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Abstract

We propose a multiple-step procedure to compute average partial effects (APEs)

for fixed-effects panel logit models estimated by Conditional Maximum Likelihood

(CML). As individual effects are eliminated by conditioning on suitable sufficient

statistics, we propose evaluating the APEs at the ML estimates for the unobserved

heterogeneity, along with the fixed-T consistent estimator of the slope parameters,

and then reducing the induced bias in the APE by an analytical correction. The

proposed estimator has bias of order O(T−2), it performs well in finite samples

and, when the dynamic logit model is considered, better than alternative plug-in

strategies based on bias-corrected estimates for the slopes, especially with small

n and T . We provide a real data application based on labour supply of married

women.
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1 Introduction

Practitioners who estimate binary choice models are often interested in quantifying the

effect of some regressors on the response probability, other things being equal. Moreover,

with the availability of panel data, the fixed-effects approach allows for the estimation of

partial effects of covariates that may be correlated with the individual specific unobserved

heterogeneity in a nonparametric manner.

The Maximum Likelihood (ML) estimator of fixed-effects binary choice models, how-

ever, is consistent only as the number of time occasions T goes to +∞ and otherwise

suffers form the well-known incidental parameters problem (Neyman and Scott, 1948;

Lancaster, 2000)), 1 which is why bias reduction techniques for the ML estimator of the

slope parameters have been proposed in order to lower the order of the bias from O(T−1)

to O(T−2). Related plug-in estimators of the APEs are also provided, which share the

same order of bias. Analytical bias corrections are provided by Fernández-Val (2009),

whose derivations are based on general results for static (Hahn and Newey, 2004) and

dynamic (Hahn and Kuersteiner, 2011) nonlinear panel data models. An alternative bias

correction method relies on the panel jackknife. A general procedure for nonlinear static

panel data models is proposed by Hahn and Newey (2004), whereas a split-panel jackknife

estimator is developed by Dhaene and Jochmans (2015) for dynamic models.

Another popular method to overcome the incidental parameters problem is based on

the conditional inference approach for fixed-effects binary logit panel data models (An-

dersen, 1970; Chamberlain, 1980), which admit sufficient statistics for the individual in-

tercepts. Differently from the above-mentioned bias reduction methods, the CML method

produces a fixed-T consistent estimator of the slope parameters. However, plug-in esti-

mates of the APEs are not directly available as the parameters for the individual effects

are eliminated.

We propose a multiple-step procedure to estimate the APEs in fixed-effects panel logit

models that combines conditional inference approaches with a bias reduction method. The

APE is evaluated at the fixed-T consistent CML estimator of the slope parameters and

at the ML estimator for the unobserved heterogeneity. The bias in the APE resulting

from plugging in the estimated fixed effects is then reduced from O(T−1) to O(T−2) by

applying the analytical correction proposed by Fernández-Val (2009).

The proposed procedure cannot be directly extended to the dynamic logit model

(Hsiao, 2005), for which CML inference for the slope parameters is not viable in a simple

form. This is overcome by Bartolucci and Nigro (2010), who propose a Quadratic Expo-

nential (QE) formulation (Cox, 1972) for dynamic binary panel data models, which has

the advantage of admitting sufficient statistics for the individual intercepts. Furthermore,

1We focus on large n and large T perspective, where n is the number of subjects in the sample, as
APEs are often not point identified with fixed T (Chernozhukov et al., 2013).
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Bartolucci and Nigro (2012) propose a QE model, that approximates more closely the

dynamic logit model, the parameters of which can easily be estimated by Pseudo CML

(PCML). We therefore extend the proposed procedure to include PCML estimates in the

APEs when a dynamic logit is specified.

As it happens with the APE estimators based on analytical and jackknife corrections,

the proposed method reduces the order of the bias from O(T−1) to O(T−2). Such a

bias is however asymptotically negligible under rectangular array asymptotics as plug-in

average-effect estimators converge at the rate n−1/2 (Dhaene and Jochmans, 2015). Yet

in spite of the asymptotic equivalence of bias-corrected and ML plug-in APE estimators,

the simulation evidence provided by Dhaene and Jochmans (2015) suggests that operating

some bias reduction entails a non-negligible improvement in small samples, especially with

small values of T . In addition, evaluating the APE at a fixed-T consistent estimator of

the regression parameters rather than at bias corrected one, gives a further advantage

in finite samples. We show that the proposed combination of the conditional inference

approach with bias reduction has a comparable finite sample performance to the ML and

bias corrected estimators with the static logit model, while it outperforms them when the

dynamic logit is considered, especially when n and T are small.

The rest of the paper is organized as follows: in Section 2 we briefly discuss the

incidental parameters problem and how it affects the APEs estimator. In Section 3 we

recall the existing bias correction strategies for APE estimators, then we illustrate the

proposed methodology and its extension to accommodate the dynamic logit model; in

Section 4 we investigate the finite sample performance of the proposed estimator and

compare it with that of the panel jackknife and analytical bias correction strategies; in

Section 5 we provide a real data application based on labour supply of married women.

Finally, Section 6 concludes.

2 Average partial effects and the incidental parame-

ters problem

We consider n units, indexed with i = 1, . . . , n, observed at time occasions t = 1, . . . , T .

Let yit be the binary response variable for unit i at occasion t and xit the corresponding

vector of K covariates. We assume that the yit are conditionally independent, given αi

and xit, across i and t. Consider the logit formulation

p(yit|xit;αi,β) =
exp [yit(αi + x′

itβ)]

1 + exp(αi + x′

itβ)
, (1)

where αi is the individual specific intercept, xit is vector of strictly exogenous covariates,

and β collects the regression parameters.
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The fixed-effects estimator is obtained by Maximum Likelihood (ML), treating each

individual effect αi as a parameter to be estimated. The ML estimator of β is obtained

by concentrating out the αi as the solution to

β̂ = argmax
β

n
∑

i=1

T
∑

t=1

log p(yit|xit; α̂i(β),β),

α̂i(β) = argmax
αi

T
∑

t=1

log p(yit|xit;αi,β).

Notice that here α̂i(β) depends on the data only through yi = (yi1, . . . , yiT )
′ and X i =

(xi1, . . . ,xiT ).

Because the estimation noise in α̂i(β) disappears only as T → ∞, the ML estimator of

β̂ is not consistent for β0 with T fixed and only n → ∞, that is plim
n→∞

β̂ ≡ βT 6= β0. This

is the well-known incidental parameters problem (Neyman and Scott, 1948; Lancaster,

2000). To clarify this, consider any function f(yi,X i, αi) and let En [f(yi,X i, αi)] ≡
plim
n→∞

1
n

∑n
i=1 f(yi,X i, αi), where αi is treated as fixed. From standard extremum estimator

properties, it follows that, with T fixed and as n → ∞, βT is be obtained as

βT = argmax
β

En

[

T
∑

t=1

log p(yit|xit; α̂i(β),β)

]

,

whereas β0 follows from

β0 = argmax
β

En

[

T
∑

t=1

log p(yit|xit;αi(β),β)

]

,

where αi(β) maximizes ET [log p(yit|xit;αi,β)] ≡ plim
T→∞

1
T

∑T
t=1 log p(yit|xit;αi,β). From

the expressions above it is clear that the problem arises from α̂i(β) 6= αi(β) with fixed

T . Moreover, Hahn and Newey (2004) show that βT = β0 + B/T + O(T−2). If, instead,

T → ∞, then α̂i(β)
p→ αi0, with αi0 = αi(β0), and βT → β0. If both n, T → ∞, β̂ will

be asymptotically normal. However, Hahn and Newey (2004) show that the asymptotic

distribution of the ML estimator will not be centered at its probability limit if n grows

faster than T .

The incidental parameters problem affects the estimation of APEs as well, that are

usually of interest to practitioners who want to quantify the effect of some regressor x

on the response probability, other things being equal. For the logit model in (1), the

partial effect of covariate xitk for i at time t on the probability of yit = 1 can be written,
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depending on the typology of the covariate, as

mitk(αi,β,xit) =











p(yit = 1|xit;αi,β) [1− p(yit = 1|xit;αi,β)]βk, xitk continuous,

p(yit = 1|xit,−k, xitk = 1 ;αi,β))−
p(yit = 1|xit,−k, xitk = 0 ;αi,β)), xitk discrete,

where xit,−k denotes the subvector of all covariates but xitk. The true APE of the k-th

covariate can then be obtained by simply taking the expected value of mitk(αi,β,xit)

with respect to xit,

µk0 =

∫

mitk(αi0,β0,xit)dG(αi0,xit)

where G(αi0,xit) denotes the joint distribution of αi0 and xit. An estimator of µk0 can

be obtained by plugging in the ML estimators β̂ and α̂i(β̂), so that

µ̂k =
1

nT

n
∑

i=1

T
∑

t=1

mitk(α̂i(β̂), β̂,xit). (2)

It is now clear that, with small T , this estimator is plagued by two sources of bias: the first

stems from the estimation error introduced by α̂i(β); the second is a result of using the

asymptotically biased estimator β̂. Dhaene and Jochmans (2015) show that the combined

asymptotic bias is

plim
n→∞

µ̂k = µk0 +
D + E

T
+O(T−2), (3)

where, specifically, D is the bias generated from using α̂i(β) instead of αi0, whereas E is

the bias from plugging in β̂, instead if using β0. Dhaene and Jochmans (2015) provide

explicit expressions for D and E, based on the derivations by Fernández-Val (2009).

Notice that, even if a fixed–T consistent estimator of β0 was available, the asymptotic

bias of the APE estimator would still be of order O(T−1).

The sources of bias discussed above, however, have been shown to become asymptot-

ically negligible as, under rectangular array asymptotics, plug-in estimators of average

effects converge at a rate slower than (nT )−1/2. Dhaene and Jochmans (2015) summarize

this property in their Theorem 5.1, which is based on the following rationale. Consider

the infeasible estimator

µ∗

k ≡
1

nT

n
∑

i=1

T
∑

t=1

mitk(αi0,β0,xit),

and let µik be the individual-specific average partial effect, with mean µk0 and finite

variance. Then µ∗

k can be written as

µ∗

k =
1

n

n
∑

i=1

µik +
1

n

n
∑

i=1

(

1

T

T
∑

t=1

mitk(αi0,β0,xit)− µik

)

.
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Notice that the first term converges to µk0 at the rate n−1/2, whereas the second term

converges to zero at the rate (nT )−1/2, thus implying that the infeasible APE estimator

will converge no faster than the at rate n−1/2.

From the above expression, it is straightforward to notice that any feasible average-

effect estimator will converge at the same rate as µ∗

k, thus making the bias introduced

by replacing αi0 and β0 with ML estimates, or their first order bias-corrected versions,

asymptotically negligible. Indeed, even if it were possible to plug in fixed-T consistent

estimators of αi0 and β0, the APE estimator would be asymptotically equivalent to the

plug-in ML-APE estimator. However, based on their simulation evidence, Dhaene and

Jochmans (2015) still suggest using some bias correction of the APE estimator in finite

samples, especially when T is small. The proposed method operates such bias reduction,

as well as the alternative analytical and jackknife bias corrections recalled in the following

section.

3 Estimation of average partial effects

In the following, we first briefly review the existing strategies based on analytical and

jackknife bias corrections, which represent the benchmark for the finite sample perfor-

mance of the proposed estimator. We then illustrate the proposed methodology, which

combines the consistent CML estimator of β0 and the analytical bias correction for the

APE. Finally, we turn to the dynamic logit, for which the proposed procedure is based

on a PCML estimator.

3.1 Existing strategies

The available bias reduction techniques for the estimation of APEs for fixed-effects binary

choice models are based on either analytical or jackknife bias corrections.2

Analytical bias corrections for the APEs amount to plug-in a bias corrected estimate

of β, say β̂
c
= β̂− B̂/T , instead of the ML estimate in expression (2), along with α̂i(β̂

c
).

Doing so effectively removes the E component of the bias in (3), but the APE estimator

is still plagued by the estimation noise in α̂i(β), giving rise to the D component. In order

to remove it, the bias corrected estimator of µk is computed as

µ̂c
k =

1

nT

n
∑

i=1

T
∑

t=1

mitk(α̂i(β̂
c
), β̂

c
,xit)−

1

nT

n
∑

i=1

D̂i, (4)

2In the following discussion, we will use the notation for the static logit model, unless required other-
wise. Nonetheless, everything that follows can be generalized to the dynamic logit model.
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where D̂i is the sample counterpart of

Di =
∞
∑

j=0

ET

[

∂mitk(αi,β)

∂αi
τit−j

]

+ ET

[

∂mitk(αi,β)

∂αi
ξi

]

+
1

2
ET

[

∂2mitk(αi,β)

∂α2
i

σ2i

]

, (5)

and then evaluated at α̂i(β̂
c
) and β̂

c
. Expressions for τis, ξi, and σ2

i for panel binary choice

models are given in Fernández-Val (2009), 3 whose derivations are based on general results

for static (Hahn and Newey, 2004) and dynamic (Hahn and Kuersteiner, 2011) nonlinear

panel data models.4 For the expressions as well as for further details we refer the reader

to Hahn and Newey (2004), Fernández-Val (2009), and Hahn and Kuersteiner (2011).

An alternative bias correction method for the APE estimator relies on the panel jack-

knife. A general procedure for nonlinear static panel data models in proposed by Hahn

and Newey (2004). Let β̂
(t)

and α̂
(t)
i (β̂

(t)
) be the ML estimators with the t-th observation

excluded for each subject. Then the jackknife corrected estimator for the APE is

µ̂c
k = T µ̂k −

T − 1

T

T
∑

t=1

µk

(

α̂
(t)
i (β̂

(t)
), β̂

(t)
)

.

If the set of model covariates includes the lag of explanatory variables, then leaving out

one of the T observations at the time becomes unsuitable. Instead, a block of consecutive

observations has to be considered so as to preserve the dynamic structure of the data. The

so-called split panel jackknife estimator was proposed by Dhaene and Jochmans (2015).

A simple version of the estimator is the half-panel jackknife, which is based on splitting

the panel into two half-panels, also non-overlapping if T is even and T ≥ 6, and with T/2

time periods. Denote the set of half-panels as

S = {S1, S2}, S1 = {1, . . . , T/2}, S2 = {T/2 + 1, . . . , T},

then the half-panel jackknife estimator of the APE is

ν̂
1/2
k = 2ν̂k −

1

2

(

ν̄S1

k + ν̄S2

k

)

,

where ν̄S1

k and ν̄S2

k are the plug-in estimators evaluated at the ML estimators of ηi(θ)

and θ obtained using the observations in subpanels S1 and S2, respectively. Dhaene and

Jochmans (2015) also illustrate generalized versions of the half-panel jackknife to deal

3The term ξi is denoted by βi and the term τit by ψit in Fernández-Val (2009).
4The expression for Di is a function of the asymptotic bias and variance components of α̂i(β), that is

α̂i(β) = αi0 +
ξi

T
+

1

T

T
∑

t=1

τit + op

(

1

T

)

,

where 1
√

T

∑T

t=1
τit

d→ N(0, σ2

i ) (see Fernández-Val, 2009; Dhaene and Jochmans, 2015, for details).
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with odd T and overlapping subpanels, as well as an alternative jackknife estimator based

on the split-panel log-likelihood correction.

It is also worth pointing out that, while very general, the half- and split-panel jackknife

for dynamic models proposed by Dhaene and Jochmans (2015) require the stationarity of

covariates, which is rather restrictive in practice as it rules out, for instance, the use of

time dummies in the model specification. On the contrary, stationarity is not required by

analytical bias corrections, nor by the proposed method.

3.2 Proposed methodology

The proposed two-step strategy is based on removing the two sources of bias in (3) by (a)

using the fixed-T consistent CML estimator of β, β̃ instead of the ML estimator β̂ and (b)

reducing the order of bias of the APE plug-in estimator, induced by α̂i(β̃), from O(T−1)

to O(T−2) by applying the analytical bias-correction of Fernández-Val (2009) reported in

Equation (4).

3.2.1 Two step estimation

The first step consists in estimating by CML the structural parameters of the logit model

in (1). Taking the individual intercept αi as given, the joint probability of the response

configuration yi = (yi1, . . . , yiT )
′ conditional on X i = (xi1, . . . ,xiT ) can be written as

p(yi|X i, αi) =
exp

(

yi+αi +
∑T

t=1 yitx
′

itβ
)

∏T
t=1 1 + exp (αi + x′

itβ)
,

where the dependence of the probability on the left hand-side upon the slope parameters is

suppressed to avoid abuse of notation. It is well known that the total score yi+ =
∑T

t=1 yit

is a sufficient statistic for the individual intercepts αi (Andersen, 1970; Chamberlain,

1980). The joint probability of yi = (yi1, . . . , yiT ) conditional on yi+ does not depend on

αi and can therefore be written as

p(yi|X i, yi+) =

exp

[

(

∑T
t=1 yitxit

)

′

β

]

∑

z:z+=yi+

exp

[

(

∑T
t=1 ztxit

)

′

β

] , (6)

where the denominator is the sum over all the response configuration z such that z+ = yi+

and where the individual intercepts αi have been canceled out. The log-likelihood function

is

ℓ(β) =
n
∑

i=1

I(0 < yi+ < T ) log p(yi|X i, yi+),

8



where the indicator function I(·) takes into account that observations with total score yi+

equal to 0 or T do not contribute to the log-likelihood and p(yi|X i, yi+) is defined in (6).

The above function can be maximized with respect to β by a Newton-Raphson algorithm

using standard results on the regular exponential family (Barndorff-Nielsen, 1978), so as

to obtain the CML estimator β̃, which is
√
n-consistent and asymptotically normal with

fixed–T (see Andersen, 1970; Chamberlain, 1980, for details). Therefore, if plugged into

the APE formulation (2) instead of the ML estimator β̂, the E component of the bias in

(3) is removed since β̃
p→ β0 as n → ∞.

Further we obtain estimates of the individual intercepts αi, which are not directly

available as they have been canceled out by conditioning on the total score. Our strategy

is to obtain the ML estimates of αi, for those subjects such that 0 < yi+ < T , by

maximizing the individual term
∑T

t=1 log pβ̃(yit|xit, αi), where pβ̃(yit|xit, αi) is the logit

model probability in (1) evaluated at the CML estimate β = β̃, denoted α̂i(β̃). As well

as the ML estimator, the analytical and the jackknife bias correction, our proposal leads

to an APE equal to zero for the subjects whose response configurations are made of only

0s and 1s, as the marginal effects are evaluated at the ML (non-finite) estimates of αi.

This strategy is considered by Stammann et al. (2016). However, even if β is fixed at

some
√
n-consistent estimate, the bias of the ML estimator of αi0 will still be of order

O(T−1) because α̂i(β̃)
p→ αi0 only as T → ∞. 5

In the second step, the APEs can then be obtained by simply replacing the ML

estimators in (2) with β̃ and α̂(β̃) and reducing the bias from O(T−1) to O(T−2) by

applying the bias correction proposed by Fernández-Val (2009), that is

µ̃k =
1

nT

n
∑

i=1

T
∑

t=1

mitk(α̂i(β̃), β̃,xit)−
1

nT

n
∑

i=1

D̃i.

where D̃i denotes the sample counterpart of (5) evaluated in β̃ and α̂(β̃). It is worth

stressing that the proposed estimator exhibit the same asymptotic properties of any fea-

sible average effect estimator under rectangular array asymptotics, as outlined in Section

2.

3.2.2 Standard errors

In order to derive an expression for the standard errors of the APEs µ̃ = (µ̃1, . . . , µ̃K)
′,

we need to account for the variability in xit and for the use of the estimated parameters β̃

5It is worth mentioning that using a bias corrected estimate of αi, such as the one proposed by Kunz
et al. (2019), along with a fixed-T consistent estimator of β will not reduce the order of the bias of the
APE estimator to O(T−2), as it would not take care of the last component in (5). Yet Bartolucci and
Pigini (2019) show that the finite sample performance of the resulting APE estimator is comparable with
that of the panel jackknife, while it outperforms it with short T .
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in the first step. For the latter, we rely on the Generalized Method of Moments (GMM)

approach by Hansen (1982) and also implemented by Bartolucci and Nigro (2012) for the

Quadratic Exponential model. According to Newey and McFadden (1994), it consists in

presenting the proposed multi-step procedure as the solution of the system of estimating

equations

f(β,µ) = 0,

where

f(β,µ) =
n
∑

i=1

f i(β,µ),

f i(β,µ) =









∇βℓi(β)
∇µ1

gi(β, µ1)
...

∇µK
gi(β, µK)









, (7)

and

gi(β, µk) =
1

T

T
∑

t=1

[mitk(αi(β),β,xit)− µk]
2 , k = 1, . . . , K.

The asymptotic variance of (β̃
′

, µ̃′)′ is then

W (β̃, µ̃) = H(β̃, µ̃)−1S(β̃, µ̃)[H(β̃, µ̃)−1]′, (8)

where

S(β̃, µ̃) =
n
∑

i=1

f i(β̃, µ̃)f i(β̃, µ̃)
′.

Moreover, we have that

H(β̃, µ̃) =
n
∑

i=1

H i(β̃, µ̃),

where

H i(β,µ) =

(

∇ββ ℓi(β) O
∇µβ gi(β,µ) ∇µµ gi(β,µ)

)

(9)

is the derivative of f i(β,µ) with respect to (β,µ), with O denoting a K ×K matrix of

zeros and gi(β,µ) collects gi(β, µk), for k = 1, . . . , K. Expressions for the derivatives in

(7) are

∇βℓi(β) =
T
∑

t=1

yitxit −
∑

z:z+=yi+

(

p(z|X i, yi+)
T
∑

t=1

ztxit

)

,

and

∇µk
gi(β, µk) = − 2

T

T
∑

t=1

[mitk(αi(β),β,xit)− µk] .
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The second derivatives in (9) are

∇ββℓi(β) =
∑

z:z+=yi+

p(z|X i, yi+)e(z,X i)e(z,X i)
′,

where

e(z,X i) =
T
∑

t=1

ztxit −
∑

z:z+=yi+

(

p(z|X i, yi+)
T
∑

t=1

ztxit

)

,

and ∇µµ gi(β,µ) is a K × K diagonal matrix with elements equal to 2. Finally, for

the computation of the block ∇µβgi(β,µ) we rely on a numerical differentiation. Once

the matrix in (8) is computed, the standard errors for the APEs µ̃ may be obtained by

taking the square root of the elements in the main diagonal of the lower right submatrix

of W (β̃, µ̃).

3.2.3 Dynamic logit model

The method proposed to obtain the APE for the logit model cannot be applied directly to

the dynamic logit (Hsiao, 2005). For the dynamic logit model, the conditional probability

of yit is

p(yit|xit, yi,t−1; ηi, δ, γ) =
exp [yit(ηi + x′

itδ + yi,t−1γ)]

1 + exp(ηi + x′

itδ + yi,t−1γ)
, (10)

where γ is the regression coefficient for the lagged response variable that measures the

true state dependence. Plugging the CML estimator of δ and γ in the APE formulation

is not viable in this case because the total score is no longer a sufficient statistic for the

incidental parameters if the lag of the dependent variable is included among the model

covariates. Conditioning on sufficient statistics eliminates the incidental parameters only

in the in the special case of T = 3 and no other explanatory variables (Chamberlain, 1985).

Honoré and Kyriazidou (2000) extend this approach to include explanatory variables and

parameters can be estimated by CML on the basis of a weighted conditional log-likelihood.

However, time effects cannot be included in the model specification and the estimator’s

rate of convergence to the true parameter value is slower than
√
n. This is overcome

by Bartolucci and Nigro (2010), who propose a Quadratic Exponential (QE) formulation

(Cox, 1972) to model dynamic binary panel data, that has the advantage of admitting

sufficient statistics for the individual intercepts.

Bartolucci and Nigro (2012) propose a QE model that approximates more closely the

dynamic logit model, the parameters of which can easily be estimated by PCML. Under

the approximating model, each yi+ is a sufficient statistic for the fixed effect ηi. By

11



conditioning on the total score, the joint probability of yi becomes:

p∗(yi|X i, yi0, yi+) =
exp(

∑T
t=1 yitx

′

itδ −∑T
t=1 q̄ityi,t−1γ + yi∗γ)

∑

z:z+=yi+

exp(
∑T

t=1 ztx
′

itδ −∑T
t=1 q̄itzi,t−1γ + zi∗γ)

, (11)

where yi∗ =
∑T

t=1 yi,t−1yit and zi∗ = yi0z1 +
∑

t>1 zt−1zt. Moreover, q̄it is a function of

given values of δ and ηi, resulting from a first-order Taylor-series expansion of the log-

likelihood based on (10) around δ = δ̄ and ηi = η̄i, i = 1, . . . , n, and γ = 0 (see Bartolucci

and Nigro, 2012, for details). The expression for q̄it is then

q̄it =
exp(η̄i + x′

itδ̄)
[

1 + exp(η̄i + x′

itδ̄)
] .

Expressions for the partial effects and APEs are derived in the same way as for the

static logit model. Let wit = (x′

it, yit−1)
′ collect the K + 1 model covariates. Based on

(10), the partial effect of covariate witk for i at time t on the probability of yit = 1 can be

written as

vitk(ηi,θ,wit) =











p(yit = 1|wit; ηi, δ, γ) [1− p(yit = 1|wit; ηi, δ, γ)] δk, witk continuous,

p(yit = 1|wit,−k, witk = 1; ηi, δ, γ)−
p(yit = 1|wit,−k, witk = 0; ηi, δ, γ), witk discrete,

where wit,−k again denotes the the vector wit excluding witk, and θ = (δ′, γ)′. This

expression may also be used to compute the APE of the lagged response variable. Notice

that this function does not depend on δ̄, since the probability in (10) does not depend on

q̄it. The APE of the k-th covariate can then be obtained by taking the expected value of

vitk(ηi,θ,wit) with respect to wit and evaluated in ηi0, θ0, and wit can be written as

νk0 =

∫

vitk(ηi0,θ0,wit)dG(ηi0,wit).

where dG(ηi0,wit) denotes the joint distribution of ηi0 and wit.

As for the static logit model, the estimation of νk0 requires an estimate of ηi, which

we obtain in the same manner as in the first step in Section 3.2.1. Here, however, the

CML estimation of θ based on (11) relies on a preliminary step in order to obtain q̄it and

the estimation of APEs is thus based on a three-step procedure.

In the first step, a preliminary estimate of δ̄ is obtained by maximizing the conditional

log-likelihood

ℓ(δ̄) =
n
∑

i=1

I(0 < yi+ < T )ℓi(δ̄),

12



where

ℓi = log

exp

[

(

∑T
t=1 yitxit

)

′

δ̄

]

∑

z:z+=yi+

exp

[

(

∑T
t=1 ztxit

)

′

δ̄

] ,

which is the same conditional log-likelihood of the static logit model and may be maxi-

mized by a standard Newton-Raphson algorithm. We denote the resulting CML estimator

by δ̌. The estimate η̌i is then computed by maximizing the individual log-likelihood

ℓi(η̄i) =
T
∑

t=1

log
exp

[

yit(η̄i + x′

itδ̌)
]

1 + exp(η̄i + x′

itδ̌)
,

where δ̌ is fixed. The probability q̄it in (11) can the be estimated by q̌it = exp(η̌i +

x′

itδ̌)/
[

1 + exp(η̌i + x′

itδ̌)
]

.

In the second step, we estimate θ by maximizing the conditional log-likelihood

ℓ(θ) =
n
∑

i=1

I(0 < yi+ < T ) log p∗q̌i
(yi|X i, yi0, yi+),

where p∗q̌i
(yi|X i, yi0, yi+) is the joint probability in (11) evaluated at q̌i = (q̌i1, . . . , q̌iT )

′.

The above function can be easily maximized with respect to θ by the Newton-Raphson

algorithm, so as to obtain the PCML estimator θ̃, which is a
√
n-consistent estimator

of θ0 only if γ0 = 0, representing the special case in which the QE model corresponds

to the dynamic logit model.6 Nonetheless, Bartolucci and Nigro (2012) show that the

PCML estimator has a limited bias in finite sample even in presence of non negligible

state dependence. Given the estimator θ̃, we recover ML estimates η̂i(θ̃) maximizing the

individual log-likelihood based on Equation (10).

Finally, in step three, the APEs can then be estimated by plugging η̃i(θ̃) and θ̃ in

the APE formulation and applying the same correction shown in Section 3.2.1, so as to

obtain

ν̃k =
1

nT

n
∑

i=1

T
∑

t=1

vitk(η̂i(θ̃), θ̃,wit)−
1

nT

n
∑

i=1

D̃i.

Standard errors for ν̃k can be obtained exactly in the same way as illustrated in Section

3.2.2 with the appropriate change of notation.

6The correspondence refers to the log-odds ratio. This is clarified by Theorem 1 in Bartolucci and
Nigro (2012).
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4 Monte Carlo simulation study

In the following we illustrate the design and discuss the results of the simulation studies

aimed at assessing the finite sample performance of the estimators of the APEs for the

static and dynamic logit models. We keep the analyses separate for the two models, as

we base the two studies on different simulation designs.

4.1 Static logit

The simulation design for the static logit model is based on the one adopted by Hahn and

Newey (2004), except that we consider logit rather than normal error terms. The data

are generated as

yit = I(αi + xitβ + εit > 0), i = 1, . . . , n, t = 1, . . . , T,

with αi ∼ N(0, 1), the error terms εit follow a standard logistic distribution, and

xit = t/10 + xi,t−1/2 + uit,

where uit ∼ U [−0.5, 0.5] and xi0 = ui0. We consider different scenarios according to the

values of n and T and we set n = 100, 500, T = 4, 8, 12. The coefficient β is equal to

1 across all the scenarios and the number of replications is 1000. Fernández-Val (2009)

considers the same scenarios with only n = 100 and Hahn and Newey (2004) consider

only n = 100 and T = 4, 8.

Table 1 reports the simulation results for the APE estimators related to the regressor

x in each scenario. We compare the finite sample performance of the proposed APE

estimator (denoted by CML-BC) with: (a) the ML plug-in estimator (ML); (b) Hahn and

Newey (2004)’s jackknife bias corrected estimator (Jackknife-BC); (c) the ML estimator

with the analytical bias correction (Analytical-BC) provided by Fernández-Val (2009),

also mentioned in the previous section. For each scenario, we report the mean and the

median of the ratio µ̃/µ∗, the standard deviation of µ̃, the rejection frequency at 5%

and 10% nominal value, and the mean ratio between the estimator standard error and

standard deviation.7

From Table 1, it emerges that the proposed estimator (CML-BC) has a good finite

sample performance with both small n and T . It is also worth noticing that, throughout

the scenarios, the proposed estimator has a good interval coverage, with the percentage

attaining the nominal confidence level as T grows. The proposed procedure, the Jackknife-

BC, and the Analytical-BC estimator exhibit a similar behavior in all the scenarios, which

is also in line with the results reported by Hahn and Newey (2004) for the probit model. All

7ML standard errors are computed for Hahn and Newey (2004)’s Jackknife-BC estimator.
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in all, though, it emerges that the asymptotic equivalence of the plug-in bias-corrected

estimators considered with the ML APE estimator is reflected by their small sample

performance as well with this particular design.

Table 1: Simulation results for µ̃, static logit model

Mean Median SD Rejection rate SE/SD
n T ratio ratio 5% 10%

100 4
ML 0.988 0.993 0.072 0.048 0.102 1.006

Jackknife - BC 0.988 0.990 0.077 0.050 0.090 1.001
Analytical - BC 0.926 0.932 0.067 0.071 0.132 0.938

CML - BC 0.929 0.934 0.068 0.025 0.071 1.126

100 8
ML 0.998 0.999 0.028 0.046 0.101 0.985

Jackknife - BC 0.999 1.000 0.028 0.036 0.090 1.026
Analytical - BC 0.984 0.985 0.028 0.046 0.100 0.973

CML - BC 0.985 0.986 0.028 0.039 0.086 1.025

100 12
ML 0.992 0.996 0.016 0.066 0.127 0.906

Jackknife - BC 0.996 0.999 0.016 0.056 0.110 0.936
Analytical - BC 0.988 0.992 0.016 0.045 0.106 0.965

CML - BC 0.989 0.993 0.016 0.042 0.101 0.986

500 4
ML 1.004 0.997 0.032 0.056 0.094 1.004

Jackknife - BC 1.010 1.004 0.035 0.056 0.113 0.994
Analytical - BC 0.940 0.934 0.030 0.091 0.154 0.931

CML - BC 0.943 0.936 0.031 0.030 0.087 1.120

500 8
ML 0.996 0.996 0.013 0.066 0.122 0.929

Jackknife - BC 0.997 0.997 0.014 0.059 0.102 0.960
Analytical - BC 0.982 0.982 0.013 0.080 0.139 0.909

CML - BC 0.983 0.983 0.013 0.059 0.124 0.966

500 12
ML 0.999 1.000 0.007 0.075 0.126 0.910

Jackknife - BC 1.003 1.002 0.007 0.066 0.113 0.946
Analytical - BC 0.995 0.996 0.007 0.053 0.114 0.964

CML - BC 0.996 0.996 0.007 0.042 0.104 0.990

4.2 Dynamic logit

For the dynamic logit model, the simulation design is similar to that by Honoré and

Kyriazidou (2000). The data generating process, for i = 1, . . . , n, is as follows

yit = I(ηi + yi,t−1γ + xitδ + υit > 0), t = 1, . . . , T,

yi0 = I(ηi + xi0δ + υi0 > 0),

where xit ∼ N(0, π2/3) and υit follows a standard logistic distribution, for t = 0, . . . , T .

The individual heterogeneity is generated as ηi =
∑3

t=0 xit/4. We consider the same

scenarios as for the static logit model, that are n = 100, 500, T = 4, 8, 12. The coefficient
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γ is equal to 0.5 and δ is equal to 1 across all the scenarios and the number of replications

is 1000.

Tables 2 and 3 report the simulation results for the APE estimators related to vari-

ations in x, denoted as νx, and in yt−1, denoted νy, respectively. We compare the fi-

nite sample performance of the proposed APE estimator (PCML-BC) with: (a) the ML

plug-in estimator; (b) Dhaene and Jochmans (2015)’s half-panel jackknife bias corrected

estimator (Jackknife-BC); (c) the analytically bias-corrected estimator (Analytical-BC)

by Fernández-Val (2009). It must be noted that the half-panel Jackknife-BC estimator

cannot be computed for T = 4. Again we report the mean and the median of the ratio

ν̃/ν∗, the standard deviation of ν̃, the rejection frequency at 5% and 10% nominal value,

and the mean ratio between the estimator standard error and standard deviation.8

From Table 2 it emerges that the proposed estimator outperforms the uncorrected

ML and Analytical-BC when T is equal to 4, whereas they have comparable performance

with larger values of T , also considering the Jackknife-BC. Furthermore, the proposed

methodology seems to provide the most reliable confidence intervals among the examined

estimators. In this regard, it is worth noticing that when T = 4, all the estimators provide

poor coverage. By contrast, the proposed procedure offers a remarkable advantage over

the ML, Analytical-BC, and Jackknife-BC when it comes to the estimation of the APE

related to the state dependence parameter in almost all the scenarios considered (see

Table 3), in terms of mean ratio and rejection frequencies.

5 Empirical application

We apply our proposed formulation to the problem of estimating the labour supply of

married women. The same empirical application is considered by Fernández-Val (2009)

and Dhaene and Jochmans (2015). The sample is drawn from the Panel Study of Income

Dynamics (PSID), that consists of n = 1, 908 married women between 19 and 59 years of

age in 1980, followed for T = 6 time occasions, from 1980 to 1985, further to an additional

observation in 1979 exploited as initial condition in dynamic models. We specify a static

logit model for the probability of being employed at time t, conditional on the number

of children of a certain age in the family, namely the number of kids between 0 and 2

years old, between 3 and 5, and between 6 and 17, and on the husband’s income. We also

specify a dynamic logit model, that is we include lagged participation in the set of model

covariates.

The estimation results for the static logit model are reported in Table 4. We re-

8ML standard errors are computed for Dhaene and Jochmans (2015)’s half-panel Jackknife-BC esti-
mator. They are different from those proposed bu the authors, who suggested using the cross-sectional
variance of the within-group average effects, which, however, had a worse performance in finite samples
than the ML ones.
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Table 2: Simulation results for ν̃x, dynamic logit model

Mean Median SD Rejection Rate SE/SD
n T ratio ratio 5% 10%

100 4
ML 0.917 0.917 0.014 0.261 0.340 0.774

Analytical - BC 0.620 0.690 0.038 0.978 0.989 0.265
PCML - BC 0.889 0.886 0.013 0.145 0.254 1.117

100 8
ML 0.988 0.989 0.008 0.065 0.116 0.891

Jackknife - BC 1.056 1.057 0.011 0.165 0.248 0.862
Analytical - BC 0.980 0.981 0.008 0.074 0.128 0.899
PCML - BC 0.977 0.977 0.008 0.069 0.129 0.939

100 12
ML 0.998 0.997 0.006 0.057 0.117 0.844

Jackknife - BC 1.013 1.012 0.007 0.081 0.143 0.855
Analytical - BC 0.998 0.998 0.006 0.029 0.075 0.933
PCML - BC 0.991 0.991 0.006 0.044 0.099 0.913

500 4
ML 0.912 0.913 0.006 0.691 0.780 0.819

Analytical - BC 0.706 0.713 0.007 1.000 1.000 0.577
PCML - BC 0.887 0.886 0.005 0.741 0.843 1.185

500 8
ML 0.990 0.990 0.004 0.081 0.147 0.851

Jackknife - BC 1.060 1.061 0.005 0.545 0.650 0.803
Analytical - BC 0.982 0.982 0.004 0.131 0.206 0.860
PCML - BC 0.979 0.979 0.004 0.142 0.229 0.895

500 12
ML 0.996 0.996 0.003 0.046 0.089 0.894

Jackknife - BC 1.013 1.013 0.003 0.117 0.201 0.868
Analytical - BC 0.996 0.996 0.003 0.025 0.067 0.984
PCML - BC 0.990 0.989 0.003 0.055 0.106 0.970
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Table 3: Simulation results for ν̃y, dynamic logit model

Mean Median SD Confidence SE/SD
n T ratio ratio 90% 95%

100 4
ML -1.239 -1.245 0.042 0.862 0.972 1.611

Analytical - BC 1.166 1.140 0.053 0.101 0.169 0.714
PCML - BC 0.849 0.839 0.055 0.025 0.063 1.195

100 8
ML -0.207 -0.203 0.029 0.883 0.932 1.050

Jackknife - BC 0.790 0.773 0.039 0.320 0.407 0.531
Analytical - BC 0.896 0.899 0.031 0.092 0.169 0.877
PCML - BC 0.987 0.994 0.034 0.062 0.115 0.968

100 12
ML 0.197 0.197 0.024 0.790 0.866 0.904

Jackknife - BC 0.933 0.928 0.029 0.228 0.306 0.616
Analytical - BC 0.955 0.952 0.025 0.077 0.131 0.912
PCML - BC 1.004 0.998 0.027 0.075 0.128 0.933

500 4
ML -1.231 -1.222 0.019 1.000 1.000 1.585

Analytical - BC 1.026 1.025 0.019 0.086 0.158 0.866
PCML - BC 0.873 0.872 0.025 0.027 0.067 1.198

500 8
ML -0.203 -0.203 0.013 1.000 1.000 1.062

Jackknife - BC 0.796 0.791 0.017 0.463 0.546 0.546
Analytical - BC 0.905 0.903 0.014 0.109 0.180 0.899
PCML - BC 0.993 1.000 0.015 0.057 0.104 0.996

500 12
ML 0.185 0.186 0.011 1.000 1.000 0.929

Jackknife - BC 0.929 0.925 0.012 0.255 0.339 0.636
Analytical - BC 0.945 0.949 0.011 0.087 0.156 0.931
PCML - BC 0.991 0.995 0.012 0.062 0.110 0.962
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Table 4: Female labour force participation: static logit model

Labour Force Participation Model parameters β

ML Jackknife Analytical CML
BC BC

# Children 0-2 -1.331∗∗∗ -1.051∗∗∗ -1.090∗∗∗ -1.092∗∗∗

(0.145) (0.145) (0.117) (0.109)
# Children 3-5 -0.922∗∗∗ -0.706∗∗∗ -0.755∗∗∗ -0.756∗∗∗

(0.147) (0.147) (0.112) (0.103)
# Children 6-17 -0.193 -0.141 -0.157∗ -0.157∗

(0.123) (0.123) (0.088) (0.081)
Husband income -0.011∗ -0.005 -0.009∗∗ -0.009∗∗∗

(0.006) (0.006) (0.004) (0.004)

Average partial effects µ

ML Jackknife Analytical CML-BC
BC BC

# Children 0-2 -0.091∗∗∗ -0.092∗∗∗ -0.088∗∗∗ -0.089∗∗∗

(0.009) (0.009) (0.008) (0.021)
# Children 3-5 -0.063∗∗∗ -0.066∗∗∗ -0.061∗∗∗ -0.061∗∗∗

(0.009) (0.010) (0.008) (0.022)
# Children 6-17 -0.013 -0.012 -0.013∗∗ -0.013

(0.009) (0.009) (0.006) (0.019)
Husband income -0.001 -0.001 -0.001∗∗ -0.001

(0.001) (0.001) (0.000) (0.001)

port the ML, Hahn and Newey (2004)’s panel Jackknife-BC, Hahn and Newey (2004)’s

Analytical-BC and CML estimates of the model parameters. The CML, Analytical-BC,

and Jackknife-BC estimates of the parameters are all similar to each other and smaller (in

absolute value) than the uncorrected ML ones; they suggest a negative effect on labour

participation of having children younger than 17 in the household as well as of the level

of the husband’s income. The estimated APEs obtained with the proposed method sug-

gest that having an additional child between 0 and 2 reduces the probability of working

by 8.9 percentage points, and having a child between 3 and 5 years old reduces the em-

ployment probability by 6.1 percentage points. The APE estimates obtained with the

Analytical-BC and Jackknife-BC estimators point toward the same results, with the ex-

ception of having children between 6 and 17 years old, which appear to be not statistically

significant, according to our procedure.

Table 5 reports the results for the dynamic logit specification. Here we report the

ML, Dhaene and Jochmans (2015)’s half-panel Jackknife-BC, Fernández-Val (2009)’s

Analytical-BC and PCML estimates of the model parameters. The effect of the ex-

ogenous model covariates is now smaller and all the APE estimates suggest a negative

and statistically significant effect of having children between 0 and 5 years old in the

household.

The PCML estimator detects a strong state dependence in labour force participation

of married women, as the estimated coefficient for lagged participation amounts to 1.706.
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Table 5: Female labour force participation: dynamic logit model

Labour force participation Model parameters θ

ML Jackknife Analytical PCML
BC BC

# Children 0-2 -1.269∗∗∗ -0.895∗∗∗ -0.930∗∗∗ -0.912∗∗∗

(0.141) (0.141) (0.122) (0.095)
# Children 3-5 -0.823∗∗∗ -0.503∗∗∗ -0.532∗∗∗ -0.503∗∗∗

(0.141) (0.141) (0.117) (0.091)
# Children 6-17 -0.173 -0.019 -0.106 -0.092

(0.117) (0.117) (0.092) (0.074)
Husband income -0.011∗ -0.005 -0.009∗∗ -0.008∗∗

(0.006) (0.006) (0.004) (0.004)
Lagged Participation 0.569∗∗∗ 2.107∗∗∗ 1.319∗∗∗ 1.706∗∗∗

(0.081) (0.081) (0.082) (0.103)

Average partial effects ν

ML Jackknife Analytical PCML-BC
BC BC

# Children 0-2 -0.086∗∗∗ -0.097∗∗∗ -0.075∗∗∗ -0.064∗∗∗

(0.009) (0.008) (0.008) (0.016)
# Children 3-5 -0.056∗∗∗ -0.059∗∗∗ -0.043∗∗∗ -0.035∗∗

(0.009) (0.008) (0.008) (0.015)
# Children 6-17 -0.012 -0.009 -0.009 -0.006

(0.008) (0.007) (0.006) (0.012)
Husband income -0.001 -0.001 -0.001∗∗ -0.001

(0.001) (0.001) (0.001) (0.001)
Lagged Participation 0.041∗∗∗ 0.124∗∗∗ 0.121∗∗∗ 0.152∗∗∗

(0.008) (0.030) (0.006) (0.021)

In terms of APE, this is translated into an increase of 15.2 percentage points in the

probability of being employed at time t for a woman who was working in t − 1, with

respect to a woman who was not working in t− 1.

6 Conclusion

We develop a multiple-step procedure to compute APEs for fixed-effects logit models

that are estimated by CML. Our strategy amounts to building a plug-in APE estimator

based on the fixed-T consistent CML estimator of the slope parameters and bias corrected

estimates of APEs.

The proposed estimator is asymptotically equivalent to the plug-in ML and alternative

bias-corrected APE estimators, and it exhibits a comparable finite sample performance

when the static logit model is considered. On the contrary, the proposed approach for

the dynamic logit model has a remarkable advantage in finite samples with small T . In

this respect, the multiple-step procedure here developed could be particularly useful to

practitioners who often deal with short-T datasets, such as rotated surveys, and/or highly

unbalanced panels.
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