables when LCF was shocked. The variables LM2 and LOIL responded mildly to the shock whilst LFX’s respond was negligible. Thus CF is seen as only mildly responsive to the price of oil and money supply.
This graph shows the orthogonalized impulse response of other variables when LM2 was shocked. LCF and LOIL responded mildly to the shock whilst again LFX’s respond remains negligible. Thus LM2 is seen as only mildly responsive to the price of oil and CF.

When LFX was shocked all the other variables were mildly responsive.

Shocking LOIL lead to LM2 and LCF responding mildly whilst LFX’s
respond remain negligible. The negligible to mild respond is seen to counter-intuitive.

GENERALIZED:

This graph shows the generalized impulse response of other variables when LCF was shocked. Both LM2 and LOIL responded mildly whilst LFX’s respond remain negligible.

This graph shows the generalized impulse response of other variables when LM2 was shocked. Both CF and LOIL responded mildly whilst LFX’s respond remain negligible.
This graph shows the generalized impulse response of other variables when LFX was shocked. All variables responded albeit again mildly.

This graph shows the generalized impulse response of other variables when LOIL was shocked. Both LM2 and CF responded mildly whilst LFX’s respond remain negligible.
Step 8: Persistence Profiles (PF)

The Persistent Profile trace out the effects of a system wide shock on the long run relations between the variables. From the graph below, we can see that after the whole system equations has been shocked; it takes about 9 periods for it to come back to its equilibrium.

5. Conclusion

The objective of this study was to examine the relationship of oil prices with gross fixed capital formation serving as “proxy” for investment decision making process pursued largely at business and governments. The cointegration test shows identified one cointegrating relationship equation. This shows that there is an indication of long run theoretical relationship of variables in the system. Although intuitively appealing,
the results obtained do not rest well with the intuition thus requiring further research.

References

Darby, Michael(1982), The Price of Oil and World Inflation and Recession, American Economic Review, 72(4), 738-751

Hamilton, James D. (1996). *This Is What Happened to the Oil Price-Macroeconomy*
Relationship, Journal of Monetary Economics, 38(2), 215-220

